2006Periodic Timetabl Optimization in Public Transport
Self-adaptive differential evolution algorithm for numerical optimization
n
Abstract—In this paper, we propose an extension of Self-adaptive Differential Evolution algorithm (SaDE) to solve optimization problems with constraints. In comparison with the original SaDE algorithm, the replacement criterion was modified for handling constraints. The performance of the proposed method is reported on the set of 24 benchmark problems provided by CEC2006 special session on constrained real parameter optimization.
2006 IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006
Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization
“DE/rand/1”: Vi ,G = Xr ,G + F ⋅ Xr ,G − Xr G
1 2 3,
(
“DE/best/1”: Vi ,G = Xbest ,G + F ⋅ Xr ,G − X r G 1 2,
时间序列部分周期模式的更新算法
时间序列部分周期模式的更新算法王晓晔;肖迎元;张德干【摘要】In order to solve the problem of high complexity in the computation of the on-line incremental partial periodic pattern mining, this paper presented mining technology from a time series database based on a moving-window. In the process of data mining in time series, in some scenarios, it is only necessary to mine the partial periodic patterns in the recent time series databases in order to forecast the future action trend in time series. Therefore, during the mining, it needs to mine the partial periodic patterns in the recent time series databases using time window based on the former mining results. The proposed incremental on-line mining algorithm can focus the discovery on the recent data using a moving-window, which only needs to scan the data set in the specified time window two times at most. The algorithm was demonstrated in synthetic time series databases and the traffic time series databases. The experimental results show that the new algorithm has a higher computing efficiency than the non-moving-window algorithm in many aspects for large databases.%针对在线增量部分周期模式挖掘中计算复杂度过高的问题,提出了一种带移动时间窗的时间序列部分周期模式挖掘算法.在时间序列的数据挖掘过程中,某些应用场合只要求对近期的时间序列数据进行挖掘发现部分周期模式,作为时间序列未来行为趋势的预测.因此在挖掘过程中,利用时间窗口,在先前挖掘结果的基础上,对最近的时间序列进行部分周期模式挖掘.