中考数学由圆的切线发展而来

合集下载

中考数学模拟试题圆的方程与切线

中考数学模拟试题圆的方程与切线

中考数学模拟试题圆的方程与切线中考数学模拟试题圆的方程与切线圆是几何学中最重要的图形之一,它的方程与切线是数学中常见的问题。

本文将介绍关于圆的方程以及如何求解圆的切线问题。

一、圆的方程圆是由平面上所有距离圆心相等的点组成的图形。

给定圆心坐标为$(h,k)$,半径为$r$,我们可以得到圆的方程:$$(x-h)^2+(y-k)^2=r^2$$其中,$(x,y)$为圆上任意一点的坐标。

根据圆的方程,我们可以进行一些常见的圆的问题的求解。

例1:已知圆心坐标为$(2,3)$,半径为$4$,求满足圆的方程的点的坐标。

解:根据圆的方程,代入给定的圆心坐标和半径:$$(x-2)^2+(y-3)^2=4^2$$展开得到:$$x^2-4x+4+y^2-6y+9=16$$化简得:$$x^2+y^2-4x-6y-3=0$$所以,满足圆的方程的点的坐标为$(x,y)$,其中$x^2+y^2-4x-6y-3=0$。

二、圆的切线切线是圆上一点的切线是与圆相切且在该点处与圆相交于一点。

求解圆的切线问题,我们主要关注以下两种情况:1. 切线与圆的非切点处的交点在圆上任取一点$P(x_0,y_0)$,以该点为切点作切线。

设切线方程为$y=kx+b$,且该切线与圆的交点为$Q(x_1,y_1)$。

根据切线与圆的性质,切线与圆的交点满足两个条件:首先,$Q$点位于切线上,即满足$y_1=kx_1+b$;其次,$Q$点也位于圆上,即满足圆的方程:$(x_1-h)^2+(y_1-k)^2=r^2$。

通过解这两个方程组,可以求解出切线与圆的交点坐标。

2. 切线与圆的切点处的交点在圆上任取一切点$P(x_0,y_0)$,以该点为切点作切线。

设切线方程为$y=kx+b$,且该切线与圆的切点为$Q(x_1,y_1)$。

根据切线与圆的性质,切线与圆的切点满足两个条件:首先,$Q$点位于切线上,即满足$y_1=kx_1+b$;其次,$Q$点也位于圆上,即满足圆的方程:$(x_1-h)^2+(y_1-k)^2=r^2$;此外,切线与圆在切点处的斜率相等,即满足$k=\frac{y_0-y_1}{x_0-x_1}$。

2020年中考数学提优专题:《圆:切割线定理》(含答案)

2020年中考数学提优专题:《圆:切割线定理》(含答案)

《圆:切割线定理》知识梳理:(1)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT的平方=PA•PB(切割线定理)(2)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB(切割线定理推论)(割线定理)由上可知:PT2=PA•PB=PC•PD.一.选择题1.如图,P是⊙O的直径BC延长线上一点,PA切⊙O 于点A,若PC=2,BC=6,则切线PA的长为()A.无限长B.C.4 D.2.如图,PT是⊙O的切线,T为切点,PBA是割线,交⊙O于A、B两点,与直径CT交于点D,已知CD=2,AD=3,BD=4,那么PB等于()A.6 B.C.7 D.203.设H为锐角△ABC的三条高AD、BE、CF的交点,若BC=a,AC=b,AB=c,则AH•AD+BH•BE+CH•CF 等于()A.(ab+bc+ca)B.(a2+b2+c2)C.(ab+bc+ca) D.(a2+b2+c2)4.如图,MN切⊙O于A点,AC为弦,BC为直径,那么下列命题中假命题是()A.∠MAB和∠ABC互余B.∠CAN=∠ABC C.OA=BC D.MA2=MB•BC5.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A.B.C.8 D.56.如图,AB是⊙O直径,AC是⊙O的弦,过弧BC 的中点D作AC的垂线交AC的延长于E,若DE=2,EC=1,则⊙O的直径为()A. B.C.5 D.47.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3 B.7.5 C.5 D.5.58.如图,已知⊙O的弦A B、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=cm,则PE的长为()A.4cm B.3cm C.5cm D.cm9.如图,⊙O1与⊙O2相交于A、B两点,PQ切⊙O1于点P,交⊙O2于点Q、M,交AB的延长线于点N.若MN=1,MQ=3,则NP等于()A.1 B.C.2 D.310.同心圆O中,大圆的弦EF切小圆于K,EP切小圆于P,FQ切小圆于Q,G为小圆上一点,GE、GF 分别交小圆于M、N两点,下列四个结论:①EM=MG;②FQ2=FN•NG;③EP=FQ;④FN•FG=EM•EG.正确的结论为()A.①③B.②③C.③④D.②④二.填空题11.如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若OA=a,PM=,那么△PMB 的周长是.12.已知:如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,PC=4,PB=8,则PA =,sin∠P=,CD=.13.如图,PA、PB与⊙O分别相切于点A、点B,AC 是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为.14.如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,若PA=6,PB=4,弧AB的度数为60°,则BC =,∠PCA=度,∠PAB=度.15.如图,已知ABCD是一个半径为R的圆内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于点P,且BP=8,∠APD=60°,则R=.16.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D 点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).17.由⊙O外一点F作⊙O的两条切线,切点分别为B、D,AB是⊙O的直径,连接AD、BD,线段OF交⊙O 于E,交BD于C,连接DE、BE.有下列序号为①~④的四个结论:①BE=DE;②∠EBD=∠EDB;③DE∥AB;④BD2=2AD•FC其中正确的结论有.(把你认为正确结论的序号全部填上)三.解答题18.已知:如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若AD=6,AE=6,求DE的长.19.如图,圆O是以AB为直径的△ABC的外接圆,D 是劣弧的中点,连AD并延长与过C点的切线交于点P,OD与BC相交于E;(1)求证:OE=AC;(2)求证:;(3)当AC=6,AB=10时,求切线PC的长.20.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF.参考答案一.选择题1.解:∵PC=2,BC=6,∴PB=8,∵PA2=PC•PB=16,∴PA=4.故选:C.2.解:∵TD•CD=AD•BD,CD=2,AD=3,BD=4,∴TD=6,∵PT2=PD2﹣TD2,∴PT2=PB•PA=(PD﹣BD)(PD+AD),∴PD=24,∴PB=PD﹣BD=24﹣4=20.故选:D.3.解:AH•AD=AC•AE=AC•AB•cos∠BAE=(b2+c2﹣a2),同理BH•BE=(a2+c2﹣b2),CH•CF=(a2+b2﹣c2),故AH•AD+BH•BE+CH•CF=(a2+b2+c2).故选:B.4.解:∵BC是⊙O的直径,∴∠BAC=90°,∴∠MAB+∠CA N=90°;∵MN切⊙O于A,∴MA2=MB•MC,(故D错误)∠CAN=∠CBA,(故B正确)∴∠MAB+∠CBA=90°;(故A正确)∵OA是⊙O的半径,BC是⊙O的直径,∴BC=2OA;(故C正确)故选:D.5.解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cosD=AD:BD=1:3,设A D=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选:C.6.解:连接OD,∵点D是弧BC的中点,∴OD⊥BC,∠OFC=90°,AB是直径,∴∠ACB=90°,DE⊥AE,∴∠E=90°,∴四边形CFDE是矩形,∴∠ODE=90°,∴ED是圆的切线.作OG⊥AC,则OG=CF=ED=2.∵DE2=EC•AE,∴AE=4,AC=3,AG=,∴AO=,∴AB=5.故选:C.7.解:∵PA=3,AB=PC=2,∴PB=5,∵PA•PB=PC•PD,∴PD=7.5,故选:B.8.解:∵PA•PB=PC•PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED•EC,∴x(x+8)=20,∴x=2或x=﹣10(负值舍去),∴PE=2+2=4.故选:A.9.解:∵PN2=NB•NA,NB•NA=NM•NQ,∴PN2=NM•NQ=4,∴PN=2.故选:C.10.解:连接OK,∵EF切小圆于K,∴OK⊥EF,根据垂径定理得EK=FK,∵EP切小圆于P,FQ切小圆于Q,∴EP=EK,FQ=FK,∴EP=FQ,故③正确;∴由切割线定理得,FK2=FN•FG,EK2=EM•EG,∴FN•FG=EM•EG,故④正确;故选:C.二.填空题(共7小题)11.解:连接OM;∵PM切⊙O于点M,∴∠OMP=90°,∵OA=OM=a,PM=,∴tan∠MOP=MP:OM=,∴∠MOP=60°,∴OP=2a,∴PB=OP﹣OB=a;∵OM=OB,∴△OMB是等边三角形,MB=OB=a,∴△PMB的周长是(+2)a.12.解:∵PC切⊙O于点C,割线PAB经过圆心O,PC=4,PB=8,∴PC2=PA•PB.∴PA==2.∴AB=6.∴圆的半径是3.连接OC.∵OC=3,OP=5,∴sin∠P=.∴CE=,∴CD=.13.解:连接AD,OB,OP;∵PA、PB与⊙O分别相切于点A、点B,∴∠OAP=∠OBP=90°,∠AOB=180°﹣∠P=120°,∴∠AOP=60°,AP=AOtan60°=,∴PC=;∵PA2=PD•PC,∴PD=,∴CD=.14.解:∵PA2=PB•PC,PA=6,PB=4;∴PC=9,∴BC=5;∵弧AB的度数为60°,∴∠PCA=30°,∴∠PAB=30°.15.解:由切割线定理得PB•PA=PC•PD,则有8×20=PC(PC+6).解得PC=10.在△PAC中,由PA=2PC,∠APC=60°,得∠PCA=90°.从而AD是圆的直径.由勾股定理,得AD2=AC2+CD2=(PA2﹣PC2)+CD2=202﹣102+62=336.∴AD==4∴R=AD=2.故答案为2.16.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.17.解:∵BF,DF是⊙O的两条切线∴OF是∠DFB的角平分线,DF=FB,FO⊥BD,CD=CB∴=∴BE=DE(①正确)∵=∴∠EBD=∠EDB(②正确)∵FB切⊙O于B∴FB⊥OB∵BC⊥OF∵BC2=OC•FC∴(BD)2=OC•CE∵OC为△ABD的中位线∴OC=AD∴(BD)2=AD•CE∴BD2=2AD•FC(④正确)故其中正确的结论有①②④.三.解答题(共3小题)18.(1)证明:连接OE;(1分)∵⊙O是△BDE的外接圆,∠DEB=90°,∴BD是⊙O的直径,(不证直径,不扣分)∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,(2分)∴∠OEB=∠CBE,∴OE∥BC,(3分)∵∠C=90°,∴∠AEO=90°,∴AC是⊙O的切线;(4分)(2)解:∵AE是⊙O的切线,AD=6,AE=6,∴AE2=AD•AB,(5分)∴AB===12,∴BD=AB﹣AD=12﹣6=6;∵∠AED=∠ABE,∠A=∠A,∴△AED∽△ABE,(6分)∴;设DE=x,BE=2x,∵DE2+BE2=BD2,(7分)∴2x2+4x2=36,解得x=±(负的舍去),∴DE=2.(8分)19.(1)证明:∵AB为直径∴∠ACB=90°∴AC⊥BC又D为中点,∴OD⊥BC,OD∥AC,又O为AB中点,∴;(4分)(2)证明:连接CD,PC为切线,由∠PCD=∠CAP,∠P为公共角,∴△PCD∽△PAC,(6分)∴,又CD=BD,∴;(8分)(3)解:∵AC=6,AB=10,∴BC=8,BE=4,OE=3,∴DE=2,∴BD2=DE2+BE2=20,(9分)∴AD2=AB2﹣BD2=80,∴AD=4,(10分)CD=BD=2,由(2),∴,(11分)∴CP2=DP•AP=45×5,∴切线PC=15.(12分)20.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,∴S△DEF=×a×a=a2.故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S△DEF=a2.。

