大学高等数学(微积分)下期末考试卷(含答案)

合集下载

大一下学期高数期末试题及答案

大一下学期高数期末试题及答案

大一下学期高数期末试题及答案一、选择题(每题2分,共10分)1. 极限的定义中,ε的值可以是()。

A. 任意正整数B. 任意正实数C. 固定正整数D. 只有12. 若函数f(x)在点x=a处连续,则以下哪项正确?()A. f(a)为f(x)在x=a处的极限值B. f(a)等于f(x)在x=a处的左极限值C. f(a)等于f(x)在x=a处的右极限值D. 所有上述选项都正确3. 以下级数中,收敛的是()。

A. 1 + 1/2 + 1/3 + 1/4 + ...B. (1 + 1/2) + (1/3 + 1/4) + (1/5 + 1/6) + ...C. 1 - 1/2 + 1/3 - 1/4 + 1/5 - ...D. 1 + 1/√2 + 1/√3 + 1/√4 + ...4. 函数y = x^2的导数为()。

A. 2xB. x^2C. 1/xD. -2x5. 微分方程dy/dx = x^2, y(0) = 0的解为()。

A. y = x^3B. y = -x^3C. y = 1/xD. y = -1/x二、填空题(每题2分,共10分)6. 极限lim(x→0) (sin(x)/x) = _______。

7. 函数f(x) = x^3 - 6x^2 + 11x - 6的单调递增区间为 _______。

8. 定积分∫(0→2) x^2 dx = _______。

9. 曲线y = x^3在点x=1处的切线斜率为 _______。

10. 微分方程d/dx(y^2) = 2xy,y(0) = 0的通解为 y = _______。

三、计算题(每题10分,共30分)11. 求函数f(x) = 2x^3 - 3x^2 - 12x + 5从x=-1到x=3的定积分值。

12. 求函数g(x) = e^(2x)的导数,并计算在区间[0,1]上的定积分值。

13. 求由曲线y = x^2, y = 2x - 1, x = 0所围成的面积。

大学高数期末试题及答案

大学高数期末试题及答案

大学高数期末试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = xD. f(x) = sin(x)答案:C2. 函数f(x) = 2x + 1在x=2处的导数是:A. 3B. 4C. 5D. 6答案:B3. 曲线y = x^2 + 1在点(1, 2)处的切线斜率是:A. 0B. 1C. 2D. 3答案:C4. 定积分∫(0到1) x dx的值是:A. 0.5B. 1C. 2D. 3答案:A二、填空题(每题5分,共20分)1. 极限lim(x→0) (sin(x)/x)的值是______。

答案:12. 函数y = ln(x)的不定积分是______。

答案:xln(x) - x + C3. 微分方程dy/dx + y = e^(-x)的通解是______。

答案:y = -e^(-x) + Ce^(-x)4. 函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是______。

答案:x = 1, x = 2三、解答题(每题15分,共30分)1. 求函数f(x) = x^2 - 4x + 3的极值。

答案:函数f(x)的导数为f'(x) = 2x - 4。

令f'(x) = 0,解得x = 2。

将x = 2代入原函数,得到f(2) = 3,这是函数的极小值。

2. 计算定积分∫(0到π) sin(x) dx。

答案:根据定积分的性质,∫(0到π) sin(x) dx = [-cos(x)](0到π) = -cos(π) + cos(0) = 2。

四、证明题(每题15分,共15分)1. 证明函数f(x) = x^3在R上是连续的。

答案:对于任意实数x,有f(x) = x^3。

因为多项式函数在其定义域内处处连续,所以f(x) = x^3在R上是连续的。

高等数学下期末试题七套附答案

高等数学下期末试题七套附答案

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程xyz =(1,0,1)-处的dz =( ) A.dx dy +B.dx +D.dx(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin)()yLxy x dx x e dy++-⎰,其中L为摆线sin1cosx t ty t=-⎧⎨=-⎩从点(0,0)O到(,2)Aπ的一段弧6、求微分方程xxy y xe'+=满足11xy==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面z=与上半球面z=(10)'2、(1)判别级数111(1)3nnnn∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x∈-求幂级数1nnnx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z=的定义域为;(2)已知函数xyz e=,则在(2,1)处的全微分dz=;(3)交换积分次序,ln10(,)e xdx f x y dy⎰⎰=;(4)已知L是抛物线2y x=上点(0,0)O与点(1,1)B之间的一段弧,则=⎰;(5)已知微分方程20y y y'''-+=,则其通解为.二.选择题(每空3分,共15分)(1)设直线L为30x y zx y z++=⎧⎨--=⎩,平面π为10x y z--+=,则L与π的夹角为();A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a-=确定,则zx∂=∂();A.2yzxy z- B. 2yzz xy- C. 2xzxy z- D. 2xyz xy-(3)微分方程256xy y y xe'''-+=的特解y*的形式为y*=();A.2()xax b e+ B.2()xax b xe+ C.2()xax b ce++ D.2()xax b cxe++(4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为();A222000sin ad d r drππθϕϕ⎰⎰⎰B.22000ad d rdrππθϕ⎰⎰⎰C.2000ad d rdrππθϕ⎰⎰⎰D.22000sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D. 三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin 3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy ∑++⎰⎰,∑为抛物面22z xy =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx = .二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

