Complex temperatures zeroes of partition function in spin-glass models
物理学英语词汇_日常英语词汇
bet公式bet formuladlvo理论 dlvo theoryhlb法hydrophile-lipophile balance methodpvt性质 pvt propertyζ电势 zeta potential阿伏加德罗常数avogadro’number阿伏加德罗定律 avogadro law阿累尼乌斯电离理论arrhenius ionization theory阿累尼乌斯方程arrhenius equation阿累尼乌斯活化能 arrhenius activation energy阿马格定律 amagat law艾林方程 erying equation爱因斯坦光化当量定律einstein’s law of photochemical equivalence爱因斯坦-斯托克斯方程 einstein-stokes equation安托万常数 antoine constant安托万方程 antoine equation盎萨格电导理论onsager’s theory of conductance半电池half cell半衰期half time period饱和液体 saturated liquids饱和蒸气 saturated vapor饱和吸附量 saturated extent of adsorption饱和蒸气压 saturated vapor pressure爆炸界限 explosion limits比表面功 specific surface work比表面吉布斯函数 specific surface gibbs function比浓粘度 reduced viscosity标准电动势 standard electromotive force标准电极电势 standard electrode potential标准摩尔反应焓 standard molar reaction enthalpy标准摩尔反应吉布斯函数standard gibbs function of molar reaction标准摩尔反应熵 standard molar reaction entropy标准摩尔焓函数 standard molar enthalpy function标准摩尔吉布斯自由能函数standard molar gibbs free energy function标准摩尔燃烧焓 standard molar combustion enthalpy标准摩尔熵 standard molar entropy标准摩尔生成焓 standard molar formation enthalpy标准摩尔生成吉布斯函数standard molar formation gibbs function标准平衡常数 standard equilibrium constant标准氢电极 standard hydrogen electrode标准态 standard state标准熵 standard entropy标准压力 standard pressure标准状况 standard condition表观活化能apparent activation energy表观摩尔质量 apparent molecular weight表观迁移数apparent transference number表面 surfaces表面过程控制 surface process control表面活性剂surfactants表面吸附量 surface excess表面张力 surface tension表面质量作用定律 surface mass action law波义尔定律 boyle law波义尔温度 boyle temperature波义尔点 boyle point玻尔兹曼常数 boltzmann constant玻尔兹曼分布 boltzmann distribution玻尔兹曼公式 boltzmann formula玻尔兹曼熵定理 boltzmann entropy theorem玻色-爱因斯坦统计bose-einstein statistics泊poise不可逆过程 irreversible process不可逆过程热力学thermodynamics of irreversible processes 不可逆相变化 irreversible phase change布朗运动 brownian movement查理定律charle’s law产率 yield敞开系统 open system超电势 over potential沉降 sedimentation沉降电势 sedimentation potential沉降平衡 sedimentation equilibrium触变 thixotropy粗分散系统 thick disperse system催化剂 catalyst单分子层吸附理论 mono molecule layer adsorption单分子反应 unimolecular reaction单链反应 straight chain reactions弹式量热计 bomb calorimeter道尔顿定律 dalton law道尔顿分压定律 dalton partial pressure law德拜和法尔肯哈根效应debye and falkenhagen effect德拜立方公式 debye cubic formula德拜-休克尔极限公式 debye-huckel’s limiting equation 等焓过程 isenthalpic process等焓线isenthalpic line等几率定理 theorem of equal probability等温等容位helmholtz free energy等温等压位gibbs free energy等温方程 equation at constant temperature低共熔点 eutectic point低共熔混合物 eutectic mixture低会溶点 lower consolute point低熔冰盐合晶 cryohydric第二类永动机 perpetual machine of the second kind第三定律熵 third-law entropy第一类永动机 perpetual machine of the first kind缔合化学吸附 association chemical adsorption电池常数 cell constant电池电动势 electromotive force of cells电池反应 cell reaction电导 conductance电导率 conductivity电动势的温度系数 temperature coefficient of electromotive force电动电势 zeta potential电功electric work电化学 electrochemistry电化学极化 electrochemical polarization电极电势 electrode potential电极反应 reactions on the electrode电极种类 type of electrodes电解池 electrolytic cell电量计 coulometer电流效率current efficiency电迁移 electro migration电迁移率 electromobility电渗 electroosmosis电渗析 electrodialysis电泳 electrophoresis丁达尔效应 dyndall effect定容摩尔热容 molar heat capacity under constant volume 定容温度计 constant voiume thermometer定压摩尔热容 molar heat capacity under constant pressure 定压温度计 constant pressure thermometer定域子系统 localized particle system动力学方程kinetic equations动力学控制 kinetics control独立子系统 independent particle system对比摩尔体积 reduced mole volume对比体积 reduced volume对比温度 reduced temperature对比压力 reduced pressure对称数 symmetry number对行反应reversible reactions对应状态原理 principle of corresponding state多方过程polytropic process多分子层吸附理论adsorption theory of multi-molecular layers二级反应second order reaction二级相变second order phase change法拉第常数 faraday constant法拉第定律faraday’s law反电动势back e.m.f.反渗透 reverse osmosis反应分子数 molecularity反应级数 reaction orders反应进度 extent of reaction反应热heat of reaction反应速率rate of reaction反应速率常数 constant of reaction rate范德华常数 van der waals constant范德华方程 van der waals equation范德华力 van der waals force范德华气体 van der waals gases范特霍夫方程van’t hoff equation范特霍夫规则van’t hoff rule范特霍夫渗透压公式van’t hoff equation of osmotic pressure非基元反应 non-elementary reactions非体积功 non-volume work非依时计量学反应time independent stoichiometric reactions菲克扩散第一定律fick’s first law of diffusion沸点 boiling point沸点升高 elevation of boiling point费米-狄拉克统计fermi-dirac statistics分布 distribution分布数 distribution numbers分解电压 decomposition voltage分配定律 distribution law分散系统 disperse system分散相 dispersion phase分体积 partial volume分体积定律 partial volume law分压 partial pressure分压定律 partial pressure law分子反应力学 mechanics of molecular reactions分子间力 intermolecular force分子蒸馏molecular distillation封闭系统 closed system附加压力 excess pressure弗罗因德利希吸附经验式freundlich empirical formula of adsorption负极 negative pole负吸附 negative adsorption复合反应composite reaction盖·吕萨克定律 gay-lussac law盖斯定律 hess law甘汞电极 calomel electrode感胶离子序 lyotropic series杠杆规则 lever rule高分子溶液 macromolecular solution高会溶点 upper consolute point隔离法the isolation method格罗塞斯-德雷珀定律 grotthus-draoer’s law隔离系统 isolated system根均方速率 root-mean-square speed功 work功函work content共轭溶液 conjugate solution共沸温度 azeotropic temperature构型熵configurational entropy孤立系统 isolated system固溶胶 solid sol固态混合物 solid solution固相线 solid phase line光反应 photoreaction光化学第二定律 the second law of actinochemistry光化学第一定律 the first law of actinochemistry光敏反应 photosensitized reactions光谱熵 spectrum entropy广度性质 extensive property广延量 extensive quantity广延性质 extensive property规定熵 stipulated entropy过饱和溶液 oversaturated solution过饱和蒸气 oversaturated vapor过程 process过渡状态理论 transition state theory过冷水 super-cooled water过冷液体 overcooled liquid过热液体 overheated liquid亥姆霍兹函数 helmholtz function亥姆霍兹函数判据 helmholtz function criterion亥姆霍兹自由能 helmholtz free energy亥氏函数 helmholtz function焓 enthalpy亨利常数 henry constant亨利定律 henry law恒沸混合物 constant boiling mixture恒容摩尔热容 molar heat capacity at constant volume 恒容热 heat at constant volume恒外压 constant external pressure恒压摩尔热容 molar heat capacity at constant pressure恒压热 heat at constant pressure化学动力学chemical kinetics化学反应计量式stoichiometric equation of chemical reaction化学反应计量系数stoichiometric coefficient of chemical reaction化学反应进度 extent of chemical reaction化学亲合势 chemical affinity化学热力学chemical thermodynamics化学势 chemical potential化学势判据 chemical potential criterion化学吸附 chemisorptions环境 environment环境熵变 entropy change in environment挥发度volatility混合熵 entropy of mixing混合物 mixture活度 activity活化控制 activation control活化络合物理论 activated complex theory活化能activation energy霍根-华森图 hougen-watson chart基态能级 energy level at ground state基希霍夫公式 kirchhoff formula基元反应elementary reactions积分溶解热 integration heat of dissolution吉布斯-杜亥姆方程 gibbs-duhem equation吉布斯-亥姆霍兹方程 gibbs-helmhotz equation吉布斯函数 gibbs function吉布斯函数判据 gibbs function criterion吉布斯吸附公式gibbs adsorption formula吉布斯自由能 gibbs free energy吉氏函数 gibbs