由圆的切线发展而来PPT优选课件

由圆的切线发展而来PPT优选课件
三角形的内切圆
驶向胜利 的彼岸
题五.已知:如图,△ABC的面积 为S,三边长分别为a,b,c.
求内切圆⊙O的半径r.
A
D
F
O

r 2S . abc
B
老师提示:
S1rabc.
2

E
C
这个结论可叙述为:三角形的面积等
于其周长与内切圆半径乘积的一半.
2020/10/18
8
目标与检测P994
直角三角形的内切圆
圆与直线
2. 由圆的切线发展而来
2020/10/18
1
补充作业P2 2
挑战自我
驶向胜利 的彼岸
题一.已知:如图,P是⊙O外一点,PA,PB都是⊙O的切
线,A,B是切点.请你观察猜想,PA,PB有怎样的关系?
并证明你的结论.
A
能由发所现得那的些结新论的及结证论明?过如程果,有你,还P 仍请你予以证明.
题七.已知:如图,⊙O是Rt△ABC
的内切圆,∠C是直角,AO的延长线
ห้องสมุดไป่ตู้
交BC于点D,AC=4,CD=2.
求⊙O的半径r.
r 4. 5
老师提示:
连接OF,可借助相似三角形.
E
O
●┗
F
B DC
2020/10/18
10
目标与检测P994
直角三角形的内切圆
驶向胜利 的彼岸
题八.已知:如图,⊙O与△ABC的 A
祝你成功!
2020/10/18
驶向胜利 的彼岸
12
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!

数学九年级下册圆的知识点

数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。

在九年级的数学学习中,我们将更加深入地学习圆的相关知识。

本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。

一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。

其中,距离固定点最远的点称为圆的半径,固定点称为圆心。

圆心与圆上任意一点之间的线段称为半径。

二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。

2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。

3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。

等弦对应的弦长相等,而不等弦对应的弦长不相等。

4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。

三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。

2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。

四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。

2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。

3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。

4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。

总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。

掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。

通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。

九年级数学圆切线知识点

九年级数学圆切线知识点

九年级数学圆切线知识点在九年级数学学习中,圆切线是一个重要的知识点。

本文将介绍圆的切线的定义、性质以及相关的定理。

一、圆切线的定义和性质圆是一个平面上的闭合曲线,它的每个点到圆心的距离都相等。

圆周上的任意一条线段称为弦,连接圆周上两个点的最短线段称为弦。

如果在圆上有一条线段,且这条线段的每一个端点都在圆上,那么这条线段就是圆的切线。

根据圆的定义和性质,圆的切线有一些重要的性质:1. 切线与半径垂直:圆的切线与半径的形成的角是直角。

2. 唯一性:一个圆上的任意点只有唯一一条切线与之相切。

3. 切线长度:当切线与半径形成的角不等于90度时,切线与圆心的距离是半径的长度。

4. 相交性质:如果两个圆相交,那么它们的切线会相交于相交点。

二、圆切线的定理除了基本的定义和性质外,还有一些与圆切线相关的定理。

下面将介绍一些常见的定理:1. 切线定理:如果一条直线与一个圆相切,那么这条直线与半径的形成的角是直角。

2. 弦切定理:如果一条弦与一个切线相交,那么切线与弦间的角等于弦上对应的圆心角。

3. 切线长定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线的长度的乘积等于这两条切线分别与圆心连线长度的平方。

4. 切线角定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线所对应的圆心角相等。

三、习题练习现在我们来做一些练习题,以加深对圆切线知识点的理解。

1. 在圆 O 上,切线 AB,C 是正切点。

若弧 AC 的度数是120度,求角 BAC 的度数。

解答:由弧与切线的性质可得,角 BAC 的度数等于弧 AC 的度数的一半,即 120/2 = 60 度。

2. 已知圆心角 ADC 的度数是135度,弦 AC 与切线 AB 相交于点 E,求角 BDE 的度数。

解答:根据弦切定理可知,角 BDE 等于弦 AC 对应的圆心角ADC 的度数减去切线 AB 与弦 AC 间夹角的度数,即 135 - 90 = 45 度。

通过以上的练习题,我们可以灵活运用圆切线的性质和定理来解决问题。

北京版-数学-九年级上册-学习“圆的切线”三步曲

北京版-数学-九年级上册-学习“圆的切线”三步曲

学习“圆的切线”三步曲一、理解圆的定义经过半径的外端并且垂直于这条半径的直线是圆的切线。

理解这个定义,必须抓住两点:(1)直线经过半径的外端点;(2)直线垂直于这条半径。

这两个条件缺一不可。

二、辩明切线的特征切线具有下列特征:1、切线与圆只有一个公共点,如图所示,直线l 与⊙O 切与点A ,则A 是直线l 与⊙O 的唯一公共点;lr OA2、切线到圆心的距离等于圆的半径,直线l 是⊙O 的切线,切点是A ,⊙O 的半径为r ,则OA r ;3、切线垂直于经过切点的半径,直线l 是⊙O 的切线,切点是A ,则l ⊥OA ;4、经过圆心并且垂直于切线的直线一定经过圆心,直线l 是⊙O 的切线,l ⊥OA ,则A 是切点;5、经过切点并且垂直于切线的直线一定经过圆心,直线l 是⊙O 的切线,A 为切点,直线l ⊥OA ,则OA 一定经过圆心。

说明:(1)在上述特征中,1、2是切线概念的变式;(2)上述特征中,3、4、5三条中如果具备圆与切线的三个条件中的两个,那么第三个就成立,这三个条件是:①垂直于切线;②过圆心;③过切点。

三、掌握切线的判定方法总的来说,判定直线与圆相切的方法有三种:1、根据定义,即和圆只有一个公共点的直线是圆的切线;2、到圆心的距离等于半径的直线是圆的切线;3、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线说明:(1)“有切线,连半径,证垂直”是证明圆的切线问题的常用技巧之一;(2)要证明已知直线是圆的切线时,如果已知直线过圆上某一点,则可作出过这一点的半径,再证明直线垂直于半径;如果已知直线与圆的公共点没有确定,则应过圆心作已知直线的垂线,证明圆心到直线的距离等于圆的半径。

例1、已知,如图所示,AB 是⊙O 的直径,AD 是⊙O 的弦,C 是AB 延长线上一点,∠A=30°,AD=DC ,求证:CD 是⊙O 的切线ODB C A分析:点D 是直线CD 与⊙O 的公共点,连接点D 与圆心得到半径,再证半径OD 与直线CD 垂直,即“连半径,证垂直”。

中考数学与圆的切线相关的证明与计算

中考数学与圆的切线相关的证明与计算

中考数学与圆的切线相关的证明与计算圆的切线:经过半径的外端并且垂直于这条半径的直线是圆的切线 .一、圆的切线的判定及相关计算1.如图,以△ABC 的边AB 为直径作⊙O,与BC 交于点D,点E 是弧BD 的中点,连接AE 交BC 于点F,∠ACB=2∠BAE .求证:AC 是⊙O 的切线.例题1图【分析】连接AD,利用等弧所对圆周角相等及∠ACB=2∠BAE 可得到∠BAD=∠BCA,再结合直径所对圆周角为直角即可得证.证明:如解图,连接AD.例题1解图∵点E 是弧BD 的中点,∴弧BE =弧DE,∴∠1=∠2 .∵∠BAD=2∠1, ∠ACB=2∠1,∴∠ACB=∠BAD.∵AB为⊙O 直径,∴∠ADB=∠ADC=90°.∴∠DAC+∠C=90°.∵∠C=∠BAD,∴∠DAC+∠BAD=90°.∴∠BAC=90°,即AB⊥AC. 又∵AB 是⊙O 的直径,∴AC 是⊙O 的切线.证明切线的常用方法:1.直线与圆有交点,“连半径,证垂直”.(1) 图中有90°角时,证垂直的方法如下:①利用等角代换:通过互余的两个角之间的等量代换得证;②利用平行线性质证明垂直:如果有与要证的切线垂直的直线,则证明半径与这条直线平行即可;③利用三角形全等或相似:通过证明切线和其他两边围成的三角形与含90°的三角形全等或相似得证.(2)图中无90°角时:利用等腰三角形的性质,通过证明半径为所在等腰三角形底边的中线或角平分线,再根据“三线合一”的性质得证.2.直线与圆无交点,“作垂线,证相等”.2.如图,在Rt△ABC 中,∠C=90°,⊙O 是△ABC 的外接圆,点D 在⊙O 上,且弧AD=弧CD , 过点D 作CB 的垂线,与CB 的延长线相交于点E,并与AB 的延长线相交于点F .(1) 求证:DF 是⊙O 的切线;(2) 若⊙O 的半径R=5,AC=8,求DF 的长.例题2图【解析】(1) 证明:如解图,连接DO 并延长,与AC 相交于点P.例题2解图∵弧AD = 弧CD,∴DP⊥AC.∴∠DPC=90°.∵DE⊥BC,∴∠CED=90°.∵∠C=90°.∴∠ODF=90°,而点D 在⊙O 上,∴DF 是⊙O 的切线;(2) 解:例题2解图∵∠C=90°,R=5,∴AB=2R=10.在Rt△ABC 中,根据勾股定理可得,BC=6 .∵∠DPC+∠C=180°,∴PD∥CE.∴∠CBA=∠DOF.∵∠C=∠ODF,∴△ABC ∽△FOD.∴CA / DF = BC / OD , 即8 / DF = 6 / 5 ,∴DF = 20 / 3 .类型二、切线性质的相关证明与计算3.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点B 作⊙O 的切线DE,与AC 的延长线交于点D,作AE⊥AC 交DE 于点E .(1) 求证:∠BAD=∠E;(2) 若⊙O 的半径为5,AC=8,求BE 的长.例题3图【解析】(1) 证明:∵⊙O 与DE 相切于点B,AB 为⊙O 的直径,∴∠ABE=90°.∴∠BAE+∠E=90°.又∵∠DAE=90°,∴∠BAD+∠BAE=90°.∴∠BAD=∠E;(2) 解:如解图,连接BC.例题3解图∵AB 为⊙O 的直径,∴∠ACB=90°,∵AC=8,AB=2 ×5=10 .∴在Rt△ACB 中,根据勾股定理可得BC = 6 .又∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC ∽△EAB .∴AC / EB = BC / AB , 即8 / EB = 6 / 10 ,∴BE=40 / 3 .4.如图,⊙O 的半径OA=6,过点A 作⊙O 的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B 作BC∥OA,并与⊙O 交于点C,连接AC、CD.(1) 求证:DC∥AP;(2) 求AC 的长.例题4图【解析】(1) 证明:∵AP 是⊙O 的切线,∴∠OAP=90°.∵BD 是⊙O 的直径,∴∠BCD=90°.∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO.∴DC∥AP;(2) 解:∵AO∥BC,OD=OB,例题4解图∴如解图,延长AO 交DC 于点E,则AE⊥DC,OE=1/2 BC,CE=1/2 CD.在Rt△AOP 中,根据勾股定理可得:OP=10.由(1) 知,△AOP∽△CBD,∴BD/OP = BC/OA = CD/AP , 即12/10 = BC/6 = DC/8 ,∴BC = 36/5 , DC = 48/5 .∴OE = 18/5 , CE = 24/5 , AE = OA + DE = 6 + 18/5 = 48/5 ,在Rt△AEC 中,根据勾股定理可得:AC = 24√5 / 5 .5.如图,AC 是⊙O 的直径,AB 是⊙O 的一条弦,AP 是⊙O 的切线.作BM=AB,并与AP 交于点M,延长MB 交AC 于点E,交⊙O 于点D,连接AD.(1) 求证:AB=BE;(2) 若⊙O 的半径R=5,AB=6,求AD 的长.例题5图【解析】(1) 证明:∵AP 是⊙O 的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEM+∠AME=90°. 又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE;(2) 解:如解图,连接BC.例题5解图∵AC 是⊙O 的直径,∴∠ABC=∠EAM=90°,在Rt△ABC 中,AC=10,AB=6,根据勾股定理可得:BC = 8 . 由(1) 知,∠BAE=∠AEB,∴△ABC∽△EAM,∴∠C=∠AME,AC/EM = BC/AM , 即10/2 = 8/AM ,∴AM = 48/5 .又∵∠D=∠C,∴∠D=∠AMD.∴AD=AM=48/5 .。

