Diagnostics in pulmonary hypertension
脑利钠肽(BNP)在心衰的临床诊断和治疗中的应用
脑利钠肽(BNP)在心衰的临床诊断和治疗中的应用郭润财,王警,李靖宇,唐涛,刘擘摘要:脑利钠肽(BNP)是一种主要由心室,少量由心房分泌的多肽。
在充血性心力衰竭中伴随心室肌细胞牵拉或者室壁压力的增高,患者BNP含量升高。
BNP的释放可以通过扩张血管、利尿和利钠作用平衡HF中交感神经兴奋引起的效应。
随着技术的发展,BNP其它方面的作用也逐渐被人们所认识。
最近,BNP 也逐渐在HF临床诊断和治疗中得到应用。
现就以上所提到的做一综述。
关键词:脑利钠肽;心力衰竭Abstract: Brain natriuretic peptide (BNP) is a peptide produced predominantly by the cardiac ventricles and in lesser quantities by the atria. Brain natriuretic peptide levels rise in response to stretch of ventricular myocytes or increases in wall tension as occurs in congestive heart failure (CHF). Release of BNP is beneficial as it causes vasodilation, diuresis, and natriuresis, thereby counterbalancing the effects of sympathetic activation that occurs in heart failure. Along with technological development,Other aspects of the role of BNP have been gradually known. Recent progress has been made in the use of BNP in the diagnose and treatment of heart failure. This article reviews the afore-mentioned issues.Key words: brain natriuretic peptide; heart failure一、脑利钠肽概述1981年,de Bold和他的同事发表了一篇划时代的论文,揭示了从鼠心房提取物中包含一种利尿、利钠因子,由此也建立了心脏和肾脏之间的联系。
2021医学考研复试:呼吸内科[SC长难句翻译文]
SCI长难句呼吸内科第一章—社区获得性肺炎Community-acquired pneumonia is still a significant cause of morbidity and mortality and is often misdiagnosed and inappropriately treated.Although it can be caused by a wide variety of micro-organisms, the pneumococcus,atypicals,Staphylococcus aureus and certain Gram-negative rods are the usual pathogens encountered.Antimicrobial therapy should be started as soon as possible particularly in those requiring admission to hospita.社区获得性肺炎仍然具有很高的发病率和死亡率,且经常被误诊和不恰当地治疗。
虽然它可以由多种微生物引起,但涉及的常见病原体有肺炎球菌、非典型球菌、金黄色葡萄球菌和某些革兰氏阴性杆菌。
特别是(对于)那些需要住院的患者,抗菌治疗应尽快开始。
知识点总结:1pneum(o)-前缀,肺2pneumonia n.肺炎3pneumococcus n.肺炎球菌4atypical adj.非典型的5Staphylococcus aureus n.金黄色葡萄球菌6Gram-negative rods n.革兰氏阴性杆菌7pathogen n.病原体8antimicrobial adj.抗菌的Mandell munity-acquired pneumonia:An overview.Postgrad Med.2015 Aug;127(6):607-15.SCI长难句呼吸内科第二章—肺脓肿A lung abscess is an infectious pulmonary disease characterised by the presence of a pus-filled cavity within the lung parenchyma.The content of an abscess often drains into the airways spontaneously,leading to an air-fluid level visible on chest X-rays and CT scans. Primary lung abscesses occur in patients who are prone to aspiration or in otherwise healthy individuals;secondary lung abscesses typically develop in association with a stenosing lung neoplasm or a systemic disease that compromises immune defences,such as AIDS,or after organ transplantation.肺脓肿是一种感染性肺部疾病,其特征是肺实质内有充满脓的空洞。
全身型幼年特发性关节炎 SJIA
MAS命名的由来
• 嗜血细胞综合征分类 – 原发性(家族性嗜血细胞综合征) – 继发性
➢ 感染继发的嗜血细胞综合征 ➢ 肿瘤继发的嗜血细胞综合征 ➢ 免疫相关的嗜血细胞综合征-巨噬细胞活化综合征
• 最早1985年在儿童类风湿性关节炎全身型病人当中得名 • 儿童风湿免疫性疾病继发MAS最多见于So-JIA,其次为SLE、川崎病等
• 病程早期即可出现高甘油三酯血症,此外可有低密度脂蛋白增高和高密度 脂蛋白减低
MAS攻击的靶器官孰轻孰重
• MAS的血液系统受累 • MAS的神经系统受累 • MAS的肝脾受累 • MAS的肺部受累:既往鲜少关注
关注SJIA及继发MAS的肺部病变
SJIA及MAS的肺部病变
• 日本木村等人报道25例合并肺部病变的SJIA • 合并肺部病变死亡率68%,且在肺部病变发生1年内 • 临床特征:肺动脉高压,间质性肺病、肺泡蛋白沉积症、类脂性肺炎 • 与无肺部受累者相比,MAS发生率80%,合并肝脾大淋巴结大及杵状指多见 • 接受了更广泛的治疗,包括80%以上的生物制剂治疗 • 92%患者发现肺部受累时伴有活动性全身型疾病 • SJIA-LD被认为是病情“重中之重”
SJIA及MAS的肺部病变
• 2010-2019年,共18例sJIA-LD患者 • 影像学表现:弥漫性毛玻璃样变、胸膜下小叶间隔增厚和淋巴结病变。 • 病理表现包括淋巴浆细胞浸润不全,肺泡蛋白沉积(PAP)和内源性类脂性肺炎(ELP)的混
合特征。 • 与无LD的sJIA患者相比,sJIA-LD患儿发病早,易发生MAS,血清IL-18水平更高,对生物制
MAS攻击的靶器官-中枢神经系统
• 临床:主要表现为抽搐、易激惹、嗜睡、昏迷、活动障碍、颅神经损伤 及智力障碍等
神经科论文神经内科医学论文神经内科论文:脑缺血恢复期骨髓间充质干细胞移植对神经功能和促血管生成素-1、
神经科论文神经内科医学论文神经内科论文:脑缺血恢复期骨髓间充质干细胞移植对神经功能和促血管生成素-1、2及其受体表达的影响【摘要】目的探讨脑缺血恢复期骨髓间充质干细胞(BMSCs)移植对神经功能和促血管生成素(Ang)-1、Ang-2及酪氨酸激酶受体-2(Tie-2)表达的影响。
方法42只SD大鼠随机分为脑缺血对照组(对照组,12只)、BMSC移植组(15只)及假手术组(15只),各组又分为缺血后28 d、35 d、42 d 3个亚组。
用线栓法制作脑缺血大鼠模型,用改良黏附物移除试验(MST)评估大鼠神经功能。
在脑缺血后21 d,给BMSCs 移植组大鼠尾静脉注射BMSCs,对照组大鼠注射等体积PBS。
在脑缺血后28 d、35 d、42 d(移植后7 d、14 d、21 d),用逆转录-聚合酶链反应(RT-PCR)及Western Blotting法检测大鼠缺血周围脑组织Ang-1、Ang-2及Tie-2 mRNA和蛋白的水平。
结果BMSCs移植组大鼠各时间点亚组的MST评分均显著高于对照组(均P<0.05);BM-SCs移植组及对照组各时间点亚组脑组织的Ang-1、Tie-2 mRNA和蛋白水平明显高于假手术组(P<0.05~0.01),脑缺血后28 d、35 d,BMSCs 移植组脑组织Ang-1、Tie-2 mRNA及蛋白水平均明显高于对照组(均P<0.01),而脑缺血后42 d两组之间的差异无统计学意义;3组各时间点亚组脑组织Ang-2 mRNA及蛋白水平的差异均无统计学意义。
结论脑缺血恢复期BMSCs移植能改善神经功能,并使缺血周围脑组织Ang-1、Tie-2的表达水平明显增高,而对Ang-2表达无明显影响。
【关键词】骨髓间充质干细胞;脑缺血;促血管生成素-1;促血管生成素-2;酪氨酸激酶受体-2促血管生成素(Ang)-1、Ang-2及酪氨酸激酶受体-2(Tie-2)是介导脑缺血后血管源性水肿、血管生成和血管成熟稳定的关键因子。
特发性肺动脉高压PPT优选课件
2020/10/18
yexi
4
2020/10/18
yexi
5
WTO diagnostic classification of pulmonary hypertension (1998)
1 Pulmonary arterial hypertension 1.1 Primary pulmonary hypertension 1.2 Related to : (a) Collagen vascular disease (b) Congenital systemic-to-pulmonary shunts …………
yexi
7
2020/10/18
yexi
8
病理特征
◆肺小动脉平滑肌层增厚 ◆内膜增生和纤维化 ◆原位血栓形成 ◆丛样病变 ◆右心室肥厚
2020/10/18
yexi
9
2020/10/18
管原 重发 建性 图肺 像动
脉 高 压 的
MR
血
yexi
10
发 病 机 理
2020/10/18
yexi
11
原发性肺动脉高压
(Hypoxic pulmonary hypertension HPH)
发病机理
◆遗传因素(血管对低氧的敏感度) ★人类: 藏族人肺高压患病率低于秘鲁安迪斯山脉的居 民(同等海拔高度),也比当地汉人低。 ★大鼠: Wistar血管对低氧的敏感度大于 Fischer 344。
2020/10/18
yexi
信 号 转 导 途 径
2020/10/18
yexi
13
◆ 60%的家族性和 26% 的散发性 PPH 与 BMPR-II基因变异有关
循环系统诊断常见症征英文版
Atrial myxoma
Subvalvular ring Pulmonary vein stenosis
Thrombus Neoplasm
Infective vegetation Prosthetic valve disfunction
Mitral stenosis
Cause of MS requiring intervention(n=1050)
dyspnea, orthopnea Palpitation due to arhythmia Miscellaneous
Hemoptysis, blood-tinge sputum, pink frothy sputum, chest pain, mitral facies, Cough, hoarseness, dysphagia
Occasionally diastolic rumbling can be heard at severe MR because of relative MS
No murmur can be heard at mild even moderate MR sometime
Aortic stenosis
Auscultation(2)
Music-like murmur can be heard at severe MR, at the valve prolapse
Midsystolic click with or without murmur presents at the valve prolapse
radiating to the axilla even the back, the base of the heart . Murmur at late systolic can be heard at the valve prolapse or at mild MR
2023急性肺栓塞诊治指南解读
2023急性肺栓塞诊治指南解读1.急性肺栓塞是一种严重的心血管急症,常常威胁患者的生命。
Acute pulmonary embolism is a serious cardiovascular emergency that often threatens the patient's life.2.诊断急性肺栓塞的关键是通过临床症状和影像学检查进行综合判断。
The key to diagnosing acute pulmonary embolism is to make a comprehensive judgment through clinical symptoms and imaging tests.3.基于患者症状和病史,医生可能会进行D-二聚体检测和肺动脉CT血管造影等检查以协助诊断。
Based on the patient's symptoms and medical history, the doctor may conduct tests such as D-dimer testing and pulmonary CTA to assist in the diagnosis.4.急性肺栓塞的治疗主要包括抗凝和溶栓两种方法。
The treatment of acute pulmonary embolism mainly includes anticoagulation and thrombolysis.5.对于患者症状较轻的情况,抗凝治疗可能已足够。
For patients with mild symptoms, anticoagulant therapymay be sufficient.6.而对于症状严重或血压不稳定的患者,溶栓治疗可能是必要的。
For patients with severe symptoms or unstable blood pressure, thrombolytic therapy may be necessary.7.对于高危患者,可能需要考虑机械性血栓切除或肺动脉滤器植入等手术治疗。
改良柯氏音法在心房颤动合并快速心室率患者血压测量中的稳定性研究
改良柯氏音法在心房颤动合并快速心室率患者血压测量中的稳定性研究罗潇;徐劲松【摘要】目的探讨改良柯氏音法在心房颤动合并快速心室率患者血压测量中的稳定性,以期寻找一种能够准确测量此类患者血压的方法.方法选取2010年11月-2016年11月于南昌大学第二附属医院住院的心房颤动合并快速心室率患者113例和单纯窦性心动过速患者100例作为研究对象,比较改良柯氏音法在测量心房颤动合并快速心室率患者与单纯窦性心动过速患者血压时的稳定率,并比较此方法与血管内测压法测量心房颤动合并快速心室率患者血压时的稳定率.结果改良柯氏音法在心房颤动合并快速心室率组和单纯窦性心动过速组血压测量中的稳定率分别为77.0%(87/113)和66.0%(66/100),差异无统计学意义(P>0.05);血管内测压法在测量心房颤动合并快速心室率组血压时的稳定率为67.3%(76/113),与改良柯氏音法比较差异亦无统计学意义(P>0.05).结论改良柯氏音法在心房颤动合并快速心室率患者血压测量中具有较好的稳定性.%Objective To evaluate the stability of modified Korotkoff sound method on blood pressure measurement in atrial fibrillation patients with rapid ventricular rate,aiming to find whether it is a method that can measure blood pressure accurately for such patients. Methods We enrolled 113 cases of atrial fibrillation with rapid ventricular rate (AFRVR group) and 100 cases of sinus tachycardia (control group)who received treatment in The Second Affiliated Hospital from November 2010 to November 2016. Comparisons were made between the stabilities of modified Korotkoff sound method in measuring the blood pressure of AFRVR group and control group,and between the stabilities ofmodified Korotkoff sound method and intravascular pressure measurement for measuring the blood pressure of AFRVR group. Results The modified Korotkoff sound method did not demonstrate significant changes in its stability when it was applied to measure the blood pressure of the AFRVR group and control group 〔77. 0% (87 / 113)vs 66. 0% (66 / 100)〕(P > 0. 05). The modified Korotkoff sound method had similar stability with intravascular pressure measurement for measuring the blood pressure of AFRVR group 〔77. 0% (87 / 113) vs 67. 3% (76/ 113)〕(P > 0.05). Conclusion The stability of modified Korotkoff sound method is reliable in measuring the blood pressure of atrial fibrillation patients with rapid ventricular rate.【期刊名称】《中国全科医学》【年(卷),期】2017(020)034【总页数】3页(P4275-4277)【关键词】心房颤动;快速心室率;血压测定;改良柯氏音法【作者】罗潇;徐劲松【作者单位】330006 江西省南昌市,南昌大学第二附属医院;330006 江西省南昌市,南昌大学第二附属医院【正文语种】中文【中图分类】R541330006江西省南昌市,南昌大学第二附属医院*通信作者:罗潇,住院医师;E-mail:****************心房颤动是一种以快速、无序的心房电活动为特征的室上性心律失常,是临床上最为常见的一种心律失常[1]。
慢性心衰患者血清BNP及心梗三项变化的关系
