第五章物理化学习题-解
程兰征版物理化学习题解答
第五章 相平衡1、指出下面二组分平衡系统中的相数、独立组分数和自由度数。
(1)部分互溶的两个液相成平衡。
(2)部分互溶的两个溶液与其蒸气成平衡。
(3)气态氢和氧在25℃与其水溶液呈平衡。
(4)气态氢、氧和水在高温、有催化剂存在。
解:(1)C=2,φ=2,f=2-2+2=2(2)C=2,φ=3,f=2-3+2=1(3)C=3,φ=2,f=3-2+1=2(4)C=2,φ=1,f=2-1+2=32、固态NH 4HS 和任意量的H 2S 和NH 3相混合,并按下列反应达成平衡:NH 4HS (s )= H 2S(g)+NH 3(g)求(1)独立组分数(2)若将NH 4HS(s)放在抽真空的容器内,达到化学平衡后,独立组分数和自由度数各为若干?解:(1)C=3-1=2,f=2-2+2=2(2)C=3-1-1=1,f=1-2+2=13、右图为CO 2的平衡相图示意图。
是根据该图回答下列问题:(1)使CO 2在0℃时液化需要加多大压力?(2)把钢瓶中的液体CO 2项空气中喷出,大部分成为气体,一部分成为固体(干冰),温度下降到多少度,固体CO 2才能形成?(图略)(3)在空气中(101325Pa 下)温度为多少度可使固体CO 2不经液化而直接升华。
解:(1)3458kPa ;(2)-56.6℃;(3)-78.5℃4、固体CO 2的饱和蒸汽压在-103℃时等于,在-78.5℃时等于,求:(1)CO 2的升华热;(2)在-90℃时CO 2的饱和蒸汽压。
解:根据克-克方程(1))5.19411701(314.8H 10.226101.325ln m vap -∆=,解得m vap H ∆=25733(J ·mol -1) (2))5.19411831(314.825733p 101.325ln-=,解得p=(kPa)(书上答案少个0) 5、能否在容量的坩埚里熔化10kg 锡?已知锡的熔点为232℃,H fus ∆=g ,固体锡的密度为7.18g/cm 3,dT/dp=×10-5K/kPa 。
物理化学上册第五版天津大学出版社第五章化学平衡习题答案
物理化学上册第五版天津大学出版社第五章化学平衡习题答案5-1 在某恒定的温度和压力下,取mol n 10=的A (g )进行如下反应:)()(g B g A =若θθμμA B =,试证明,当反应进度mol 5.0=ξ时,系统的吉布斯函数G 值为最小,这时A ,B 间达到化学平衡。
证明:)()(g B g A =设开始时,A 的物质的量为0,A n ,B 的物质的量为0,B n ,而反应过程中A 、B 的物质的量分别为A n 与B n ,此时系统的吉布斯函数为ξμμd dG B B )(-=设反应从A 开始时mol n A 10=,当反应进度mol 5.0=ξ时,mol 5.0n n B A ==,mol nBB1=∑,p 5.0p p B A ==及θθμμA B =代入上式得)}ln ln (){( )}ln ()ln ({)(=-+-=+-+=-=ξμμξνμνμξμμθθθθd p RT p RT d p RT p RT d dG A B A B A A B B B B或 0,=⎪⎪⎭⎫⎝⎛∂∂-=pT G A ξ 这就证明了若θθμμA B =,反应进度mol 5.0=ξ时,系统的吉布斯函数G 值为最小,此时0,=⎪⎪⎭⎫⎝⎛∂∂-=pT G A ξ,A ,B 间达到化学平衡。
5-2 已知四氧化二氮的分解反应)(42g O N )(22g NO在298.15K 时,θmrG ∆175.4-⋅=mol kJ 。
试判断在此温度及下列条件下,反应进行的自发方向:(1))1000( ),100(242kPa NO kPa O N ;(2))100( ),1000(242kPa NO kPa O N ;(3))200( ),300(242kPa NO kPa O N 。
解:1454.0K ,9283.1)15.298314.8/(1075.4/ln 3=-=⨯⨯-=∆-=θθθRT G K m r(1)100100/100)100/1000(/)/(22422===θθp p p p J O N NO p , ,θK J p >反应向左; (2)1.0100/1000)100/100(/)/(22422===θθp p p p J O N NO p , ,θK J p <反应向右; (3)333.1100/300)100/200(/)/(22422===θθp p p p J O N NO p, ,θK J p >反应向左。
物理化学第五版课后习题答案解析
第五章 化学平衡5-1.在某恒定的温度和压力下,取n 0﹦1mol 的A (g )进行如下化学反应:A (g )B (g )若0B μ﹦0A μ,试证明,当反应进度﹦0.5mol 时,系统的吉布斯函数G 值为最小,这时A ,B 间达到化学平衡。