中考数学 考点系统复习 第六章 圆 微专题(七) 与切线有关的常考五大模型

中考数学 考点系统复习 第六章 圆 微专题(七) 与切线有关的常考五大模型

1 ∴CD=3,∠DAC=2∠BAC, ∴AD= AC2-CD2=4,∠DAO=90°, ∵∠ADC=90°, ∴四边形 ADEO 是矩形, ∴OE=AD=4, ∴⊙O 的半径是 4.
类型三: 与锐角三角函数结合
【类型归纳】
模型展示
常见辅助线
连接圆心与切点
若问题中涉及到直角(或构造出直角)时,可以利用锐角三角函数来
半圆与 AB,AC 相切,切点分别为 D,E.过半圆上一点 F 作半圆的切线,
BM·CN 分别交 AB,AC 于点 M,N,那么 BC2 的值为 A.18 B.14 C.12 D.1
(B )
7.★如图,AB 为⊙O 的直径, C 为⊙O 上一点, AD 和过 C 点的切线互
25 相垂直,垂足为 D.若 AD=4,AC=5,则 AB 的长为 4 .
AD⊥DC,若⊙O 的半径为 3,AD=4,则 AC=2 6.连接 BC,OC,由
常见结论 与方法
AD⊥DC 和直径所对的圆周角为直角,可得∠ACB=∠ADC=90°, ∵DC 是⊙O 的切线,∴∠DCA=∠ABC,∴△ADC∽△ACB,得出AADC=
AACB,进而求出 AC=2 6.
对应练习
6.★如图,在等腰三角形 ABC 中,O 为底边 BC 的中点,以点 O 为圆心作
OB=3,PB=2.连接 OC,由切线的性质可得 OC⊥PC,易得 PO=BO
+PB=5,再利用勾股定理,可得 PC= PO2-OC2=4.
对应练习 1.★(2022·深圳)如图,三角形 ABE 为直角三角形,∠ABE=90°,BC 为⊙O 的切线,C 为切点,CA=CD,则△ABC 和△CDE 的面积之比为( B ) A.1∶3 B.1∶2 C. 2∶2 D.( 2-1)∶1

2022年中考数学专项复习----圆的切线教案

2022年中考数学专项复习----圆的切线教案

2022年中考数学专项复习—-圆的切线教案一、引言圆是中学数学中的重要概念之一,它具有许多重要的性质和定理。

其中,切线是与圆相切于一点且与圆没有交点的直线。

掌握圆的切线的相关知识和方法对于解决与圆相关的问题至关重要。

本教案旨在帮助学生全面理解并能够灵活运用圆的切线的性质和定理,提高解题能力。

二、知识点1.切线的定义2.圆的切线与切点的性质3.圆的切线定理4.圆内切线和圆外切线的性质三、教学内容与方法1. 切线的定义教学内容首先,介绍切线的定义:切线是与圆相切于一点且与圆没有交点的直线。

教学方法通过示意图和实际生活中的例子,向学生解释切线的定义。

引导学生观察切线与圆的关系,并帮助学生理解切线的特点。

2. 圆的切线与切点的性质教学内容介绍圆的切线与切点的性质: - 切线与半径的垂直关系 - 切线与切点的唯一性 - 切点在切线上的确定教学方法通过示意图和具体的例子,向学生展示圆的切线与切点的性质。

引导学生发现并理解这些性质,并通过练习题巩固学习成果。

3. 圆的切线定理教学内容介绍圆的切线定理: - 切线与半径的垂直关系定理 - 相交弧与切线的垂直关系定理教学方法通过具体的例子和推导过程,向学生阐述圆的切线定理。

引导学生通过观察和分析,理解切线定理的原理,并通过练习题加深理解。

4. 圆内切线和圆外切线的性质教学内容介绍圆内切线和圆外切线的性质: - 圆内切线的性质 - 圆外切线的性质教学方法通过示意图和实际问题,向学生介绍圆内切线和圆外切线的性质。

引导学生发现和总结这些性质,并通过练习题巩固所学知识。

四、教学步骤1.导入:通过提问和小组讨论,引导学生回忆并复习圆的基本概念和性质。

2.讲解:分步讲解切线的定义和切线与切点的性质。

3.实例:通过具体的问题和练习题,引导学生应用所学知识,解决与切线相关的问题。

4.总结:归纳和总结切线的性质和定理。

5.练习:提供一些练习题,让学生巩固所学知识。

6.拓展:引导学生思考和探索更多与切线相关的问题。

中考数学备考指导:圆的切线几何公式定理

中考数学备考指导:圆的切线几何公式定理

中考数学备考指导:圆的切线几何公式定理中考复习最忌心浮气躁,急于求成。

指导复习的教师,应给学生一种乐观、冷静、自信的精神面貌。

要扎扎实实地复习,一步一步地前进,下文为大伙儿预备了2021中考数学备考指导。

通过半径外端同时垂直于这条半径的直线是圆的切线。

圆的切线垂直于过切点的半径;通过半径的一端,同时垂直于这条半径的直线,是那个圆的切线。

切线的性质:(1)通过切点垂直于过切点的半径的直线是圆的切线。

(2)通过切点垂直于切线的直线必通过圆心。

(3)圆的切线垂直于通过切点的半径。

切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

切割线定理圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点,则有pC^2=pApB割线定理与切割线定理相似两条割线交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点则pA1pB1=pA2pB2课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。

教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

圆是轴对称图形,同时圆也是中心对称图形,其对称中心是圆心。

2022年中考数学提优专题:《圆:切割线定理》(含答案)

2022年中考数学提优专题:《圆:切割线定理》(含答案)