临床医学研究·30·慢性心衰患者血清BNP及心梗三项变化的关系花本林【中图分类号】 R541.4 【文献标识码】 A 【文章编号】 1671-8054(2020)06-0030-02【摘 要】 目的:探讨慢性心衰患者血清脑钠肽(BNP)及心梗三项(cTnI及心肌酶谱)水平变化的关系。
方法:收集医院急诊科治疗的46例慢性心力衰竭患者作为观察组,选择同期来医院进行健康体检的46例健康人群作为对照组,分别对两组患者进行血清BNP和心肌肌钙蛋白(cTnI)、心肌酶谱水平检测,对比两组患者检测指标水平及与心功能的关系。
结果:观察组患者的血清BNP、cTnI、CK、CK-MB水平均高于对照组(P<0.05);观察组不同心功能分型患者的BNP、cTnI、CK、CK-MB水平均高于对照组,Ⅳ级各项检测指标均高于Ⅲ级、Ⅱ级,Ⅲ级各项检测指标均高于Ⅱ级(P<0.05)。
结论:慢性心力衰竭患者血清BNP、cTnI及心肌酶谱水平均高于健康人群,检测指标水平的升高会加剧心功能损伤程度,三个指标均可作为检测CHF患者病情的重要指标,为临床诊疗提供依据。
【关键词】 慢性心力衰竭 血清BNP cTnI 心肌酶谱 心功能近年来,慢性心力衰竭(CHF)的发病年龄中位数趋于中老年,CHF在心脑血管疾病中发病率也逐年增高,主要分为收缩功能不全或舒张功能不全引起的心力衰竭。
临床正确的诊断和及时的治疗可以降低患者的病死率,血清脑钠肽(BNP)是重要的心肌应激标志物[1],心肌肌钙蛋白(cTnI)水平的高低可反映心功能障碍程度,cTnI阳性率越高,心功能障碍越严重。
心肌酶谱水平的变化可反映心脏功能的变化。
因此,本文以病例随机对照展开,探讨CHF患者血清BNP、cTnI及心肌酶谱水平变化与心功能的关系,报道如下:1 资料与方法1.1 一般资料 收集本医院急诊科2017年6月-2018年12月治疗的慢性心力衰竭患者46例作为观察组,选择同一时间段到医院行健康查体的46例健康人作对照组。
造血干细胞移植治疗自身免疫病
造血干细胞移植治疗自身免疫病孙凌云欧阳健张杏书自身免疫病是机体免疫系统平衡失调后对自身抗原发生免疫反应造成的组织损伤。
不论对自身免疫病(AD)的发病机制和治疗的研究进展如何,迄今为止,对它们发病的确切机制仍了解不多,一些病情严重的患者仍得不到令人满意的疗效。
无容置疑,糖皮质激素和细胞毒药物是治疗绝大部分AD的主要武器,但对部分疾病如重症红斑狼疮(SLE)、系统硬化症(SSc)、难治性类风湿关节炎(RA)等治疗依然束手无策。
免疫系统中所有的细胞都来源于造血干细胞,AD患者免疫细胞异常是由于干细胞受损还是子代细胞受损造成的仍不清楚。
动物实验证实部分病变用健康同种异体或自体造血干细胞移植(HSCT)可治愈。
近年来HSCT治疗AD愈演愈烈,并初步收到了一定的疗效,成为探讨治疗多种风湿病的新方法。
1 HSCT的分类和预处理根据造血干细胞来源不同的HSCT可分为:①骨髓干细胞移植(BMT);②外周血干细胞移植(PBSCT);③脐带血干细胞移植;④胎肝干细胞移植。
BMT和PBSCT是常用的方法,以供者来源不同又可分为同种异体(allogeneic)和自体(autologous)移植,同种异体移植又分为同基因(identical twin)和异基因(sibling)HSCT。
同基因移植最理想,但来源毕竟太少;异基因移植病死率较高(15%~35%),但只要供者和受者HLA抗原相容都可移植。
由于随年龄的增加,移植相关病变的病死率也增高,因此,大于55岁的患者行同种异体移植时要慎重〔1〕。
自体移植因相对安全,病死率也低(3%~5%),且年龄放宽到65岁而广为应用。
理论上BMT和PBSCT都能选用。
PBSCT能使患者较快地康复,在自体移植中较BMT优先采用,但外周血中混含成熟自身反应的T细胞较骨髓多,这些T 细胞介导了异常的免疫反应,在T细胞去除不充分时,会引起PBSCT的失败和疾病的复发。
HSCT的主要步骤如下:①用环磷酰胺和G-CSF动员HSC;②用细胞分离仪采集HSC;③HSC冻存;④HSC复苏回输。
大鼠低氧性肺血管重塑时硫化氢对Ⅰ、Ⅲ型胶原蛋白在肺血管壁异常堆积的调节作用
大鼠低氧性肺血管重塑时硫化氢对Ⅰ、Ⅲ型胶原蛋白在肺血管壁异常堆积的调节作用作者:金微瑛童夏生阮正英来源:《中国现代医生》2016年第36期[摘要] 目的探讨大鼠低氧性肺血管重塑时硫化氢对Ⅰ、Ⅲ型胶原蛋白在肺血管壁异常堆积的调节作用。
方法购买首都医科大学实验动物中心提供的38只健康雄性Wistar大鼠,依据随机数字表法将大鼠分为低氧组(n=14)、低氧+硫氢化钠(NaHS)组(n=12)、对照组(n=12),建立大鼠HPH模型,监测其血流动力学,测定其血浆H2S含量,检测其肺组织中Ⅰ、Ⅲ型胶原蛋白,最后进行结果判定与半定量分析、统计学分析。
结果低氧组大鼠的mPAP、RV/(LV+SP)均显著高于低氧+NaHS组、对照组(P[关键词] 大鼠低氧性肺血管重塑;硫化氢;Ⅰ、Ⅲ型胶原蛋白;肺血管壁异常堆积;调节作用[中图分类号] R543.2 [文献标识码] A [文章编号] 1673-9701(2016)36-0037-04[Abstract] Objective To investigate the regulatory effects of hydrogen sulfide on abnormal accumulation of typeⅠand Ⅲ collagen in pulmonary vascular wall of rats with hypoxic pulmonary vascular remodeling. Methods A total of 38 cases of healthy male Wistar rats purchased from the experimental animal center of Capital Medical University, these rats were divided into hypoxia group (n=14), hypoxia+sodium hydrosulfide (NaHS) group (n=12) and control group(n=12) according to the random number table method, rat model of HPH was established,hemodynamics was monitored, contents of H2S in plasma were determined, typeⅠand Ⅲcollagen in the lung tissues were detected, finally the results were determined and semi quantitative analyzed and statistically analyzed. Results The mPAP level, RV/(LV+SP) of the hypoxia group were significantly higher(P[Key words] Hypoxic pulmonary vascular remodeling of rats; Hydrogen sulfide; Collagen typeⅠand Ⅲ; Abnormal accumulation of pulmonary vascular wall; Regulation低氧性肺动脉高压(HPH)的病理基础主要为肺血管重塑,而在低氧性肺血管重塑中,胶原重塑占有极为重要的地位,该领域的重要课题就是研究其调节机制[1]。
运动型肺动脉高压诊断标准
运动型肺动脉高压诊断标准英文回答:Diagnosis of exercise-induced pulmonary hypertension (EIPH) requires a comprehensive evaluation of various clinical and diagnostic parameters. The criteria for diagnosing EIPH include a combination of symptoms, physical examination findings, and diagnostic test results.Symptoms of EIPH may include shortness of breath, fatigue, chest pain, and exercise intolerance. These symptoms may be similar to those of other cardiovascular or respiratory conditions, so it is important to consider other possible causes before making a definitive diagnosis.During physical examination, the healthcare provider may listen to the heart and lungs using a stethoscope. Abnormal heart sounds, such as a loud pulmonary component of the second heart sound (P2), may indicate the presence of EIPH. Other physical findings, such as a systolic murmuror signs of right heart failure, may also be present.Diagnostic tests play a crucial role in confirming the diagnosis of EIPH. Echocardiography is a non-invasive imaging technique that allows visualization of the heart and its structures. In patients with EIPH, echocardiography may reveal an enlarged right ventricle, increased pulmonary artery pressure, and tricuspid regurgitation.Exercise testing is another important diagnostic tool for EIPH. During exercise testing, the patient is asked to perform physical activities while their heart rate, blood pressure, and oxygen saturation levels are monitored. In patients with EIPH, exercise testing may show an abnormally high increase in pulmonary artery pressure during exercise.In addition to clinical and diagnostic criteria, it is also important to rule out other potential causes of pulmonary hypertension, such as chronic thromboembolic pulmonary hypertension or idiopathic pulmonary arterial hypertension. This may require further diagnostic tests, such as ventilation-perfusion scanning or right heartcatheterization.Overall, the diagnosis of EIPH requires a comprehensive evaluation of symptoms, physical examination findings, and diagnostic test results. It is important to consider other possible causes of symptoms and to rule out other forms of pulmonary hypertension before making a definitive diagnosis.中文回答:运动型肺动脉高压(EIPH)的诊断需要综合评估各种临床和诊断参数。
高龄二叶式与三叶式主动脉瓣狭窄病人的远期预后比较
高龄二叶式与三叶式主动脉瓣狭窄病人的远期预后比较李秋忆1,2,李喆3,于子凯2,周政3,牛冠男3,刘庆荣3,吴永健3,陈可冀2摘要目的:比较不同策略治疗高龄二叶式与三叶式主动脉瓣狭窄病人的远期预后㊂方法:回顾性收集2008年1月1日 2015年1月1日于中国医学科学院阜外医院住院,年龄ȡ75岁诊断为非风湿性主动脉瓣狭窄病变,且超声心动图证实狭窄程度为重度病人的临床资料㊂根据主动脉CT血管成像结果将纳入病人分为二叶式主动脉瓣(BAV)组和三叶式主动脉瓣(TAV)组,随访至2021年1月1日,观察两组病人全因死亡终点㊂结果:纳入207例高龄重度主动脉瓣狭窄病人,其中,BAV组34例,TAV组173例㊂BAV组左室舒张末期内径㊁升主动脉内径㊁肺动脉高压发生率㊁跨瓣平均压差均高于T A V组㊂中位随访67个月,总死亡率为44.0%㊂其中,BA V 组总死亡率为29.4%,TAV组总死亡率为46.8%,在BAV及TAV两组中,药物治疗组死亡率均明显高于经导管主动脉瓣置换术(TAVR)组及外科主动脉瓣置换手术(SAVR)组(P<0.01),BAV组与TAV组总死亡率差异无统计学意义(P=0.06)㊂在接受TAVR 治疗的病人中,BAV组与TAV组全因死亡率比较差异无统计学意义(P=0.38)㊂结论:与药物治疗相比,无论是BAV或TAV的高龄重度主动脉瓣狭窄病人实施换瓣手术均能明显改善远期预后,接受TAVR治疗的高龄BAV与TAV病人的远期预后相似㊂研究结论尚需大样本临床研究长期随访进一步验证㊂关键词主动脉瓣狭窄;二叶式主动脉瓣;经导管主动脉瓣置换术;高龄;远期预后d o i:10.12102/j.i s s n.1672-1349.2023.06.003Long-term Prognosis of Elderly Patients with Bicuspid and Tricuspid Aortic Valve StenosisLI Qiuyi,LI Zhe,YU Zikai,ZHOU Zheng,NIU Guannan,LIU Qingrong,WU Yongjian,CHEN KejiGraduate School of Beijing University of Chinese Medicine,Beijing100105,China;Xiyuan Hospital,China Academy of Chinese Medical Sciences,Beijing100091,ChinaCorresponding Author WU Yongjian,E-mail:***********************;CHEN Keji,E-mail:***************** Abstract Objective:To compare the long-term outcomes of different strategies for elderly patients with bicuspid and tricuspid aortic valve stenosis(AS).Methods:Clinical data of hospitalized patients aged more than75years old who were diagnosed as severe non-rheumatic aortic stenosis were collected continuously from January1,2008to January1,2015.Patients were divided into bicuspid aortic valve(BAV)group and tricuspid aortic valve(TAV)group according to the aortic CT angiography,and followed up until January1, 2021to observe the all-cause death of patients in both groups.Results:Two hundred and seven elderly patients with severe AS were enrolled,with34patients in BAV group and173patients in TAV group.Left ventricular end-diastolic diameter,inner diameter of ascending aorta,incidence of pulmonary hypertension,and the mean differential pressure across valves were higher in BAV group than those in TAV group.The median follow-up time was67months,and the overall mortality was44.0%.The total mortality was29.4%in BAV group and46.8%in TAV group.In both BAV and TAV groups,the mortality of drug treatment group was significantly higher than that of TAVR group and SAVR group(P<0.01),there was no significant difference in the total mortality between BA V group and T A V group (P=0.06).Among patients treated with TAVR,there was no significant difference in all-cause mortality between BAV group and TAV group(P=0.38).Conclusions:Compared with drug therapy,valve replacement can significantly improve the long-term prognosis of elderly patients with severe AS,and the long-term prognosis of elderly patients with BAV treated with TAVR is similar to that of TAV patients.The conclusions of this study need to be further verified by long-term follow-up of large sample clinical studies. Keywords aortic valve stenosis;bicuspid aortic valve;transcatheter aortic valve replacement;elderly;long-term prognosis随着人口老龄化的来临,老年瓣膜病的发病率明显增加,退行性变已成为我国瓣膜性心脏病的主要病因之一[1]㊂主动脉瓣狭窄(aortic stenosis,AS)是老年基金项目首都卫生发展科研专项项目(No.首发2020-1-4031)作者单位 1.北京中医药大学研究生院(北京100105);2.中国中医科学院西苑医院(北京100091);3.