function极化电极电势 polarization potential of electrode 极化曲线 polarization curves极化作用 polarization极限摩尔电导率 limiting molar conductivity几率因子 steric factor计量式 stoichiometric equation计量系数 stoichiometric coefficient价数规则 rule of valence简并度 degeneracy键焓bond enthalpy胶冻 broth jelly胶核 colloidal nucleus胶凝作用 demulsification胶束micelle胶体 colloid胶体分散系统 dispersion system of colloid胶体化学 collochemistry胶体粒子 colloidal particles胶团 micelle焦耳joule焦耳-汤姆生实验 joule-thomson experiment焦耳-汤姆生系数 joule-thomson coefficient焦耳-汤姆生效应 joule-thomson effect焦耳定律 joule`s law接触电势contact potential接触角 contact angle节流过程 throttling process节流膨胀 throttling expansion节流膨胀系数 coefficient of throttling expansion结线 tie line结晶热heat of crystallization解离化学吸附 dissociation chemical adsorption界面 interfaces界面张力 surface tension浸湿 immersion wetting浸湿功 immersion wetting work精馏 rectify聚(合)电解质polyelectrolyte聚沉 coagulation聚沉值 coagulation value绝对反应速率理论 absolute reaction rate theory绝对熵 absolute entropy绝对温标absolute temperature scale绝热过程 adiabatic process绝热量热计adiabatic calorimeter绝热指数 adiabatic index卡诺定理 carnot theorem卡诺循环 carnot cycle开尔文公式 kelvin formula柯诺瓦洛夫-吉布斯定律 konovalov-gibbs law科尔劳施离子独立运动定律kohlrausch’s law of independent migration of ions可能的电解质potential electrolyte可逆电池 reversible cell可逆过程 reversible process可逆过程方程 reversible process equation可逆体积功 reversible volume work可逆相变 reversible phase change克拉佩龙方程 clapeyron equation克劳修斯不等式 clausius inequality克劳修斯-克拉佩龙方程 clausius-clapeyron equation控制步骤 control step库仑计 coulometer扩散控制 diffusion controlled拉普拉斯方程laplace’s equation拉乌尔定律 raoult law兰格缪尔-欣谢尔伍德机理langmuir-hinshelwood mechanism兰格缪尔吸附等温式 langmuir adsorption isotherm formula 雷利公式 rayleigh equation冷冻系数coefficient of refrigeration冷却曲线 cooling curve离解热heat of dissociation离解压力dissociation pressure离域子系统 non-localized particle systems离子的标准摩尔生成焓 standard molar formation of ion离子的电迁移率 mobility of ions离子的迁移数transport number of ions离子独立运动定律 law of the independent migration of ions 离子氛 ionic atmosphere离子强度 ionic strength理想混合物 perfect mixture理想气体 ideal gas接触电势contact potential接触角 contact angle节流过程 throttling process节流膨胀 throttling expansion节流膨胀系数 coefficient of throttling expansion结线 tie line结晶热heat of crystallization解离化学吸附 dissociation chemical adsorption界面 interfaces界面张力 surface tension浸湿 immersion wetting浸湿功 immersion wetting work精馏 rectify聚(合)电解质polyelectrolyte聚沉 coagulation聚沉值 coagulation value绝对反应速率理论 absolute reaction rate theory绝对熵 absolute entropy绝对温标absolute temperature scale绝热过程 adiabatic process绝热量热计adiabatic calorimeter绝热指数 adiabatic index卡诺定理 carnot theorem卡诺循环 carnot cycle开尔文公式 kelvin formula柯诺瓦洛夫-吉布斯定律 konovalov-gibbs law科尔劳施离子独立运动定律kohlrausch’s law of independent migration of ions可能的电解质potential electrolyte可逆电池 reversible cell可逆过程 reversible process可逆过程方程 reversible process equation可逆体积功 reversible volume work可逆相变 reversible phase change克拉佩龙方程 clapeyron equation克劳修斯不等式 clausius inequality克劳修斯-克拉佩龙方程 clausius-clapeyron equation控制步骤 control step库仑计 coulometer扩散控制 diffusion controlled拉普拉斯方程laplace’s equation拉乌尔定律 raoult law兰格缪尔-欣谢尔伍德机理langmuir-hinshelwood mechanism兰格缪尔吸附等温式 langmuir adsorption isotherm formula 雷利公式 rayleigh equation冷冻系数coefficient of refrigeration冷却曲线 cooling curve离解热heat of dissociation离解压力dissociation pressure离域子系统 non-localized particle systems离子的标准摩尔生成焓 standard molar formation of ion离子的电迁移率 mobility of ions离子的迁移数transport number of ions离子独立运动定律 law of the independent migration of ions 离子氛 ionic atmosphere离子强度 ionic strength理想混合物 perfect mixture理想气体 ideal gas理想气体的绝热指数 adiabatic index of ideal gases理想气体的微观模型 micro-model of ideal gas理想气体反应的等温方程isothermal equation of ideal gaseous reactions理想气体绝热可逆过程方程adiabatic reversible processequation of ideal gases理想气体状态方程 state equation of ideal gas理想稀溶液 ideal dilute solution理想液态混合物 perfect liquid mixture粒子 particles粒子的配分函数 partition function of particles连串反应consecutive reactions链的传递物 chain carrier链反应 chain reactions量热熵 calorimetric entropy量子统计quantum statistics量子效率 quantum yield临界参数 critical parameter临界常数 critical constant临界点 critical point临界胶束浓度critical micelle concentration临界摩尔体积 critical molar volume临界温度 critical temperature临界压力 critical pressure临界状态 critical state零级反应zero order reaction流动电势 streaming potential流动功 flow work笼罩效应 cage effect路易斯-兰德尔逸度规则 lewis-randall rule of fugacity 露点 dew point露点线 dew point line麦克斯韦关系式 maxwell relations麦克斯韦速率分布 maxwell distribution of speeds麦克斯韦能量分布 maxwelidistribution of energy毛细管凝结 condensation in capillary毛细现象 capillary phenomena米凯利斯常数 michaelis constant摩尔电导率 molar conductivity摩尔反应焓 molar reaction enthalpy摩尔混合熵 mole entropy of mixing摩尔气体常数 molar gas constant摩尔热容 molar heat capacity摩尔溶解焓 mole dissolution enthalpy摩尔稀释焓 mole dilution enthalpy内扩散控制 internal diffusions control内能 internal energy内压力 internal pressure能级 energy levels能级分布 energy level distribution能量均分原理 principle of the equipartition of energy 能斯特方程 nernst equation能斯特热定理 nernst heat theorem凝固点 freezing point凝固点降低 lowering of freezing point凝固点曲线 freezing point curve凝胶 gelatin凝聚态 condensed state凝聚相 condensed phase浓差超电势 concentration over-potential浓差极化 concentration polarization浓差电池 concentration cells帕斯卡pascal泡点 bubble point泡点线 bubble point line配分函数 partition function配分函数的析因子性质 property that partition function to be expressed as a product of the separate partition functions for each kind of state碰撞截面 collision cross section碰撞数 the number of collisions偏摩尔量 partial mole quantities平衡常数(理想气体反应)equilibrium constants for reactions of ideal gases平动配分函数 partition function of translation平衡分布 equilibrium distribution平衡态 equilibrium state平衡态近似法 equilibrium state approximation平衡状态图 equilibrium state diagram平均活度 mean activity平均活度系统 mean activity coefficient平均摩尔热容 mean molar heat capacity平均质量摩尔浓度 mean mass molarity平均自由程mean free path平行反应parallel reactions破乳 demulsification铺展 spreading普遍化范德华方程 universal van der waals equation其它功 the other work气化热heat of vaporization气溶胶 aerosol气体常数 gas constant气体分子运动论 kinetic theory of gases气体分子运动论的基本方程 foundamental equation of kinetic theory of gases气溶胶 aerosol气相线 vapor line迁移数 transport number潜热latent heat强度量 intensive quantity强度性质 intensive property亲液溶胶 hydrophilic sol氢电极 hydrogen electrodes区域熔化zone melting热 heat热爆炸 heat explosion热泵 heat pump热功当量mechanical equivalent of heat热函heat content热化学thermochemistry热化学方程thermochemical equation热机 heat engine热机效率 efficiency of heat engine热力学 thermodynamics热力学第二定律 the second law of thermodynamics热力学第三定律 the third law of thermodynamics热力学第一定律 the first law of thermodynamics热力学基本方程 fundamental equation of thermodynamics 热力学几率 thermodynamic probability热力学能 thermodynamic energy热力学特性函数characteristic thermodynamic function热力学温标thermodynamic scale of temperature热力学温度thermodynamic temperature热熵thermal entropy热效应heat effect熔点曲线 melting point curve熔化热heat of fusion溶胶 colloidal sol溶解焓 dissolution enthalpy溶液 solution溶胀 swelling乳化剂 emulsifier乳状液 emulsion润湿 wetting润湿角 wetting angle萨克尔-泰特洛德方程 sackur-tetrode equation 三相点 triple point三相平衡线 triple-phase line熵 entropy熵判据 entropy