文中增量式的在线挖掘算法对指定时间窗口中的数据搜索不多于2次.分别对合成时间序列和交通流时间序列数据进行了实验,数据表明,与不带移动窗的现有算法相比,搜索速度大大加快,该算法对大型时间序列数据非常有效.【期刊名称】《哈尔滨工程大学学报》【年(卷),期】2011(032)011【总页数】5页(P1484-1488)【关键词】对间序列;部分周期模式;移动窗;频繁模式【作者】王晓晔;肖迎元;张德干【作者单位】天津理工大学智能计算及软件新技术重点实验室,天津300191;天津理工大学计算机视觉与系统省部共建教育部重点实验室,天津300191;天津理工大学智能计算及软件新技术重点实验室,天津300191;天津理工大学计算机视觉与系统省部共建教育部重点实验室,天津300191;天津理工大学智能计算及软件新技术重点实验室,天津300191;天津理工大学计算机视觉与系统省部共建教育部重点实验室,天津300191【正文语种】中文【中图分类】TP391.4时间序列部分周期模式的挖掘是一类重要的数据挖掘任务,在许多场合都有重要的应用,如电力负荷时序数据的高峰期往往具有部分周期性,发现这种周期就可以避开高峰用电,减轻电厂的负担.对于时间序列数据挖掘的研究主要集中在相似性问题和时态模式挖掘的研究[1-2].其中相似性问题研究主要是面向查询的需要[3-4],包括各种相似性搜索算法[1]的研究.时态模式挖掘则主要包括各种序列的模式挖掘,进行时态因果、周期模式、关联规则和重要事件的预测[5]等内容.在时态模式的挖掘方面,从时间序列中抽取模式是一个比较新颖的方向.从研究内容来分,目前研究重点主要集中在2个方面:对时序中的事件出现加以模式发现和预测,如时态因果和关联规则;挖掘时序数据的周期模式,包括全周期模式和部分周期模式.部分周期模式的研究大多采用了Apriori-like启发式挖掘算法的思想和理论.由于Apriori-like不能发现不同周期之间的模式和计算复杂度过大等,文献[6]提出了一种对单周期和多周期都适用的部分周期模式挖掘算法:最大子模式迎合树算法(the max-subpattern hit set tree,Mht).但是该算法只能对现有时间序列数据库进行挖掘,不能进行在线部分周期模式的挖掘.文献[7]在此基础上提出了一种增量式的在线挖掘算法,可以根据新增的数据对最大子模式树进行调整,但是由于数据量会越来越大,因此总的计算量还是很大的.文中提出了一种带移动窗的部分周期模式挖掘算法,由于在某些应用场合数据的分布特性会随着时间的变化而有所变化,所以从较早的数据中提取的模式已经不能反映现有数据所隐含的模式.因此只要求对近期的时间序列数据进行挖掘,每次挖掘过程都是在最近的时间窗口[8]中进行,所挖掘的模式反映了最新的数据集中的知识.本算法对最新窗口中的数据搜索次数不多于2次,因此计算量要大大降低,非常适用于大型时间序列数据库的挖掘.1 时间序列的部分周期模式1.1 问题定义假设一个含有n个时间标记的特征序列,对于每个时刻i,Di为该时刻的特征值(由原始时间序列导出),特征序列的所有特征集定义为L,因此特征时间序列可以表示为例如对于某支股票的原始时间序列,是以天为单位记录该股票的收盘价,则每个时间点的数据为具体的数值,因此需要将其量化为某些特征值(如高、中、低等),然后用一系列字母来表示,则量化所得特征集 L 可以表示为{a,b,c,…}.定义1 模式是一个非空序列s=s1,s2,…,sp,长度p叫做模式的周期,对于∀i,si是一个特征集(若该特征集只包含一个字母,则省略集合符号,如{a}可以写成a,具有j维特征的模式也可以叫做j-模式,在模式中允许符号“*”出现,它表示可以与任意单个字母相匹配.定义2 如果模式s'=s1',s2'…,sp'与s具有相同的长度,且对于∀i,si'⊆si,则称模式 s'为模式 s的子模式.如对于模式 a{b,c}*{a,c}f,第 2 个位置可以是b或c,它是一个长度为5的模式,即周期为5,而模式中含有4个字母,因此又叫做4-模式.显然模式ac*cf和a**cf是模式a{b,c}*{a,c}f的子模式,而模式ab*ac不是它的子模式.由定义可知,任意模式的特征维数要大于或等于它的子模式的特征维数.定义3 一个特征时间序列S形式如式(1)所示,可以被分割成长度相等(长度为p)相互独立的模式,则 S=S1,S2,…,Si,…,其中 Si=Dip+1,…,Dip+p,i=0,…,[n/p]-1,则每个模式 Si叫做一个周期段,其周期为p.如果一个周期段Si是模式s的子模式,则称周期段Si与模式s相匹配.定义4 一个模式s在某个特征时间序列中的频率值是指这个时间序列中与模式相匹配的周期段的个数,记作frequency_count(s).显然若时间序列有m个周期段,则频率值应小于m,在极端情况下(所有周期段都与该模式匹配)等于m.定义5 一个模式s在某个特征时间序列中的置信度是指它在该模式中的频率值与周期段数m的比值,记作confidence(s).