大学高数微积分试题

大学高数微积分试题

期末练习题一、选择题 1.()3baf x dx '=⎰( ).A.()()f b f a -B.()()33f b f a -C.()()1333f b f a -⎡⎤⎣⎦ D.()()333f b f a -⎡⎤⎣⎦ 2.已知()F x 是()f x 的原函数,则()xaf t a dt +=⎰( ).A.()()F x F a -B.()()F t F a -C.()()F x a F x a +--D.()()2F x a F a +-3.下列广义积分发散的是( ).A.1dxx +∞⎰B.1+∞⎰C.21dx x +∞⎰D.1+∞⎰4.下列级数中发散的是( ). A.()()1111nn ln n ∞=-+∑ B.131n n n ∞=-∑C.()11113n n n -∞=-∑ D.123n n n ∞=∑5.下列级数中绝对收敛的是( ). A.()11121n n nn -∞=--∑ B.()()121!13n n nn n ∞+=-∑ C.()13112n n n n -∞=-∑ D.()111nn n ∞=-∑6.设函数()22z f x y =+,f 可微,则( ).A.z z yx x y ∂∂=∂∂ B.z z x y∂∂=∂∂ C.z z x y x y ∂∂=∂∂ D.z z x y ∂∂=-∂∂7.若点()00,x y 是二元函数(),f x y 的驻点,则( ).A. 点()00,x y 是(),f x y 的极值点B. 点()00,x y 是(),f x y 的最小值点C. 点()00,x y 是(),f x y 的最大值点D. 点()00,x y 可能是(),f x y 的极值点 8.设()11,f x y xy x y=++,则( ). A. 点()1,1是(),f x y 的驻点,但非极值点 B. 点()1,1是(),f x y 的极大值点C. 点()1,1是(),f x y 的极小值点D. (),f x y 无驻点 9.()110,xdx f x y dy -=⎰⎰( ).A.()1100,xdy f x y dx -⎰⎰ B.()110,xdy f x y dx -⎰⎰C.()11,dy f x y dx ⎰⎰ D.()110,ydy f x y dx-⎰⎰10.设D 由x 轴,ln y x =,x e =围成,则(),Df x y dxdy =⎰⎰( ).A.()ln 1,exdx f x y dy ⎰⎰B.()ln 0,exdx f x y dy⎰⎰C.()1,ye dyf x y dx ⎰⎰D.()10ln ,ex dy f x y dx⎰⎰11.下列方程中有一个是一阶微分方程,它是( ).A.()()22220x ydx xy dy -++= B.0xy y y '''++=C.()22y xy x yy '''-= D.0y y x '''++= 二、填空题1.()0sin x d tdt dx=⎰.2. ()11cos 1x x dx -+=⎰ .3.201dxx +∞+⎰收敛于 . 4.1⎰收敛于 .5. 若级数1nn u∞=∑收敛,则lim n n u →∞= .6. 若级数11p n n ∞=∑发散,则p 满足 . 7. 级数()111n n n ∞=+∑的和为 . 8. 函数()()ln 1f x x =+在(]1,1-上的麦克劳林级数为 . 9. 函数()arctan f x x =在[]1,1-上的麦克劳林级数为 . 10. 设()sin z xy =,则dz = . 11. 设lnxz y=,则dz = . 12.二元函数z =的极大值为 . 13. 222z x y =++的极小值为 .14. 二元函数二阶微分方程212y x ''=的通解为 . 三、计算题 1.求 2x xe dx +∞-⎰.2.求()132132xx dx --+⎰.3.求40⎰.4.求20sin x xdx π⎰.5.1x xe dx -⎰.6.求曲线1y x=与直线y x =,2x =所围平面图形的面积.(书中答案错) 7.求曲线xy e =与直线y e =,0x =所围平面图形的面积.8. 求幂级数()212nn x n ∞=-∑的收敛半径和收敛域.9. 求幂级数15n nn x n∞=∑的收敛半径和收敛域.10.求Dxydxdy ⎰⎰,D 是由x 轴,2y x =,1x =所围成的区域.11.求2Dy dxdy ⎰⎰,其中D 是由2y x=,24y x =,1y =在第一象限所围成的区域.12.求22xy De dxdy --⎰⎰,其中D 是圆域223x y +≤.13.求方程330z xyz -=所确定的函数(),z f x y =的偏导数z x∂∂,zy ∂∂.14.求方程ln x z z y =所确定的函数(),z f x y =的偏导数z x ∂∂,z y ∂∂.15.求微分方程2222411dy x x y dx x x +=++的通解. 16.求微分方程22x dyxy xe dx--=的通解. 17.求微分方程0xydx =的通解. 四、应用题1.设生产某种产品的数量与所用两种原料A 、 B 的数量x 、y 间有函数关系()2,0.005P x y x y =.欲用150元购料,已知A 、B 原料的单价分别为1元、2元,问购进两种原料各多少时,可使生产的产品数量最多?2.习题八:213.某工厂生产两种产品I与II,出售单价分别为10元与9元,生产x单位的产品I与生产y单位的产品II的总费用是:()22+++++x y x xy y400230.0133求两种产品各生产多少,工厂可取得最大利润,最大利润为多少?4.要制造一个容积为4立方米的无盖水箱,问它的长宽高应各取什么样的尺寸时,才能使所用材料最省?五、证明题注.和上次的复习有重合题。