criterion熵增原理 principle of entropy increase渗透压 osmotic pressure渗析法 dialytic process生成反应 formation reaction升华热heat of sublimation实际气体 real gas舒尔采-哈迪规则 schulze-hardy rule松驰力relaxation force松驰时间time of relaxation速度常数reaction rate constant速率方程rate equations速率控制步骤rate determining step塔费尔公式 tafel equation态-态反应 state-state reactions唐南平衡 donnan equilibrium淌度 mobility特鲁顿规则 trouton rule特性粘度 intrinsic viscosity体积功 volume work统计权重 statistical weight统计热力学 statistic thermodynamics统计熵 statistic entropy途径 path途径函数 path function外扩散控制 external diffusion control完美晶体 perfect crystalline完全气体 perfect gas微观状态 microstate微态 microstate韦斯顿标准电池 weston standard battery维恩效应wien effect维里方程 virial equation维里系数 virial coefficient稳流过程 steady flow process稳态近似法 stationary state approximation无热溶液athermal solution无限稀溶液 solutions in the limit of extreme dilution 物理化学 physical chemistry物理吸附 physisorptions吸附 adsorption吸附等量线 adsorption isostere吸附等温线 adsorption isotherm吸附等压线 adsorption isobar吸附剂 adsorbent吸附量 extent of adsorption吸附热 heat of adsorption吸附质 adsorbate析出电势 evolution or deposition potential析因子性质 property that partition function to be expressed as a product of the separate partition functions for each kind of state稀溶液的依数性 colligative properties of dilute solutions稀释焓 dilution enthalpy系统 system系统点 system point系统的环境 environment of system相 phase相变 phase change相变焓 enthalpy of phase change相变化 phase change相变热 heat of phase change相点 phase point相对挥发度relative volatility相对粘度 relative viscosity相律 phase rule相平衡热容heat capacity in phase equilibrium相图 phase diagram相倚子系统 system of dependent particles悬浮液 suspension循环过程 cyclic process压力商 pressure quotient压缩因子 compressibility factor压缩因子图 diagram of compressibility factor亚稳状态 metastable state盐桥 salt bridge盐析 salting out阳极 anode杨氏方程young’s equation液体接界电势 liquid junction potential液相线 liquid phase lines一级反应first order reaction一级相变first order phase change依时计量学反应 time dependent stoichiometric reactions 逸度 fugacity逸度系数 coefficient of fugacity阴极 cathode荧光 fluorescence永动机 perpetual motion machine永久气体 permanent gas有效能 available energy原电池 primary cell原盐效应 salt effect增比粘度 specific viscosity憎液溶胶 lyophobic sol沾湿 adhesional wetting沾湿功 the work of adhesional wetting真溶液 true solution真实电解质real electrolyte真实气体 real gas真实迁移数true transference number振动配分函数 partition function of vibration振动特征温度 characteristic temperature of vibration蒸气压下降 depression of vapor pressure正常沸点 normal point正吸附 positive adsorption支链反应 branched chain reactions直链反应 straight chain reactions指前因子 pre-exponential factor质量作用定律mass action law制冷系数coefficient of refrigeration中和热heat of neutralization轴功 shaft work转动配分函数 partition function of rotation转动特征温度 characteristic temperature of vibration 转化率 convert ratio转化温度conversion temperature状态 state状态方程 state equation状态分布 state distribution状态函数 state function准静态过程quasi-static process准一级反应 pseudo first order reaction自动催化作用 auto-catalysis自由度 degree of freedom自由度数 number of degree of freedom自由焓free enthalpy自由能free energy自由膨胀free expansion组分数 component number最低恒沸点 lower azeotropic point最高恒沸点 upper azeotropic point最佳反应温度 optimal reaction temperature最可几分布 most probable distribution最可几速率 most propable speed。
新高考高二英语考试卷
一、选择题(共20小题,每小题2分,共40分)1. I was surprised to hear that he _______ in the same city with us.A. livesB. livedC. has livedD. was living2. The teacher said that _______ on time was very important.A. comingB. to comeC. comeD. came3. He _______ so tired that he couldn't even speak a word.A. wasB. beC. wereD. is4. If I _______ you, I would never do that.A. wereB. amC. beD. was5. The book _______ on the desk is mine.A. layB. layingC. laidD. lies6. _______ you ever visited the Great Wall?A. HaveB. HasC. Have youD. Has you7. _______ you finished your homework?A. HaveB. HasC. Have youD. Has you8. He _______ so busy that he didn't have time to eat.A. wasB. beC. wereD. is9. _______ you heard the news about the earthquake?A. HaveB. HasC. Have youD. Has you10. The teacher _______ the students to be quiet.A. asksB. askC. askingD. asked11. _______ you like to have a cup of coffee?A. DoB. DoesC. DidD. Does you12. _______ you finished your work?A. HaveB. HasC. Have youD. Has you13. _______ you seen this movie before?A. HaveB. HasC. Have youD. Has you14. _______ you watched the football match yesterday?A. HaveB. HasC. Have youD. Has you15. _______ you ever visited the library?A. HaveB. HasC. Have youD. Has you16. _______ you like to go shopping with me?A. DoB. DoesC. DidD. Does you17. _______ you finished your homework?A. HaveB. HasC. Have youD. Has you18. _______ you ever seen a tiger in the wild?A. HaveB. HasC. Have youD. Has you19. _______ you watched the movie last night?A. HaveB. HasC. Have youD. Has you20. _______ you ever played the piano?A. HaveB. HasC. Have youD. Has you二、完形填空(共20小题,每小题2分,共40分)The Internet has become an important part of our lives. It allows us to communicate with people from all over the world, access information, and even shop online. However, with the convenience of the Internet comes a set of challenges. One of the most significant challenges is the issue of online privacy.Online privacy refers to the protection of personal information shared online. This information can include your name, address, phone number, and even your financial details. Many people are concerned about the potential risks of their personal information being accessed by unauthorized individuals.One way to protect your online privacy is to use strong passwords. A strong password should be at least eight characters long and include a combination of letters, numbers, and symbols. It's also important to avoid using the same password for multiple accounts.Another way to protect your online privacy is to be cautious about the information you share online. Before posting anything on social media, ask yourself whether it's something you would be comfortable sharing with anyone. Additionally, be careful about clicking on suspicious links or downloading files from unknown sources.Using a virtual private network (VPN) is another effective way toprotect your online privacy. A VPN creates a secure and encrypted connection between your device and the Internet, making it difficult for hackers to intercept your data.In conclusion, online privacy is a crucial issue in today's digital age. By following these simple steps, you can help protect your personal information and reduce the risk of identity theft and other online threats.21. The Internet has become an important part of our _______.A. lifeB. livesC. liveD. living22. One way to protect your online privacy is to use _______ passwords.A. strongB. stronglyC. strongnessD. strength23. It's also important to avoid using the same password for multiple_______.A. accountsB. accountC. accountingD. accountants24. Before posting anything on social media, ask yourself whether it's something you would be comfortable _______.A. sharingB. sharedC. to shareD. share25. Using a virtual private network (VPN) is another effective way to _______ your online privacy.A. protectB. protectingC. protectedD. protector26. In conclusion, online privacy is a crucial issue in today's _______.A. ageB. agesC. agedD. aging27. By following these simple steps, you can help _______ your personal information.A. protectB. protectingC. protectedD. protector28. The potential risks of your personal information being accessed by unauthorized individuals are significant.A. TheB. AnC. SomeD. Any29. Many people are concerned about the _______ of their personal information being accessed by unauthorized individuals.A. riskB. risksC. riskilyD. riskiness30. It's also important to be cautious about the information you _______ online.A. shareB. sharedC. to shareD. sharing三、阅读理解(共20小题,每小题2分,共40分)Passage 1The development of technology has revolutionized the way we live and work. One of the most significant advancements is the Internet, which has transformed communication, business, and entertainment. However, with these advancements come challenges, such as cybersecurity threats and privacy concerns.Cybersecurity threats are becoming increasingly sophisticated, and it's crucial for individuals and organizations to take steps to protect themselves. One of the most effective ways to do this is by using strong passwords and keeping them secure. Additionally, individuals should becautious about the information they share online and avoid clicking on suspicious links or downloading files from unknown sources.Privacy concerns are also a significant issue in the digital age. Many people are worried about the potential misuse of their personal information. To address this, it's important to use encryption tools and to be mindful of the information you share online.Despite these challenges, the benefits of technology far outweigh the risks. The Internet has made it easier to communicate with people from all over the world, access information, and even conduct business. It has also opened up new opportunities for entertainment and education.31. What is one of the most significant advancements in technology?A. The InternetB. CommunicationC. BusinessD. Entertainment32. What is one way to protect yourself from cybersecurity threats?A. Using strong passwordsB. Sharing information onlineC. Clicking on suspicious linksD. Downloading files from unknown sources33. What is a significant issue in the digital age?A. Cybersecurity threatsB. Privacy concernsC. CommunicationD. Entertainment34. What is one way to address privacy concerns?A. Using encryption toolsB. Sharing information onlineC. Clicking on suspicious linksD. Downloading files from unknown sources35. What are the benefits of technology?A. Communication, information access, and business opportunitiesB. Privacy concerns, cybersecurity threats, and communicationC. Privacy concerns, cybersecurity threats, and entertainmentD. Communication, entertainment, and educationPassage 2Global warming is a pressing issue that affects the entire planet. It refers to the long-term increase in Earth's average surface temperature due to human activities, primarily the emission of greenhouse gases. The consequences of global warming are far-reaching and include rising sea levels, extreme weather events, and the loss of biodiversity.One of the primary causes of global warming is the burning of fossil fuels, such as coal, oil, and natural gas. These activities release carbon dioxide and other greenhouse gases into the atmosphere, trapping heat and leading to a rise in global temperatures. To combat global warming, it's essential to reduce greenhouse gas emissions andtransition to renewable energy sources.Another significant factor contributing to global warming is deforestation. Trees absorb carbon dioxide from the atmosphere, and when they are cut down, this carbon is released back into the air. To address this, efforts to reforest and preserve existing forests are crucial.The impacts of global warming are already being felt around the world. Glaciers are melting at an alarming rate, causing sea levels to rise. Extreme weather events, such as hurricanes and floods, are becoming morefrequent and severe. These events pose significant risks to human life and property.36. What is global warming?A. The long-term increase in Earth's average surface temperatureB. The burning of fossil fuelsC. DeforestationD. Extreme weather events37. What is one of the primary causes of global warming?A. The burning of fossil fuelsB. DeforestationC. Extreme weather eventsD. Global warming itself38. What is one way to combat global warming?A. Reducing greenhouse gas emissionsB. Cutting down treesC. ReforestationD. Extreme weather events39. What is a significant impact of global warming?A. Rising sea levelsB. The burning of fossil fuelsC. DeforestationD. Extreme weather events40. What are the risks posed by global warming?A. Risks to human life and propertyB. The burning of fossil fuelsC. DeforestationD. Extreme weather events四、书面表达(共1题,共20分)Write a letter to your friend, describing a recent trip you took to a national park. In your letter, include the following points:1. The name of the national park and its location.2. The main attractions and activities you enjoyed.3. Any interesting experiences or wildlife you encountered.4. Your overall impression of the trip.Remember to:- Write at least 100 words.- Use proper letter writing conventions.- Use a variety of sentence structures and vocabulary.[Your Name][Your Address][City, State, ZIP Code][Email Address][Phone Number][Date][Friend's Name][Friend's Address][City, State, ZIP Code]Dear [Friend's Name],I hope this letter finds you well. I wanted to share with you about my recent trip to the breathtaking Yellowstone National Park, located in Wyoming.Upon arrival, I was immediately captivated by the park's stunningnatural beauty. One of the main attractions was the Old Faithful Geyser, which erupts every hour or so. I was amazed by the powerful and majestic display of nature.Apart from the geyser, I also enjoyed hiking along the trails, where I encountered a variety of wildlife, including bison, elk, and bald eagles. It was an incredible experience to see these animals in their natural habitat.One of the most memorable moments was when I stumbled upon a group of wolves hunting together. It was fascinating to witness their teamworkand survival instincts in the wild.Overall, my trip to Yellowstone National Park was truly unforgettable. The park's serene landscapes, diverse wildlife, and unique geological features left a lasting impression on me. I highly recommend it to anyone looking for a truly authentic outdoor experience.I hope you get the chance to visit Yellowstone one day. Until then, take care and keep exploring the wonders of the world.Best regards,[Your Name]。
涉及非体积功的热力学基本方程
第49卷第8期2021年4月广州化工Guangzhou Chemical IndustryVol.49No.8Apr.2021涉及非体积功的热力学基本方程杨嫣,陈山川,谢娟,张改(西安工业大学材料与化工学院,陕西西安710021)摘要:热力学基本方程是物理化学课程中一个重要的知识点。