中国医学科学院阜外医院(北京100037)通讯作者吴永健,E-mail:yongjianwu_nccd@;陈可冀,E-mail: *****************引用信息李秋忆,李喆,于子凯,等.高龄二叶式与三叶式主动脉瓣狭窄病人的远期预后比较[J].中西医结合心脑血管病杂志,2023,21(6): 978-983.人群常见的心脏瓣膜病,其发病率随着年龄增长逐渐增高㊂外科主动脉瓣置换手术(surgical aortic valve replacement,SAVR)是治疗主动脉瓣狭窄的主要手段㊂近年来,随着经导管主动脉瓣置换术(transcatheter aortic valve replacement,TAVR)的不断发展,TAVR已逐渐成为治疗中高危重度主动脉瓣狭窄的重要手段㊂二叶式主动脉瓣(bicuspid aortic valve,BAV)畸形是先天性瓣膜发育异常的类型之一,是指主动脉瓣的瓣叶部分融合,致主动脉瓣由两个瓣叶构成而非正常的三个瓣叶构成的瓣膜病㊂根据美国心脏协会(AHA)最新报告,BAV畸形发病率约为1.37%[2]㊂因解剖的特殊性,目前TAVR相关的大型临床研究纳入的病人均为三叶式主动脉瓣(tricuspid aortic valve,TAV)病变病人,而将合并主动脉瓣二叶式畸形的主动脉瓣狭窄病人排除在外[3]㊂相较于西方国家,我国主动脉瓣狭窄病人中BAV比例较高[4],进一步探究高龄BAV的最佳治疗策略具有重要意义㊂本研究采用回顾性研究方法,对比了高龄BAV和TAV 狭窄病人经不同治疗策略干预后的远期预后,为进一步优化高龄BAV狭窄治疗策略提供参考㊂1资料与方法1.1临床资料回顾性收集2008年1月1日 2015年1月1日于中国医学科学院阜外医院住院诊断为非风湿性主动脉瓣狭窄病变,年龄ȡ75岁且超声心动图证实狭窄程度为重度病人的临床资料㊂纳入标准:年龄ȡ75岁,超声心动图确诊的重度主动脉瓣狭窄病人[结合2017年AHA/美国心脏病学会(ACC)与欧洲心脏病学会(ESC)/欧洲心胸外科协会(EACTS)指南],具体标准如下:瓣口面积ɤ1.0cm2,或最大射流速度ȡ4m/s,或平均压力阶差ȡ40mmHg(1mmHg= 0.133kPa)㊂排除标准:超声描述㊁外科术中所见或病理诊断提示为风湿性心脏瓣膜病㊂1.2超声心动图检查及图像分析采用美国GE公司的Vivid7dimension超声诊断仪,常规经胸测量超声心动图的各项指标,包括左心室射血分数(LVEF)㊁左室舒张末期内径(LVEDD)㊁瓣环内径㊁窦部前后径㊁升主动脉内径㊁跨瓣压差㊁肺动脉高压㊁是否合并主动脉瓣关闭不全㊁合并二尖瓣疾病㊁三尖瓣疾病及程度㊂1.3临床资料收集由研究者通过住院电子病历系统收集纳入病人的临床资料,包括年龄㊁性别㊁体质指数(body mass index,BMI)㊁吸烟史㊁高血压㊁糖尿病㊁冠心病㊁外周血管病变㊁脑血管病变㊁慢性肺部疾病㊁肾功能不全㊁肿瘤㊁贫血㊁纽约心脏学会(NYHA)心功能分级㊁急性心肌梗死(acute myocardial infarction, AMI)㊁经皮冠状动脉介入治疗(percutaneous coronary intervention,PCI)或冠状动脉旁路移植术(coronary artery bypass grafting,CABG)等心脏手术史㊂检验指标:血常规㊁肾功能㊁肌酐㊁肌酐清除率(creatinine clearance rate,CCr)㊁总胆固醇㊁低密度脂蛋白(low density lipoprotein,LDL)㊁高密度脂蛋白(high density lipoprotein,HDL)㊁血钙㊁血磷㊁氨基末端B型利钠肽原(NT-proBNP)㊂心电图资料:心房颤动㊁房室传导阻滞㊁左/右束支传导阻滞㊁其他严重心律失常等㊂1.4分组及随访根据主动脉CT血管成像结果将纳入病人分为BAV组和TAV组,每组根据治疗方案不同分为药物治疗组㊁TAVR组及SAVR组㊂病人均随访至2021年1月1日,观察全因死亡终点㊂1.5统计学处理采用SPSS22.0统计学软件进行数据分析和处理,近似服从正态分布的定量资料用均数ʃ标准差(xʃs)表示,组间比较采用单因素方差分析;呈偏态分布的定量资料用中位数与四分位间距[M(QR)]表示,组间比较采用Kruskal-Wallis秩和检验;分类变量以例数㊁百分比(%)表示,采用χ2检验或Fisher精确检验㊂应用R语言软件绘制Kaplan-Meier 生存曲线,使用Log-rank检验进行组间生存率比较㊂以P<0.05为差异有统计学意义㊂2结果2.1基线资料纳入207例高龄重度主动脉瓣狭窄病人,BAV组34例,TAV组173例㊂在BAV组中,药物治疗11例,TAVR治疗9例,SAVR治疗14例,年龄为(78.0ʃ2.6)岁,BMI为(23.8ʃ2.9)kg/m2,合并冠心病或高血压的病人均占47.1%,14.7%的病人合并糖尿病,23.5%的病人合并慢性肺疾病,14.7%的病人合并脑血管病,17.6%的病人合并肾功能不全㊂BAV组中不同治疗亚组间基线资料比较结果显示,药物治疗组合并肺动脉高压(63.6%)比例较高,LVEF值[(44.1ʃ16.4)%]偏低,NYHA心功能分级Ⅳ级比例最高; TAVR组NYHA心功能分级Ⅲ级(88.9%)比例最高; SAVR组有6例(42.9%)在手术同期行CABG术,其他基线资料见表1㊂在TAV组中,药物治疗80例, T A VR治疗46例,SA VR治疗47例,年龄为(79.0ʃ3.2)岁, BMI为(23.6ʃ3.8)kg/m2,49.4%的病人合并冠心病, 65.9%的病人合并高血压,21.4%的病人合并糖尿病, 17.9%的病人合并慢性肺疾病,23.7%的病人合并脑血管病,17.9%的病人合并肾功能不全㊂TAV组中不同治疗亚组间基线资料比较显示,药物治疗组中合并肾功能不全(25.0%)比例较高,LVEF值偏低,NYHA心功能分级Ⅳ级比例较TAVR组和SAVR组明显升高; TAVR组合并脑血管病(37.0%)比例较高,出现房室传导阻滞比例较高(15.2%),NYHA心功能分级Ⅲ级比例较高;SA VR组年龄组成偏低,合并慢性肺疾病(4.3%)㊁脑血管病(14.9%)㊁肾功能不全(6.4%)比例较低,NYHA 心功能分级Ⅱ级比例较高,其他基线资料见表2㊂将BAV组与TAV组总基线资料进行比较,筛选出差异性指标,结果显示,BAV组LVEDD㊁升主动脉内径㊁肺动脉高压发生率㊁跨瓣压差均高于TAV组,差异均有统计学意义(P<0.05)㊂详见表3㊂表1BAV组基线资料项目总体(n=34)药物治疗组(n=11)TAVR组(n=9)SAVR组(n=14)P男性[例(%)]17(50.0)6(54.5)5(5/9)6(42.9)0.78年龄(岁)78.0ʃ2.678.5ʃ2.877.8ʃ2.677.7ʃ2.70.76 BMI(kg/m2)23.8ʃ2.922.7ʃ2.725.1ʃ2.423.9ʃ3.20.20吸烟史[例(%)]10(29.4)2(18.2)3(3/9)5(35.7)0.61冠心病[例(%)]16(47.1)4(36.4)6(6/9)4(28.6)0.45心绞痛[例(%)]4(11.8)2(18.2)0(0.0)2(14.3)0.42 CABG[例(%)]6(17.6)0(0.0)0(0.0)6(42.9)<0.01高血压[例(%)]16(47.1)6(54.5)5(5/9)5(35.7)0.54糖尿病[例(%)]5(14.7)2(18.2)2(2/9)1(7.1)0.56外周动脉狭窄[例(%)]4(11.8)1(9.1)1(1/9)2(14.3)0.92心源性休克[例(%)]2(5.9)0(0.0)0(0.0)2(14.3)0.11复苏[例(%)]2(5.9)2(18.2)0(0.0)0(0.0)0.11心房颤动[例(%)]7(20.6)1(9.1)2(2/9)4(28.6)0.48室性心动过速/心室颤动[例(%)]1(2.9)1(9.1)0(0.0)0(0.0)0.34房室传导阻滞[例(%)]2(5.9)1(9.1)0(0.0)1(7.1)0.67左/右束支传导阻滞[例(%)]1(2.9)1(9.1)0(0.0)0(0.0)0.34 NYHA心功能分级[例(%)]Ⅱ级9(26.5)2(18.2)1(1/9)6(42.9)Ⅲ级20(58.8)4(36.4)8(8/9)8(57.1)<0.01 Ⅳ级5(14.7)5(45.5)0(0.0)0(0.0)肿瘤[例(%)]1(2.9)0(0.0)1(1/9)0(0.0)0.24慢性肺疾病[例(%)]8(23.5)3(27.3)4(4/9)1(7.1)0.11脑血管病[例(%)]5(14.7)2(18.2)2(2/9)1(7.1)0.56肾功能不全[例(%)]6(17.6)3(27.3)1(1/9)2(14.3)0.58胸外科医师协会(STS)评分(%) 3.3(2.6) 5.0(3.3) 2.3(1.0) 3.5(1.7)<0.05欧洲心脏手术风险评估系统Ⅱ(EuroⅡ)评分(%) 3.7(3.5)8.2(6.5) 3.3(1.4) 3.2(1.6)<0.05 LVEDD(mm)54.0ʃ7.956.3ʃ10.154.9ʃ5.851.6ʃ7.00.31 LVEF(%)52.4ʃ14.944.1ʃ16.452.7ʃ16.558.7ʃ9.5<0.05瓣环内径(mm)22.1ʃ2.622.8ʃ2.321.6ʃ2.722.0ʃ2.70.57窦部前后径(mm)31.3ʃ3.031.6ʃ2.531.2ʃ3.531.0ʃ3.20.90升主动脉内径(mm)39.2ʃ5.341.1ʃ5.538.3ʃ4.838.3ʃ5.40.40跨瓣压差(mmHg)68.9ʃ21.066.1ʃ21.060.4ʃ18.077.6ʃ21.40.16收缩期流速(m/s) 4.9ʃ1.0 4.8ʃ0.7 4.9ʃ0.7 4.9ʃ1.40.97肺动脉高压[例(%)]12(35.3)7(63.6)3(3/9)2(14.3)<0.05合并主动脉瓣反流[例(%)]18(52.9)6(54.5)4(4/9)8(57.1)0.33合并二尖瓣病变[例(%)]20(58.8)7(63.6)3(3/9)10(71.4)0.30合并三尖瓣病变[例(%)]11(32.4)6(54.5)3(3/9)2(14.3)0.17 CCr(mL/min)52.8ʃ16.443.1ʃ15.256.7ʃ12.956.9ʃ17.50.11血钙(mmol/L) 2.3ʃ0.1 2.28ʃ0.12 2.3ʃ0.1 2.3ʃ0.10.47血磷(mmol/L) 1.2ʃ0.1 1.26ʃ0.09 1.1ʃ0.1 1.2ʃ0.2<0.05总胆固醇(mmol/L) 4.2ʃ1.0 3.9ʃ1.0 3.9ʃ0.9 4.6ʃ0.90.15 LDL(mmol/L) 2.5ʃ0.8 2.3ʃ0.6 2.4ʃ0.8 2.8ʃ0.80.24 HDL(mmol/L) 1.1ʃ0.5 1.0ʃ0.5 1.0ʃ0.3 1.3ʃ0.50.19 NT-proBNP(pg/mL)4189.0(7279.6)8422.4(7216.4)1633.9(6295.3)2225.0(4183.9)<0.05全因死亡[例(%)]10(29.4)9(81.8)0(0.0)1(7.1)<0.01表2TAV组基线资料项目总体(n=173)药物治疗组(n=80)TAVR组(n=46)SAVR组(n=47)P男性[例(%)]103(59.5)46(57.5)27(58.7)30(63.8)0.78年龄(岁)79.0ʃ3.279.8ʃ2.979.8ʃ3.577.0ʃ2.2<0.01 BMI(kg/m2)23.6ʃ3.823.4ʃ3.923.1ʃ4.224.6ʃ3.00.12吸烟史[例(%)]58(33.5)28(35.0)16(34.8)14(29.8)0.82冠心病[例(%)]85(49.1)39(48.8)22(47.8)24(51.1)0.34心绞痛[例(%)]49(28.3)27(33.8)8(17.4)14(29.8)0.14 PCI[例(%)]15(8.7)4(5.0)6(13.0)5(10.6)0.27 CABG[例(%)]22(12.7)2(2.5)4(8.7)16(34.0)<0.01高血压[例(%)]114(65.9)56(70.0)31(67.4)27(57.4)0.34(续表)项目总体(n=173)药物治疗组(n=80)TAVR组(n=46)SAVR组(n=47)P糖尿病[例(%)]37(21.4)18(22.5)11(23.9)8(17.0)0.68外周动脉狭窄[例(%)]23(13.3)11(13.8)7(15.2)5(10.6)0.80心源性休克[例(%)]7(4.0)6(7.5)1(2.2)0(0.0)0.09复苏[例(%)]7(4.0)5(6.3)2(4.3)0(0.0)0.22心房颤动[例(%)]37(21.4)20(25.0)11(23.9)6(12.8)0.24室性心动过速/心室颤动[例(%)]3(1.7)2(2.5)1(2.2)0(0.0)0.56房室传导阻滞[例(%)]12(6.9)4(5.0)7(15.2)1(2.1)0.03左/右束支传导阻滞[例(%)]19(11.0)11(13.8)6(13.0)2(4.3)0.22 NYHA心功能分级[例(%)] Ⅰ级27(15.6)19(23.8)4(8.7)4(8.5)Ⅱ级34(19.7)8(10.0)8(17.4)18(38.3)<0.01 Ⅲ级83(48.0)29(36.3)29(63.0)25(53.2)Ⅳ级29(16.8)24(30.0)5(10.9)0(0.0)肿瘤[例(%)]23(13.3)12(15.0)9(19.6)2(4.3)0.08慢性肺疾病[例(%)]31(17.9)17(21.3)12(26.1)2(4.3)<0.05脑血管病[例(%)]41(23.7)17(21.3)17(37.0)7(14.9)<0.05肾功能不全[例(%)]31(17.9)20(25.0)8(17.4)3(6.4)<0.05 STS评分(%) 3.2(2.8) 3.6(2.7) 2.8(2.8) 2.7(1.7)<0.01 EuroⅡ评分(%) 3.4(3.0) 3.4(3.5) 4.3(3.1) 2.8(1.8)<0.05 LVEDD(mm)51.2ʃ6.851.7ʃ7.550.3ʃ6.351.3ʃ6.30.54 LVEF(%)57.4ʃ13.054.9ʃ14.358.0ʃ13.461.0ʃ9.1<0.05瓣环内径(mm)21.6ʃ2.321.4ʃ2.421.5ʃ2.022.1ʃ2.40.26窦部前后径(mm)31.5ʃ3.731.2ʃ3.731.4ʃ4.032.1ʃ3.40.42升主动脉内径(mm)35.5ʃ5.636.1ʃ6.034.7ʃ5.635.4ʃ4.60.44跨瓣压差(mmHg)59.1ʃ15.757.3ʃ14.161.5ʃ18.359.8ʃ15.40.35收缩期流速(m/s) 4.8ʃ0.7 4.6ʃ0.7 4.9ʃ0.7 4.8ʃ0.90.17肺动脉高压[例(%)]30(17.3)17(21.3)8(17.4)5(11.1)0.34合并主动脉瓣反流[例(%)]129(74.6)58(72.5)31(67.4)40(85.1)0.20合并二尖瓣病变[例(%)]88(50.9)49(61.3)17(37.0)22(46.8)0.13合并三尖瓣病变[例(%)]31(17.9)22(27.5)4(8.7)5(10.6)0.10 CCr(mL/min)50.0(25.5)56.7(27.5)47.9(20.3)55.1(19.3)0.07血钙(mmol/L) 2.3ʃ0.1 2.3ʃ0.1 2.3ʃ0.2 2.3ʃ0.1<0.05血磷(mmol/L) 1.2ʃ0.2 1.2ʃ0.2 1.2ʃ0.2 1.2ʃ0.20.62总胆固醇(mmol/L) 4.3ʃ1.2 4.2ʃ1.2 4.1ʃ1.1 4.6ʃ1.10.13 LDL(mmol/L) 2.6ʃ1.0 2.6ʃ1.0 2.6ʃ1.0 2.8ʃ1.00.45 HDL(mmol/L) 1.2ʃ0.4 1.2ʃ0.4 1.30ʃ0.5 1.3ʃ0.40.23 NT-proBNP(pg/mL)2871.5(4235.2)3083.4(4407.2)1800.4(2987.0)2671.5(3351.1)0.06全因死亡[例(%)]81(46.8)69(86.3)5(10.9)7(14.9)<0.01表3BAV组与TAV组基线差异组别例数LVEDD(mm)升主动脉内径(mm)跨瓣压差(mmHg)肺动脉高压[例(%)] BAV组3454.0ʃ7.939.2ʃ5.368.9ʃ21.012(35.3) TAV组17351.2ʃ6.835.5ʃ5.659.1ʃ15.730(17.3)P<0.05<0.01<0.05<0.052.2生存分析中位随访67个月,总死亡率为44.0%㊂其中,BA V组总死亡率为29.4%,药物治疗组㊁TAVR组㊁SAVR组死亡率分别为81.8%㊁0%㊁7.1%,组间比较差异有统计学意义(P<0.01),详见图1㊂TAV组总死亡率为46.8%,药物治疗组㊁TAVR组㊁SAVR组死亡率分别为86.3%㊁10.9%㊁14.9%,组间比较差异有统计学意义(P<0.01),详见图2㊂在BAV组及TAV组中,药物治疗组死亡率均明显高于TAVR组及SAVR组, BA V组与T A V组总死亡率比较差异无统计学意义(P= 0.06)㊂在接受TAVR治疗的病人中,BAV组与TAV 组全因死亡率比较差异无统计学意义(P=0.38),详见图3㊂图1 BAV 不同治疗组生存分析图2 TAV不同治疗组生存分析图3 TAVR 治疗BAV/TAV 生存分析3 讨 论BAV 病人因其瓣膜结构的特殊性,出现症状较早,钙化程度也相对较重[5]㊂‘2021ESC/EACTS 心脏瓣膜病管理指南“指出,对于出现症状的重度主动脉瓣狭窄病人应尽早进行手术干预[6]㊂然而BAV 病人常合并主动脉扩张㊁主动脉瘤等,手术治疗风险较高[7],高龄主动脉瓣狭窄合并BAV 更是给手术治疗带来更多的难题㊂虽然BAV 曾被视为TAVR 的相对禁忌证,许多大型临床试验也将BAV 排除在外,但随着近十几年医疗技术的飞速发展,TAVR 也开始逐渐扩展其适应证,从最初的外科高危向中危甚至低危发展,指南也开始推荐TAVR 在BAV 人群中的使用[8]㊂临床研究显示,接受TAVR 治疗的病人中约有10%合并BAV [9]㊂Kim 等[9]研究也显示,在接受TAVR 治疗的2583例高龄主动脉瓣狭窄病人中,BAV 的发生率为9.1%㊂本研究中BAV 组34例,占总例数的19.7%,接受TAVR 治疗的病人中,BAV 病人有9例(16.4%)㊂可见BAV 在高龄主动脉瓣狭窄病人中也占有不小的比例,评估高龄BAV 病人的远期预后,优化最佳治疗策略意义重大㊂本研究纳入的207例高龄重度主动脉瓣狭窄病人中,合并冠心病或高血压的比例均在50%左右㊂Saeed 等[10]研究显示,在314例主动脉瓣中重度狭窄病人中,有73.6%合并高血压㊂高血压的存在会加速主动脉瓣狭窄的进展,对血流动力学和左心室重构产生负面影响,导致预后不良,积极的降压治疗至关重要[11]㊂退行性主动脉瓣狭窄和冠心病的病理基础都与动脉粥样硬化相关,这也意味着二者有类似的心血管危险因素,因而有多达50%的病人同时患有主动脉瓣狭窄和冠心病[12-14]㊂外科CABG 与主动脉瓣置换的组合㊁TAVR 与PCI 的组合治疗主动脉瓣狭窄合并冠心病也将成为未来的研究热点[15]㊂ 在BAV 组和TAV 组的基线比较中,BAV 组LVEDD ㊁升主动脉内径㊁肺动脉高压发生率㊁跨瓣压差均高于TAV 组㊂Disha 等[16]采用心脏磁共振成像评估接受主动脉瓣置换手术的BAV 与TAV 病人,结果显示,两组LVEDD 差异无统计学意义,然而BAV 组左室流出道直径㊁左室收缩末和舒张末容积等左心室形态学参数均较大㊂左室形态的改变可能进一步引起左心房功能障碍,进而发展为肺动脉高压[17]㊂Lim 等[18]研究显示,与TAV -AS 病人相比,BAV -AS 病人升主动脉直径较大[(37ʃ8)mm 与(35ʃ5)mm ,P <0.01]㊂Hamala 等[19]研究指出,BAV 的主动脉瓣狭窄进展速度更快,主要表现为主动脉瓣峰值流速和平均/峰值压力梯度的进展更快㊂BAV 所引起的心脏及升主动脉结构改变可能与BAV 产生的偏心射血等血流动力学改变相关[20]㊂中位随访67个月结果初步表明,与药物治疗相比,TAVR/SAVR换瓣手术均能明显改善病人远期预后,TAVR远期预后较SAVR在BAV组和TAV组中比较差异均无统计学意义㊂同时,研究发现,接受TAVR治疗的高龄BAV与TAV病人的远期预后相似㊂Makkar等[21]在美国684个中心进行的大型队列研究中,采用倾向评分匹配的方法分析了接受TAVR治疗的3168对BAV-AS与TAV-AS病人的预后,结果显示,两组病人30d㊁1年的死亡率或脑卒中发生率差异均无统计学意义㊂然而在Lim等[18]研究中,调整性别和年龄后,在中重度主动脉瓣狭窄病人中BAV组的1年和5年全因死亡率明显降低,分析原因可能与此研究的重度BAV-AS病人接受手术干预比例更高有关㊂另一项针对80岁以上高龄BAV-AS病人的远期随访研究也显示,虽然未出现统计学差异,但与TAV相比,高龄BAV-AS病人似乎有更好的远期预后[22]㊂由于存在选择偏倚的可能性,未来还需要更严谨的随机对照试验来探究高龄BAV与TAV病人的预后情况,为T A VR治疗BA V的有效性和安全性提供更充分的证据㊂本研究存在一定的局限性㊂首先,本研究为单中心回顾性研究,样本量较小,存在一定的偏倚㊂药物治疗组中纳入的一部分病人出现院内死亡,没有选择手术治疗的机会,存在非死亡时间偏差,导致药物组死亡率被放大,组内随访时间存在差异㊂后续需进一步扩大样本量深入研究高龄BAV病人的预后情况,优化临床决策方案㊂参考文献:[1]胡盛寿.