《圆:切割线定理》知识梳理:(1)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT的平方=PA•PB(切割线定理)(2)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB(切割线定理推论)(割线定理)由上可知:PT2=PA•PB=PC•PD.一.选择题1.如图,P是⊙O的直径BC延长线上一点,PA切⊙O 于点A,若PC=2,BC=6,则切线PA的长为()A.无限长B.C.4 D.2.如图,PT是⊙O的切线,T为切点,PBA是割线,交⊙O于A、B两点,与直径CT交于点D,已知CD=2,AD=3,BD=4,那么PB等于()A.6 B.C.7 D.203.设H为锐角△ABC的三条高AD、BE、CF的交点,若BC=a,AC=b,AB=c,则AH•AD+BH•BE+CH•CF 等于()A.(ab+bc+ca)B.(a2+b2+c2)C.(ab+bc+ca) D.(a2+b2+c2)4.如图,MN切⊙O于A点,AC为弦,BC为直径,那么下列命题中假命题是()A.∠MAB和∠ABC互余B.∠CAN=∠ABCC.OA=BC D.MA2=MB•BC5.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A.B.C.8 D.56.如图,AB是⊙O直径,AC是⊙O的弦,过弧BC 的中点D作AC的垂线交AC的延长于E,若DE=2,EC=1,则⊙O的直径为()A.B.C.5 D.47.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3 B.7.5 C.5 D.5.58.如图,已知⊙O的弦A B、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=cm,则PE的长为()A.4cm B.3cm C.5cm D.cm9.如图,⊙O1与⊙O2相交于A、B两点,PQ切⊙O1于点P,交⊙O2于点Q、M,交AB的延长线于点N.若MN=1,MQ=3,则NP等于()A.1 B.C.2 D.310.同心圆O中,大圆的弦EF切小圆于K,EP切小圆于P,FQ切小圆于Q,G为小圆上一点,GE、GF 分别交小圆于M、N两点,下列四个结论:①EM=MG;②FQ2=FN•NG;③EP=FQ;④FN•FG=EM•EG.正确的结论为()A.①③B.②③C.③④D.②④二.填空题11.如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若OA=a,PM=,那么△PMB 的周长是.12.已知:如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,PC=4,PB=8,则PA =,sin∠P=,CD=.13.如图,PA、PB与⊙O分别相切于点A、点B,AC 是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为.14.如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,若PA=6,PB=4,弧AB的度数为60°,则BC =,∠PCA=度,∠PAB=度.15.如图,已知ABCD是一个半径为R的圆内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于点P,且BP=8,∠APD=60°,则R=.16.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D 点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).17.由⊙O外一点F作⊙O的两条切线,切点分别为B、D,AB是⊙O的直径,连接AD、BD,线段OF交⊙O 于E,交BD于C,连接DE、BE.有下列序号为①~④的四个结论:①BE=DE;②∠EBD=∠EDB;③DE∥AB;④BD2=2AD•FC其中正确的结论有.(把你认为正确结论的序号全部填上)三.解答题18.已知:如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若AD=6,AE=6,求DE的长.19.如图,圆O是以AB为直径的△ABC的外接圆,D 是劣弧的中点,连AD并延长与过C点的切线交于点P,OD与BC相交于E;(1)求证:OE=AC;(2)求证:;(3)当AC=6,AB=10时,求切线PC的长.20.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF.参考答案一.选择题1.解:∵PC=2,BC=6,∴PB=8,∵PA2=PC•PB=16,∴PA=4.故选:C.2.解:∵TD•CD=AD•BD,CD=2,AD=3,BD=4,∴TD=6,∵PT2=PD2﹣TD2,∴PT2=PB•PA=(PD﹣BD)(PD+AD),∴PD=24,∴PB=PD﹣BD=24﹣4=20.故选:D.3.解:AH•AD=AC•AE=AC•AB•cos∠BAE=(b2+c2﹣a2),同理BH•BE=(a2+c2﹣b2),CH•CF=(a2+b2﹣c2),故AH•AD+BH•BE+CH•CF=(a2+b2+c2).故选:B.4.解:∵BC是⊙O的直径,∴∠BAC=90°,∴∠MAB+∠CA N=90°;∵MN切⊙O于A,∴MA2=MB•MC,(故D错误)∠CAN=∠CBA,(故B正确)∴∠MAB+∠CBA=90°;(故A正确)∵OA是⊙O的半径,BC是⊙O的直径,∴BC=2OA;(故C正确)故选:D.5.解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cosD=AD:BD=1:3,设A D=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选:C.6.解:连接OD,∵点D是弧BC的中点,∴OD⊥BC,∠OFC=90°,AB是直径,∴∠ACB=90°,DE⊥AE,∴∠E=90°,∴四边形CFDE是矩形,∴∠ODE=90°,∴ED是圆的切线.作OG⊥AC,则OG=CF=ED=2.∵DE2=EC•AE,∴AE=4,AC=3,AG=,∴AO=,∴AB=5.故选:C.7.解:∵PA=3,AB=PC=2,∴PB=5,∵PA•PB=PC•PD,∴PD=7.5,故选:B.8.解:∵PA•PB=PC•PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED•EC,∴x(x+8)=20,∴x=2或x=﹣10(负值舍去),∴PE=2+2=4.故选:A.9.解:∵PN2=NB•NA,NB•NA=NM•NQ,∴PN2=NM•NQ=4,∴PN=2.故选:C.10.解:连接OK,∵EF切小圆于K,∴OK⊥EF,根据垂径定理得EK=FK,∵EP切小圆于P,FQ切小圆于Q,∴EP=EK,FQ=FK,∴EP=FQ,故③正确;∴由切割线定理得,FK2=FN•FG,EK2=EM•EG,∴FN•FG=EM•EG,故④正确;故选:C.二.填空题(共7小题)11.解:连接OM;∵PM切⊙O于点M,∴∠OMP=90°,∵OA=OM=a,PM=,∴tan∠MOP=MP:OM=,∴∠MOP=60°,∴OP=2a,∴PB=OP﹣OB=a;∵OM=OB,∴△OMB是等边三角形,MB=OB=a,∴△PMB的周长是(+2)a.12.解:∵PC切⊙O于点C,割线PAB经过圆心O,PC=4,PB=8,∴PC2=PA•PB.∴PA==2.∴AB=6.∴圆的半径是3.连接OC.∵OC=3,OP=5,∴sin∠P=.∴CE=,∴CD=.13.解:连接AD,OB,OP;∵PA、PB与⊙O分别相切于点A、点B,∴∠OAP=∠OBP=90°,∠AOB=180°﹣∠P=120°,∴∠AOP=60°,AP=AOtan60°=,∴PC=;∵PA2=PD•PC,∴PD=,∴CD=.14.解:∵PA2=PB•PC,PA=6,PB=4;∴PC=9,∴BC=5;∵弧AB的度数为60°,∴∠PCA=30°,∴∠PAB=30°.15.解:由切割线定理得PB•PA=PC•PD,则有8×20=PC(PC+6).解得PC=10.在△PAC中,由PA=2PC,∠APC=60°,得∠PCA=90°.从而AD是圆的直径.由勾股定理,得AD2=AC2+CD2=(PA2﹣PC2)+CD2=202﹣102+62=336.∴AD==4∴R=AD=2.故答案为2.16.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.17.解:∵BF,DF是⊙O的两条切线∴OF是∠DFB的角平分线,DF=FB,FO⊥BD,CD=CB∴=∴BE=DE(①正确)∵=∴∠EBD=∠EDB(②正确)∵FB切⊙O于B∴FB⊥OB∵BC⊥OF∵BC2=OC•FC∴(BD)2=OC•CE∵OC为△ABD的中位线∴OC=AD∴(BD)2=AD•CE∴BD2=2AD•FC(④正确)故其中正确的结论有①②④.三.解答题(共3小题)18.(1)证明:连接OE;(1分)∵⊙O是△BDE的外接圆,∠DEB=90°,∴BD是⊙O的直径,(不证直径,不扣分)∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,(2分)∴∠OEB=∠CBE,∴OE∥BC,(3分)∵∠C=90°,∴∠AEO=90°,∴AC是⊙O的切线;(4分)(2)解:∵AE是⊙O的切线,AD=6,AE=6,∴AE2=AD•AB,(5分)∴AB===12,∴BD=AB﹣AD=12﹣6=6;∵∠AED=∠ABE,∠A=∠A,∴△AED∽△ABE,(6分)∴;设DE=x,BE=2x,∵DE2+BE2=BD2,(7分)∴2x2+4x2=36,解得x=±(负的舍去),∴DE=2.(8分)19.(1)证明:∵AB为直径∴∠ACB=90°∴AC⊥BC又D为中点,∴OD⊥BC,OD∥AC,又O为AB中点,∴;(4分)(2)证明:连接CD,PC为切线,由∠PCD=∠CAP,∠P为公共角,∴△PCD∽△PAC,(6分)∴,又CD=BD,∴;(8分)(3)解:∵AC=6,AB=10,∴BC=8,BE=4,OE=3,∴DE=2,∴BD2=DE2+BE2=20,(9分)∴AD2=AB2﹣BD2=80,∴AD=4,(10分)CD=BD=2,由(2),∴,(11分)∴CP2=DP•AP=45×5,∴切线PC=15.(12分)20.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,∴S△DEF=×a×a=a2.故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S△DEF=a2.。

中考数学由圆的切线发展而来-15页PPT资料

中考数学由圆的切线发展而来-15页PPT资料
严,就是在这么喜庆的时刻也没有任何改变。此刻,他正面无表情地望着眼前的这壹切,既没有喜悦,也没有忧伤,只是不经意间偶尔微蹙壹 下眉梢。来得早的宾客已经等了快壹个时辰了,即使来得晚的,也已经有些微微心急。就在众人翘首以盼,苦苦等待之际,典仪官的壹声“吉 时到”,整个王府立即掀起了壹片欢呼声。仆从们早就各就各位,严阵以待,宾客们蜂拥而至,将新郎团团围住,并簇拥着朝王府大门口走。 门口已经聚集了几十口子人,新郎壹行抵达府门之际,眼看着新娘子的花轿也稳稳当当地停在了王府的大门口!由于今日娶的是侧福晋,因此 婚礼仪式比之大婚轻减了许多,但是新郎官在府门口迎亲的程序仍然必不可少。待八抬大轿抬过了炭火盆、抬过了马鞍子,稳稳当当地落地后, 只见新郎弯弓搭箭,“嗖、嗖、嗖”,手起箭落,三支利箭准确无误地射向轿门。“驱邪避秽保平安!”随着嬷嬷的壹声吉利话出口,众人纷 份发出了赞叹声:“好身手!”“王爷果真了得!”“恭喜四哥!”众人的齐口夸赞并没有给新郎带来任何情绪上的变化,他仍然是壹言未发, 面无表情,放下弓箭之后,转身就朝宴席上走去,留下壹众人等面面相觑,不如如何是好。按照迎亲的惯例,宾客们应该随新郎壹并来到宴席 上,可是?按照迎亲的惯例,原本新郎应该与新娘子共同进府,并送至洞房,留下新娘在洞房等候,新郎来到宴席招呼宾客才是。迎亲迎亲, 这亲还没有迎进府,新郎怎么自己就先走了?百思不得其解的众人们很是难办,犹豫半天也不知道是跟上新郎呢,还是跟着新娘去洞房。就在 这思忖之间,无意之中人们分成了两部分:壹部分人急急慌慌、无可奈何地随着新郎来到了宴席上;另壹部分人则磨磨蹭蹭、故意拖延,只求 壹睹新娘的风采。射过三箭之后,按照常规,该是新娘子下轿的时候了。在嬷嬷的搀扶下,新娘子壹身桃红色凤冠霞披,头蒙喜帕、手捧苹果, 缓缓走下轿来。虽然蒙着红盖头,任谁也不可能真正壹睹新娘的真容,但那纤瘦的身材,端庄的体态,稳健的步伐,令余下在场的每壹个人都 禁不住暗暗发出壹声惊叹:果然是名不虚传!窈窕淑女,君子好逑!于是人们也就更加好奇:这喜帕下的容貌该是何等的娇美模样?喜宴上居 主位的,不是新郎本人,而是二阿哥胤礽,当朝太子殿下!与往日不同的是,由于是四阿哥的喜宴,因此四阿哥--雍亲王位居太子右手,三 阿哥--诚亲王改居太子左手,其它众兄弟们长幼有序分坐余位。虽然刚刚有壹些小小的波折,但是大喜的日子,大家都不想让四哥(弟)为 难,特别是在十三阿哥嘻嘻哈哈的壹番招呼下,众人也都暂时忘记了刚刚的小插曲,热热闹闹地投入到了喜宴之中。因为是四哥的喜宴,各位 兄弟们难得有机会可

“圆”在中考中的命题走向

“圆”在中考中的命题走向

“圆”在中考中的命题走向来源:《中小学数学》比较原教材,有关圆的学习,无论从内容份量还是难度要求都发生了根本性的变化。

《数学课程标准》在39、40页指出的圆的学习目标仅仅只有5项,以北师大版教材为例,其九年级下册第三章《圆》仅编排有13课时,占初中数学总课时的3.65%。

随着圆与圆、直线与圆位置关系的弱化,弦切角、切线长定理、相交弦定理、切割线定理以及割线定理等一系列知识的退出,新教材中圆的知识结构发生了重大的改变。

在中考卷中,这种变化体现为考核的重心前移,视角更新。

一、重心前移教材中讲述的比较重要的定理,经过调整,现在仅剩下垂径定理、弧、弦、圆心角关系定理、圆周角和圆心角关系定理。

这些定理都是圆中极其基础的知识,自身并不具有很强的纵深能力,因为内容删减之后仅余这三个“象样”点的知识,于是在中考试卷中逐渐地活跃起来,成为主导圆与其它知识综合的核心载体,典型手法是以选择、填空等客观性试题设计展现。

例1 ⑴(贵阳市)如图1,已知⊙O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP 的取值范围是 。

⑵(江苏徐州)如图2,A 、B 、C 是⊙O 上的点,AB = 2㎝,∠ACB=30°,那么⊙O 的半径为__________。

⑶ (湖北宜昌市)如图3,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC=BD ,连接AC 交⊙O 与点F 。