解: 设反应进度为变量A (g )B (g )t ﹦0 n A , 0﹦n 0 0 0﹦0t ﹦t 平 n A n B﹦BBn ν n B ﹦B,n A ﹦n 0-n B ﹦n 0-B,n ﹦n A +n B ﹦n 0气体的组成为:y A ﹦A n n ﹦00B n n νξ-﹦01n ξ-,y B ﹦B nn﹦0n ξ各气体的分压为:p A ﹦py A ﹦0(1)p n ξ-,p B ﹦py B ﹦p n ξ各气体的化学势与的关系为:0000ln ln (1)A A AA p p RT RT p p n ξμμμ=+=+- 0000lnln B B B B p p RT RT p p n ξμμμ=+=+⋅ 由 G =n AA+n BB=(n A 0A μ+n B 0B μ)+00ln(1)A p n RT p n ξ-+00ln B p n RT p n ξ⋅ =[n 0-A μ+0B μ]+n 00lnpRT p +00()ln(1)n RT n ξξ--+0ln RT n ξξ 因为 0B μ﹦0A μ,则G =n 0(0A μ+0lnpRT p )+00()ln(1)n RT n ξξ--+0ln RT n ξξ ,0()ln T p G RT n ξξξ∂=∂- 20,20()()T p n RT Gn ξξξ∂=-∂-<0 令 ,()0T p Gξ∂=∂011n ξξξξ==-- ﹦0.5 此时系统的G 值最小。
5-2.已知四氧化二氮的分解反应 N 2O 4 (g) 2 NO 2(g )在298.15 K 时,0r m G ∆=4.75kJ ·mol -1。
物理化学全程导学及习题全解89-110 第五章相平衡
第五章 相平衡本章知识要点与公式1.几个重要概念(1)相图:用图形来表示系统状态,如随温度、压力和浓度等改变而发生变化。
(2)相:系统中宏观上看起来化学组成、物理性质和化学性质完全均匀的部分,用符号Φ表示系统内相的数目。
(3)自由度:确定平衡系统的状态所需要的独立的强度变量数,用符号f 表示。
(4)相律:多相平衡系统中相数。
独立组分数与描述该平衡系统的变数之间的关系。
f +Φ =C +2是最普遍的形式,“2”表示外界条件只有温度和压力可以影响系统的平衡状态。
f *+ Φ=C + n 。
相律的一般式(5)凝聚系统:没有气相的系统。
此时,相律可写成 f *+Φ =C +1 (f *=f -1)。
f *为条件自由度。
(6)多相系统平衡的一般条件热平衡条件 T α=T β;压力平衡条件 p α=p β;相平衡条件 μαB =μβB(7)组分:足以确定平衡体系中所有各相组成所需的最少数目的独立物质数。
C =S -R -R ′C 为组分数,S 为物种数,R 为体系内各物种之间存在的独立化学平衡数目,R ′为浓度限制条件数。
2.单组分系统两相平衡 Clapeyron 方程 vap mvap md d p H T T V ∆=∆(气—液两相平衡) Clapeyron -Clausius 方程fus mfus md d p H T T V ∆=∆(液—固两相平衡) 3.重点掌握二组分系统相图(1)液液平衡系统(气液平衡系统) ①完全互溶的双液系统的T —x 图①部分互溶的双液系统的T —x 图①完全不互溶双液系统①固液系统①固相完全不互溶的T—x图(A)(B)图有简单低共熔混合物的系统(C)图生成稳定化合物的系统,由两个简单低共溶点的相图拼成(D)图生成不稳定化合物的系统①固相完全互溶的固液相图①固相部分互溶的T—x图(E)系统有一低共熔点(F)系统有一转熔点二组分体系相同的共同特征①所有的曲线都是两相平衡线,曲线上的点为相点①水平线为三相线,三个相点分别在水平线段的两端和交点上,三相线上f =0 ①围成单相固溶体的线段中不含三相水平线 ①两相平衡共存区所适用杠杆原则①相图中的垂直线段上的点表示单组分体系典型例题讲解例1指出下列各体系的独立组分数、相数和自由度数各为若干? ①NH 4Cl(s)部分分解为NH 3(g)和HCl(g) ①若在上述体系中额外再加入少量NH 3(g)①NH 4HS 和任意量的NH 3(g).H 2S(g)混合达到平衡 ①C (s )与CO(g),CO 2(g),O 2(g)在973K 时达到平衡 解:① NH 4Cl(s)= NH 3(g)+ HCl(g) 3111C S R R '=--=--=2Φ=(一个固相,一个气相) 21221f C Φ=-+=-+=①若在上述体系中额外加入少量NH 3(g),则浓度限制条件就没有了, 所以3102C S R R '=--=--=;2Φ=;2222f C Φ=-+=2-+= ①NH 4HS= NH 3(g)+ H 2S(g)3102C S R R '=--=--=; 2Φ=;2222f C Φ=-+=2-+=①系统存在4种物质,有4个化学平衡C(s)+1/2O 2(g)=CO(g) (a)CO(g)+ 1/2O 2(g)=CO 2(g) (b) C(s)+ O 2(g)= CO 2(g) (c) C(s)+ CO 2(g)= 2CO(g) (d) 但(a )+(b )=(c ),(a )-(b )=(d ),所以系统中只有2个独立的化学平衡关系式。
物理化学第五章相平衡练习题及答案
物理化学第五章相平衡练习题及答案第五章相平衡练习题⼀、判断题:1.在⼀个给定的系统中,物种数可以因分析问题的⾓度的不同⽽不同,但独⽴组分数就是⼀个确定的数。
2.单组分系统的物种数⼀定等于1。
3.⾃由度就就是可以独⽴变化的变量。
4.相图中的点都就是代表系统状态的点。
5.恒定压⼒下,根据相律得出某⼀系统的f = l,则该系统的温度就有⼀个唯⼀确定的值。
6.单组分系统的相图中两相平衡线都可以⽤克拉贝龙⽅程定量描述。
7.根据⼆元液系的p~x图可以准确地判断该系统的液相就是否就是理想液体混合物。
8.在相图中总可以利⽤杠杆规则计算两相平畅时两相的相对的量。
9.杠杆规则只适⽤于T~x图的两相平衡区。
10.对于⼆元互溶液系,通过精馏⽅法总可以得到两个纯组分。
11.⼆元液系中,若A组分对拉乌尔定律产⽣正偏差,那么B组分必定对拉乌尔定律产⽣负偏差。
12.恒沸物的组成不变。
13.若A、B两液体完全不互溶,那么当有B存在时,A的蒸⽓压与系统中A的摩尔分数成正⽐。