从老龄化时代来临看心血管外科未来发展[J].中华心血管病杂志,2021,49(8):747-749.[2]VIRANI S S,ALONSO A,BENJAMIN E J,et al.Heart disease andstroke statistics-2020update:a report from the American HeartAssociation[J].Circulation,2020,141(9):e139-e596.[3]中华医学会心血管病学分会结构性心脏病学组.经导管主动脉瓣置换术治疗二叶式主动脉瓣狭窄的中国专家建议[J].中华心血管病杂志,2020,48(8):634-640.[4]JILAIHA WI H,WU Y J,YANG Y J,et al.Morphological characteristics ofsevere aortic stenosis in China:imaging corelab observationsfrom the first Chinese transcatheter aortic valve trial[J].Catheterization and Cardiovascular Interventions,2015,85(Suppl1):752-761.[5]张甲易,吴思佳,江磊.经导管主动脉瓣置换术治疗二叶式主动脉瓣畸形的研究进展[J].中国心血管杂志,2021,26(1):86-88. [6]VAHANIAN A,BEYERSDORF F,PRAZ F,et al.2021ESC/EACTSguidelines for the management of valvular heart disease[J].European Journal of Cardio-Thoracic Surgery,2021,60(4):727-800.[7]BORGER M A,DAVID T E.Management of the valve andascending aorta in adults with bicuspid aortic valve disease[J].Seminars in Thoracic and Cardiovascular Surgery,2005,17(2):143-147.[8]VINCENT F,TERNACLE J,DENIMAL T,et al.Transcatheter aorticvalve replacement in bicuspid aortic valve stenosis[J].Circulation,2021,143(10):1043-1061.[9]KIM W K,LIEBETRAU C,FISCHER-RASOKAT U,et al.Challengesof recognizing bicuspid aortic valve in elderly patients undergoingT A VR[J].The International Journal of Cardiovascular Imaging,2020,36(2):251-256.[10]SAEED S,MANCIA G,RAJANI R,et al.Antihypertensive treatmentwith calcium channel blockers in patients with moderate orsevere aortic stenosis:relationship with all-cause mortality[J].International Journal of Cardiology,2020,298:122-125. [11]SAEED S,SCALISE F,CHAMBERS J B,et al.Hypertension inaortic stenosis:a focused review and recommendations forclinical practice[J].Journal of Hypertension,2020,38(7):1211-1219.[12]DI GIOIA G,BARTUNEK J,TESORIO T,et al.Pathophysiology,diagnosis,and treatment of patients with concomitant severeaortic stenosis and coronary artery disease:a closer look to theunresolved perplexity[J].Journal of Clinical Medicine,2021,10(8):1617.[13]BANOVIC M,A THITHAN L,MCCANN G P.Aortic stenosis and diabetesmellitus:an ominous combination[J].Diabetes&Vascular DiseaseResearch,2019,16(4):310-323.[14]STEW ART B F,SISCOVICK D,LIND B K,et al.Clinical factors associatedwith calcific aortic valve disease.Cardiovascular Health Study[J].Journal of the American College of Cardiology,1997,29(3):630-634.[15]PATLOLLA S,SCHAFF H,DEARANI J,et al.Aortic stenosis andcoronary artery disease:cost of transcatheter versus surgicalmanagement[J].Ann Thorac Surg,2021,8:28.[16]DISHA K,DUBSLAFF G,ROUMA N,et al.Evidence of subannularand left ventricular morphological differences in patients withbicuspid versus tricuspid aortic valve stenosis:magnetic resonanceimaging-based analysis[J].Interactive Cardiovascular andThoracic Surgery,2017,24(3):369-376.[17]SARAIVA R M,MATSUMURA Y,YAMANO T,et al.Relation of leftatrial dysfunction to pulmonary artery hypertension in patientswith aortic stenosis and left ventricular systolic dysfunction[J].The American Journal of Cardiology,2010,106(3):409-416. [18]LIM M S,STRANGE G,PLAYFORD D,et al.Characteristics ofbicuspid aortic valve disease and stenosis:the national echodatabase of Australia[J].Journal of the American Heart Association,2021,10(17):e020785.[19]HAMALA P,KASPRZAK J D,LIPIEC P,et al.Higher rate of aorticstenosis progression in patients with bicuspid versus tricuspidaortic valve--a single center experience[J].Advances in MedicalSciences,2021,66(2):343-350.[20]GIRDAUSKAS E,ROUMAN M N,DISHA K,et al.Aortopathy inpatients with bicuspid aortic valve stenosis:role of aortic rootfunctional parameters[J].European Journal of Cardio-ThoracicSurgery,2016,49(2):635-644.[21]MAKKAR R R,YOON S H,CHAKRAVARTY T,et al.Associationbetween transcatheter aortic valve replacement for bicuspid vstricuspid aortic stenosis and mortality or stroke among patientsat low surgical risk[J].JAMA,2021,326(11):1034-1044. [22]ROBERTS W C,JANNING K G,KO J M,et al.Frequency ofcongenitally bicuspid aortic valves in patientsȡ80years of ageundergoing aortic valve replacement for aortic stenosis(with orwithout aortic regurgitation)and implications for transcatheteraortic valve implantation[J].The American Journal of Cardiology,2012,109(11):1632-1636.(收稿日期:2021-12-30)(本文编辑王丽)。
肺动脉高压发病机制和药物治疗进展
肺动脉高压发病机制和药物治疗进展徐美荣【期刊名称】《湖北科技学院学报(医学版)》【年(卷),期】2015(029)002【总页数】3页(P164-166)【关键词】肺动脉高压;发病机制;药物治疗;进展【作者】徐美荣【作者单位】湖北科技学院附属第二医院,湖北咸宁437100【正文语种】中文【中图分类】R543.2肺动脉高压(PAH)是指肺动脉压力升高超过一定界值的一种独立疾病,或是其他疾病的并发症,在我国由慢性阻塞性肺疾病导致的PAH 发病率较高。
近年来,广大学者对PAH 的病因学、病理生理学等方面进行了深入的研究,现就其发病机制的进展和前沿的治疗方法进行综述。
1 PAH 发病机制1.1 肺血管功能紊乱肺血管持续收缩使肺血管内皮细胞损伤,损伤后的内皮细胞出现功能紊乱,包括缩血管物质和扩血管物质失去动态平衡。
例如,内皮细胞产生的内源性前列环素减少,前列环素能舒张血管,抑制血小板聚集及平滑肌细胞增生,血栓素的作用正好相反。
Cogolludo 等[1]的临床研究检测了PAH 病人的尿液,结果提示,与正常人相比,PAH 病人尿液中血栓素代谢物水平增加而前列环素代谢物水平降低。
以肺动脉高压的动物模型进行研究,亦证实PG 有预防肺血管重构的作用[2]。
同样的,内皮衍生的一氧化氮(eNO)和内皮素-1(ET-1)也是相互拮抗的一对因子,在PAH 的演变过程中起着重要的作用。
而研究表明5-羟色胺和血管紧张素Ⅱ的含量在PAH患者和动物模型中均高于正常[3]。
血管活性物质的失衡促成了肺血管重构和肺动脉高压,肺血管内皮功能紊乱是肺血管发生重塑的核心环节。
随着内皮细胞失去完整性,内皮细胞与平滑肌细胞之间的弹力层结构也遭到破坏,这是使肺血管发生重构的关键步骤。
而肺动脉平滑肌细胞也参与了肺血管重构,具体机制可能是由平常的静息状态变成增殖状态,同时本身合成和分泌一些血管活性介质。
1.2 免疫炎症反应免疫炎症反应通过多种免疫细胞和细胞因子参与PAH 的发生发展。
影像学 中英文名词解释
医学影像学名词解释Accessory lobe:additional pleura extending into the pulmonary segments, forming additional pulmonary lobe. The most commonly seen are azygos lobe in the inner zone superior to the right hilum, and inferior accessory lobe in the inner zone of inferior lobe.Air bronchogram sign : Because the air in the alveoli is replaced by exudates, while the air in the bronchus is not displaced and remain patent. This produces contrast between the air in the bronchial tree and the surrounding airless parenchyma.Ankylosis of joint:bony or fibrous tissues connect the articular surface. In plain film, it is characterized by a narrowed articular space. Whether the trabeculae pass through the articular space distinguishes bony or fibrous ankylosis.Artificial contrast:Those organs or spaces lack of natural contrast,can be renderde to be visible by means of contrast agents to create an artificial contrast.Bone destruction: localized absence of normal bone tissue and replaced by pathological tissues. Both the cortical and spongy bone are destructed because of either the absorption of bone tissues or the activation of osteoclasts by the pathological tissue. In plain film, it appears to be a decrease in bone density locally, absence of normal bone tissue, and probably worm-eaten or sievelike cortical bone.Cavity:formed as a result of the expulsion of necrotic tissues through bronchus. It can be devided into worm-eaten, thin-walled, and thick-walled cavities. often seen in TB, pulmonary abscess, and lung cancer.Codman’triangle: Codman’triangle is due to direct erosion of the already formed periosteal new bone by fast growing tumor.Colles’ fracture : The fracture line is within 2-3cm from the articular end of the radius, the distal fragment is displaced dorsally and radially and is often associated with fracture of the styloid process of the ulna and separation of the radioulnar joint.CTR: the ratio between maximal transverse diameter of the heart: summation of maximal diameter from left and right margin of the heart respectively to the mid line, and maximal width of the thorax: a horizontal line passing through the right diaphragmatic apex between inner edges of the thorax. maximum in adults: 0.5Degeneration of joint: degenerated and necrotic articular cartilage, replaced by fibrous tissues gradually. When the bony surface is involved, it can cause hyperostosis of the bone, which leads to rough articular surface, formation of osteophyte, and ossification of ligament. It is often seen in weight-bearing or frequently used joints.Destruction of bone: Bone tissue elimination caused by sclerotin partly substituted with pathologic organism. Roentgenologically,it shows osteolytic bone areas of decreased density and loss of bone structures.Double contour: On PA film, the right border of an enlarged left atrium may produce an extra shadow superimposed on the right cardiac border, giving a double contour.Early gastric cancer : Early gastric cancer is define as carcinoma limited to the mucosa and submucosa regardless of the presence or absence of lymph node involvement.Epiphyseal fracture: occurs in children’s long bone, for the epiphysis has not linked with