现行物理化学教材中重点阐述了仅含有体积功的热力学基本方程,而对涉及非体积功的热力学基本方程介绍很少。
对材料类专业的学生来说,学习和研究材料热力学,经常会涉及到非体积功。
因此,学习涉及非体积功的热力学基本方程非常必要。
本文重点讨论了涉及非体积功的表面系统、弹性杆、电、磁介质中的热力学基本方程的推导和应用,并总结了处理这类问题的方法。
关键词:物理化学;热力学;基本方程;非体积功中图分类号:G642文献标志码:A文章编号:1001-9677(2021)08-0139-04 Fundamental Equations in Thermodynamics Involving Non-expansion Work*YANG Yan,CHEN Shan-chuan,XIE Juan,ZHANG Gai(School of Material Science and Chemical Engineering,Xi9an Technological University,Shaanxi Xi'an710021,China) Abstract:Fundamental equation in thermodynamics is one of the key points of Physical Chemistry course・In current Physical Chemistry textbooks,the fundamental equations containing only expansionwork are mainly described, while the ones involving non-expansionwork are rarely introduced.For the students majoring in materials,non-expansionwork is often involved in the processes of studyand research.Therefore,it is necessary to study the fundamental equations in involving non-expansion work.The derivations and applications of the fundamental equations in surface systems,elastic rods,electric and magnetic media were discussed.Moreover,the way to deal with this kind of problem was summarized.Key words:Physical Chemistry;thermodynamics;the fundamental equation;non-expansion work热力学基本方程在处理平衡态热力学问题时非常有用,是物理化学课程内容的重点之一。
施敏 半导体器件物理英文版 第一章习题
施敏 半导体器件物理英文版 第一章习题1. (a )求用完全相同的硬球填满金刚石晶格常规单位元胞的最大体积分数。
(b )求硅中(111)平面内在300K 温度下的每平方厘米的原子数。
2. 计算四面体的键角,即,四个键的任意一对键对之间的夹角。
(提示:绘出四个等长度的向量作为键。
四个向量和必须等于多少?沿这些向量之一的方向取这些向量的合成。
)3. 对于面心立方,常规的晶胞体积是a 3,求具有三个基矢:(0,0,0→a/2,0,a/2),(0,0,0→a/2,a/2,0),和(0,0,0→0,a/2,a/2)的fcc 元胞的体积。
4. (a )推导金刚石晶格的键长d 以晶格常数a 的表达式。
(b )在硅晶体中,如果与某平面沿三个笛卡尔坐标的截距是10.86A ,16.29A ,和21.72A ,求该平面的密勒指数。
5. 指出(a )倒晶格的每一个矢量与正晶格的一组平面正交,以及(b )倒晶格的单位晶胞的体积反比于正晶格单位晶胞的体积。
6. 指出具有晶格常数a 的体心立方(bcc )的倒晶格是具有立方晶格边为4π/a的面心立方(fcc )晶格。
[提示:用bcc 矢量组的对称性:)(2x z y a a -+=,)(2y x z a b -+=,)(2z y x a c -+= 这里a 是常规元胞的晶格常数,而x ,y ,z 是fcc 笛卡尔坐标的单位矢量:)(2z y a a +=,)(2x z a b +=,)(2y x a c +=。
] 7. 靠近导带最小值处的能量可表达为.2*2*2*22⎪⎪⎭⎫ ⎝⎛++=z z y y xx m k m k m k E 在Si 中沿[100]有6个雪茄形状的极小值。
如果能量椭球轴的比例为5:1是常数,求纵向有效质量m*l 与横向有效质量m*t 的比值。
8. 在半导体的导带中,有一个较低的能谷在布里渊区的中心,和6个较高的能谷在沿[100] 布里渊区的边界,如果对于较低能谷的有效质量是0.1m0而对于较高能谷的有效质量是1.0m0,求较高能谷对较低能谷态密度的比值。
范德堡多晶硅热导率的测试结构
材料与工艺范德堡多晶硅热导率的测试结构Ξ戚丽娜 许高斌 黄庆安(东南大学M E M S教育部重点实验室,南京,210096)2003209219收稿,2003211227收改稿摘要:在O.M.Pau l等研究的范德堡热导率测试结构的基础上,提出了一种改进结构,利用一组测试结构来测得多晶硅薄膜的热导率。
在十字型结构中一个含有多晶硅薄膜,而另一个不含有多晶硅薄膜,根据建立的热学模型,可以获取多晶硅薄膜的热导率。
用有限元分析软件AN SYS进行了模拟分析,分析表明模拟值与实验值能较好地吻合,且辐射散热是基本可以忽略的,从而验证了模型建立的正确性,说明该方法能够实现对多晶硅薄膜的测量,且具有较高的测试精确度。
关键词:范德堡测试结构;热导率;多晶硅薄膜;热响应;十字型中图分类号:TN402;TN405 文献标识码:A 文章编号:100023819(2005)042569205Van D er Pauw Test Structure of the Thermal Conductiv ity ofPolysilicon Th i n F il m sQ I L ina XU Gaob in HU AN G Q ing’an(K ey L abora tory of M EM S of M in istry of E d uca tion,S ou theast U n iversity,N anj ing,210096,CH N)Abstract:A m icrom ach ined therm al V an D er Pauw test structu re is i m p roved.Tw o structu res to m easu re conductivity of po lysilicon th in fil m s are u sed.O ne cro ss2shap ed layers con sists of po lysilicon th in fil m s.T he o ther cro ss2shap ed layers has no po lysilicon th in fil m s. M ak ing u se of the difference betw een the structu res,conductivity of po lysilicon th in fil m can be m easu red.T herm al fin ite elem en t si m u lati on s show that the radiative heat lo ss from the structu re has a negligib le effect on the ex tracted k value.F in ite elem en t softw are AN SYS is u sed to verify the structu re design.Key words:Van D er Pauw test structure;conductiv ity;polysil icon f il m;ther ma l respon se;Greek crossEEACC:2575F;84601 引 言在M E M S和集成电路中,热学效应都是相当重要的,许多传感器也利用热传输来感知其他的物理量。
复杂等离子体晶格中的低频模
off'’iS seen at the long wavelength end of the dispersion.
or、析tll the screened Coulomb interaction between a charged dust and particles in the nearest eight cubic only being taken into account(screening parameter必">>1).We then discuss the effects of screening parameters on the dispersion relations of DLW.
and complex plasma crystals has been made. In the second chapter,we discuss the dispersion relations of DLW in complex plasma
crystals systematically,propose the concept of dispersion relation matrix of DLW in complex plasma crystals,derive the dispersion relation matrices for DLW in body centred cubic(bcc) and face centred cubic(fee)in three—dimensional complex plasma crystals,and obtain the simple forms of the dispersion relation matrices of DLW in the three characteristic directions ((1,0,0),(1,1,O)and(1,1,1)).We compute the dispersion relation matrices晰th the screened Coulomb interaction between a charged dust and all other particles being taken into account
物理海洋学--overview5-8章
2、通过表面进入控制体的热量为 在X方向:
uc p dydz [ uc p
uc p x
dx]dydz
uc p x
dxdydz
同理在Y、Z方向分别为:
vc p y
[
dxdydz
,
wc p z
u u u u u v w t x y z
上式为层流海水运动一般方程。
4.1.3 盐量扩散方程(盐量的质量守恒方程) 设单位质量海水所含的盐量为S,则单位体积海水所含的 盐量为 s
1、由于流动产生的盐增量 在X方向流入的盐量:
sudydz [ sudydz
Overview on Physical Oceanography
Instructed by LÜ Huaqing(吕华庆) Marine Science School of Zhejiang Ocean Uni. July.,2009
Chapter 5 The Oceanic Heat Budget
Physical Oceanography (物理海洋学)
Instructed by LÜ Huaqing(吕华庆) Marine Science School of Zhejiang Ocean Uni. Feb.,2009
z
6633'
o
x 静止坐标系
y
z
y
x
地转参考系
y
z x
局地参考系
(7)
We will see later that mean velocity is not constant. The mixed layer is roughly 10–200 m thick over most of the tropical and midlatitude belts. The depth and temperature of the mixed layer varies from day to day and from season to season in response to two processes: 1. Heat fluxes through the surface.
翻译专业英语
低温与制冷- 法律程序的ICCR'2008展望用氖同位素分离成低温吸附Vitaliy L Bondarenko, Evgeniy Yu Povolotskiy, Aiexandr N Kislyy, Andrey V Livinskiy *莫斯科国立鲍曼技术大学,莫斯科105005,俄罗斯** Iceblick有限公司,敖德萨65026,乌克兰摘要研究成果表明在77 - 65K的温度下分离氖的同位素。
该计划和实验室生产氖同位素装置的说明被展示。
进行分离过程所需的参数被决定。
温度范围在77-55K是通过微孔吸附剂形成液体氖相和对分离过程影响的可能性被正面色谱实验所证明。
1.引言为了选择一个氖同位素制作的最佳方法,需要分析以下标准:提取的因素,设备的效率和成本,可能获得纯品的最小周期。
吸附分离方法似乎是最可行,包括气相色谱法(拜耳1961)。
在比正常沸点高的多的温度时,微型吸附剂活性炭的毛孔中,物质由于发生毛细管效被分离。
这种方法的优点是设备的设计简单和实践的可能性(劳瑞1978年)。
这种方法的主要缺点是因为成分由于气载波流被分离的稀释法导致生产效率低。
但是,这种缺点可以通过几乎完全分离同一周期同位素的可能性被补偿。
另一个缺点与周期吸附/脱附过程中制备组织周期产生过程的必要性的特性有关联。
氖进气载流的方式在确保以下剂量将相互混合的开始部分与前一个可以纠正这个缺点的最后部分之间连续给药的这种方法。
2.实验部分实验室安装示意图(如:图1)为将同位素分离的实现被创建。
列(1)黄铜管Φ6.2mm×0.7毫米,50m长被吸附剂缠绕和填充。
操作位置的专栏被放置在装满一定程度液氮的低温恒温器(2)里。
在低温恒温器里的温度掌控通过真空氮罐和保持在77到65K的温度来提供。
球形的活性碳(商标CKH-2)作用吸附剂。
氖(氖99.999%)(5)用于分离,标着“A”(99.995%)(6)的氦(氦)用作气体的载体。
2019年第十五届泛珠奥林匹克物理竞赛综合试(上午)试题pdf(含解析)
1. A U-shaped glass tube (9 points) U 形玻璃管(9 分)
A U-shaped glass tube with a constant cross-sectional area contains mercury (with density ������"# = 1.36×10+ kg⋅m-3). The two ends of the tubes are sealed; one contains gas A, the other contains gas B, both of which are ideal gases. In this problem, you can take the gravitational acceleration ������ = 9.8 ms-2. 具有恒定横截面积的 U 形玻璃管含有汞(具有密度������"# = 1.36×10+ kg⋅m-3)。管的两 端是密封的;一端含有气体 A,另一端含有气体 B,两者都是理想气体。在这个问题上,
你可以采取重力加速度 ������ = 9.8 ms-2。
!"
!#
!#′ !"’