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

微积分期末试卷附详细标准答案2

微积分期末试卷附详细标准答案2

一、填空题(每小题3分,共15分)1、已知 f(x)=e x , f N(x)] =1—x ,且中(x)之0,则9(x) = v'ln(1—x)…2c解 f(u)=e =1-x ,u =ln(1-x) ,u = .J 〕n(1 - x).2、已知 a 为常数,lim (--2— ax +1) =1,则 a =1.i : x一-ax 1) = lim (1 4 - a —) = 1 - a .x'二 x x3、已知 f ⑴=2,则 limf(1 3x)-f(1 x)=4.x )Dx解:lim[f(1 3x)-f(1)]-[f(1 x)-f(1)]=4x—0x4、函数 f(x)=(x —1)(x —2)(x —3)(x —4)地拐点数为 2.解:f (x)有 3 个零点 £,焦二:1 <彳 <2<^<3<^3<4, f "(x)有 2 个零点 %尸2:1<。

<2 <之2 <”2 <4,f "(x) =12(x —1)(x —”2),显然 f*(x)符号是:+「,+,故有 2 个拐点. dx-5、 -2 ------ - = tan x -cot x C .sin xcos x,2. 2 , ,dx cos x sin x , dx dx 斛: -- —2 --------------- 2- = 2 2-dx = ------- 2- ------------- -2- = tan x - cot x C .sin xcos x sin xcos x cos x sin x二、选择题(每小题3分,共15分)1、设f(x)为偶函数,甲(x)为奇函数,且f /(x)]有意义,则f [邛(x)]是A(A)偶函数; (B)奇函数;(C)非奇非偶函数;(D)可能奇函数也可能偶函数.1 - cosx C2—, x : 0,,,2、x=0 是函数 f (x) = { x 地 D0, x = 0.2「 1 1 x 1 斛:0 = lim — = lim ( ----(A)跳跃间断点; (B)连续点;(C)振荡间断点;(D)可去间断点.3、若函数f(x)在X0处不可导,则下列说法正确地是 B(A)f(x)在%处一定不连续;(B) f (x)在X o处一定不可微;(C)f(x)在X o处地左极限与右极限必有一个不存在;(D) f (x)在x0处地左导数与右导数必有一个不存在^4、仅考虑收益与成本地情况下,获得最大利润地必'要条件是: D(A) R"(Q)>C"(Q) ; (B) R"(Q) <C"(Q);(C) R"(Q) =C“(Q) ;(D) R'(Q) =C'(Q).5、若函数f '(x)存在原函数,下列错误地等式是: Bd(A) 一ff(x)dx=f (x) ;(B)』f (x)dx=f(x);dx(C) d f f (x)dx =f (x)dx;(D) f df (x) =f (x) +C .三、计算题(每小题6分,共60分)1、设f (x —2) =2x2"x— x,求f(x +2).答案:f(x + 2) =2x244x—x—4解:令t =x - 2,则f ⑴=2(t均24t物_(t+2) =2「*七54 T+2=2t2/_t_2,(3 分)于是f(x+2) =2(x阳2u — (x+2) -2 =2x2 七、七“ 一x —4 = 2x2 七x— x —4. (6 分)2、计算1吧m05( J n十1 一J n).答案:1n mc 0sin有-«户n m8s舄十二(3 分)解:1=lim cos —^n— n1二 11-1 nsin 11nx解:y' = (e x )'(2 分)6、求曲线xln y + y —2x=1在点(1,1)处地法线方程.答案:x+y —2 = 0解:方程两边对x 求导得:ln y + xy + y '- 2 = 0 , y_ Cos 「0 一 -1 .(6分) cos,1 0 - 13、求极限lim ( 2 n——n 2n +… 2 n 2).答案: 解:由于— nn n 21n n 22 +…2n八-7, (3分)而 lim 一=lim—=1 1 lim 一=limn —i彳二1,2 n所以lim(+…+)=1. (6 分)4、求极限lim 2ln(1 x )x —0 secx - cos x,〃2、解:lim1n(1 x)x—0secx - cosx x 02ln(1 x ) 二 lim cosxlim ——2-- x 0sin x=lim 2x1+ x 2(4 分)x 0 2sinxcosx =limx —02、 (1 x )cosx.. x lim --- x 「° sin x =1. (6 分) sin 15、求函数y = x x 地导数.