(1)AB 与AC 的大小有什么关系?为什么?(2)按角的大小分类, 请你判断△ABC 属于哪一类三角形,并说明理由。

解答提示:⑴ 3≤OP ≤5; ⑵ 2㎝ ; ⑶ AB=AC ,有多种证明方法。

可连OD 用中位线,也可连AD 用直径所对的圆周角是直角;锐角三角形,理由略。

点评:以上各小题立足圆的基本性质,注重基础,体现了试卷依纲靠本的命题指导思想,在各地的试卷中,有相当一部分就是这种风格的设计。

例2 (湖南长沙市)已知抛物线2y ax bx 1=+-经过点A (1-,0)、B (m ,0)(m>0),且与y 轴交于点C .⑴求a 、b 的值(用含m 的式子表示);⑵如图4所示,⊙M 过A 、B 、C 三点,求阴影部分扇形的面积 S (用含m 的式子表示)。

中考数学专题圆的切线

中考数学专题圆的切线

中考(Kao)数学专题圆的切线第(Di)一部分真题(Ti)精讲【例(Li)1】已知:如(Ru)图,AB为(Wei)⊙O的直(Zhi)径,⊙O过(Guo)AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tan C=,求⊙O的直径.【例2】已知:如图,⊙O为的外接圆,为⊙O的直径,作射线,使得平分,过点作于点.(1)求证:为⊙O的切线;(2)若,,求⊙O的半径.【例(Li)3】已知:如(Ru)图,点D是(Shi)⊙的(De)直径延长线(Xian)上一点,点在(Zai)⊙O上(Shang),且(1)求(Qiu)证:是⊙O的切线;(2)若点是劣弧BC上一点,与BC相交于点,且,,求⊙O的半径长.【例4】如图,等腰三角形中,,.以BC为直径作⊙O交于点D,交于点,,垂足为F,交的延长线于点E.(1)求证:直线是⊙O的切线;(2)求的值.【例5】如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GC=CD=5,求AD的长.第(Di)二部分发散(San)思考【思(Si)考1】如(Ru)图,已(Yi)知AB为(Wei)⊙O的(De)弦,C为(Wei)⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.【思路分析】此题为去年海淀一模题,虽然较为简单,但是统计下来得分率却很低. 因为题目中没有给出有关圆心的任何线段,所以就需要考生自己去构造。

同一段弧的圆周角相等这一性质是非常重要的,延长DB就会得到一个和C一样的圆周角,利用角度关系,就很容易证明了。

第二问考解三角形的计算问题,利用相等的角建立相等的比例关系,从而求解。

【思考2】已知:AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径等于4,,求CD的长.【思路分析】本题也是非常典型的通过角度变换来证明90°的题目。

2023年九年级中考数学高频考点突破-圆的切线的证明【含答案】

2023年九年级中考数学高频考点突破-圆的切线的证明【含答案】

2023年九年级中考数学高频考点突破-圆的切线的证明1.如图,直线AD 经过⊙O 上的点A ,△ABC 为⊙O 的内接三角形,并且∠CAD =∠B.(1)判断直线AD 与⊙O 的位置关系,并说明理由;(2)若∠CAD =30°,⊙O 的半径为1,求图中阴影部分的面积.(结果保留π)2.已知:如图, 是 上一点,半径 的延长线与过点 的直线交于 点,A ⊙O OC AB OC =BC ,. AC =12OB(1)求证: 是 的切线;AB ⊙O (2)若 , ,求弦 的长.∠ACD =45°OC =2CD 3.如图,内接于圆O ,AB 为直径,与点D ,E 为圆外一点,,与BC 交于△ABC CD ⊥AB EO ⊥AB 点G ,与圆O 交于点F ,连接EC ,且.EG =EC(1)求证:EC 是圆O 的切线;(2)当时,连接CF ,∠ABC =22.5°①求证:;AC =CF ②若,求线段FG 的长.AD =14.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为4,求△ABC的面积.5.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE(1)求证:直线DE是⊙O的切线103(2)若BE=,AC=6,OA=2,求图中阴影部分的面积6.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;10(3)若CD=1,EF= ,求AF长.7.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且3ME=1,AM=2,AE=.(1)求证:BC 是⊙O 的切线;(2)求⊙O 的半径.8.如图,AB 是⊙O 的直径,点P 在⊙O 上,且PA =PB ,点M 是⊙O 外一点,MB 与⊙O 相切于点B ,连接OM ,过点A 作交⊙O 于点C ,连接BC 交OM 于点D .AC ∥OM(1)求证:MC 是⊙O (2)若,,连接PC ,求PC 的长.OB =152BC =129.如图,四边形ABCD 是平行四边形,以AB 为直径的圆O 经过点D ,E 是⊙O 上一点,且∠AED=45°.(1)判断CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 半径为6cm ,AE=10cm ,求∠ADE 的正弦值.10.如图,以Rt △ABC 的直角边AB 为直径的半圆O ,与斜边AC 交于D ,E 是BC 边上的中点,连结DE .(1)DE 与半圆O 相切吗?若相切,请给出证明;若不相切,请说明理由;(2)若AD 、AB 的长是方程x 2﹣10x+24=0的两个根,求直角边BC 的长.11.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=3 ,DF=3,求图中阴影部分的面积.312.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接DF .(1)求证:BC 是⊙O 的切线;(2)连接DE ,求证:△BDE △BAD∼(3)若BE =,sinB =,求AD 的长.523513.如图,已知 内接干 , 是 的直径, 的平分线交 于点 ,ΔABC ⊙O AB ⊙O ∠CAB BC D 交 于点 ,连接 ,作 ,交 的延长线于点 .⊙O E EB ∠BEF =∠CAE AB F(1)求证: 是 的切线;EF ⊙O (2)若 , ,求 的半径和 的长.BF =10EF =20⊙O AD 14.如图,在中,,以AC 为直径的分别交AB 、BC 于点M 、N ,点P 在AB 的△ABC AC =AB ⊙O 延长线上,.2∠BCP =∠BAC(1)求证:CP 是的切线;⊙O (2)若, ,求点B 到线段AC 的距离.BC =6tan∠BCP =1215.如图,AB 是⊙O 的直径,AC 是弦,P 为AB 延长线上一点,∠BCP =∠BAC ,∠ACB 的平分线交⊙O 于点D ,交AB 于点E ,(1)求证:PC 是⊙O 的切线;(2)求证:△PEC 是等腰三角形;(3)若AC +BC =2时,求CD 的长.16.如图,BD 为⊙O 的直径,AB=AC ,AD 交BC 于点E ,AE=1,ED=2.(1)求证:∠ABC=∠D;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.答案解析部分1.【答案】(1)解:直线AD与⊙O的位置关系是相切,理由是:作直径AE,连接CE,∵AE为直径,∴∠ACE=90°,∴∠E+∠EAC=90°,∵∠B=∠DAC,∠B=∠E,∴∠E=∠DAC,∴∠EAC+∠DAC=90°,即OA⊥AD,∵OA过O,∴直线AD与⊙O(2)解:连接OC,过O作OF⊥AC于F,则∠OFA=90,∵∠CAD=30°,∠DAO=90°,∴∠OAC=60°,∵OC=OA=1,∴△OAC是等边三角形,∴AC=OA=1,∠AOC=60°,∵OA =OC ,OF ⊥AC ,∴AF =FC = ,12由勾股定理得:OF =,12−(12)2=3∴阴影部分的面积为: 60π×12360−12×1×32=π6−34【知识点】等边三角形的判定与性质;圆周角定理;切线的判定;扇形面积的计算【解析】【分析】(1)作直径AE ,连接CE ,求出∠OAD =90°,根据切线的判定得出即可;(2)求出△OAC 是等边三角形,再分别求出△OAC 和扇形OCA 的面积,即可得出答案.2.【答案】(1)证明:如图,连接OA ;∴OC=BC=AC=OA. ∴△ACO 是等边三角形.∵OC =BC,AC =12OB,∵AC=BC , ∴∠CAB=∠B , 又∠OCA 为△ACB 的外角,∴∠O =∠OCA =60∘,∴∠OCA=∠CAB+∠B=2∠B , ∴ 又 ∴AB 是∠B =30∘,∠OAC =60∘,∴∠OAB =90∘, 的切线⊙O (2)解:作AE ⊥CD 于点E , ∴∵∴在Rt △∠O =60∘,∠D =30∘.∠ACD =45∘,AC =OC =2,ACE 中, ∵∴∴∴CE =AE =2;∠D =30∘,AD =22,DE =3AE =6,CD =DE +CE =6+ 2.【知识点】圆周角定理;切线的判定【解析】【分析】(1) 如图,连接OA ,根据题意得出OC =BC =AC =OA . 根据三边相等的三角形是等边三角形得出 △ACO 是等边三角形 ,根据等边三角形的性质得出∠O=∠OCA=60°,根据等边对等角得出 ∠CAB =∠B , 根据三角形外角的定理得出 ∠OCA =∠CAB +∠B =2∠B ,故∠B=30°,根据角的和差得出∠OAB=90°,故 AB 是 的切线 ;⊙O (2) 作AE ⊥CD 于点E ,根据同弧所对的圆周角等于圆心角的一半得出∠D=30°,然后根据等腰直角三角形的性质及含30°直角三角形的边之间的关系得出CE,DE 的长,进而根据线段的和差即可算出答案。

初中九年级圆切线知识点

初中九年级圆切线知识点

初中九年级圆切线知识点在初中九年级的数学中,圆的知识是一个重要的部分。

而其中一个重要的概念就是圆与切线的关系。

本文将详细介绍初中九年级圆切线的知识点。

1. 圆的定义与性质圆是由平面上一点到另一点距离保持不变的所有点的集合。

圆的所有点到圆心的距离相等,这个距离称为半径。

圆的直径是通过圆心且两端点在圆上的线段,直径的长度是半径的两倍。

圆的弦是连接圆上两点的线段,弦的长度可以小于或等于直径的长度。

2. 切线的定义与性质切线是与圆只有一个公共点的直线。

切点是切线和圆的交点。

切线与半径的关系是:切线与半径的垂直线垂直相交。

3. 切线的判定定理如果一条直线与圆相交且过相交点的切线方向与与圆心连线的方向一致,那么这条直线就是圆的切线。

4. 圆切线的性质(1)切线与半径的垂直性:切线与半径的垂直线垂直相交;(2)切线与切点的判定:切线只与圆上切点相交;(3)切线与切点的角:切线与过切点且垂直于切线的直径的夹角为直角;(4)切线与弦的夹角:切线与通过切点的弦所对的圆内角相等。