则定义6 如果一个模式在特征时间序列中的置信度不小于某个阈值(该阈值记作min_conf),则称这个模式是频繁部分周期模式,j维频繁部分周期模式集简称为j-频繁模式集,记作Fj.1.2 部分周期模式挖掘部分周期模式挖掘算法基于文献[6]中提出的最大子模式迎合树算法(Mht).算法中通过扫描特征时间序列构建了一个叫做最大子模式的树T(如图1所示),树上的节点代表了时间序列的所有候选频繁模式.子节点是父节点的子模式,由子模式的定义知,子节点的特征维数要小于父节点的特征维数.因此当将父节点的某个字母用*代替时,将形成子节点,由图中可知子节点和父节点之间的连接用被取代的字母所标识.构建最大子模式树的关键是产生根节点,它在所有候选频繁模式中特征维数最大,因此叫做最大模式Cmax.Cmax由1-频繁模式集F1的所有元素合并而产生.2个模式s和t的合并操作定义为(s∪t)i=si∪ti.如模式 a*bc*与模式bc*r*合并的结果为模式{a,b}cb{c,r}*,若F1={a**,*b* ,*c* ,**d},则Cmax=a{b,c}d.树的子节点的生长是将Cmax与时间序列中的周期段进行求交集时所产生的迎合(hit)的过程.迎合是指 Cmax与周期段的交集,如果 Cmax=a{b,c}d,Si=aba,则他们的迎合为ab*,若树中没有此节点,则在其相应的父节点下面增加该节点,此节点与父节点之间的连接用它与父节点相匹配所错失的字符来标识,并将此节点的迎合值置为1,若此节点已经存在,则将它的迎合值加1,图1中迎合值标注在该节点的旁边,是该节点所代表的模式的迎合次数值(简称迎合值).很显然,某个节点的迎合值并不是它的频率值,因为在它的所有隐含祖先节点中都包含有该节点所代表的模式(如图1中虚线所连接的都是隐含的父子节点关系),如模式*bd的直接父节点是*{b,c}d,隐含父节点是 adb,祖先节点是a{b,c}d,当然隐含父节点往往不止1个,因此求取模式*bd的频率值需要加入它的所有祖先节点的迎合值(即10+0+12+20).树中的节点构成了候选频繁模式集,当某个节点的频率值大于min_conf×m时,则认为该节点所代表的模式是频繁模式.图1 最大模式树举例Fig.1 Example of max pattern treeMht算法的实现步骤如下:1)给定周期p,将特征时间序列S分割成长度为p的一系列周期段S1,S2,…,Sm,m为周期段的段数.2)扫描所有的周期段,得到所有的1-模式集L1及每个模式的频率值,将频率值不小于min_conf×m的1-模式抽取出来组成1-频繁模式集F1.3)将F1的所有元素合并,产生Cmax.4)重新扫描所有周期段,求取周期段与Cmax的交集,若所得到的模式已经存在,则将节点的迎合值加1,否则在相应的父节点下插入新的节点(若它的祖先节点不存在,则插入祖先节点,并将祖先节点的迎合值置0),将新节点的迎合值置1.树的叶节点应该含有2个非*字母,因为已经有1-频繁模式集仅含有1个非*字母. 5)将每个节点的迎合值与它的所有隐含父节点的迎合值相加,得到该节点的频率值,若某个模式的频率值不小于min_conf×m,则该节点所代表的模式为频繁模式.2 带移动窗的的部分周期模式挖掘算法某些时间序列挖掘过程中只要求在近期数据库中进行,因此在挖掘过程中引入时间窗口的概念,时间窗口[8]是指在某个时间区域之前的时间序列数据都是过时的,不用于当前部分周期模式挖掘过程的,即部分周期模式的挖掘过程只是在当前时间区域中进行,提高了挖掘结果的时效性.令当前时间窗口为Cur_window,起止时间为Ttart和Tend,SC为当前时间窗口中的特征时间序列,D为周期段的段数,F为SC中的频繁模式集.从时间Tend到Tnow为时间序列新增的数据,新数据集合为sc,d为sc的周期段的段数,则新时间窗口 New_window的起止时间为 Tstart+(Tnow-Tend)和 Tnow.在Tstart和Tstart+(Tnow-Tend)之间的数据为老数据应淘汰,记为retire,周期段数为r,则新时间窗口New_window的时间序列记为NewSC,NewSC=SC∪sc/retire.模式 X 在 SC、retire、sc和 NewSC中的频率值记为X.frequencyS、X.frequencyr、X.frequencys和 X.frequencyN.经过时间序列数据库的更新,在新时间窗口中的1-模式存在4种情况:1)1-模式在Cur_window和New_window都是非频繁的即 X.frequencyS<min_conf×D,且 X.frequencyN<min_conf(D+d-r).2)1-模式在Cur_window和New_window都是频繁的即 X.frequencyS>min_conf×D,且 X.frequencyN>min_conf×(D+d-r).3)1-模式在Cur_window是频繁的,而在New_window中是非频繁的即X.frequencyS>min_conf×D,但X.frequencyN<min_conf×(D+d-r).4)1-模式在 Cur_window是非频繁的,而在New_window中是频繁的即X.frequencyS<min_conf×D,但X.frequencyN>min_conf×(D+d-r).