答案:.1 sin —x y = xcos'nx 1sin 1)x.1 , sin - ln x 11 1 1 =e x [cos-( --2) ln x sin ] .1 , , , ,sin — 1 1 1 1 =x x ( 2cos — ln x sin ) .(6 分)1将(x, y) = (1,1)代入得法线斜率k = 一—― = _1, (3分) y⑴从而法线方程为:y_1=_1,(x—1),即:* + 丫—2 = 0.(6分),一八 1 4 3 r 一、7、求曲线y= x —x +1地凹凸区间和拐点.24答案:曲线在区间(―吗0]和[1,+“)是凹地,在区间[Q1]是凸地拐点为(0,1), (1;).31 x _ 1 x _ 1 x _ 1x_ 1x_ e cos2x e d sin 2x e cos2x e sin 2x - e sin 2xdx ,2 4 2 4 4 x 一 . 4 x.1 .一 一 、一 … , J e cos2xdx =^e (asin 2x-cos2x)+C .(6 分)10、设某商品地需求函数为 Q =100 -5P 淇中P,Q 分别表示需求量和价格,试求当总收益达到最大时,此时地需求弹性,并解释其经济意义.b5E2RGbCAP解:⑴ f (x) C(-::, ::),(2)3 2 _ .. 2f (x) =2x -3x , f (x) =6x -6x =6x(x -1),4f "(x)=0,得 x 1 =0, x 2 =1. f(0) = 1, f (1) =43 (3分)(4).... ... 4 曲线地拐点为(0,1)、(1,-).(6) 曲线在区间(―g,0]和[1,+比)是凹地,在区间[0,1]是凸地. (6分)8、计算dx.答案:66G - 6 arctan 6x + Cdx dx解 (1 3 x) x -(6x)3[1 (6x)2]56t 5dt八----- 了(3分)2A (1 t )-1 6 2dtdt =6 ! dt - = 6 । 1 t=6t -6arctant +C =66/x -6arctan6/x +C .(6分)9、计算 [exsin 2xdx 答案• —e x(-sin 2x -cos2x) +C1021 V斛: e sin 2xdx e d cos2x =一 21e xcos2x 1 2 2fe xcos2xdx (3 分)列表如答案:。

高等数学下期末试题(七套附答案)

高等数学下期末试题(七套附答案)

高等数学(下)试卷-、填空题(每空3分,共15分)1 1z 二-(1) ___________________________________________________________ 函数 .x yX - y的定义域为 _____________________________________________________z = arcta n 》—=(2) 已知函数x ,贝y 汉 _____________________22y、 [dW 2 f (x, y )dx (3 )交换积分次序, '0 ' y = ___________________(4) 已知L 是连接(0,1)>(1,0)两点的直线段,则L(x y)ds 二 __________(5) __________________________________________________________________ 已知微分方程 y : 2y • -3y = 0,则其通解为 ____________________________________二、选择题(每空3分,共15分)zSz(1)A. x 3y 2z 1 = 0设直线 L 为 2x-y "Oz ,3",平面二为4x-2y • z -2=0L 平行于二 (2) ( 设 ) A . dxdy C. L 垂直于兀是由方程xyz• x yz =、2确定,则在点B. L 在二上B dx + 72dyC^dx + ddy,则( )D. L 与二斜交(1,0^1)处的 dz二(3)已知l ■■是由曲面4z^25(x 2 y 2)及平面 在柱面坐标系下化成三次积分为()2二 2 3 5 [d 。