14.在简单低共熔物的相图中,三相线上的任何⼀个系统点的液相组成都相同。
15.三组分系统最多同时存在5个相。
⼆、单选题:1.H2O、K+、Na+、Cl- 、I- 体系的组分数就是:(A) K = 3 ; (B) K = 5 ; (C) K = 4 ; (D) K = 2 。
2.克劳修斯-克拉伯龙⽅程导出中,忽略了液态体积。
此⽅程使⽤时,对体系所处的温度要求:(A) ⼤于临界温度; (B) 在三相点与沸点之间;(C) 在三相点与临界温度之间; (D) ⼩于沸点温度。
3.单组分固-液两相平衡的p~T曲线如图所⽰,则:(A) V m(l) = V m(s) ; (B) V m(l)>V m(s) ;(C) V m(l)<V m(s) ; (D) ⽆法确定。
4.蒸汽冷凝为液体时所放出的潜热,可⽤来:(A) 可使体系对环境做有⽤功; (B) 可使环境对体系做有⽤功;(C) 不能做有⽤功; (D) 不能判定。
第五,六章课后物理化学练习题答案
第五章课后习题答案一.思考题答案1.相数为1,自由度为0时2.Vm T Hm dt dp ∆∆= OC 斜率 dt /dt T>0 凝固放热∆Hm<0水 OC 斜率为负 ∆Vm>0 膨胀二氧化碳 OC 斜率为正 ∆Vm<0 收缩3.可用拉乌尔定律计算得出4.有气体的二相平衡的单组分系统L —S5.二项共存 L —g 、L —L 区域6.(1)同:用于热敏物质蒸馏,以降低沸点为目的异:原理不同(2)是否与水反应或与水互溶7.较小偏差 纯A 和纯B较大偏差 恒沸物质及某一纯组分A 或B 取决于系统组成与恒沸组成关系8.变为三组分由系统性质决定,为某温度(压力)下定值二.选择题答案1.③ 3ma x ,3121'=ΦΦ-=Φ-+=+Φ-=K f2.① ',2RR S K K f --=+Φ-=1,2,1,1',1,3==Φ====f K R R S3.④ 65kpa< P 三相 S 相区 气相区4.③ P = PA* + PB*5.① dp/dt 斜率6.② 大于恒沸组成右半边相图B恒沸物7.③ 汽液不分8.① 3,2,0',1'=Φ==+Φ-=K f K f三.计算题答案1.解:(1)Φ=2 液相.气相S=3 NaCl.KCl.H2OR=0 R'=0K=S-R-R'=3 f=K-Φ+2=3-2+2=3(2)Φ=3 固相固相液相S=2 (NH4)2SO4(S) H2O(S)R=0 R'=0K=S-R-R'=2 f=K-Φ+1=0(3)Φ=2 固相气相S=3 NH4Cl(S) NH3(g) HCl(g)R=1 R'=1K=S-R-R'=1 f=K-Φ+2=1(4)Φ=2 固相气相S=3 NH4Cl(S) NH3(g) HCl(g)R=1 R'=0K=S-R-R'=2 f=K-Φ+2=22.解:dT/dT =T△V/△H△V=△H×(1/T)×(dT/dt)=11.66×[1/(273.15+16.6)]×(2.39×10-4/1000)=9.618×10-8m33.解:(1)因为在343K以下,乙酰乙酸乙酯稳定,所以有LnP=-5959/T+24.65=-5959/343+24.65解得:P=1446Pa所以应控制生产压力在1446Pa以下。
物理化学课后解答第五章
第五章习题及答案*1. (1) 比较、总结零级、一级和二级反应的动力学特征,并用列表形式表示。
(2) 某二级反应的反应物起始浓度为0.4×103mol · m -3。
该反应在80分钟内完成30%,计算其反应速率常数及完成反应的80%所需的时间。
(答案: k = 1.339×10-5 m 3•mol -1•min -1,t =746.8min)2. 已知A 、B 两个反应的频率因子相同,活化能之差:E A -E B =16.628 kJ ·mol -1。
求:(1) 1000K 时, 反应的速率常数之比k A /k B =? 1500K 时反应的速率常数之比k A /k B 有何变化?(答案: k A /k B, 1000=0.1353, k A /k B, 1500=0.2635 )3. 某电炉冶炼1Cr18Ni9 不锈钢, 试验中每两分钟取样一次,碳的质量分数的分析结果如下表所示。
t /min 0 2 4 6 8 10 12 14 w [C] 1.6% 1.25% 1.04% 0.78% 0.52% 0.30% 0.23% 0.16%要求:(1) 根据碳含量变化,绘出w [C]~t 及lg w [C]~t 图。
分析在w [C]≈0.2%附近,反应的表观级数有何变化。
如果以w [C]=0.2%为界,将脱碳过程分为两个阶段,问两个阶段的表观级数n 1、n 2和表观速率常数k 1、k 2各为多少?(2) 已知当w [C]<0.2%以后, 温度与时间成线性关系,可以写为3/k dt dT =,k 3仅为吹氧速率的函数。
试推导w [C]随温度变化的微分式及其积分式。
(3) 如果k 2/k 3=8.7×10-3K -1,又知同样的吹炼条件下,有如下原始数据:吹炼起始温度为1600o C ,起始钢液成分:w [C]=1.41%,w [Si]=0.44%,w [Cr]=19.38%, w [Ni]=10.60%。
物理化学第5章课后答案傅献彩_第五版
第五章相平衡1.As,DCs)分解的反应方程为AgRG—2Ag3) +寺。