metaphysic, so they may separate when there is an external force acting. In plain film, the epiphysis and metaphysis are not in the normal place, or the epiphyseal plate is broader than normal. The fracture line does not exist. Filling Defect: Filling defect is caused by a space occuping mass producing defect on the barium.Fracture: a complete/ incomplete break in the continuity of a bone or a cartilage. Incomplete fractures include crack ~ and greenstick ~. Complete fractures include transverse, oblique, vertical, spiral, fragmented, impacted, compression , and avulsion ~.Greenstick Fracture:Greenstick fracture occur almost exclusively during infancy and childhood. It is not easy for external force to cause the bone cortex complete break because of its pliant, so this kind of fracture showed buckling of the cortex without fracture lines or a transver fracture occur in the cortex, extending into the midport of the bone and then orienting along the longitudinal axis of the bone without disrupting the opposite cortex.Hilar dance: under fluorescence, there will be an obviously enhanced pulsation of the hilar arteries in pulmonary hypertension, seen in congenital heart diseases with left-to-right shunt.Hyperostosis osteoscleroses: osteosclerosis is abnormal hardening or increased density of bone on radiographsIntrapulmonary air containing space:pathological distension of physiological space in the lung. It appears to be a round translucency with a smooth wall about 1mm in X-rays. such as bullae and air containing bronchial cysts.Inverted S curve sign: PA film, atelectasis of the right superior lobe, elevated horizontal fissure, hilar mass, central bronchogenic carcinoma in the right superior lobeKerley line: pulmonary interstitial edema, formed due to thickening interalveolar septa in different area. A: stretching form the outer zone to the hilum obliquely, seen in acute LHF; B: in the costophrenic angle, 2-3cm long, stretches horizontally, seen in MS and chronic LHF; C: in the inferior field, netlike, seen in severe pulmonary venous hypertension.Kidney Autonephretomy :The caseous lesion of renal tuberculosis can produce calcification, and even result in calcification of entire kidney called autonephritomyLung markings: consisting of pulmonary a.,v., bronchi, and lymph tissues. In plain film, it appears to be branch like shadow radiating outward from the hilumand disappear with a gradual reduction in size.Niche: On profile, this unchanging collection of barium will project outside the confines of the stomach.Osteomalacia: Osteomalacia is a group of disorders resulting from inadequate or delayed mineralization of osteoid in mature cortical and spongy byne. The radiographic changes are characterized by general marked decrease of bone density, thick cortex, the normal outline of the bone is blurred.Osteonecrosis: Osteonecrosis occurs when metabolism of bone cells cease forever from local ischemia bone. The chief characteristic that is responsible for the radiographic definition of dead bone is its apparent increase in density. Osteoporosis: refers to a decrease in normal bone tissue per unit volume, in which mineral and organic matters decrease in proportion, leaving a qualitatively normal but quantitatively deficient bone tissue. The deficient bone becomes more fragile and more vulnerable to fractures. In plain film, it appears to be a decrease in bone density generally, thin and sparse trabeculae, wide intertrabecular space, and a thinner and stratiform cortical bone. It often occurs in the elderly, menopause in women, and other circumstances such as tumor, infection, endocrine disorders, etc.Osteosclerosis and Hyperostosis: refers to an increase in normal bone tissue per unit volume. In plain film, it appears to be an increase in bone density generally, with thickened cortex and trabeculae. The medullary space is narrowed or even vanished, and sometimes the cortical bone and spongy bone cannot be distinguished. It is usually seen in tumor, inflammation, and trauma.Pancoast’s tumor:peripheral bronchogenic carcinoma in the apex. can infiltrate into neighboring vertebrae and ribs, involves cervical sympathetic nerve and cause Horner’s syndrome.Periosteal reaction: when the periosteum is irritated pathologically, osteoblasts in the inner layer will be activated and produce sub-periosteal new bone. In plain film, it appears to be a high density shadow parallel to the cortex, with various patterns as linear, luminar, or lacelike. It usually indicates a destruction or injury of the bone.Pleural indentation: V-shaped or cordlike, dense shadow between the mass and pleura, contraction of scar tissue in tumor, adenocarcinoma, bronchioalveolar carcinomaPrimary complex:a combination of primary pulmonary tuberculous focus, hilar tuberculous lymphangitis and lymphadenitis. fomrs a typical dumbbell-like X-ray image.Primary complex tuberculosis; The combination of the primary pulmonary tuberculous focus, lymphangitis and intrathoracic lymphadenitis is known as the primary complex tuberculosis. It occurs chiefly in children.Schmorl’s nodule:Prolapse of the nucleus pulposus through the vertebral body endplate into the spongiosa of the vertebra, accompanied by responsivehyperostosis.Stirlin sign: There is a lack of barium retention in a diseased segment of ileum and caecum but with a column of barium remains on either side of the affected area. This phemonenon may result from spasm, organic constracture of a combination of both. It is suggestive of tuberculosis of intestine.Subpleural line:thickened adjacent interlobular septa connects together, dermatasclerosis, asbestosisThe third pathologic arch: It may form a separate arch between the pulmonary segment and the left ventricle ,due to enlargement of the atrial appendage. It is called the third pathologic arch. Tree-budded sign: bronchiolus, diffuse panbronchiolitis, bronchogenic dissemination流空效应:由于信号的采集需要一定的时间,快速流动的血液不产生或只产生极低的信号,与周围组织、结构间形成良好的对比,这种现象叫流空效应。
超声心动图检查在慢性阻塞性肺疾病中的应用价值
超声心动图检查在慢性阻塞性肺疾病中的应用价值慢性阻塞性肺疾病(chronic obstructive pulmonary diease, COPD)是一种以气流受限为特征的疾病,与有害气体及有害颗粒的异常炎症反应有关,致残率及病死率逐年升高,最新数据表明,我国40岁以上COPD患者人数已超过1亿,发病率高达13.6~13.7%,患者年龄越大,发病率越高,男性发病率高于女性,农村发病率高于城市,疾病负担重[1-2]。
随着病情的进展,部分患者出现肺动脉高压、右心肥大等心脏损害,影响了疾病的预后及患者的生活质量[3-5],因此,心脏功能及结构的监测对于评估COPD患者的病情及预后至关重要。
超声心动图的临床应用超声心动图是指应用超声测距原理脉冲超声波透过胸壁、软组织检查心脏和大血管的解剖结构及功能状态,测量各心壁、心室及瓣膜等结构的周期性活动,在心内科、呼吸科等科室中应用广泛,对于评估患者心脏功能、预测疾病的预后具有重要的作用。
COPD患者可能合并有左心或右心功能的不全,超声心动图的应用可指导临床医生及早发现COPD并发症,给予及时的干预,以降低致残率与死亡率。
二、慢性阻塞性肺疾病心脏功能变化COPD不仅仅是肺部疾病,还可累及全身各个器官,与COPD的全身炎症反应有关,可引起骨骼肌萎缩、骨质疏松、焦虑、冠心病、胃肠道功能紊乱等并发症。
其中,冠心病、心力衰竭及心律失常等是常见并发症,对于COPD病死率及患者生活质量具有重要的影响。
而COPD不仅仅影响患者的右心功能,并且会影响左心功能。
因此,及时的完善心脏检查对于评估患者心脏状况至关重要。
超声心动图检测COPD右心功能变化COPD患者晚期可能出现肺源性心脏病及右心功能衰竭,致残率及病死率高,检测右心功能对于评估疾病预后及评价治疗效果具有重要的意义。
研究显示,COPD患者的超声心动图表现为右心舒张功能及收缩功能均降低,右心扩大,并且可以定量评估右心的结构及功能[6];另有研究表明:采用二维超声心动图能够较好的评估COPD患者右心结构和功能,COPD患者心室收缩末期右心房及右心室面积均增大,肺动脉压力增高,导致右心室后负荷增加,从而导致心室肥厚[7]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. M. SCHANNWELL, S. STEINER, B-E. STRAUERDIAGNOSTICS IN PULMONARY HYPER TENSIONUniversity Hospital Düsseldorf, Clinic of Cardiology , Pneumology , and Angiology ,Düsseldorf, GermanyPulmonary hypertension is a serious disease with a poor prognosis. Pulmonary hypertension is defined by a mean pulmonary arterial pressure over 25 mm Hg at rest or over 30 mm Hg during activity . According to the recent WHO classification from 2003 pulmonary hypertension can be categorized as pulmonary arterial hypertension,pulmonary venous hypertension, hypoxic pulmonary hypertension, chronic thromb oemb olic pulmonary hypertension and pulmonary hypertension from other causes. Pulmonary arterial hypertension is characterized histopathologically b y vasoconstriction, vascular proliferation, in situ thromb osis, and remodeling of all 3levels of the vascular walls. These pathologic changes result in progressive increases in the mean pulmonary artery pressure and pulmonary vascular resistance, which, if untreated leads to right-ventricular failure and death. Early in the disease process, thesigns and symptoms of P AH are often nonspecific, making diagnosis challenging.Patients often present with progressively worsening dyspnea and fatique. Patients with severe pulmonary arterial hypertension die of right heart failure. The diagnostic procedures include clinical history and physical examination, a standard chest radiography, electrocardiography, transthoracic Doppler echocardiography,pulmonary function tests, arterial blood gas analysis, ventilation and perfusion lung scan, high-resolution computed tomography of the lungs, contrast-enhanced spiralcomputed tomography of the lungs and pulmonary angiography , b lood tests and immunology, ab dominal ultrasound scan, exercise capacity assessment, and hemodynamic evaluation. Invasive