[ r dr 「dzA $0 』0 』0z = 5所围成的闭区域,将 D.dx-V2dy2 2(x y )dvQB. 2二4 35d 「0r dr .0dz… 2 3r drJ 0』0C.5 5 dz r2D.2 25d 「°rdr _dz(4)已知幕级数 -,则其收敛半径A. 2B. 1(5)微分方程y ;3y ' 2y =3x -2e x 的特解 C. 2y”的形式为y=D.B (ax+b)xe x(ax b) ce xA.D (ax +b) +cxe x三、计算题(每题8分,共48分) x -1 y _2 z _3 x 2 求过直线L 1:10 Ty-1 C.1、 且平行于直线L2:2z11的平面方程\ I x 2dxdyD2、已知z = f(xy2,x2y),求,::y2 23、设D二{(x,y)x y M},利用极坐标求4、求函数f(x,y)二e2x(x y2 2y)的极值"x = t —si nt5、计算曲线积分L (2xy 3sinX*彼-e)dy其中L为摆线yd cost从点0(°, 0)到A(二,2)的一段弧6、求微分方程xy * y = xe x满足yT的特解四•解答题(共22分)2xzdydz+ yzdzdx—z dxdy1、利用高斯公式计算住n J3的敛散性,若收敛,判别是绝对收敛还是条件收敛;O0n瓦nx(2)在X,(-11)求幕级数n4高等数学(下)试卷二- •填空题(每空3分,共15分)J4x_y2z = 2 ~(1) ______________________________________________ 函数In(1 - x -y )的定义域为_____________________________________________________________ ;(2) 已知函数z二e xy,则在(Z 1)处的全微分dz=___________________ ;e In x亠 1 dx「f (x, y)dy(3 )交换积分次序,'1 0= __________________ ;2(4 )已知L是抛物线y = X上点0( 0 , 0与点B( 1 , 1之间的一段弧,则L : yds =-------------------- ?(5)已知微分方程y “ - 2y ' y = 0,则其通解为_____________________________ .二•选择题(每空3分,共15分)x y 3z = 0(1)设直线L为x-y-z^O ,平面二为x-y-zJ",则L与二的夹角为( );兀兀兀A. 0B. 2C. 3D. 43 小是由方程z_3xyz_a:z(2 ) 严X 1 3确定,则汶(设);yz yz xz xy2 2 2 2其中V由圆锥面z - X2y2与上半球面z二〔2 -x? - /所围成的立体表面的外侧(10 ) □0■- ( _1)2、( 1)判别级数心(&)的和函数(6)A. xy _ zB. z_xy C. xy-zD.z—xy(3)微分方程y -5/ 6^xe2x的特解y的形式为y ();2、°°ITn 」 n,"2sin 飞1、( 1) ( 6 )判别级数n生 3的敛散性,若收敛,判别是绝对收敛还是条件收敛;inz —(2) ( 4 )在区间(一1,1)内求幕级数n^ n的和函数.ii2xdydz ydzdx zdxdy(12 )利用高斯公式计算二 ,'为抛物面z = X 2 • y 2 ( 8 z 乞的下侧A. (ax +b)e 2xB. (ax +b)xe 2xC. (ax +b) +ce 2x (4)已知丨■■是由球面 三次积分为(2-a 2dr 2sin d r drA 02:-;[d T 『d ®『rdr2 2 2 2xy z =a 所围成的闭区域,将 );D. (ax + b) + cxe 2x...dvQ在球面坐标系下化成B.2adr 2d 「 rdrD.a2r dr(5)已知幕级数Q0Zn 42n 1x n2n,则其收敛半径 B. 1二(C. 2D. 2(每题8分,共 48 分)6、7、 且与两平面二1 :x 2z =1 和.z■:y:z已知 z 二 f(sin xc°sy,e x y),求::x , 设 D 二{(x, y) X 2 y 2乞 1,0 乞 y 乞 X}, 8、求函数f (x, y)二 L 为沿上半圆周y6、求微分方程四.解答题(共22分)二2: y-3z =2平行的直线方程. y11arctan dxdy 利用极坐标计算 Dx.2 2 X5y-6x 10y 6的极值.c 知叭夂栽八于斗瞥 I (e x siny —2y)dx + (e x c°sy — 2)dy 其中9、利用格林公式计算 L ,其中2 2 2 (x-a) y =a,y _0、从 A(2a,0)到。