S 当用A&O(s)进行分無达平衡时•系统的组分数、自由度数和可能平衡共存的最大相数各为多少?解:S=3, C=S~R=2(P—3»f~ C+2—^P=l/=0时4最大为4-2.搭出如下各系统的组分数、相数和自曲度数各为多少?{l)NH+CKs)在抽空容器中,部分分解为NH^Cgi.HCKg)达平衡:(2)NH1CKs)在含有一定量NHME的容器中,部分分解为NH J(g)T HCl(gJ达平衡;(3)NH<HS(5)与任竜量的NH,(g}和比虫g)混合,达分解平衡;(4)在900K 时CX叮与CO(g)1CO z(g)(G达平翫解:NHKHNH* (g) + HCKg)门)呂=3* C=S-R-R, {R=l f R f = r) [NHi]=[HCl]-C=1T贞=2, /=C—^+2 = 1(2)S=3, C=S-R-R"=2 f=C~^-\~2=2(3)S=3, C=S-'K-/?>=3-l~0=2t^=2同2)C<s)+yQ(g)—CO(g)①(4)9D0K 时’CCXg)+(^ (g)—Ct> (g) ②CW(◎中[CO]的慑不定龙=0、C=S-R-R f = 4-2-0=2^=2 厂=C+d_gL玉在制水煤气的过稈中,有五种物质,C(s)T CX)(g),COt(g},a(g)和H2(.)(g)建立如下三牛平衡,试求该系统的独立组分数.C(s> + H; 0(g)^=H2(g)4-CO(g) (1>COt(g) + H? H E 0( fi) +CO(g) (2)C02(g)+C(s>—2CO(g> <3)解:建立3个平衡,(3)式可由⑴十⑵得到5=5C=^S-R-R'=3t二已知2心為(打和压。
⑴可以生成如下三种水合物:N的CQ - H s O(s),Na s CCX・7H;O(s)和Na a C(.l * 10H2O(S)试求门)在大气压下•与Na^COj水溶液和冰平衡共存的忒合盐的最大值;(2)在时,与水蒸气平衡共存的水合盐的最大值.解:(1〉S=5t R=3t R^O C=S-R~R f^=2每生咸一种含水盐*R增加1.S增加1:匚、值不变.在P•下屮=0+1-①r =0时血绘大为3.已知有Na’EQ水陪揪和H2O(3)两相•则还能生成一种含水盐.(2)同样地T/* =c+i-0 e毘大为3故还可最多有两种含水盐主成-5.在不同温度下•测得Ag2O(s)分解时氧气的分压如下:T/K 401 417 443 463 486p(CQ)/kPa 10 20 51 101 203试问(1)分别于413K和423K时,在空气中加热银粉,是否有Ag2O(s)生成?(2)如何才能使Ag2O(s)加热到443K时而不分解?△ 1解:⑴ Ag2O(s)^=^2Ag(s)4—|-Oz(g)空气中Oz 的分压为0. 21X/>。
物理化学核心教材第三版课后答案沈文霞第五章
物理化学核心教材第三版课后答案沈文霞第五章一、单选题1.物理变化、化学变化是生活中的常见现象,下列属于化学变化的是() [单选题] *A.气球爆炸B.菜刀生锈(正确答案)C.水蒸发D.玻璃破碎答案解析:A、气球爆炸只是形状的变化,无新物质生成,属于物理变化;B、菜刀生锈有铁锈等新物质生成,属于化学变化;C、水蒸发,只是状态发生了改变,无新物质生成,属于物理变化;D、玻璃破碎,只是形状发生了改变,无新物质生成,属于物理变化。
故选B。
2.“水是生命之源,氧气是生命之气”。
氧气的下列性质中,属于化学性质的是() [单选题] *A.能支持燃烧(正确答案)B.不易溶于水C.密度比空气略大D.无色气体答案解析:物质在化学变化中表现出来的性质叫化学性质,如可燃性、助燃性、氧化性、还原性、酸碱性、稳定性等;物质不需要发生化学变化就表现出来的性质,叫物理性质:物理性质经常表现为:颜色、状态、气味、密度、硬度、熔点、沸点、导电性、导热性、溶解性、挥发性、吸附性、延展性等。
A、能支持物质的燃烧,属于助燃性,需要化学变化体现,属于化学性质;B、不易溶于水,属于溶解性,不需要化学变化体现,属于物理性质;C、密度比空气大,属于密度,不需要化学变化体现,属于物理性质;D、无色气体属于颜色、状态,不需要化学变化体现,属于物理性质。
故选:A。
3.下列生产工艺中,没有化学变化发生的是() [单选题] *A.“五粮”酿酒B.纺纱织布(正确答案)C.高炉炼铁D.联合制碱答案解析:A、酿酒生成了酒精,有新物质生成,属于化学变化;B、纺纱织布没有生成新物质,属于物理变化;C、高炉炼铁有新物质铁生成,属于化学变化;D、联合制碱生成了新物质碳酸钠,属于化学变化。
故选B。
4.下列判断错误的是() [单选题] *A.NaOH固体有吸水性——物理性质B.NaOH固体为白色片状——物理性质C.NaOH固体溶于水得到的溶液对皮肤有腐蚀性——物理性质(正确答案) D.NaOH固体放在空气中易变质——化学性质答案解析:A、NaOH固体有吸水性,不需要通过化学变化就表现出来的性质,属于物理性质,说法正确;B、NaOH固体为白色片状,不需要通过化学变化就表现出来的性质,属于物理性质,说法正确;C、腐蚀性属于属于化学性质,说法错误;D、NaOH固体放在空气中易变质,氢氧化钠与空气中二氧化碳需要通过化学变化表现出来的性质,属于化学性质,说法正确。
物理化学核心教程第二版(沈文霞)课后习题答案5-8
第五章 化学平衡一.基本要求1.掌握化学反应等温式的各种形式,并会用来判断反应的方向和限度。
2.了解标准平衡常数的定义,掌握标准平衡常数的各种表示形式和计算方法。
3.掌握标准平衡常数K 与r m G ∆在数值上的联系,熟练用热力学方法计算r m G ∆,从而获得标准平衡常数的数值。
4.了解标准摩尔生成Gibbs 自由能f m G ∆的定义和它的应用。
5.掌握温度对化学平衡的影响,记住van ’t Hoff 公式及其应用。