and non-invasive markers of disease severity ,either b iomarkers or physiological parameter and tests that can b e widely applied,have b een proposed to reliab ly monitor the clinical course. Pulmonary b iopsy is rarely indicated. Transthoracic echocardiography is a key screening tool in the diagnostic algorithm. Because transthoracic echocardiography is an inexpensive,easy , and reproducible method, it is the most commonly used noninvasive diagnostic tool to determine pulmonary arterial pressure. But it not only provides an estimate of pulmonary pressure at rest and during exercise, but it may also help to exclude any secondary causes of pulmonary hypertension, predict the prognosis, monitor the efficacy of specific therapeutic interventions, and detect the preclinical stage of the disease. In addition, the measurement of serum markers, such as b rain natriureticpeptide (BNP), are diagnostically useful and of prognostic significance. Once thediagnosis and etiology of pulmonary hypertension have b een estab lished, several JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2007, 58, Suppl 5, 591 602www .jpp.krakow .plparameters can predict outcome in these patients: functional class, right ventricular function, pulmonary hemodynamics, and certain lab oratory parameters. Also,exercise parameters such as walking distance, peak oxygen uptake or peak systolicblood pressure can reliable predict prognosis in these patients.K e y w o r d s : exercise capacity, pulmo nary artery hypertensio n, six-minute walk test, T ei-IndexINTRODUCTIONThe pulmonary circulation in patients with chronic pulmonary disease is often considered a no-man`s land, falling b etween the domains of the respirologist and the cardiologist and understood only by the physiologist! (1).Classification of Pulmonary HypertensionPulmonary hypertension was previously divided into primary and secondary categories; primary pulmonary hypertension descri bed an idiopathic hypertensive vasculopathy , exclusively affecting pulmonary circulation, whereas secondary pulmonary hypertension was associated with a causal underlying disease process (2, 3). The diagnosis of primary pulmonary was one of exclusion after ruling out all causes of pulmonary hypertension (4). The recent identification of a gene responsible for the inherited forms of this disease, along with the development of specific medical treatments and the refinement of surgical techniques, has prompted a revised classification of pulmonary hypertension (5). In 2003, Third W orld Symposium on pulmonary arterial hypertension held in V enice Italy decided to maintain the general architecture and philosophy of the Evian France classification (1998) and to propose some modifications. The aim of the modifications was to make the V enice clinical classification more comprehensive, easier to follow and widespread as a tool(4) (T able 1).Definition and clinical symptomsPulmonary arterial hypertension is defined as a group of diseases characterized by a progressive increase of pulmonary vascular resistance leading to right ventricular failure and premature death (6). Pulmonary hypertension is defined by a mean pulmonary arterial pressure over 25 mmHg at rest or over 30mmHg during activity with accompanying increase of pulmonary vascular resistance over 3 WU (W ood`s unit) (2).In its early stages pulmonary arterial hypertension may b e asymptomatic.Pulmonary hypertension often presents with nonspecific symptoms. The most common symptoms exertional dyspnea, fatique, and syncope reflect an592593 T able 1. Clinical classification of Pulmonary Hypertension (PH) V enice 2003.Modified from Simonneau G, Galie N, Rubin LJ et al. J Am Coll Cardiol2004; 43: 5S-12S. inab ility to increase cardiac output during activity. The leading symptom of pulmonary arterial hypertension is exertional dyspnea. A minority of patients may report typical angina despite normal coronary arteries. The symptoms of pulmonary hypertension can also include weakness and abdominal distension (7). Hemoptysis resulting from the rupture of distended pulmonary vessels is a rare but potentially devastating event. Raynaud`s phenomenon occurs in approximately 2% of patients with primary pulmonary hypertension, b ut it is more common in patients with pulmonary hypertension related to connective tissue disease. More specific symptoms may reflect the underlying cause of pulmonary hypertension (8). Symptoms at rest are reported only in very advanced cases.Etiology and pathophysiologyThe estimated incidence of primary pulmonary hypertension is 1-2 cases per 1 million persons in the general population. Pulmonary hypertension is more common in women than in men (ratio: 1.7 to 1) (9). Pulmonary hypertension is most prevalent in persons 20 to 40 years of age (3). In persons more than 50 years of age, cor pulmonale, the consequence of untreated pulmonary arterial hypertension, is the third most common cardiac disorder (after coronary and hypertensive heart disease) (9, 10). Mean life time expectancy from the time ofdiagnosis in patients with idiopathic pulmonary arterial hypertension, before the availability of disease-specific targeted therapy, was 2.8 years (4).Normal pulmonary artery systolic pressure at rest is 18 to 25 mmHg, with a mean pulmonary pressure ranging from 12 to 16 mmHg. This low pressure is due to the large cross-sectional area of the pulmonary circulation, which results in low resistance (9).The exact processes that initiate the pathological changes seen in pulmonary arterial hypertension are still unknown, even if we now understand more of the mechanisms involved. It is recognized that pulmonary arterial hypertension has a multi-factoral pathophysiology that involves various b iochemical pathways and cell types. The increase of pulmonary vascular resistance is related to different mechanisms including vasoconstriction, ob structive remodelling of thepulmonary vessel wall, inflammation and thromb osis. Pulmonaryvasoconstriction is b elieved to b e an early component of the pulmonary hypertensive process (11). In the pulmonary circulation, there is a homeostatic b alance b etween a variety of mediators that influence vascular tone, cellular growth and coagulation. In pulmonary arterial hypertension, pulmonary endothelial cell dysfunction or injury promotes the pathological triad of vasoconstriction, cellular proliferation and thromb osis through the action of mediators such as thromb oxane A2, endothelin-1 and serotonin. Under normal circumstances, these effects are counterb alanced b y prostacyclin, vasoactive intestinal peptide and nitric oxide, which tend to have opposite effects (12, 5). Irrespective of the underlying etiology of pulmonary arterial hypertension, the histological appearance of lung tissue in each of these conditions is similar and consists of intimal fib rosis, increased medial thickness, pulmonary arteriolar occlusion and plexiform lesions (5). The process of pulmonary vascular remodelling involves all layers of the vessel wall and is characterised b y proliferative and ob structive changes that involve several cell types including endothelial, smooth muscle and fibroblasts (13).DiagnosticsThe clinical cardinal symptom of pulmonary hypertension is dyspnea. The diagnostic process of pulmonary hypertension requires a series of investigations that are intended to make the diagnosis, to clarify the clinical class of pulmonary hypertension and the type of pulmonary arterial hypertension and to evaluate the functional and hemodynamic impairment (T able 2).Non-invasive diagnosticsFunctio nal assessment.Patients with pulmonary hypertension can b e classified according to their ab ility to function, modified from the New Y ork Heart Association classification of patients with cardiac disease (T able 3).594595 T able 2. Diagnosis of pulmonary hypertension. Clinical classification: WHO/NYHA.T able 3. Modified NYHA-classification in pulmonary hypertension.Hoeper M, Oudiz R, Peacock A et al. J Am Coll Cardiol2004; 43: S48-S55.Physical examinatio n.Physical examination can reveal increased jugular venous distention, a tricuspid regurgitant holosystolic murmur and a loud P2, all suggestive of elevated right-sided pressure. Lung sounds are usually normal. Hepatomegaly, peripheral oedema, ascites and cool extremities characterize patients in a more advanced state with right ventricular failure at rest.Electrocardiography. Electrocardiographic signs of the right heart compromise include right axis deviation, right ventricular hypertrophy, and peaked P waves. However, the electrocardiography lacks sufficient diagnostic accuracy to serve as a screening tool for the detection of pulmonary arterial hypertension. Right ventricular hypertrophy on ECG is present in 87% and right axis