高数下册期末a卷考试题及答案

高数下册期末a卷考试题及答案

高数下册期末a卷考试题及答案一、选择题(每题5分,共30分)1. 以下哪个函数不是周期函数?A. \( \sin(x) \)B. \( \cos(x) \)C. \( e^x \)D. \( \tan(x) \)答案:C2. 函数 \( f(x) = x^2 \) 在 \( x=1 \) 处的导数是:A. 0B. 1C. 2D. 3答案:C3. 以下哪个选项是 \( \int_0^1 x^2 dx \) 的正确计算结果?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A4. 以下哪个选项是 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值?A. 0B. 1C. 2D. 3答案:B5. 以下哪个选项是 \( \int \frac{1}{x} dx \) 的原函数?A. \( \ln|x| + C \)B. \( x + C \)C. \( e^x + C \)D. \( \sin x + C \)答案:A6. 以下哪个选项是 \( \int e^x \cos x \, dx \) 的正确积分结果?A. \( \frac{1}{2} e^x (\cos x + \sin x) + C \)B. \( \frac{1}{2} e^x (\cos x - \sin x) + C \)C. \( \frac{1}{2} e^x (\cos x + \sin x) - C \)D. \( \frac{1}{2} e^x (\cos x - \sin x) - C \)答案:B二、填空题(每题5分,共20分)1. 函数 \( f(x) = \ln(x) \) 的定义域是 \( ______ \)。

答案:\( (0, +\infty) \)2. 函数 \( f(x) = \sqrt{x} \) 的导数是 \( ______ \)。

高数下学期期末试题(含答案)3套

高数下学期期末试题(含答案)3套

高等数学期末考试试卷1一、单项选择题(6×3分)1、设直线,平面,那么与之间的夹角为( )A.0B.C.D.2、二元函数在点处的两个偏导数都存在是在点处可微的()A.充分条件B.充分必要条件C.必要条件D.既非充分又非必要条件3、设函数,则等于()A. B.C. D.4、二次积分交换次序后为()A. B.C. D.5、若幂级数在处收敛,则该级数在处()A.绝对收敛B.条件收敛C.发散 C.不能确定其敛散性6、设是方程的一个解,若,则在处()A.某邻域内单调减少B.取极小值C.某邻域内单调增加D.取极大值二、填空题(7×3分)1、设=(4,-3,4),=(2,2,1),则向量在上的投影=2、设,,那么3、D 为,时,4、设是球面,则=5、函数展开为的幂级数为6、=7、为通解的二阶线性常系数齐次微分方程为三、计算题(4×7分)1、设,其中具有二阶导数,且其一阶导数不为 1,求。

2、求过曲线上一点(1,2,0)的切平面方程。

3、计算二重积分,其中4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。

25、求级数的和。

四、综合题(10分)曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。

五、证明题 (6分)设收敛,证明级数绝对收敛。

一、单项选择题(6×3分)1、 A2、 C3、 C4、 B5、 A6、 D二、填空题(7×3分)1、22、3、 4 、5、6、0 7、三、计算题(5×9分)1、解:令则,故2、解:令则所以切平面的法向量为:切平面方程为:3、解:===4、解:令,则当,即在x 轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则===5、解:令则,即令,则有=四、综合题(10分)4解:设曲线上任一点为,则过的切线方程为:在轴上的截距为过的法线方程为:在轴上的截距为依题意有由的任意性,即,得到这是一阶齐次微分方程,变形为: (1)令则,代入(1)得:分离变量得:解得:即为所求的曲线方程。

微积分下册期末考试题及答案

微积分下册期末考试题及答案

微积分下册期末考试题及答案一、选择题(每题2分,共20分)1. 若函数 \( f(x) = 3x^2 + 2x - 5 \),则 \( f'(x) \) 等于:A. \( 6x + 2 \)B. \( 3x + 2 \)C. \( 6x^2 + 2 \)D. \( 6x - 5 \)2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是:A. 0B. 1C. 2D. 33. 若 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{1} x dx \) 等于:A. \( \frac{1}{2} \)B. \( \frac{1}{3} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)4. 函数 \( y = \sin(x) \) 的原函数是:A. \( \cos(x) \)B. \( -\cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)5. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{x - \sin(x)}{x^3} \) 等于:A. 0B. 1C. 2D. 36. 函数 \( y = e^x \) 的 \( n \) 阶导数是:A. \( e^x \)B. \( ne^x \)C. \( n!e^x \)D. \( (n+1)e^x \)7. 若 \( \int e^x dx = e^x + C \),则 \( \int_{0}^{1} e^x dx \) 等于:A. \( e - 1 \)B. \( e \)C. \( e^2 - 1 \)D. \( e^2 \)8. 函数 \( y = \ln(x) \) 的定义域是:A. \( x \geq 0 \)B. \( x > 0 \)C. \( x < 0 \)D. \( x \leq 0 \)9. 函数 \( y = x^2 \) 的拐点是:A. \( x = 0 \)B. \( x = 1 \)C. \( x = -1 \)D. \( x = 2 \)10. 若 \( \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0 \),则\( f(x) \) 和 \( g(x) \) 的关系是:A. \( f(x) \) 比 \( g(x) \) 增长得更快B. \( f(x) \) 比 \( g(x) \) 增长得更慢C. \( f(x) \) 和 \( g(x) \) 增长速度相同D. \( f(x) \) 和 \( g(x) \) 都是常数答案:1. A 2. C 3. A 4. A 5. C 6. A 7. A 8. B 9. A 10. B二、填空题(每题2分,共10分)11. 若 \( f(x) = \ln(x) \),则 \( f'(x) = \frac{1}{x} \)。