6.了解压力和惰性气体对化学平衡的影响。
二.把握学习要点的建议把本章放在多组分系统之后的目的,就是要利用多组分系统中介绍的化学势的概念和各种表示方式,来导出化学反应等温式,从而用来判断化学反应的方向与限度。
本章又用到了反应进度的概念,不过其值处在0 1 mol -的区间之内。
因为在利用化学势的表示式来计算反应的Gibbs 自由能的变化值时,是将化学势看作为一个定值,也就是在有限的反应系统中,化学进度为d ξ,如果在一个很大的系统中, 1 mol ξ=。
严格讲,标准平衡常数应该用绝对活度来定义,由于本教材没有介绍绝对活度的概念,所以利用标准态化学势来对标准平衡常数下定义,其含义是一样的。
从标准平衡常数的定义式可知,标准平衡常数与标准化学势一样,都仅是温度的函数,因为压力已指定为标准压力。
对于液相反应系统,标准平衡常数有其相应的形式。
对于复相化学反应,因为纯的凝聚态物质本身就作为标准态,它的化学势就是标准态化学势,已经归入r m G ∆中,所以在计算标准平衡常数时,只与气体物质的压力有关。
学习化学平衡的主要目的是如何判断反应的方向和限度,知道如何计算平衡常数,了解温度、压力和惰性气体对平衡的影响,能找到一个经济合理的反应条件,为科研和工业生产服务。
而不要过多地去考虑各种浓度表示式和各种平衡常数表示式之间的换算,否则会把自己搞糊涂了,反而没抓住主要内容。
由于标准平衡常数与r m G ∆在数值上有联系,r m ln p G RT K ∆=-,所以有了r m G ∆的值,就可以计算p K 的值。
物理化学答案——第五章-相平衡[1]
第五章 相平衡一、基本公式和内容提要基本公式1. 克劳修斯—克拉贝龙方程m mH dp dT T V ∆=∆相相(克拉贝龙方程,适用于任何纯物质的两相平衡) 2ln m H d p dT RT∆=相(克劳修斯—克拉贝龙方程,适用与其中一相为气相,且服从理想气体状态方程的两相间平衡)2.特鲁顿(Trouton)规则1188vap mvap m bH S J mol k T --∆=∆≈⋅⋅(T b 为该液体的正常沸点)3.相律 f+Φ=C+n C=S-R-R ′f+Φ=C+2 (最普遍形式)f* +Φ=C+1 (若温度和压力有一个固定,f * 称为“条件自由度”)*4. Ehrenfest 方程2112()p p C C dp dT TV αα-=-(C p ,α为各相的恒压热容,膨胀系数) 基本概念1. 相:体系中物理性质和化学性质完全均匀的部分,用Φ表示。
相的数目叫相数。
2. 独立组分数C =S -R -R ′,S 为物种数,R 为独立化学反应计量式数目,R ′ 为同一相中独立的浓度限制条件数。
3. 自由度:指相平衡体系中相数保持不变时,所具有独立可变的强度变量数,用字母 f 表示。
单组分体系相图相图是用几何图形来描述多相平衡系统宏观状态与 T 、p 、X B (组成)的关系。
单组分体系,因 C =1 ,故相律表达式为 f =3-Φ。
显然 f 最小为零,Φ 最多应为 3 ,因相数最少为 1 ,故自由度数最多为 2 。
在单组分相图中,(如图5-1,水的相图)有单相的面、两相平衡线和三相平衡的点,自由度分别为 f =2、f =1、f =0。
两相平衡线的斜率可由克拉贝龙方程求得。
图5-1二组分体系相图根据相律表达式f=C-Φ+2=4-Φ,可知f最小为零,则Φ最多为 4 ,而相数最少为 1 ,故自由度最多为 3 。
为能在平面上显示二组分系统的状态,往往固定温度或压力,绘制压力-组成(p-x、y)图或温度-组成(T-x、y)图,故此时相律表达式为f*=3-Φ,自然f*最小为 0 ,Φ最多为 3,所以在二组分平面图上最多出现三相共存。
物理化学第五版课后习题答案解析
第五章 化学平衡5-1.在某恒定的温度和压力下,取n 0﹦1mol 的A (g )进行如下化学反应:A (g )垐?噲? B (g ) 若0B μ﹦0A μ,试证明,当反应进度﹦时,系统的吉布斯函数G 值为最小,这时A ,B 间达到化学平衡。
解: 设反应进度为变量A (g )垐?噲?B (g )t ﹦0 n A , 0﹦n 0 0 0﹦0 t ﹦t 平 n A n B ﹦BBn ν n B ﹦B ,n A ﹦n 0-n B ﹦n 0-B ,n ﹦n A +n B ﹦n 0气体的组成为:y A ﹦A n n ﹦00B n n νξ-﹦01n ξ-,y B ﹦B nn﹦0n ξ各气体的分压为:p A ﹦py A ﹦0(1)p n ξ-,p B ﹦py B ﹦p n ξ各气体的化学势与的关系为:0000ln ln (1)A A AA p p RT RT p p n ξμμμ=+=+- 0000lnln B B B B p p RT RT p p n ξμμμ=+=+⋅ 由 G =n AA +n BB =(n A 0A μ+n B 0B μ)+00ln(1)A p n RT p n ξ-+00ln B p n RT p n ξ⋅ =[n 0-0A μ+0B μ]+n 00lnpRT p +00()ln(1)n RT n ξξ--+0ln RT n ξξ 因为 0B μ﹦0A μ,则G =n 0(0A μ+0lnpRT p)+00()ln(1)n RT n ξξ--+0ln RT n ξξ ,0()ln T p G RT n ξξξ∂=∂- 20,20()()T p n RT Gn ξξξ∂=-∂-<0 令 ,()0T p Gξ∂=∂011n ξξξξ==-- ﹦ 此时系统的G 值最小。