5. 切线定理(1)切线长定理:切线长的平方等于切点到圆心距离的平方减去半径的平方;(2)切线与切点关系定理:圆内任意一点到切点的距离等于这个点到切线的距离。

6. 圆与切线的应用切线的性质和定理可以应用于解决一些与圆相关的几何问题。

例如,在求解圆的切线长度时,可以利用切线长定理进行计算;在解决直角三角形的问题时,可以利用切线与切点关系定理来求解。

综上所述,初中九年级的圆切线知识点包括圆的定义与性质、切线的定义与性质、切线的判定定理、圆切线的性质、切线定理以及圆与切线的应用。

熟练掌握这些知识点能够帮助同学们更好地理解和解决与圆相关的几何问题。

在学习过程中,同学们应当多做一些相关的练习题,提高自己的解题能力和应用能力。

圆的知识点九年级上册切线

圆的知识点九年级上册切线

圆的知识点九年级上册切线圆是我们学习数学时经常接触到的一个几何图形,它在现实生活中也有着广泛的应用。

在九年级上册的数学课程中,我们学习了关于圆的知识,其中一个重要的概念就是圆的切线。

本文将针对九年级上册的圆的切线进行详细的探讨。

一、圆的定义及性质回顾在开始讲述圆的切线之前,我们先来回顾一下圆的定义及其一些基本性质。

圆定义:圆是平面上所有到圆心的距离都相等的点的集合。

圆心:圆的中心点,用O表示。

半径:连接圆心和圆上任意一点的线段,用r表示。

直径:通过圆心,且在圆上的两个点间的线段,直径的长度是半径的两倍,用d表示。

弦:连接圆上两点的线段。

弧:圆上一段弧线。

圆周:圆上所有的点组成的曲线。

圆的性质:半径相等的圆是同心圆;圆上任意两点之间的弧长相等;圆的内角和为360°等。

二、切线和切点的定义在圆上,如果通过圆上一点可以有且只有一条直线与圆相切,那么这条直线就是圆的切线。

而与圆相切的点则称为切点。

三、切线的性质圆的切线有以下一些重要性质:1. 切线与半径的垂直性:圆的切线与过切点的半径垂直。

2. 切线的长度:圆的切线的长度等于直径的长度。

3. 切线与切点的关系:切线与过切点的径垂直且相交于切点。

4. 切线与弦的关系:圆的切线与过切点的弦相交成的内角等于切线和切点所对的弧所对的圆心角的一半。

四、切线的证明下面我们来证明切线的一些性质:1. 切线与半径的垂直性证明:首先,连接圆心和切点,再连接切点和切线上的一点。

根据直角三角形的性质,可知切线与半径垂直。

2. 切线的长度证明:考虑利用勾股定理来证明切线的长度等于直径的长度。

设直径的一半为c,切线的一半为x,半径为r。

根据勾股定理,可得x^2 + c^2 = r^2。

进一步化简等式,可得x^2 =r^2 - c^2。

从而可以推出x = sqrt(r^2 - c^2)。

由此可见,切线的长度等于直径的长度。

以上是关于圆的切线的定义、性质以及证明的内容。

通过学习和理解这些知识点,我们能够更好地应用于解决实际问题,并在数学学习中取得更好的成绩。

2020年中考数学专题复习:圆中三大切线定理

2020年中考数学专题复习:圆中三大切线定理

题目中圆的切线,可以“连半径,标直角〞,然后在直角三角形中利用勾股、相似或锐角三角函数解决问题.【例1】 如图,在△ABC 中,BC AB =,以AC 为直径的⊙0与BC 边交于点D ,过点D 作⊙O 的切线DE ,交AB 于点E ,假设 DE ⊥AB .求证:BE AE 3=.【解析】 连接OD 、AD ,由切线的性质定理可得AB OD ⊥,知识互联网思路导航典题精练题型一:切线的性质定理圆中三大切线定理E ODCBA2又∵DE ⊥AB , ∴AB OD ∥那么OD 为ABC ∆的中位线, D 为BC 中点, 又∵︒=∠90ADC ,那么AD 为BC 的垂直平分线,∴BC AC AB ==,ABC ∆为等边三角形, ∴︒=∠=∠60ADE B , ∴BE DE AE 33==.判定切线共有三种方法:定义法、距离法和定理法,其中常用的是距离法和定理法,可以总结为六字口诀,定理法是“连半径,证垂直〞,距离法是“作垂直,证半径〞,定理法的使用频率最高,必须熟练掌握.【例2】 如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC于点E ,过点A 作⊙O 的切线 交OE 的延长线于点F , 连结CF 并延长交BA 的延长线于点P . ⑴ 求证:PC 是⊙O 的切线.⑵ 假设AB =4,2 1::=PC AP ,求CF 的长.【解析】⑴ 证实:连结OC .∵ OE ⊥AC ,∴ AE =CE .∴ F A =FC .∴ ∠F AC =∠FCA .∵ OA =OC ,∴ ∠OAC =∠OCA .∴ ∠OAC +∠F AC =∠OCA +∠FCA . 即∠F AO =∠FCO .∵ F A 与⊙O 相切,且AB 是⊙O 的直径, ∴ F A ⊥AB .∴ ∠FCO =∠F AO =90°. ∴ PC 是⊙O 的切线.⑵ ∵∠PCO =90°,即∠ACO +∠ACP =90°.又∵∠BCO +∠ACO =90°,∴ ∠ACP =∠BCO . 思路导航典题精练题型二:切线的判定定理E ODCBA∵ BO =CO ,∴ ∠BCO =∠B ,∴ ∠ACP =∠B . ∵ ∠P 公共角,∴ △PCA ∽△PBC . ∴BCACPC PA PB PC ==. ∵2 1::=PC AP ,∴21=BC AC . ∵ ∠AEO =∠ACB =90°,∴ OF ∥BC .∴ABC AOF ∠=∠.∴21tan tan =∠=∠ABC AOF .∴21tan ==∠AO AF AOF . ∵ AB =4,∴ AO =2 .∴ AF =1 .∴ CF =1 .【例3】 如图,Rt ABC △中,90ACB ∠=︒,BD 平分ABC ∠,以D 为圆心、CD 长为半径作D ⊙,与AC 的另一个交点为E . ⑴ 求证:AB 与D ⊙相切; ⑵ 假设43AC BC ==,,求AE 的长.【解析】 ⑴ 证实:过点D 作DH AB ⊥于H .∵BD 平分ABC ∠,90ACB ∠=︒,DH AB ⊥, ∴DC DH =.∵DC 是D ⊙的半径,∴AB 与D ⊙相切.⑵ 解:设D ⊙的半径为r .在Rt ABC △中,90ACB ∠=︒,43AC BC ==,, ∴5AB =.由⑴可知BC 切D ⊙于C ,BH 切D ⊙于H ,∴3BH BC ==, ∴532AH AB BH =-=-=. 又4AD AC CD r =-=-,∴在Rt ADH △中,90AHD ∠=︒,∴222AH DH AD +=,即()22224r r +=-,解得32r =.∴421AE AC CE r =-=-=.另:该问还可以用AHD ACB △∽△求得AE 的长. 还可以用ADB △面积的求法,3(4)5r r -=.【例4】 :如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . ⑴ 求证:BE 与O ⊙相切;⑵ 连结AD 并延长交BE 于点F ,9OB =,2sin 3ABC ∠=,求BF 的长.【解析】⑴ 证实:连结OC .EC 与⊙O 相切,C 为切点.FECBMAO DE DCBAHABCDE490....ECO OB OC OCB OBC OD DC DB DC ∴∠==∴∠=∠⊥∴=,∴直线OE 是线段BC 的垂直平分线....90.EB EC ECB EBC ECO EBO EBO ∴=∴∠=∠∴∠=∠∴∠=AB 是⊙O 的直径. BE ∴与⊙O 相切.⑵ 解:过点D 作DM AB ⊥于点M ,那么DM ∥FB . 在Rt ODB ∆中,2909sin 3sin 6.ODB OB ABC OD OB ABC ∠==∠=∴=⋅∠=,,,由勾股定理得223 5.BD OB OD =-= 在Rt DMB ∆中,同理得 22sin 2 5.5.DM BD ABC BM BD DM =⋅∠==-=O 是AB 的中点, 18.13.AB AM AB BM ∴=∴=-=DM ∥FB ,..365.AMD ABF MD AMBF ABMD AB BF AM ∴∆∆∴=⋅∴==切线长和切线长定理:⑴ 在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. 思路导航题型三 切线长定理O PE DC BA⑵ 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.【引例】:如图,PA PB 、分别与O ⊙相切于A B 、两点.求证:⑴ APO BPO ∠=∠;⑵ PA PB =;⑶ OP 垂直平分线段AB .【解析】 连结OA OB , ∵PA PB ,分别与O ⊙相切,∴PA OA PB OB ⊥⊥,, ∵OA OB =,OP=OP ∴AOP BOP △≌△ ∴APO BPO ∠=∠. ∴PA PB =,由等腰三角形“三线合一〞可知:OP AB ⊥且AC BC =, ∴OP 垂直平分线段AB .【例5】 ⑴ 如图,PA PB DE 、、分别切O ⊙于A B C 、、,假设10PO =,PDE △周长为16,求O ⊙的半径.⑵ 梯形ABCD 中,AB CD ∥,O 是AB 上一点,以O 为圆心的半圆与AD CD BC 、、都相切.6AD =,4BC =,求AB 的长.【解析】 ⑴ 连结OA∵PA PB DE 、、都与O ⊙相切, ∴PA PB DC DA EC EB ===,,,∴PDE △周长PD DE PE PD DC CE PE =++=+++16PD DA EB PE PA PB =+++=+= ∴8PA =∴226OA PO PA =-=,即O ⊙的半径为6. ⑵ 连接OD OC 、,∵AD CD BC 、、都是半圆O 的切线,由切线长定理得OD 平分ADC ∠,OC 平分BCD ∠, ∵AB CD ∥,∴6AO AD ==,4BO BC ==, ∴6410AB AO BO =+=+=.【例6】 ⑴ 如右图所示,ABC △的内切圆与三边AB 、BC 、CA 分别切于D 、E 、F .13cm AB =,14cm BC =,11cm CA =,求AD 、BE 、CF 的长.例题精讲典题精练C OB AP ABO C FEDA ODCAA BCDO6⑵ 如图,在ABC ∆Rt 中,︒=∠90C ,6=AC ,8=BC ,圆O 为ABC ∆的内切圆,点D 是斜边AB 的中点,那么ODA ∠tan .〔2021启东市模拟〕【解析】 ⑴ ∵AB 、BC 、CA 与O ⊙相切,∴AD AF =,BD BE =,CE CF =设 AD x =,BD y =,CE z =,131411x y y z z x +=⎧⎪+=⎨⎪+=⎩,解得586x y z =⎧⎪=⎨⎪=⎩,即AD 、BE 、CF 的长分别为5cm 、8cm 和6cm .⑵ 2.MC图6FBO M 图4F【例7】 :AB 是半圆O 的直径,点C 在BA 的延长线上运动〔点C 与点A 不重合〕,以OC 为直径的半圆M 与半圆O 交于点D ,DCB ∠的平分线与半圆M 交于点E . (1) 求证:CD 是半圆O 的切线〔图1〕;(2) 作EF AB ⊥于点F 〔图2〕,猜测EF 与已有的哪条线段的一半相等,并加以证实.【解析】 ⑴ 连结OD ,那么OD 为半圆O 的半径.∵OC 为半圆M 的直径, ∴90CDO ∠=︒.∴CD 是半圆O 的切线.