显然,只需考察3)和4)2种情况即可.MW算法包括2步:1)根据频繁1-模式集的更新算法对F1集进行更新产生F1';2)由 F1'合并产生的最大模式为 C'max,若C'max=Cmax,则保留原来的树T,只需更新各节点的迎合值即可.考虑淘汰的时间序列retire的周期段,求取与C'max的交集,若所得到的模式存在,则将相应节点的迎合值减1;考虑新增时间序列sc的所有周期段,求取与C'max的交集,若所得到的模式存在,则将相应节点的迎合值加1;若C'max≠Cmax,则采用更新算法MTU对最大子模式树进行更新;下面分别介绍频繁1-模式集的更新算法和最大子模式的树的更新算法MTU.2.1 频繁1-模式集的更新算法1)遍历淘汰数据库retire,计算所有的模式X∈F1在retire中的频率值X.frequencyr;遍历新增数据库sc,计算所有的模式X∈F1在sc中的频率值X.frequencys,从而得到F1的所有模式在NewSC中的频率值,X.frequencyN=X.frequencyS+X.frequencyS-X.frequencyr.若 X.frequencyN<min_conf×(D+d-r),则将其淘汰,否则保留.2)在遍历retire和sc的同时,根据sc的每一个周期段构造不在F1中的候选1-模式集C1,对C1中的任一模式Y,若Y.frequencyS<min_conf×(d-r)+Y.frequencyr,依据文献[7]中的引理2,那么 Y 在更新后序列中就必是非频繁的,可将其从C1中删除.3)对原部分时间序列SC/retire进行遍历,计算C1中各个候选 Y在 SC/retire中的频率值,加上Y.frequencyS,便得到Y在更新后时间序列NewSC中的频率值Y.frequencyN,若Y.frequencyN不低于min_conf×(D+d-r),则Y为频繁模式,从而得到新的频繁模式集F1'为保留的F1和C1中的频繁模式的集合.2.2 最大子模式的树的更新算法假设C'max为更新后的最大模式,显然C'max由更新后的1-频繁模式集F1'的所有元素合并而产生.若cj为Cmax第j个位置特征值符号,cj'为C'max第j个位置特征值符号,如果cj≠cj',则cj将被更新为cj'.更新过程分 2 步[7],即先删除cj,形成 Ct max,然后在相应位置增加cj'形成C'max,记录F1与F1相比较有所更新的1-模式集记为U1.同样,相应的最大子模式树的更新过程也分为2步:1)更新是生成树Tt,它的根节点是,很显然是Cmax的子模式,因此,如果在T中有节点代表了,则这个节点变成Tt的根节点,否则,创造一个新的节点.考虑图1的树,若C'max=a{b,e}d,则=abd,abd以及它的直接后代节点ab*便是初始的Tt,而此时树Tt还不完整,需要加上它所有的非直接的后代节点,以及相应的迎合值,扫描树T,对于树T的每一个节点,求它与的交集,然后将所得节点连同其在T中的迎合值插入树Tt中(若该节点已存在,则将迎合值累加).则在树Tt中加入如下模式:abd(10+12),*bd(0+20),a*d(50+10),ab*(8+32).结果如图2所示,同时考虑淘汰的时间序列retire,只需求取那些不包含 U1中的1-模式的周期段与的交集,若所得到的模式存在,则将相应节点的迎合值减1.图2 插入所有后代节点后的树TtFig.2 Tree Ttafter inserting all the posterity node2)更新是在的基础上相应位置增加c'形j成C'max.以C'max为根节点形成的树为T'.显然是C'max的子模式,Tt是根节点C'max的孩子,在Tt根节点的基础上逐个增加新的cj',形成逐层的祖先节点,新形成的祖先节点迎合值初始化为0.显然,含有新增字符的子模式的迎合值不能确定.同时一些其他的新模式或许会出现,如模式aed,因此需要重新搜索时间序列.对原部分时间序列SC/retire进行遍历,只需求取那些包含U1中的1-模式的周期段与C'max的交集,若所得到的模式已经存在,则将节点的迎合值加1,否则在相应的父节点下插入新的节点(若它的祖先节点不存在,则插入祖先节点,并将祖先节点的迎合值置0),将它的迎合值置1.搜索新增时间序列sc的所有周期段,将它与Cmax'的交集加入树T'中,过程如上述.3 计算复杂度分析本文提出的MW算法,对于长度为D+d的时间序列,扫描次数最多为2次.