5-2.已知四氧化二氮的分解反应 N 2O 4 (g )垐?噲? 2 NO 2(g )在 K 时,0r m G ∆=·mol -1。
物理化学课后习题答案(全)
6. 1mol N2 在 0℃时体积为 70.3cm3,计算其压力,并与实验值 40.5 MPa 比较: (1) 用理想气体状态方程; (2) 用范德华方程; (3) 用压
缩因子图。
解:(1) p = RT Vm
=
⎜⎛ ⎝
8.3145× 273.15 70.3 ×10 −6
⎟⎞ ⎠
Pa
=
32.3 ×10 6
=
−
1 1672
=
−0.06 %
(3) 1 g 水蒸气的体积
V
=
nRT
=
⎡ ⎢ ⎢
1 18.02
×
8.3145
×
(100
+
273.15)
⎤ ⎥ ⎥
m
3
p⎢
101325
⎥
⎢⎣
⎥⎦
= 1.699 ×10−3 m 3 = 1699cm3
[ ] W = − 101325 × (1699 − 1.044) × 10−6 × 18.02 J
及 101325Pa 时 1g 水的体积为 1.044cm3,1 g 水蒸气的体积为 1673cm3。
(1) 试求此过程的功; (2) 假定略去液态水的体积,试求结果的百分误
差; (3) 假定把水蒸气当作理想气体,试求结果的百分误差; (4) 根
据(2)、(3)的假定,证明恒温下若外压等于液体的饱和蒸气压,则物质
Pa
=
32.3
MPa
(2) 由表 1–6 查得, a = 0.141 Pa ⋅ m6 ⋅ mol−2 ,
b = 0.0391 × 10−3 m3 ⋅ mol −1 ,则
p = RT − a Vm − b Vm2
物理化学习题答案第六版
物理化学习题答案第六版物理化学习题答案第六版是一本非常重要的参考书籍,它包含了许多物理化学领域的经典习题和答案。
通过学习这本书,我们能够更好地理解物理化学的概念和原理,并提高解决问题的能力。
在这篇文章中,我将分享一些我在学习中遇到的一些习题以及对应的答案,希望能够对大家的学习有所帮助。
第一章:热力学1. 对于一个理想气体,当它的体积减小一半时,温度保持不变。
求气体的绝热指数γ。
答案:根据理想气体状态方程PV = nRT,当体积减小一半时,压强翻倍。
根据绝热过程的关系式PV^γ = 常数,代入压强翻倍的条件,可得γ = 1.4。
第二章:量子力学1. 一个质量为m的自由粒子,处于势能为V(x) = 0的无限深势阱中,求其能量本征值和能量本征函数。
答案:根据量子力学的基本原理,能量本征值由Schrödinger方程确定。
在无限深势阱中,Schrödinger方程为-d^2ψ/dx^2 = Eψ,其中E为能量本征值,ψ为能量本征函数。
根据边界条件,能量本征值为En = (n^2π^2ħ^2)/(2mL^2),能量本征函数为ψn(x) = √(2/L)sin(nπx/L),其中L为势阱的宽度。
第三章:化学动力学1. 对于一个一级反应,当初始浓度为C0时,经过时间t后浓度降低到C。
求反应速率常数k。
答案:一级反应的反应速率方程为-dC/dt = kC,其中k为反应速率常数。
将反应速率方程积分得到ln(C/C0) = -kt,整理后可得k = -ln(C/C0)/t。
第四章:电化学1. 在电解质溶液中,当施加电压U时,溶液中的电流I为多少?答案:根据欧姆定律,电流I等于电压U除以电阻R。
所以,I = U/R。
第五章:光化学1. 在光化学反应中,光子与分子碰撞后发生电子跃迁,从而产生化学反应。
请问光子的能量与波长之间的关系是什么?答案:光子的能量E与波长λ之间的关系由普朗克公式确定,即E = hc/λ,其中h为普朗克常数,c为光速。
物理化学习题解答(周鲁第三版)
第一章1-1 10mol 理想气体从Pa 1000.26⨯,3dm 00.1等容降温使压力降到Pa 1000.25⨯,在等压膨胀到3dm 0.10,求整个过程的U Q W ∆,,和H ∆。
解:理想气体 nRT pV = 314.8101000.11000.236111⨯⨯⨯⨯==-nR V p T 314.8101000.11000.235222⨯⨯⨯⨯==-nR V p T 314.8101000.101000.235333⨯⨯⨯⨯==-nR V p T得出31T T =理想气体 ()J 013,=-=∆T T nC U m V ()J 013,=-=∆T T nC H m p 等容过程J 01=W等压过程()J 18001000.1100.101000.23352-=⨯-⨯⨯⨯-=∆-=--V p W 外J 180021-=+=W W W J 1800=-∆=W U Q1-2 1mol 理想气体从25 K ,Pa 1000.15⨯经等容过程和等压过程分别升温到100K ,此气体的1,K J 10.29-⋅=m p C ,求过程的容降温使压力降到Pa 1000.25⨯,在等压膨胀到3dm 0.10,求整个过程的U Q W ∆,,和H ∆。
解:等容过程R C C m V m p =-,, 11,,m o lK J 786.20314.818.29--⋅⋅=-=-=R C C m p m V ()()J 95.155825100786.20112,=-⨯⨯=-=∆T T nC U m V()()J 5.21822510010.29112,=-⨯⨯=-=∆T T nC H m p等容过程J 0=W J 95.1558=∆=U Q等压过程J 95.1558=∆U J 5.2182=∆H J 5.2182=∆=H Q p J 55.6235.218295.1558-=-=-∆=Q U W 1-3 2mol 理想气体由从25℃,Pa 1000.16⨯膨胀到25℃,Pa 1000.15⨯,设过程为(1)自由膨胀;(2)反应恒定外压Pa 1000.15⨯等温膨胀;(3)等温可逆膨胀。