deviation in 79% of patients (7). ECG has inadequate sensitivity (55%) and596specifity (70%) (14). A normal ECG does not exclude the presence of severe pulmonary hypertension.Chest radio graphy. The chest radiograph is inferior to ECG in detecting pulmonary hypertension, b ut it may show evidence of underlying lung disease (15). In 90% of pulmonary arterial hypertension patients the chest radiograph is ab normal at the time of diagnosis (7). The finding include central pulmonary arterial dilatation which contrasts with pruning of the peripheral blood vessels.A hilar-to-thoracic ratio greater than 0.44, a right descending pulmonary artery diameter of greater than 18 mm and right atrial and ventricular enlargement may b e seen and it progresses in more advanced cases. However, a normal chest radiograph does not exclude mild pulmonary hypertension including left-heart disease or pulmonary veno-occlusive disease.Echocardiography. Transthoracic echocardiography is an excellent non-invasive screening test for the patient with suspected pulmonary hypertension. Transthoracic echocardiography estimates pulmonary artery systolic pressure and can provide additional information ab out the causes and consequences of pulmonary hypertension.Pulmonary artery systolic pressure is equivalent to right ventricular systolic pressure in the ab sence of pulmonary outflow ob struction. With CW-Doppler-echocardiography right ventricular systolic pressure (R VSP) can b e ob tained b y adding the estimated right atrial pressure (RAP) to the pressure gradient derived from systolic regurgitant tricuspid flow velocity v according the formula: R VSP = 4 v2+ RAP. Echocardiographic estimation of the right atrial pressure b y measuring the diameter of the inferior vena cava and the respiratory motion of the inferior vena cava (T able 4). According to the normal ranges of Doppler-derived values of pulmonary artery pressures, mild pulmonary hypertension can b e defined as pulmonary artery systolic pressures of approximately 36-50 mmHg or resting tricuspid regurgitant velocity of 2.8-3.4 m/sec assuming a normal right atrial pressure of 5 mmHg. The right ventricular systolic pressure may b e underestimated in some cases because of suboptimal tracings of the regurgitation jet, of decreased tricuspid regurgitant jet velocity due to high right atrial T able 4.Echocardiographic estimation of the right atrial pressure (RAP) by measuring the diameter of the inferior vena cava and the respiratory motion of the inferior vena cava inferior (VCI).597 pressures, and poor estimation of right atrial pressures. However, in order to estimate a right ventricular systolic pressure b y echocardiography, tricuspid regurgitation must be present.Indirect signs of pulmonary hypertension are: paradoxical septal motion (septal b owling or flattering), decreased or missing collapse of the vena cava inferior, pericardial effusion, right ventricular hypertrophy and reduced right ventricular ejection time. Additional examination to the routine echocardiography is the estimation of right ventricular T ei-index (isovolumetric contraction time and relaxation time/ejection time) (24) and the tricuspid annular plane systolic excursion (T ASPE). The peak early diastolic pulmonary regurgitation velocity is useful in estimating mean pulmonary artery pressure (mean P AP). T ogether with the dimension of the right atrium and pericardial effusion T ei-index and T ASPE are important prognostic parameters in patients with pulmonary hypertension, while the right ventricular systolic pressure does not correlate with survival (16). Echocardiography is the most useful imaging modality for detecting pulmonary hypertension and excluding underlying cardiac disease.Sero lo gy and bio markers. All patients with suspected or documented pulmonary hypertension should undergo serologic testing Initial lab oratory evaluation includes a complete blood count, prothrombin time, hepatic profile, and serologic studies for collagen vascular disease suggested b y history or physical examination. Special autoantib odies might include antinuclear and anti-DNA (systemic lupus erythematosus), anti-Scl-70 and antinuclear (scleroderma), anticentromere (CREST syndrome), rheumatoid factor (rheumatoid arthritis), anti-Ro and anti-La (Sjogren`s syndrome), anti-Jo-1 (dermatomyositis/polymyositis) and anti-U1 RNP (mixed connective tissue disease). HIV testing should b e considered in all patients, especially those with a compatible history or risk factors.The use of plasma b rain natriuretic peptide (BNP) is well estab lished in the diagnosis and staging of patients with congestive heart failure. Recently, measurement of BNP has b een shown to b e a useful prognostic tool in the population of patients with primary pulmonary hypertension (17) and chronic lung diseases (18). It has been shown, that plasma BNP levels is associated with pulmonary artery pressure and pulmonary vascular resistance. Further on, there is a correlation of exercise parameters (VO2peak, WHO functional class, 6-minute walk). Additionally, alterations in n-terminal pro BNP reflect changes in right ventricular structure and function in pulmonary hypertension patient during treatment (19). Therefore, BNP seems to b e a simple, non-invasive tool and ob server independent parameter for assessing disease severity and treatment efficiency in patients with pulmonary hypertension.V entilatio n/Perfusio n Scanning. V entilation/perfusion scans are often used to rule out other causes of dyspnea. Fortunately, ventilation-perfusion lung scanning is a reliab le method for differentiating chronic thromb oemb olism from primary pulmonary hypertension (9). Normal ventilation and quantification scans rule out598chronic thromb oemb olic disease (20). The finding of one or more segmental or larger perfusion defects is a sensitive marker of embolic obstruction.Computerized tomography. Computerized tomographic (CT/MRI) scanning of the chest with high-resolution images is useful to exclude occult interstitial lung disease and mediastinal fib rosis. It also is helpful in diagnosis of pulmonary emb olism. Magnetic resonance imaging can b e used to assess the size and function of the right ventricle, myocardial thickness, the presence of chronic thromb oemb olic disease with a mosaic pattern of the lung parenchyma and cardiac and pulmonary pressures (21, 22).Pulmonary Function T esting. The role of pulmonary function testing is to rule out parenchymal or ob structive lung disease as the cause of the patient`s symptoms. Unless hypoxia is present, pulmonary hypertension cannot b e attrib uted to these disorders until pulmonary function is severely reduced. Some patients with pulmonary artery hypertension can have a mild decline in their total lung capacity and diffusing capacity for carbon monoxide, but the severity of these declines do not correlate with disease severity. With pulmonary function testing neither an accurate diagnosis nor adequate follow-up examinations are possible.Six-minute walk test. Sub maximal testing with a 6-minute walk test is recommended at the time of diagnosis to establish baseline functional impairment and at the follow-up to assess response to therapy and prognosis (21). The mortality risk is increased 2.4-fold in patients with pulmonary arterial hypertension who are ab le to walk less than 300 m in 6 minutes and 2.9-fold in those with a greater than 10% decline in arterial oxygen saturation (23). The 6-minute walk distance correlates with severity b y NYHA functional class in patients with pulmonary hypertension, and patients who walk less than 332 m have a significantly lower survival rate than those who walk farther (24).Cardiopulmonary Exercise T esting. Cardiopulmonary exercise testing (CPET) allows measurement of ventilation and pulmonary gas exchange during exercise testing providing additional pathophysiologic information to that derived from standard exercise testing. Cardiopulmonary exercise testing has no added value in the initial diagnostic testing of pulmonary hypertension. The most important parameters are the maximal oxygen uptake (peak VO2) and the relation from ventilation to CO2-relief (V E/VCO2). Pulmonary hypertension patients show reduced peak O2, reduced peak work rate, reduced ratio of VO2 increase to work rate increase, reduced anaerob ic threshold and reduced peak oxygen pulse; they show also increased V E and VCO2slope representative of ventilatory inefficiency (25).Invasive diagnosticsRight Heart Catheterizatio n. Right heart catheterization remains the gold standard for the diagnosis of pulmonary hypertension. All patients suspected of having significant pulmonary hypertension after clinical and transthoracic599 echocardiographic evaluation should undergo right