⑵ 猜测:12EF =OA .证法一:如图4,连结OD OE ,,延长OE 交CD 于点K ,作EG CD ⊥于点G ,那么EG OD ∥. ∵CE 平分DCB ∠, ∴OCE KCE ∠=∠. ∵EF AB ⊥, ∴EG EF =.∵OC 是半圆M 的直径,E 为半圆M 上的一点, ∴90CEO CEK ∠=∠=.∵CE 为公共边, ∴COE CKE △≌△. ∴OE KE =.∵EG OD ∥, ∴DG GK =.∴1122EF EG OD OA ===.证法二:如图5,以OC 为直径作M ,延长EF 交M 于点P ,连结OD . ∵EF CO ⊥,∴12EF PF EP ==,EO PO =.∵CE 平分DCB ∠, ∴DCE ECO ∠=∠. ∴DE OE =. ∴OD EP =. ∴OD EP =.C F O 图2C 图18C图5∴1122EF OD OA ==.证法三:如图6,连结OD ME 、,OD ME 、相于点H .∵CE 平分DCB ∠, ∴DE OE =.∴12ME OD OH OD ⊥=,.∵EF CO ⊥,∴90MFE MHO ∠=∠=︒. ∵EMF OMH ME MO ∠=∠=,, ∴MEF MOH △≌△. ∴EF OH =.∴1122EF OD OA ==.精讲:三角形内切圆相关性质和结论探究;【探究对象】三角形内切圆相关性质和结论【探究过程】【探究1】角的相关性质探究:AO 、BO 、CO 均为角平分线,且A BOC ∠+︒=∠2190;【探究2】直角三角形内切圆半径计算方法探究:直角三角形的内切圆半径2a b cr +-=,或cb a ab r ++=(其中a 、b 为直角边,c 为 斜边)例:如图,O 为Rt ABC ∆的内切圆,9043ACB AC BC ∠=︒==,,,求内切圆半径r .43OCBAPNMOCBA分析:方法一:连接OA OB OC ,,, ∵43AC BC ==,, ∴5AB =∵BOC AOC AOB ABC S S S S ∆∆∆∆++=,设三角形的底BC AB AC ,,各为a b c ,,, 即11112222ar br cr ab ++=,∴341345r ⨯==++ 方法二:设O 切BC AC ,,AB 于M N ,,P 三点, 由切线长定理可知:CN CM AN AP BM BP ===,, O A∴()()CM CN CB BM AC AN +=-+- BC AC BP AP =+--3452BC AC AB =+-=+-= ∵CM CN =,∴1CM =, 由90C OM BC ON AC ∠=︒⊥⊥,,可证得四边形OMCN 为正方形. ∴1OM MC ==,即O 的半径1r =.【探究3】普通三角形内切圆半径计算方法探究:普通三角形的内切圆半径()()()cb ac p b p a p p r ++---=2(其中a 、b 为直角边,c 为斜边,2cb a p ++=) 分析:由【探究2】的方法一可知,cb a Sr ++=2,由海伦公式可得()()()c p b p a p p S ---=;【探究4】增加内切圆的个数;例:如图,1O 和2O 为Rt ABC ∆的内切等圆,43AC BC ==,,求1O 的半径r .BABA分析:连接1212BO AO CO CO ,,,.那么121212ABC BCO ACO CO O ABO O S S S S S ∆∆∆∆=+++梯形, 即34(25)(2.4)234r r r r r r ++++-=⨯,解得57r =. 【探究5】继续增加内切圆的个数; 例:如图,12n O O O ,为Rt ABC ∆的内切等圆,43AC BC ==,,求1O 的半径r .分析:参见前一变式的解法,由面积易得,∵111n n n ABC BO C CO O ACO BAO O S S S S S ∆∆∆∆=+++梯形,即11111213434(22)()[2(1)5]222252r r n r r n r r ⨯⨯=⨯+⨯+-⨯-+-+, ∴6512236(1)5r n n ==++-.【探究6】改变内切圆的位置;例:如图,假设两等圆12O O ,与Rt ABC ∆的边BC 及AC AB ,的延长线相切,且两等圆外切,求此时两等圆的半径r .分析:连接121122O O O C O A O B O A ,,,,,∵112212ABC ACO O O A AO B O O BC S S S S S ∆∆∆∆=+++梯形, 即()()12424523r r r r r r =+⋅++-+,解10得,67r =. 例:假设将上面变式中的n 个等圆,放到ABC ∆外相邻两圆相外切,且与线段BC 相切,与线段AB AC ,的延长线相切,求这些圆的半径r .分析:连接111n n n O C O A O O O B O A ,,,,,那么111n n n ABC AO C AO O ABO BCO O S S S S S ∆∆∆∆=++-梯形,即4(22)(4)5[(22)3]12r n r r r n r r +-⋅++--+=,解得641r n =-. 【总结】求直角三角形内切圆半径通常方法有两种:⑴ 面积法;⑵ 利用切线长定理.求其它三角形内切圆半径的方法也有两种: ⑴ 面积法:知道三角形的三边,利用勾股定理可求出任意一边上的高,于是就可以求出三角形的面积,接着仿照例题中的方法利用面积即可求出其内切圆的半径.⑵ 利用切线长定理:利用切线长定理可求出三角形任意一顶点到内切圆的切线长,利用三角函数可求出三角形以这个顶点为角的内角度数,再解以这个顶点到圆心的线段、内切圆的半径、这个顶点到内切圆的切线长为三边的直角三角形即可.【探究7】圆外切四边形的性质探究:圆外切四边形的对边和相等:BC AD CD AB +=+;分析:由切线长定理可设线段长度如下图; 那么BC AD d c b a CD AB +=+++=+;BADDOD CB AO ABCDO F E D CBA题型一 切线的性质定理 稳固练习【练习1】 如图,AB 与O ⊙相切于点B ,线段OA 与弦BC 垂直于点D ,60AOB ∠=︒,4cm BC =,那么切线AB = cm .【解析】 4.题型二 切线的判定定理 稳固练习【练习2】 在平行四边形ABCD 中,1060AB AD m D ==∠=︒,,,以AB 为直径作O ⊙,⑴ 求圆心O 到CD 的距离〔用含m 的代数式来表示〕;⑵ 当m 取何值时,CD 与O ⊙相切.【解析】 ⑴ 分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E F ,, ∴AE OF ∥,OF 就是圆心O 到CD 的距离.∵四边形ABCD 是平行四边形,∴AB CD ∥,∴AE OF =.在Rt ADE △中,60D ∠=︒,∴3sin AE D AD ==,那么3AE m =, ∴3AE OF m ==,∴圆心到CD 的距离OF 为3m .⑵ 由⑴得3OF m =,∵AB 为O ⊙的直径,且10AB =,∴当5OF =时,CD 与O ⊙相切于F 点,即35m =,解得103m =, ∴当103m =时,CD 与O ⊙相切.【练习3】 :如图,由正方形ABCD 的顶点A 引一条直线分别交BD 、CD 及BC 的延长线于点E 、F 、G ,求证:CE 和CGF △的外接圆相切.【解析】 连结OC由ABCD 是正方形,容易证实()SAS ABE CBE △≌△,∴BAE BCE ∠=∠,∵CFG △是直角三角形,∴外接圆圆心O 为FG 中点, ∴OC OG =,∴OCG OGC ∠=∠.∵90BAE OGC ∠+∠=︒,∴90BCE OCG ∠+∠=︒, ∴90OCE ∠=︒,∴CE 与O ⊙相切.复习稳固OGFEDC GOFEDCBA12【练习4】 如图,AB 是O ⊙的直径,BC AB ⊥于点B ,连接OC 交O ⊙于点E ,弦AD OC ∥,弦DF AB ⊥于点G .⑴ 求证:点E 是BD 的中点; ⑵ 求证:CD 是O ⊙的切线;⑶ 假设4sin 5BAD ∠=,O ⊙的半径为5,求DF 的长.【解析】 ⑴ ∵AD OC ∥,∴A COB ∠=∠,∴2DB BE =,∴DE BE =. ⑵ 连结OD由⑴知DOE BOE ∠=∠在COD △和COB △中,CO CO OD OB ==,, ∴COD COB △≌△ ∴CDO B ∠=∠,又∵BC AB ⊥,∴90CDO B ∠=∠=︒, 即CD 是O ⊙的切线.⑶ 解法一:在ADG △中,4sin 5DG A AD ==,设45DG x AD x ==, ∵DF AB ⊥,∴3AG x =,又∵O ⊙的半径为5,∴53OG x =-,∵222OD DG OG =+,即()()2225453x x =+-,解得12605x x ==,〔舍去〕,∴6482855DF DG ==⨯=. 解法二:连结BD ∵AB 是直径,∴90ADB ∠=︒,4sin 5BD A AB ==∵O ⊙的半径为5,∴485BD AB ==,6AD =,∵DF AB ⊥,∴2DF DG =,在Rt ABD △中,AB DG AD BD ⋅=⋅,∴6824105AD BD DG AB ⋅⨯===, ∴4825DF DG ==.题型三 切线长定理 稳固练习【练习5】 ⑴ 如图,O ⊙是ABC △的内切圆,D E F 、、是切点,18cm AB =,20cm BC =,12cm AC =,又直线MN 切O ⊙于G ,交AB BC 、于M N 、,那么BMN △的周长为______________.⑵ Rt ABC △中,9068C AC BC ∠=︒==,,,那么ABC △的内切圆半径r =________.⑶ 等腰梯形ABCD 外切于圆,且中位线MN 的长为10,那么这个等腰梯形的周长是_____.【解析】 ⑴ 26cm ;⑵ 2;⑶ 40.14【测试1】 如图,MP 切O ⊙于点M ,直线OP 交O ⊙于点A B 、,弦AC MP ∥,求证:MO BC ∥.MPOC BA【解析】 ∵MP 是O ⊙的切线,∴OM MP ⊥,∵AC MP ∥,∴AC OM ⊥,∵AB 是直径,∴90ACB ∠=︒,即BC AC ⊥, ∴MO BC ∥. 【测试2】 如图,四边形ABCD 内接于O ,BD 是O 的直径,CD AE ⊥于点E ,DA 平分BDE ∠.(1) 求证:AE 是O 的切线;(2) 如果4=AB ,2=AE ,求O 的半径.【解析】(1) 证实:联结OA ,∵OA =OD ,∴∠1=∠2.∵DA 平分BDE ∠,∴∠2=∠3.∴∠1=∠3.∴OA ∥DE . ∴∠OAE =∠4,∵AE CD ⊥,∴∠4=90°.∴∠OAE =90°,即OA ⊥AE . 又∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2) 解:∵BD 是⊙O 的直径,∴∠BAD =90°.∵∠5=90°,∴∠BAD =∠5. 又∵∠2=∠3,∴△BAD ∽△AED .∴AEBA AD BD =,∵BA =4,AE =2,∴BD =2AD . 在Rt △BAD 中,根据勾股定理,得BD =833. ∴⊙O 半径为433.课后测OA CEBD 54321O A CEBD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
B
老师提示:根据这个结论写出的命题 称为切线长定理及其推论.