微积分期末试题及答案

微积分期末试题及答案

微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。

2. 求函数 f(x) = e^x 的不定积分。

3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。

4. 设函数 f(x) = ln(x),求 f'(x)。

5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。

6. 设函数f(x) = √(x^2 + 1),求 f'(x)。

7. 求函数 f(x) = 3x^2 - 6 的不定积分。

8. 计算定积分∫(0 to π/2) cos(x) dx 的值。

9. 设函数 f(x) = e^(2x),求 f'(x)。

10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。

11. 计算定积分∫(0 to 1) x^2 dx 的值。

12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。

13. 求函数 f(x) = 2e^x 的不定积分。

14. 计算定积分∫(1 to e) ln(x) dx 的值。

15. 设函数 f(x) = x^2e^x,求 f'(x)。

16. 求函数 f(x) = ln(2x + 1) 的不定积分。

17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。

18. 设函数 f(x) = e^(3x),求 f'(x)。

19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。

20. 计算定积分∫(0 to π) sin^2(x) dx 的值。

第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。

高等数学下册试题及答案解析

高等数学下册试题及答案解析

高等数学(下册)试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ202013cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ20013cos sin dr r d d 。

微积分下期末试题及答案

微积分下期末试题及答案

微积分下期末试题及答案下面是微积分下期末试题及答案的内容:一、单选题(每题2分,共20分)1. 在一个封闭的矩形区域内,下列函数中一定存在一个绝对值最大的点的是:A. f(x) = 2x + 3B. f(x) = -x^2 + 5x + 1C. f(x) = sin(x)D. f(x) = e^x答案:B2. 设函数f(x) = x^3,则f'(x) = ?A. 3x^2B. 4x^3C. 2x^3D. x^2答案:A3. 曲线y = 2x^2 - 3x + 1的切线斜率为:A. 2B. -2C. 3D. -3答案:C4. 若f(x) = x^2 + 2x,则f''(x) = ?A. 2B. 4C. 0D. 6答案:A5. 设y = 3x - 1为直线L1上一点,曲线y = 2x^2 + 1上一点为(x0, y0),则L1与曲线的切线平行于x轴的条件是:A. x0 = -1B. x0 = 0C. x0 = 1D. y0 = -1答案:D6. 函数f(x) = ln(x)的反函数为:A. f(x) = e^xB. f(x) = xC. f(x) = e^(-x)D. f(x) = x^2答案:A7. 函数f(x) = 3x^2 + 2在区间[1, 2]上的平均值为:A. 4B. 5C. 8/3D. 10/3答案:C8. 若f(x) = sin(x),则f''(x) = ?A. -cos(x)B. cos(x)C. -sin(x)D. sin(x)答案:D9. 由函数f(x) = x^3 - 3x求得的原函数为:A. x^4/4 - 3x^2/2 + CB. x^4 + 3x^2 + CC. x^3 - 3x + CD. x^4 - x^2 + C答案:A10. 函数y = ax^2 (a ≠ 0)与直线y = 2x - 3相切的条件是:A. a = 4B. a = 2C. a = 1D. a = 3答案:B二、计算题(每题10分,共30分)1. 设函数f(x) = 2x^3 + 3x^2 - 12x + 1,求f'(2)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学高等数学(微积分)<下>期末考试卷
学院: 专业: 行政班: 姓名: 学号: 座位号:
----------------------------密封--------------------------
一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末
的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞
=,则级数
1
n
n a

=∑( );
A.一定收敛,其和为零
B. 一定收敛,但和不一定为零
C. 一定发散
D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( );
A. 623(, , )777
B. 623(, , )777-
C. 623( ,, )777--
D. 623(, , )777--
3、设3
2
()x x y f t dt =

,则dy dx
=( );
A. ()f x
B. 32()()f x f x +
C. 32()()f x f x -
D.2323()2()x f x xf x -
4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在
C. 必为初等函数
D. 不一定存在
二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1
1
n n n ∞
=+∑
必定____________(填收敛或者发散)。