(a)
(b)
First, we set the tubes vertically, with the two ends up (Fig. 2a). The parts filled with gases A and B have lengths ������8 = 12 cm and ������: = 18 cm, respectively. Then we turn the tubes upside down (Fig. 2b), the length of the parts filled by gas A and gas B are ������8; = 6 cm and ������:; respectively. The ambient temperature is ������ = 20∘C. 首先,我们将管子垂直放置,两端朝上(图 2a)。填充有气体 A 和 B 的部份分别具有
气科院大气物理面试英语专业词汇[1]
大气科学系微机应用基础Primer of microcomputer applicationFORTRAN77程序设计FORTRAN77 Program Design大气科学概论An Introduction to Atmospheric Science大气探测学基础Atmospheric Sounding流体力学Fluid Dynamics天气学Synoptic Meteorology天气分析预报实验Forecast and Synoptic analysis生产实习Daily weather forecasting现代气候学基础An introduction to modern climatology卫星气象学Satellite meteorologyC语言程序设计 C Programming大气探测实验Experiment on Atmospheric Detective Technique云雾物理学Physics of Clouds and fogs动力气象学Dynamic Meteorology计算方法Calculation Method诊断分析Diagnostic Analysis中尺度气象学Meso-Microscale Synoptic Meteorology边界层气象学Boundary Layer Meteorology雷达气象学Radar Meteorology数值天气预报Numerical Weather Prediction气象统计预报Meteorological Statical Prediction大气科学中的数学方法Mathematical Methods in Atmospheric Sciences专题讲座Seminar专业英语English for Meteorological Field of Study计算机图形基础Basic of computer graphics气象业务自动化Automatic Weather Service空气污染预测与防治Prediction and Control for Air Pollution现代大气探测Advanced Atmospheric Sounding数字电子技术基础Basic of Digital Electronic Techniqul大气遥感Remote Sensing of Atmosphere模拟电子技术基础Analog Electron Technical Base大气化学Atmospheric Chemistry航空气象学Areameteorology计算机程序设计Computer Program Design数值预报模式与数值模拟Numerical Model and Numerical Simulation接口技术在大气科学中的应用Technology of Interface in Atmosphere Sciences Application海洋气象学Oceanic Meteorology现代实时天气预报技术(MICAPS系统)Advanced Short-range Weather Forecasting Technique(MICAPS system)1) atmospheric precipitation大气降水2) atmosphere science大气科学3) atmosphere大气1.The monitoring and study of atmosphere characteristics in near space as an environment forspace weapon equipments and system have been regarded more important for battle support.随着临近空间飞行器的不断发展和运用,作为武器装备和系统环境的临近空间大气特性成为作战保障的重要条件。
PDLAMMPS近场动力学
Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd Springfield, VA 22161 Telephone: Facsimile: E-Mail: Online ordering: (800) 553-6847 (703) 605-6900 orders@ /help/ordermethods.asp?loc=7-4-0#online
Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: Facsimile: E-Mail: Online ordering: (865) 576-8401 (865) 576-5728 reports@ /bridge
电路基础 英文教学 1
4. Power
p = ui
p = − ui
•Emphasis重点 1.current and voltage reference direction
Active elements (有源元件)
dependent source 受控源
Summary: 1. Current 2. Voltage 3. Potential
dq i = L ( A) dt
dw u = L (V ) dq
u a − u b = u ab L (V ) let
a I
u b = 0 L b 点为参考点
from EQ (1-1),the energy absorbing or supplied by an element from time t0 to t is
w =
∫
t
t0
pdt = ∫ vidt
t0
t
Unit is joules(J) 1Wh=3600J
Example:The electron beam in a TV picture tube carries 1015 electrons per second. As a design engineer, determine the voltage U0 needed to accelerate the electron beam to achieve 4W. Solution: dq −19 15 −4 i = = (−1.6×10 )(10 ) =−1.6×10 A dt
(c): P= -UI,
In a source set, the current reference direction is directed out of the + polarity marking (or the first subscript) of the voltage.
奥氏体本质晶粒度的英文
奥氏体本质晶粒度的英文Austenite Grain Size.Austenite is a face-centered cubic (FCC) crystal structure found in iron alloys at high temperatures. The grain size of austenite is an important factor in determining the properties of the final product. A smaller austenite grain size results in a stronger and more ductile material.The austenite grain size can be controlled by a number of factors, including the composition of the alloy, the heat treatment process, and the subsequent cooling rate.Alloy composition: The composition of the alloy can have a significant effect on the austenite grain size. Alloys with higher carbon content tend to have smaller austenite grain sizes. This is because carbon atoms act as nucleation sites for austenite grains, which leads to a greater number of grains being formed.Heat treatment process: The heat treatment process can also be used to control the austenite grain size. Austenitizing is a heat treatment process that involves heating the alloy to a temperature above the austenite transformation temperature. The austenite grain size will increase as the austenitizing temperature increases.Cooling rate: The cooling rate after austenitizing can also affect the austenite grain size. A faster cooling rate will result in a smaller austenite grain size. This is because the faster cooling rate prevents the austenitegrains from growing as much.The austenite grain size is an important factor in determining the properties of the final product. A smaller austenite grain size results in a stronger and more ductile material. The austenite grain size can be controlled by a number of factors, including the composition of the alloy, the heat treatment process, and the subsequent cooling rate.Methods for Measuring Austenite Grain Size.There are a number of different methods for measuring austenite grain size. The most common method is the intercept method. This method involves measuring the length of a line that intersects a number of austenite grains. The average grain size is then calculated by dividing the total length of the line by the number of grains intersected.Other methods for measuring austenite grain size include the planimetric method and the Heyn intercept method. The planimetric method involves measuring the area of a number of austenite grains. The average grain size is then calculated by dividing the total area of the grains by the number of grains measured. The Heyn intercept method is similar to the intercept method, but it uses a different formula to calculate the average grain size.Factors Affecting Austenite Grain Size.The austenite grain size is affected by a number of factors, including the following:Alloy composition: The composition of the alloy can have a significant effect on the austenite grain size. Alloys with higher carbon content tend to have smaller austenite grain sizes. This is because carbon atoms act as nucleation sites for austenite grains, which leads to a greater number of grains being formed.Austenitizing temperature: The austenitizing temperature is the temperature at which the alloy is heated during the austenitizing process. The higher the austenitizing temperature, the larger the austenite grain size. This is because the higher temperature provides more energy for the austenite grains to grow.Cooling rate: The cooling rate after austenitizing can also affect the austenite grain size. A faster cooling rate will result in a smaller austenite grain size. This is because the faster cooling rate prevents the austenite grains from growing as much.Deformation: Deformation can also affect the austenite grain size. Deformation can cause the austenite grains tobecome elongated or distorted. This can lead to a smaller average grain size.Control of Austenite Grain Size.The austenite grain size can be controlled by a number of methods, including the following:Alloy composition: The composition of the alloy can be controlled to achieve the desired austenite grain size. For example, alloys with higher carbon content will tend to have smaller austenite grain sizes.Heat treatment process: The heat treatment process can be controlled to achieve the desired austenite grain size. For example, a lower austenitizing temperature will result in a smaller austenite grain size.Cooling rate: The cooling rate after austenitizing can be controlled to achieve the desired austenite grain size. For example, a faster cooling rate will result in a smaller austenite grain size.Deformation: Deformation can be used to control the austenite grain size. For example, cold working can be used to produce a smaller austenite grain size.The control of austenite grain size is an important aspect of heat treatment. By controlling the austenite grain size, it is possible to achieve the desired properties in the final product.。
金的等离子共振等综述
a b s t r a c t
This review describes the fundamental aspects of laser–gold nanoparticle (Au NP) interaction that leads to nanoscale energy deposition to the surroundings through light amplification and heat generation. Besides the importance of the primary process in physics and chemistry, application of the light–NP interaction has attracted significant interest from various areas ranging from analytical chemistry to material chemistry and biomedicine. Here we consider both mechanistic and application aspects. Our attention is focused on pulsed-laser-induced fast processes that revealed the heating–cooling dynamics of electrons, lattice (particle), and particle’s environment. On the application side, we focus on material fabrication and processing that beat diffraction-limited resolution. Together, we will shed a light on the essence of research activities carried out in the past 10 years. In addition to an abundance of latest information obtained from currently available literature, this review includes figures obtained by our own calculations to provide readers with a better understanding of the basics of the optical properties and energy and heat-transfer processes of Au NPs, which are not familiar to photochemists. © 2012 Elsevier B.V. All rights reserved.
英汉双语弹性力学62
Plane temperature field: The temperature in temperature field only changes with two positional coordinates.
i.e. T=T(x,y,t)
5
第6页/共84页
§6-1 温度场和热传导的基本概念
Unstable temperature filed or nonsteady temperature field: The temperature in the temperature field changes with time.
i.e. T=T(x,y,z,t)
Stable temperature filed or steady temperature field: The temperature in the temperature field is only the function of positional coordinates.