物理化学1-5章习题解
第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章物理化学习题及答案1、已知四氧化二氮的分解反应在298.15 K 时,175.4-Θ⋅=∆mol kJ G m r 。
试判断在此温度及下列条件下,反应进行的方向。
(1) N 2O 4(100 kPa), NO 2(1000 kPa); (2) N 2O 4(1000 kPa), NO 2(100 kPa); (3) N 2O 4(300 kPa), NO 2(200 kPa); 解: 由J p 进行判断1472.0)]15.298314.8/(1075.4exp[)/exp(3=⨯⨯-=∆-=ΘΘRT G K m r()()ΘΘ=pO N p p NO p J p /]/[42222、Ag 可能受到H 2S (气)的腐蚀而发生如下反应: )()()(2)(222g H s S Ag s Ag g S H +⇔+今在298K 、100kPa 下,将Ag 放在等体积的H 2和H 2S 组成的混合气体中。
试问(1)Ag 是否可能发生腐蚀而生成Ag 2S ? (2)在混合气体中,H 2S 的百分数低于多少才不致发生腐蚀? 已知298K 时,Ag 2S 和H 2S 的标准生成吉布斯函数分别为–40.25和–32.93kJ /mol 。
解:(1)判断Ag 能否被腐蚀而生成Ag 2S ,就是判断在给定的条件下,所给的反应能否自发进行。
可以计算∆r G m 值,由∆r G m 的正、负来判断, 也可以计算反应的平衡常数K Θ,再比较K Θ与J p 的大小来判断。
用∆r G m 判断: ∆r G m = ∆r G Θ m +RT ln J p Jp 为指定条件下的压力商,其值为222222H H H H SH S H S1p p x p x J p x px ====其中摩尔分数之比等于体积百分数之比。
此时 ∆r G m = ∆r G Θm = ∆f G Θ(Ag 2S,s) – ∆f G Θ(H 2S,g) = (– 40.25 + 32.93) kJ/mol = – 7.32 kJ/mol∆r G m <0,故在该条件下,Ag 能被腐蚀而生成Ag 2S 比较K Θ和J p 的大小判断:∆r G Θm = –RT ln K Θ = ∆f G Θ(Ag 2S,s) - ∆f G Θ(H 2S,g) 则 ln K Θ =(– 40.25+32.93)×10-3/( – 8.315×298.2) = 2.953 K Θ= 19.15 而 J p =1∴ K Θ >J p , ∆r G m <0,正向反应自发,即Ag 能被腐蚀而生成Ag 2S 。
以上两种判断方法实际上都是利用化学等温式来判断化学变化的方向,这是根本原则。
但在处理具体问题时,可以根据 所给的条件,选择容易计算的量来判断 。
(2)若使Ag 不致被腐蚀,应使∆r G m ≥0,即J p ≥K Θ设此时H 2S 的 体积百分数为x ,则H 2的百分数为1–x 。
则 J p = ( 1–x )/ xJ p ≥ K Θ ,即 (1–x / x ) ≥ 19.15 解得 x ≤4.96%即在混合气体中,H 2S 的百分数低于4.96%时,才不致发生腐蚀。
3、 在288K 将适量CO 2(g )引入某容器测得其压力为0.0259p ө,若再在此容器中加入过量)(24s COONH NH ,平衡后测得系统总压为0.0639p ө,求 (1)288K 时反应)()(2)(2324g CO g NH s COONH NH +⇔的ΘK 。
(2)288K 时上述反应的Θ∆m r G 。
(3分) (1))()(2)(2324g CO g NH s COONH NH +⇔开始 0.0259p ө平衡 2p 0.0259p ө+ p 平衡时总压ΘΘΘ=⇒=+=p p p p p p 01267.00639.030259.0总5321048.2)(32-ΘΘ⨯==p p p K NHCO(2)ln 25.39/r m G RT K kJ mol ΘΘ∆=-=4、将一个容积为1.0547dm3的石英容器抽空,在温度为297.0K 时导入一氧化氮直到压力为24136Pa 。
然后再引入0.07040g 溴,并升温到323.7K 。
达到平衡时压力为30823Pa 。
求323.7K 时反应)()(2)(22g Br g NO g NOBr +⇔的KΘ。
(容器的热膨胀可忽略不计)。
解:323.7K 时NO 和Br 2的原始分压分别为0()24136(323.7297.0)26306p NO Pa Pa =⨯=02222()()/()()11241n Br RT RTm Br M Br p Br PaV V ===若NOBr 平衡时的分压为x ,则)()(2)(22g Br g NO g NOBr +⇔原始 0 26306Pa 11241Pa平衡 x (26306-x)Pa (11241-0.5x)Pa 总压5、已知298.15K ,CO (g )和CH 3OH (g )的标准摩尔生成焓Θ∆m f H 分别为-110.52及-200.7 KJ·mol -1。