2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。

3、定积分1
21sin x xdx -=⎰__________ _。

4、若当x a →时,()f x 和()g x 是等价无穷小,则2()
lim ()
x a f x g x →=__________。

三、解答题(本大题共4小题,每小题7分,共28分 )
1、( 本小题7分 ) 求不定积分sin x xdx ⎰
2、( 本小题7分 )
若()0)f x x x =+>,求2'()f x dx ⎰。

3、( 本小题7分)
已知函数
1
arctan
1
x
y
x
+
=
-
,求
dy
dx。

4、( 本小题7分)
将函数
1
()
32
f x
x
=
+
展开为(1)
x-的幂级数。

四、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 )
计算81
⎰。

2、( 本小题7分 )
求幂级数11
(1)(3)n n
n x n -∞
=-∑的收敛区间。

3、( 本小题7分 )
设0
[()''()]sin 5,()2f x f x xdx f π
π+==⎰,求(0)f 。

4、( 本小题7分 )
五、解答题( 本大题12分)
设()
f x具有连续二阶导数,且(0)0
f=,
()
,0 ()
,0
f x
x
g x x
a x



=⎨
⎪=

(1)a为何值时,()
g x连续。

(2)对(1)中所确定的a值,求'()
g x。

(3)讨论'()
g x在0
x=处的连续性。

大学高等数学(微积分)<下>期末考试卷
参考答案
一、选择题:
1、D ;
2、B ;
3、D ;
4、B.
二、填空题:
1、发散;
2、-2;
3、0;
4、0.
三、解答题:
1、求不定积分sin x xdx ⎰; 解:sin x xdx ⎰
cos cos cos sin x x xdx x x x C
=-+=-++⎰
2
、若()0)f x x x =+>,求2'()f x dx ⎰;
解:因为'()1f x =,所以21'()12f x x
=+

21'()(1)21
ln 2
f x dx dx x
x x C
=+
=++⎰⎰
3、已知函数1arctan 1x y x +=-,求dy
dx
; 解:
2211()'111()111dy x
x dx x
x
x +=⋅+-+-=
+ 4、将函数1
()32
f x x =+展开为(1)x -的幂级数. 解:
10
1()3211351(1)
53(1)(1)53
1(1)1
5n n n n n f x x x x x ∞
+==
+=⋅
+-=---<-<∑
即2833x -<<。

四、解答题 1
、计算81


解:令t =,则3x t =,23dx t dt =
8
2211221313ln(1)23
(ln 5ln 2)2t dt
t t =+=+=-⎰⎰
2、求幂级数11
(1)(3)n n
n x n -∞
=-∑的收敛区间;
解:根据公式 1
1(1)(3)1lim
3(1)(3)n n n n
n x n x x n
+-→∞-+=- 当11
33
x -<<收敛;
当1
3x =-时,幂级数发散;
当1
3
x =时,幂级数收敛;
所以,幂级数收敛区间是11
33
x -<≤
3、设0
[()''()]sin 5,()2f x f x xdx f π
π+==⎰,求(0)f ;
解:利用分部积分公式
()sin ()cos ()cos cos '()()(0)'()sin ''()sin f x xdx f x d x
f x x
xf x dx
f f f x x
f x xdx
π
π
π
ππ
ππ=-=-+=++-⎰
⎰⎰⎰
即0
[()''()]sin ()(0)f x f x xdx f f π
π+=+⎰
由题意,(0)3f =。

4、求由抛物线21,0,2y x x x =-==及0y =所围成的平面图形的面积. 解:
1
2
220
1
313
20
1
(1)(1)11()()332
S x dx x dx
x x x x =-+--=-+-+=⎰⎰
五、解答题
设()f x 具有连续二阶导数,且(0)0f =,()
, 0(), 0f x x g x x a x ⎧≠⎪
=⎨⎪=⎩:
(1)a 为何值时,()g x 连续。

(2)对(1)中所确定的a 值,求'()g x 。

(3)讨论'()g x 在0x =处的连续性。

解:(1)因为00'()
lim ()lim
'(0)1
x x f x g x f →→==,所以'(0)a f =时,()g x 连续。

(2)当0x ≠时,2
'()()
'()xf x f x g x x -= 000()
'(0)
'()'(0)'(0)lim lim
2''()''(0)lim 22x x x f x f f x f x g x x f x f →→→--==== (3)因为
2
000'()()lim '()lim
''()''(0)lim '(0)22
x x x xf x f x g x x f x f g →→→-====。

相关文档
最新文档