取 n0 为等温面法线方向且指向增温方向的单位矢量,则有
△T
n0
T n
(1)
4.热流速度:在单位时间内通过等温面面积S 的热量。用 dQ 表示。 dt
10
第11页/共84页
Thermal flux density: The thermal flux speed flowing through unit area
13
第14页/共84页
可见,导热系数表示“在单位温度梯度下通过等温面单位面积
的热流速度”。
由(1)和(3)可见,热流密度的大小
q T
n
热流密度在坐标轴上的投影
4
热力学相关单词
热力学相关单词thermodynamics n. 热力学system n. 体系thermodynamic state 热力学状态 dimension 量纲 SI= International System of Units 国际单位制 intensive thermodynamic variable 强度(热力学)变量extensive thermodynamic variable 广度(热力学)变量celsius scale 摄氏刻度→ fahrenheit scale 华氏刻度 kelvin scale 开尔文刻度→ Rankine scale dead-weight gauge 静压、压力表mano meter (流体)压力计 product 乘积 kinetic energy 动能 22 1mu E k = potential energy 势能mgz E P =conservation守恒* Terms in chapter 2sublimation curve 升华线 fusion curve 熔融线vaporization curve (蒸发)汽化线single-phase region 单相区 triple point 三相点univariant 单变量 divariant 多变量critical point 临界点 critical pressure 临界压力critical temperature 临界温度dome-shaped curve 圆拱形曲线saturated vapors at their condensation temperatures 露点的饱和蒸汽saturated liquids at their vaporization(boiling) temperatures 泡点的饱和液体vapor pressure 蒸汽压subcooled-liquid region 过冷液体区superheated-vapor region 过热蒸汽区partial derivative 偏导数differentiate v. 求微分,求导 differentiation n. derivate n. 求导数 derivation 求导数,求解incompressible fluid 不可压缩流体 ideal-gas理想气体simple fluid简单流体(argon 、krypton 、xenon )virial expansion维里展开式 virial coefficients 维里系数 virial equation维里方程equation of state状态方程compressibility factor 压缩因子 RTPVZ = volume expansivity体积膨胀系数PT V V ??? ????=1βisothermal compressibility 等温压缩系数 TP V V ??? ????=1κ acentric factor偏心因子isothermal process等温过程isobaric process 等压过程isochoric process 等容过程adiabatic process 绝热过程 polytropic process多变过程throttling process节流过程 0=?Htruncate equation to two terms 截断方程前二项cubic equation of state 立方型状态方程reduced pressure 对比压力reduced temperature 对比温度reduced density对比密度corresponding-state parameters 对应态参数generalized correlations 普遍化关联nonpolar非极性的 slightly polar 弱极性的 highly polar高极性的volumetric properties 容积性质 realistic 现实主义的,逼真的dashed line虚线dotted line 点线straight line 实线Terms in chapter 3internal energy 内能 transport across kinetic energy 动能 22 1mu E t =potential energy 势能 m g z E p = conservation 守恒operator 算符,运算符(such as “Δ”)system 体系surroundings 环境 closed system 封闭体系 open system 开放体系finite change 有限的变化infinitesimal change 无限的变化differential change 微分(小)的变化 intensive property 强度性质extensive property 广度性质specific or molar property 单位(比)性质或摩尔性质property — variable — functionthermodynamics state of the system 体系热力学状态thermodynamics properties 热力学性质 state function(s) 状态函数equilibrium 平衡 (the) phase rule 相率reversible process 可逆过程irreversible process 不可逆过程mechanically reversible 机械可逆thermostate 恒温箱constant—temperature bath 恒温浴efficiency 效率,(有效)系数enthalpy 焓heat capacity 热容constant—volume heat capacity 恒容热容constant—pressure heat capacity 恒压热容vector quantity 矢量scalar magnitude 数量,纯量continuity equation 连续方程steady state (flow process) 移去(流动过程)datum level 基准面shaft work 体积功stirring work 搅拌功work associated with moving the flow streams 流动功expansion work 膨胀功surface work 表面功electricity work 电功calorimeter 量热计(测定焓)intensive property 强度性质extensive property 广度性质shaft work 轴功enthalpy 焓entropy 熵heat-capacity 热容Gibbs energy (G) 吉布斯自由能Helmholtz energy (A) 亥姆霍茨自由能internal energy 内能system 系统,体系close system 封闭体系equilibrium state 平衡态total differential of F F的全微分exact differential expression 全微分表达式Maxwell equations 麦克斯威尔方程homogeneous fluid 均相流体residual property 剩余性质real gas 真实气体actual gasideal gas 理想气体explicit function 显函数volume explicit 体积显函数pressure explicit 压力显函数isentropic process 等熵过程reversible adiabatic process 绝热可逆过程pseudocritical parameter 虚拟临界参数path variables 过程变量state variables 状态变量等压热容constant pressure heat capacity Cconstant volume heat capacity C V 等容热容residual property 剩余性质reference state 参比态reference conditionpartial derivative 偏导数total derivative 全导数β volume expansivity 体积膨胀系数κ isothermal compressibility 等温压缩系数quality 干度fugacity 逸度fugacity coefficient 逸度系数*Terms in Chapter 4chemical potential 化学势,化学位partial property 偏性质partial molar property 偏摩尔性质ideal solution 理想溶液real solution 真实溶液excess property 超额/过量性质excess Gibbs energy 超额/过量自由焓partial excess property 偏摩尔超额/过量性质activity 活度activity coefficient 活度系数standard state 标准态property change of mixing 混合性质regular solution 正规溶液atherpical solution 无热溶液local-composition 局部组成local molar fraction 局部摩尔分数*Terms in Chapter 5First Law of thermodynamics(energy conservation law)热力学第一定律steady-state flow processes 稳定状态流动过程control volume 控制体heat Engines 热机Carnot engine 卡诺热机thermal efficiency 热效率thermodynamic efficiency 热力学效率isentropic efficiency 等熵效率ideal work and lost work 理想功和损耗功exergy 火用available Energy, availability, utilizable Energy 有效能*Terms in Chapter 6steam Power cycle 蒸汽动力循环Carnot-engine cycle 卡诺循环cycle with feed water heaters 抽气回热循环heat-power cycle 热电循环exhaust steam 乏气heat reservoir 热源working substance of the engine 工质specific steam consumption 汽耗率SSCrefrigeration Cycle 制冷循环vapor-compression cycle 蒸汽压缩(制冷)循环absorption refrigeration 吸收式制冷Carnot refrigeration 卡诺冷机reversed heat-engine cycle 逆热机循环multi-stage compression refrigeration多级压缩制冷heat pump 热泵throttling expansion process 节流膨胀过程reversible adiabatic expansion process 可逆绝热膨胀过程inversion curve and inversion point 转变曲线和转变点condenser 冷凝器expander 膨胀机compressor 压缩机evaporator 蒸发器supheater 过热器turbine 透平机boiler 锅炉pump 泵*Statements of the second lawstatement1: No apparatus can operate in such a way that its only effect (in system and surrounings) is to convert heat absorbed by a system completely into work done by the system。
演示文稿外延薄膜中的缺陷
全位错、部分位错(不全位错): (1) b 等于单位点阵矢量的称为“单位位错”。
(2) b等于单位点阵矢量的整数倍的为“全位错”
(3) b 不等于单位点阵矢量或其整数倍的为“不全位错 ”或称“部分位错”
伯格斯矢量守恒
第三十五页,共77页。
b b1 b2
Ed
es e s
b2 [ln(r / b) 1] / S
(1 v)
= f-b/S
S = b/(f-)
对于薄膜,r >h, r h
Ed
es e s
b( f ) [ln(h / b) 1] (1 v)
第五十七页,共77页。
Ed
es e s
b( f ) [ln(h / b) 1] (1 v)
Material Studio模拟计算得
到的Vergard’s Law
第十一页,共77页。
常见半导体材料带隙与晶格常数的关系图
四元合金
虚线:间接带隙
第十二页,共77页。
AlxGa1-xAs
晶格常数与带隙匹配
第十三页,共77页。
影响薄膜外延的因素 温度
第十四页,共77页。
解理面的影响
第十五页,共77页。
单位面积内位错总长度:2/S
s
第五十五页,共77页。
附:位错能的其它表达式
Ed
es e s
b2 ln(b r 2 (1 v)
/ b)
b : 0.701 ~ 2.72
或:
第五十六页,共77页。
刃位错:
4
b2 (1
)
ln(R
/
r0
)