heart catheterization, particularly if they are candidates for treatment (21).The modern era in cardiopulmonary medicine b egan in the 1940s, when Cournand and Richards pioneered right-heart catheterization. Right-heart catheterization ignited an explosion of insights into function and dysfunction of the pulmonary circulation, cardiac performance, ventilation-perfusion relationships, and lung-heart interactions. Right heart catheterization is the only method for direct proof of an increased pressure in the pulmonary circulation system. Cardiac catheterization gives information ab out the heart, b ecause it is the limiting organ for performance and prognosis of pulmonary hypertension! The goals of right heart catheterization, in addition to making the diagnosis, are to measure right atrial and ventricular pressures, to detect pulmonary artery pressure (P AP systolic, P AP diastolic, P AP mean) and pulmonary artery capillary wedge pressure (PCWP), to measure pulmonary vascular and systemic vascular resistance (PVR, SVR), to calculate cardiac output/index (end organ function) by Fick principle or thermodilution, to evaluate pulmonary artery O2-saturation, and to look for the presence of left-to-right shunts and right-to-left shunt (the latter makes left heart cardiac catheterization necessary). The significance of right heart catheterization is to assess the severity of the hemodynamic impairment, to predict the prognosis, to identify other causes of pulmonary hypertension, to monitor the etiopathology, to evaluate the right ventricular function, and to test the vasoreactivity of the pulmonary circulation.V asodilator testing during right-heart cardiac catheterization should only b e done using short-acting vasodilators such as adenosine/epoprostenol intravenously, prostacyclin, nitric oxide or iloprost b y inhalation. According to the European Society of Cardiology, a response to acute vasodilator testing includes a decrease of more than 10 mmHg in the mean pulmonary artery pressure and/or a decrease of the mean pulmonary artery pressure under 40 mmHg. Responders to acute vasodilator testing have a favorable clinical response and course when treated with calcium channel b lockers, b ut calcium channel b lockers should b e strictly avoided in non-responders. There are no ab solute contraindications to right heart catheterization and complications are rare, although may happen.Disease monitoringWhile echocardiography is the screening method for acquisition of pulmonary hypertension (high sensitivity), the right heart cardiac catheterization has a higher specificity and is a required method to confirm the diagnosis definitely (T able 5). Some patients with mild and moderate pulmonary hypertension can b e managed without right heart catheterization. Those with mild to moderate pulmonary hypertension due to chronic hypoxemia (resting, exertional or noctural) can b e followed with serial echocardiography for600T able 5. Pulmonary hypertension (PH): Diagnostic approach.evidence of progression on appropriate oxygen and/or noctural ventilatory support. For patients with mild to moderate pulmonary hypertension b y echocardiography who do not have NYHA class III symptoms, right heart cardiac catheterization can b e reserved as a future option if pulmonary hypertension progresses on serial echocardiography every 3 to 6 months.Right heart function and ejection fraction have a great importance in patients with pulmonary hypertension: clinical severity and mortality rate do increase in concert with the degree of limitation of the right ventricular function and ejection fraction. The higher the mean pulmonary arterial pressure and the pulmonary wedge pressure and the worse the right ventricular function, the higher the mortality with left heart insufficiency will be. Patients with a low ejection fraction and high pulmonary artery pressure show a particularly b ad prognosis, independent from the degree of restricted left ventricular function (26) (T able 6). ConclusionPulmonary hypertension is defined as an elevation in pulmonary arterial pressures and is characterized by symptoms of dyspnea, chest pain and syncope. If untreated, pulmonary arterial hypertension has a high mortality rate, typically from decompensated right-sided heart failure. Estimated median survival is approximately 2.8 years.The past decade has seen major advances in our understanding of the pathophysiological mechanisms underlying the development of pulmonary arterial hypertension. The diagnosis is now more clearly defined according to a new clinical classification, and clear algorithms have b een devised for the investigation. However, the prognosis of pulmonary arterial hypertension remains guarded despite recent advances and new therapeutic options.601 T able 6.Estimation of prognosis in pulmonary hypertension (PH).REFERENCES1.MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. PartOne. Am J Respir Crit Care Med1994; 150:833-852.2.Hatano S, Strasser T. W orld Health organization 1975 primary pulmonary hypertension.Geneva. WHO; 1975.3.Rubin LJ. Primary pulmonary hypertension. N Engl J Med1997; 336:111-117.4.Galie N, T orbicki A, Barst R et al. Guidelines on diagnosis and treatment of pulmonary arterialhypertension. The task force on diagnosis and treatment of pulmonary arterial hypertension of the European society of cardiology. Eur Heart 2004; 25:2243-2278.5.Fox DJ, Khattar RS. Pulmonary arterial hypertension: classification, diagnosis andcontemporary management. Postgrad Med J2006; 82:717-722.6.Simonneau G, Galie N, Rubin L et al. Clinical classification of pulmonary arterial hypertension.J Am Coll Cardiol2004; 43:S5-S12.7.Rich S, Dantzker DR, A yres SM et al. Primary pulmonary hypertension. A national prospectivestudy. Ann Intern Med1987; 107:216-223.8.Gurub havatula I, Palevsky HI. Pulmonary hypertension in systemic autoimmune disease.Rheum Dis Clin North Am1997; 23:365-394.9.Nauser TD, Stites St. Diagnosis and treatment of pulmonary hypertension. Am Fam Physician2001; 63:1789-1798.10.Palevsky HI, Fishman AP. Chronic cor pulmonale. Etiolology and management. JAMA1990;263:2347-2353.11.W ood P. Primary pulmonary hypertension, with special references to the vasoconstrictive factor.Br Heart J1958; 20:557-565.12.Farber HW, Loscalzo J. Mechanisms of disease. N Engl J Med2004; 351:1655-1665.13.Humb ert M, Morrel N, Archer S et al. Cellular and molecular pathob iology of pulmonaryarterial hypertension. J Am Coll Cardiol 2004; 43:S13-S24.60214.Ahearn GS, T apson VF, Rebeiz A et al. Electrocardiography to define clinical status in primarypulmonary hypertension and pulmonary arterial hypertension secondary to collagen vascular disease. Chest2002; 122:524-527.15.Widimsky J. Noninvasive diagnosis of pulmomary hypertension in chronic lung disease. ProgRespir Res1985; 20:69-75.16.T ei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, T ajik AJ, Seward SB. Dopplerechocardiographic index for assessment of glob al right ventricular function. J Am So c Echo cardio gr1996; 9:838-847.17.Leuchte HH, Holzapfel M, Baumgartner RA et al. Clinical significance of b rain natriureticpeptide in primary pulmonary hypertension. J Am Coll Cardiol2004; 43:764-770.18.Leuchte HH, Baumgartner RA, Nounou ME et. Brain natriuretic peptide is a prognosticparameter in chronic lung disease. Am J Respir Crit Care Med 2006; 173:744-750.19.Gan CT, McCann GP, Marcus JT et al. NT-proBNP reflects right ventricular structure andfunction in pulmonary hypertension. Eur Respir J2006; 28:1190-1194.20.Huffman M, McLaughlin V. Evaluation and diagnosis of pulmonary arterial hypertension. USCardiovascular Disease, 2006.21.Budev MM, Arroliga AC, Jennings CA. Diagnosis and evaluation of pulmonary hypertension.Cleve Clin J Med2003; 70:S9-S17.22.Frank H, Glob its S, Glogar D et al. Detection and quantification of pulmonary arteryhypertension with MR imaging: results in 23 patients. Am J Roentgenol1993; 161:27-31. 23.Paciocco G, Martinez FJ, Bossone E et al. Oxygen desaturation on the six-minute walk test andmortality in untreated primary pulmonary hypertension. Eur Respir J2001; 17:647-652. 24.Miyamoto S, Nagaya N, Satoh T et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med2000; 161:487-492.25.W ensel R, Opitz CF, Anker SD et al. Assessment of survival in patients with primary pulmonaryhypertension: importance of cardiopulmonary exercise testing. Circulation2002; 106:319-324.26.Ghio S, Gavazzi A, Campana C et al. Independent and additive prognostic value of rightventricular systolic function and pulmonary artery pressure in patients with chronic failure. J Am Coll Cardiol2001; 37:183-188.Author address: CM Schannwell, University Hospital Düsseldorf, Clinic of Cardiology, Pneumology and Angiology, 40225 Düsseldorf, Moorenstrasse 5, Germany.。