CO (g )、H 2(g )、CH 3OH (g )的标准摩尔熵Θm S 分别为197.67,130.68及239.4111--⋅⋅mol K J ,试根据上述数据求298.15K 时反应 CO (g )+2 H 2(g )== CH 3OH (g )的Θ∆m r G及ΘK 。
解:118.90-ΘΘ⋅-=∆=∆∑mol kJ H H m f BB mr ν 1(2630611241)30823213448p x x x Pa Pax Pa=+-+-=⇒=Bνeq 2B 2Θ2B p ()()K 0.04129p ()p NO p Br p NOBr p ΘΘ⎛⎫=∏== ⎪⎝⎭1162.219--ΘΘ⋅⋅-==∆∑mol K J S S m BB m r ν124700-ΘΘΘ⋅-=∆-∆=∆mol J S T H G m r m r m r41013.2⨯==Θ∆-ΘRTG m r eK6、用丁烯脱氢制丁二烯的反应如下:32222()()()CH CH CH g CH CHCH CH g H g →==+反应过程中通入水蒸气,丁烯与水蒸气的摩尔比为1:15,操作压力为52.010Pa ⨯。
已知298.15K 下数据:(1)计算298.15K 时反应的r m H θ∆、r m S θ∆和r m G θ∆。
(2)问在什么温度下丁烯的平衡转化率为40%。
假设反应热效应和过程熵变不随温度变化,气体视为理想气体。
(设丁烯初始物质的量为1mol )解:(1)2()()()r m f m f m f m G G B G H G A θθθθ∆=∆+∆-∆1150.67071.2979.38k J m o l -=+-=⋅2()()()r m f m f m f m H H B H H H Aθθθθ∆=∆+∆-∆ 1110.160(0.13)110.29k J m o l -=+--=⋅()r m r m r mS H G T θθθ∆=∆-∆11(11029079380)298.15103.7J mol K --=-=⋅⋅ (2) 32222()()()C H C H CH g C H C H C H C Hg H g →==+ 2H Ot=0 1mol 0 mol 0 mol 15mol t (1-x) mol x mol x mol 15mol 总物质的量 (16+x) mol2220.4()2(160.4)16()0.0325110.4116160.4x px K x p x θθ++∴=⋅=⨯=--++总ln r m r m r mG RT K H T S θθθθ''∆=-=∆-∆ ()ln r mrmT H SR K θθθ'=∆∆-110290(103.78.314l n 0.0325)834K =-=7(1)、求298.15K ,θP 下反应 SO 2(g) +2O 2(g) = SO 3(g)的θK ;(2)、设θm r H ∆,θm r S ∆不随温度变化,反应物按反应计量系数比进料,在什么温度下,SO 2的平衡转化率可以达到80%?解:①. 11(395.2)(296.1)099.1kJ mol 2r mH θ-∆=----⨯=-⋅ -11256.2248.5205.0394.82J K 2r m S θ∆=--⨯=-⋅183.70-ΘΘΘ⋅-=∆-∆=∆mol kJ S T H G m r m r m r121056.2)/exp(⨯=∆-=ΘΘRT G K m r②. SO 2(g) + 1/2O 2(g) = SO 3(g) t =0时 mol 1 0.5 0t =∞时 mol 1-α 0.5-1/2α α n 总=1.5-1/2α121211.52()10.5.051.5 1.522P x P K K Pθθαααααα-⎛⎫ ⎪ ⎪ ⎪-⎝⎭==⎛⎫⎛⎫ ⎪⎪-- ⎪⎪ ⎪⎪--⎝⎭⎝⎭11221122(3)0.8 2.213.27(1)(1)0.20.2αααα-⨯===--⨯99100852ln 94.828.314ln13.27r m r m H T K S R K θθθ∆-===∆---⨯8、 五氯化磷分解反应在200 °C 时的,计算:(1)200 °C ,200 kPa 下PCl 5的解离度。
(2)摩尔比为1:5的PCl 5与Cl 2的混合物,在200 °C ,101.325 kPa 下,求 达到化学平衡 时PCl 5的解离度。
解:(1)设200 °C ,200 kPa 下五氯化磷的 解离度为a ,则)()()(235g Cl g PCl g PCl +⇔原始 1 0 0平衡 1-α α α m o ln B )1(α+=∑ 平衡时分压p αα+-11 p αα+1 p αα+1 312.01]/)([]/)(][/)([)/(22523=-==∏=ΘΘΘΘΘΘppp PCl p p Cl p p PCl p p p K Beq BBααν得α=36.7%(2)设开始时五氯化磷的物质的量为1,解离度为a ,则)()()(235g Cl g PCl g PCl +⇔ 原始 1 0 5平衡 1-α α 5+α m o ln B )6(α+=∑ 平衡时分压p αα+-61 p αα+6 p αα++65 312.0)6)(1()5(]/)([]/)(][/)([)/(523=+-+==∏=ΘΘΘΘΘΘp pp PCl p p Cl p p PCl p p p K Beq BB ααααν将各数据代入,则9、反应)g (S H )g (NH )s (HS NH 234+⇔的△rHm (298K)=93.72 KJ.mol -1 ,设△rHm 为常数,当置)s (HS NH 4于一真空容器中,在298K 下测得容器内的平衡压力为90KPa 。