螺位错:b2 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c o n d -m a t /9906283v 2 [c o n d -m a t .s t a t -m e c h ] 16 A u g 1999Complex temperatures zeroes of partition function inspin-glass models.D.B.Saakian 1,2),E.E.Vogel 2).1)Yerevan Physics Institute,Alikhanian Brothers St.2,Yerevan 375036,Armenia2)Universidad de La Frontera,Departamento de Cienas Fisicas,Casilla 54-D,Temuco,Chile.AbstractAn approximate method is proposed for investigating complex-temperature properties of real-dimensional spin-glass models.The method uses the complex-temperature data of the ferromagnetic model on the same lattice.The universality line in the complex-temperature space is obtained.1Introduction.Investigating of physical quantities in the complex plane can reveal new and unexpected effects.More than four decades have passed since Dyson [1]considered imaginary charges in electrodynamics.Having α=e 2/¯h c <0,he got that this theory should be essentially unstable,and expansions in αare,at best,asymptotic.The consideration of complex magnetic field by Lee and Yang and complex temperatures by Fisher [3]opened new and effective method for investigating phase ter the method found large variety of applications in obtaining the order and type of possible phase transitions [15],critical indices [9][13],and recently has been connected with experiments on magnetization [16].The method can be even more useful when investigating phase transitions in disordered systems,since many well-developed analytical and numerical methods are not suitable here.This point of view was first provided in [14]where so-called Graffiths’singularities was discovered in statistical systems with random-fields.Recently,a strongly-frustrated but nonrandom system was investigated in complex temperature plane [12],and a continuous spectra of phase transitions was obtained.1The consideration of spin-glasses in complex-field and/or complex-temperature plane was started in[5][6].Namely,Random Energy Model(REM)was in-vestigated,which is the simplest but typical representative of spin-glasses [4].This has been continued in[7]where the more physical dilute(finite-connectivity)REM[10][11]was investigated.In particular,we have pointedout also how the Dilute Generallized Random Energy Model(DGREM) should be considered in the complex planes[7].This seems very impor-tant,because DGREM is nothing else,but the quite accurate approximationto the real-dimensional(non-mean-field)Edwards-Anderson(EA)spin-glass model.We believe that the results obtained with DGREM can be relevantfor that model,and will help to clarify the properties of spin-glasses infinite dimensions.Recently,the lower critical dimension of the EA model has been estimated in this fashion[8].This line of research will be continued in the present paper.We shall give the density of the partition function’s zeroes, and discuss in details its applications to the real-dimensional EA models.2Dilute REMWe shall start with repeating some facts about diluted REM and GREM.The dilute p-spin glass model is described by the following hamiltonianH=−αN(i1<i2..<i p)=1j i1..i ps i1..s ip,(1)where onlyαN couplings j i1..i p are non-zero1≥i≥N,and s i=±1areIsing spins.At high temperatures the system is in the paramagnetic phase with free energyln Z=αN ln cosh(β)+N ln2(2) At critical temperature T c=1/βc a phase transition occurs into the SG phaseαg(tanhβc)=1(3) where the function g(x)is defined asg(x)=12(1−x)ln(1−x)](4)2Below this temperature we haveln Z/N=αNβy(ln2/α)(5) where y is inverse function to g(x)12(1−y)ln(1−y)]=x(6) 3Dilute GREMLet us consider the diluted version of GREM,with infinite levels of the hier-archy.Now we have an infinite chain of DREM-s.At the interval[v,v+dv] we have Ns′(v)/ln2spins with Nzdv couplings.Function s(v)is monotonic, s(0)=0,s(1)=ln2.Similarly to the case of dilute GREM at real T we found:−βFz)(7)where v c(β)is defined from the equationtanh(β)=y(s′(v2)/z)(8) For the case of Edwards-Anderson model placed on d-dimensional hyper-cubic latticez=d,v=−UN(9)here U is energy,and S(U)is entropy as function of the energy for corre-sponding ferromagnetic Ising model.It is easy to derive from the definition of temperatured Sτ≡˜β(10) So there is a connection between˜βand v.For a given˜βwefind energy of corresponding ferromagnetic model,and then calculatev=−U(˜β(v))/(Nd)(11) We obtain for the free energy−βF4Complex temperaturesLet us consider now the case of complex temperatures.Now we have3phases for REM.PM:ln ZN=αβ1y(1/α)(14) LYF:ln Z2Re ln cosh(2β1)+ln221/α(1−tanh2β1)(16)This line begins atβ1=0and is contined till intersection with SG-LYF line. For it we haveβ1=β0,∞>β2>β2c(17) whereβ2c is defined from the intersection with another line,andβ1c from the equationα/2ln cosh(2β1c)+ln2=αβ1c y(ln2/α)(18) Then the third line PM-SG is defined from the equationαRe ln coshβ+ln2=β1cαy(ln2/α)(19) Let us vary the parameterα.We can construct some universal line for the criticalβc,1,βc,2.If we define functionf(s,t)=ln(1+t)2−ln(1−t)2[1−(1−t2)s]2(1+f(s,t))ln(1+f(s,t))+15DGREM at complex TNow we haveβF−=d(1−v2(β))Re ln coshβ+(ln2−s(v2))+d(v2−v1)/2ln cosh2β1(23) N+(s(v2(β)−s(v1(β)))/2−dβ1 ˜β10d˜β02v0(˜β0)1−y+d˜v1β1y(˜β1)where y as a function of˜β0is defined from the equationln2y=g(6LYF zeros at the border of PM SG phases Let asfirst consider the case,when our system is under the line(21)and there is not LYF phase.We have an expressionln Z/N=d(1−v c)Re ln coshβ+ln2−s(v c)+dβ1 v c0d v0y(˜β(v0))(26) where the value of v c is defined from the saddle point conditiondRe ln coshβ+s′(v c)=dβ1y(s′(v c)dβ21+d2f∂2v c[(dv cdβ2)2])+2∂2fdβ1)+2∂2fdβ2)(28)To calculate density we need in expressionss′(v)=d˜β,y′=1/˜β,s′′(v)=−d2β1(29)here c is specific heat of ferromagnetic phase.Eventually:πρ(β1,β2)=(30)−d2coshβ21(sin2β2+cos2β2tanh2β1)]2 +[sinβ2cosβ2dβ21+d2f+f′′β2β2+2f′′β2v2v′2,β2+f′′v2v2(v′2,β2)2For the v1we have an equations′(v1)2ln cosh2β1=β1y(s′(v1)cosh2(2β1)−d2(−tanh2β1+y(˜β1))2s′′(v2){[(sinβ2cosβ2)coshβ31(cosβ22+tanhβ1sinβ22)]2}One can use formulas(30)and(34)to calculate density of zeros,having the data of the ferromagnetic model at the same lattice.8Conclusion.This paper devoted to the approximate method,which allows to investigate the zeroes of the statistical sum for Edwards-Anderson models in real phys-ical dimensions.The key point of the method is in the using the rich phase spectrum of Dilute Generalized Random Energy Model.We obtained a uni-versality line in the phase diagram of the model.It hardly controls the cor-responding complex-temperature behavior.The various notions that entered our discussion give good hope for the applicability of Random Energy-type models to realistic systems.AcknowledgementsD.B.Saakian is grateful to Fundacion Andes grant c-13413/1forfinancial support. A.Crisanti,S.Kobe and W.Janke are acknowledged for kind hospitality.E.E.Vogel is grateful to Fondecyt1990878.7References[1]F.J.Dyson,Phys.Rev.85(1952)631[2]C.N.Yang and T.D.Lee,Phys.Rev.87(1952)404;Phys.Rev.87(1952)410.[3]M.E.Fisher,in Lectures in Theoretical Physics,ed.by W.E.Brittin,(University of Colorado Press,Boulder,1965),vol.7c.[4]B.Derrida,Phys.Rev.Lett.45(1980)79.[5]B.Derrida,Physica A177(1991)31-37[6]C.Moukarzel,N.Parga,Physica A177(1991)24-30[7]D.B.Saakian,cond-mat/9709238;JETP Lett.67(1998)5[8]D.B.Saakian,cond-mat/9905123.[9]B.Derrida,M.R.Evans,E.R.Speer,J.Stat.Phys.,156(1993)[10]D.Dominicis,P.Mottishow,J.Phys.,A20(1987)L267[11]A.E.Allakhverdyan,D.B.Saakian,Nucl.Phys v.B498(1997)604.[12]A.E.Allahverdyan,A.S.Ananikian,S.K.Dallakyan,Phys.Rev.E,57(1998)2452.[13]C.Itzykson,R.B.Pearson,and J.B.Zuber,Nucl.Phys.B,220(1983)415.[14]R.B.Griffiths,Phys.Rev.Lett.,23(1969)17.[15]K.-C.Lee,Phys.Rev.Lett.73(1994)2801.[16]Ch.Binek,Phys.Rev.Lett.(in press)8。