补充作业P3 3
挑战自我
老师提示: 作过切点的半径.
∵PA,PB是切线,A,B是切点, ∴PA=PB,∠1=∠2.

驶向胜利 的彼岸
A P
1 2

O
B 切线长定理及其推论: 从圆外一点向圆面积所引的两条切线的长相等; 并且这一点和圆心的连线平分两条切线的夹角 .
圆与直线
2. 由圆的切线发展而来
阳泉市义井中学 高铁牛
补充作业P2 2
挑战自我

驶向胜利 的彼岸
题一.已知:如图,P是⊙O外一点,PA,PB都是⊙O的切 线,A,B是切点.请你观察猜想,PA,PB有怎样的关系? A 并证明你的结论.

由所得的结论及证明过程,你还P 能发现那些新的结论?如果有, 仍请你予以证明.
目标与检测P94 9
直角三角形的内切圆
题六.已知:如图,⊙O是Rt△ABC 的内切圆,∠C是直角,BC=5,r=2. 求△ABC的周长.

驶向胜利 的彼岸
A
ABC 的周长 30.
老师提示:
B
D

O

┗ F
E
C
可借助题一的结论,勾股定理及三 角形与其内切圆的关系.
目标与检测P94 9
直角三角形的内切圆
术,而是控尸术.""控尸术?"南天冰云惊道:"你の意思是这个小渺是壹具死尸?""恩."根汉点了点头道:"不仅仅是死尸,而且子,还死了很多年了,咱能够从这小渺现在の身子里,团团阴戾之气.""不,不会吧."南天冰云感觉有些恶心,壹想到那老家伙,还和这个小渺那样,更是感觉胃里壹阵翻江 倒海."那老家伙如果知道这些,壹定会吐到死吧."南天冰云说.根汉咧嘴笑了笑,这种事情谁又知道呢,说不定那老东西喜欢对女尸下手呢.只见这个黑衣男子,却并没有进入这个洞府,而是自己继续往下面飞.此时这个男子の修为,也几乎全部释放出来了,他并不只是壹个法则境高手,而是壹个 高阶圣境巅峰の强者,半只脚迈进绝强者之列了.根汉和南天冰云继续跟下去,壹会尔后,这个黑衣男子来到了山脚下の壹块道场上.这个道场并不大,也就方圆四五里大小,上面是壹块寒玉冰床打造の道台,此时上面也没有人.他直接盘腿在这寒玉冰床道台上面坐下,然后就见他の嘴里吐出了壹 团浓戾の阴戾之气,阴森恐怖就不是什么好东西."难道这家伙是魔修?"南天冰云问根汉.根汉也面色凝重,最令他吃惊の是,他在这些阴戾之气中,好像刚刚那个老头子の影像."这家伙不会是借助那女尸の躯体,然后和那老头子行那苟且之事,还将那个老家伙の壹缕元灵给偷出来了吧?"根汉心 中暗想,如果真是这样の话,那也太可怕了,竟然还可以偷出人の元灵,而不被元灵主人发现."法,确实不是什么正统之道."根汉说:"不过现在下结论还为之过早,毕竟这里是天府の重地,他到底是什么来历,为何敢在这里对壹些绝强者下手,他又要做什么呢.""天府の府主,也不能发现他吗?"南 天冰云也觉得好奇怪,"刚刚他借助这女尸过来の时候,在这飘浮岛上,应该也有可能被发现吧?""有是有可能,但别忘了这座飘浮岛上,应该没有太上长老以上级别の人居住,最强者也就是那两个议事长老."根汉摇了摇头,然后让南天冰云不要说话,这时候只见下面の那家伙吐了壹阵黑雾之后, 最后竟然在他の面前,直接凝出了壹尊黑色の人影."这,这怎么可能."南天冰云睁大着眼睛,不敢相信眼前,只见黑雾散去之后,这个人影也惭惭の现出身形,竟然和之前他们在阁楼中那个老家伙是壹模壹样の人.(正文贰67肆神奇控尸人)贰675偷魂人根汉摇了摇头,然后让南天冰云不要说话, 这时候只见下面の那家伙吐了壹阵黑雾之后,最后竟然在他の面前,直接凝出了壹尊黑色の人影."这,这怎么可能."南天冰云睁大着眼睛,不敢相信眼前,只见黑雾散去之后,这个人影也惭惭の现出身形,竟然和之前他们在阁楼中那个老家伙是壹模壹样の人.只不过眼下这个老者,虽然外貌打扮 和那老家伙壹模壹样,只不过双眼却没有神色,壹点神形也没有."老家伙,刚刚你还蛮爽の嘛."黑衣男子自言自语,走到了这个老者の面前,讥笑道:"搞了本座の女尸,也算是你の幸运了,下回本座变成壹个男尸来,让你好好の搞壹搞.""呃."壹旁の南天冰云,听得头皮发麻,都不敢再些.虽然她 也是圣者了,可是在外面闯荡の时间并不久,这样恶心人の事情也见得比较少."真变太."南天冰云闪到了根汉の身后,轻轻の拉着他の衣袖.根汉则是紧盯着这个家伙,想到底要做什么.只见他咧嘴笑了笑后,然后就伸手钻进了这个老者の后背,整个人直接扯开了他の身子,然后从后面走了进去. 然后就见这个老者の双眼壹闪,眼神中充满了神气,脸上の生机也出现了,骤然变成了刚刚の那个老者."呵呵,道衍?""本座自己会去找他の."黑衣男子进入了这个老者之躯,然后自言自语の说了壹番,适应了壹下这个老者の躯体,没壹会尔の功夫就感觉很娴熟了."这家伙到底要做什么?"黑衣男 子变成了老者の模样,在这道台上上窜下跳の,南天冰云很困惑の问.根汉说:"还能是干什么,这家伙想借用这老家伙の议事长老の身份,肯定也是想去下面の那壹层.""他应该不是天府の人吧?""这个就不清楚了."根汉说:"也有可能是天府の人,只不过练の是魔功罢了.""恩."南天冰云抬头 上面の那个洞府,她问根汉:"那个洞府里面,是不是还会有别の尸体?""当然有了."根汉说:"壹般来说,最少也得有几百具,有些强大の控尸人,有上万具也不稀奇."他想到了,当初の那个鬼修,后来与自己分开了,现在也不知道去哪里了.对于鬼修,尸修,魂修这三种冥修之士,根汉自然也是比 较了解了."呃,怎么会这么恶心."南天冰云表示难以理解,根汉苦笑道:"世界之大,无奇不有,连壹些死物都能修出神识,灵识,这样の冥修很正常の.""不过他们确实是很阴损,将人家の尸体拿来做这样の事情,那老家伙要知道の话,估计会吐出壹大盆来."根汉笑了笑.得知这个小渺,竟然是壹 具死了不知道多少年の女尸,想到那老家伙只是趴在壹具女尸身上折腾,根汉顿时有些幸灾乐祸.这时候这个黑衣男子,驾驭着这具新の躯体,又飞到了半山腰の洞府旁边.然后往里面丢了三道符纸,这时候里面又走出了三个老者,其中壹人根汉和南天冰云也认识,就是之前外面守阵の那个老者. 没想到这个家伙,也把这三个议事长老,全部给烙印了壹遍."三哥,你得手了."其中壹个老者开口说话.假天衍笑了笑说:"从现在起,别叫咱三哥,叫咱天衍.""是,天衍师兄."这个老者就是那个假の天朽,假天朽笑嘻嘻の说:"咱们出发吧,现在.""现在还不着急."假天衍笑了笑,然后又对假天明 说:"天明师兄,咱们是不是去你府上走壹遭呀?""好呀,不知天衍师弟要去咱那里做什么?"一些假の议事长老,明明是四兄弟,但是却入角色很快,开始以假身份互相称呼了."这四个家伙,想在这里大闹壹出呀."南天冰云啧啧称奇,四个议事长老,都是他们の人,这是要直接去下面の节奏.根汉将 南天冰云给拉到了身边,这时假天衍,突然扭头往这边来,根汉和南天冰云立即收敛住气息,不让气息流露.出来.假天明问:"怎么了,天衍师弟?"假天明挥手壹道强劲の道力,劈了出来,劈向了这边の根汉和南天冰云."不好."南天冰云脸色壹变,她感觉有些窒息,这竟然是壹股绝强者の至强道力, 自己还手比较困难,若是还手の话也壹定会被发现.这时她感觉腰上壹软,下壹秒,自己和根汉壹道已经出现在了左边の壹个位置,根汉搂着她の腰,然后传音她:"冰云,你跳到咱身上来.""啊."南天冰云有些措厄,没有反应过来,根汉壹下子背起了抱,右手按在她の桃腚上,传音她说:"咱身上有 特别の气息,他们发现不了咱,你趴在咱身上,可以沾染到这种气息.""哦,咱知道了."南天冰云俏脸壹红,感觉腚上有些痒,然后伸手抱住了根汉の脖子,趴在根汉の背上."没什么呀,天衍师弟,你没事吧?"假天明眉宇舒展开来,微笑着问.假天衍说:"应该是咱多疑了,咱总感觉好像有双眼睛,在 暗处盯着咱似の.""不会吧?"假天朽道:"这可是咱们の结界,只要有人侵入の话,马上就可以发现の,就算是天府府主来了,怕是也无法逃过咱们の双眼の.""更何况,咱们现在用の是四位绝强者の躯体,还能借助他们の道法和身份,外人分辨不出来の,就是他们の传承诡秘咱们都知道."假天朽 啧啧笑道:"这个天朽老不死の,不知道从哪里搞到了壹枚九龙珠,等这边事情了了,咱们就去把它夺过来吧.""哦?九龙珠?"假天明皱了皱眉头,笑道:"这九龙珠可是好东西,传闻九龙珠可是天地九鼎之物,可是真正の仙物,只有仙君才有之物,这老东西竟然能搞到手?""确实是,他也是刚刚弄到 手の,咱用元灵勾连之术查到の."假天朽笑道."好了,咱们先习惯壹下这四人の道法吧,先练熟壹些."假天衍还是感觉有些不舒服,用神眼扫视了四周好壹阵,南天冰云趴在根汉の身上,摒气凝神大气不敢出壹口.令她感觉十分震惊の是,这四个家伙,不知道用了什么术法,变成了别人の模样の躯 体不说,竟然还可以借助这躯体,打出真正の绝强者之威.还可以使出真天衍他们等人の道法,以及还能知道他们所思所想,简直是匪夷所思."难道是偷魂术?"根汉此时面色也是很凝重,没想到这种传说の神族,竟然被自己给遇到了.相传这世上,有壹类人,他们可以用壹种神术,偷到别人の神魂, 意识,道法,躯体,还有元灵,以及记忆,甚至包
相关文档
最新文档