在第1)步中的工作主要是检查F1中的频繁模式是否保持频繁,是在对sc和retire进行1次搜索完成的,同时对sc构造出的候选集C1进行修剪,搜索Sc/retire,从C1中发现新的频繁1-模式.总共在1)对Sc+sc搜索了1次,但是由于算法计算很简单,因此计算量很小.在2)中,若C'max=Cmax,则只需对retire和sc搜索1次,只有在C'max≠Cmax时,才需要对当前时间窗口Sc和新增窗口sc进行搜索,而且对Sc进行搜索时,只是对某些符合条件的周期段进行搜索,因此在第2)步中,最坏的情况下搜索1次,关于最大子模式树的构建中计算复杂度分析见文献[5].4 算法测试及结果分析在实验中使用2个数据库进行实验,其中一个是人工合成数据库,用一个随机时间序列生成器产生所需的1 000 000个含有4个特征值的时间序列数据.另一个是某城市某个主干道某检测面的交通流量检测数据,其检测间隔为5 min,数据库大小为12 M,截取的数据片度如图3所示,其中的连续数据通过行业专家的经验被量化为5个等级:很小、小,中等、大和很大.图3 交通流量数据Fig.3 Traffic flow data实验中分别将增量长度d和置信度阈值min_conf作了变化,其周期分别定为4和24.算法实现采用Matlab编程工具,运行机型为赛扬M,1.46GHz的主频,256M内存的PC机,为分析其计算效率,结果如下.实验发现,当周期为24时,可以得到明显的符合实际的周期模式.而由于周期为4时,周期过短而造成无法很好的识别部分周期的结果.表1 在人工合成时间序列上的运行结果Table 1 Run time on the synthetic data 新增数据长度运行时间/s MW Mht 100 0.053 75 4.859 200 0.050 16 4.281300 0.047 03 3.047 400 0.047 03 3.078 500 0.042 03 1.584 600 0.042 190.512表2 在交通时间序列上的运行时间比较Table 2 Run time on the traffic time series data新增数据长度运行时间/s MW Mht 240 0.082 5.281 360 0.0784.044 480 0.062 2.078 600 0.061 1.084 720 0.056 0.312表1和表2分别给出了当窗口长度分别固定为2 000和2 400,min_conf=30%时,2种算法在合成时间序列和交通流时间序列中的运行时间比较.由表中可以发现,本文所提出的基于移动窗的MW算法所用的时间要比最大子模式迎合树Mht算法要少的多,而且MW算法的运行时间几乎不随新增数据长度的变化而变化,对于大型时间序列数据运行时间比较稳定,这是因为MW算法每次的计算对象都是新窗口中的数据,而且当新窗口中的1-模式没有变化时,则不需要对最大子模式树的结构进行更新.而Mht算法随着新增数据长度的增长运行时间而减少,这是因为在总的数据长度不变的情况下,增加新增数据的长度将会减少最大子模式树总的更新次数,从而降低了计算时间.因此,MW算法更适合于大型时间序列数据. 图4 当min_conf值变化时的运行时间Fig.4 The run time when min_conf change为说明置信度阈值对计算时间的影响,图4给出了当窗口长度D=2 000和新增数据长度d=200,而改变置信度阈值min_conf时,2种算法对于合成时间序列的计算时间比较结果.由图4可见,2种算法随着置信度阈值的增大,计算时间都在减小,这是因为随着置信度阈值的增大,1-频繁模式越来越少,因此总的计算量也越来越小,而且当置信度阈值超过50%时,计算时间变化会很小,这是因为此时,满足条件的1-频繁模式很少,而且变化不大,从而使得不必进行过多的计算.5 结束语提出了一种带移动时间窗的时间序列部分周期模式挖掘算法.在挖掘过程中数据不断的被采集,数据的性能分布也会有相应的变化,为了挖掘最新的模式,利用移动时间窗,在先前挖掘结果的基础上,对最近的时间序列进行部分周期模式挖掘.文中提出的算法最多对指定时间窗口中的数据搜索2次即可.既保证了挖掘结果的时效性又降低了算法的计算复杂度.实验中在各种条件下,对算法进行了不同侧面的比较,搜索速度加快,使得该算法更适用于大型时间序列数据库的部分周期模式挖掘.参考文献:【相关文献】[1]RODDICK J F,SPILIOPOULOU M.A survey of temporal knowledge discovery paradigms and methods[J].IEEE Trans on Knowledge and Data Engineering,2002,14(4):750-767.[2]HU X,XU P,WU Sh,et al.A data mining framework for time series estimation [J].J Biomed Inform,2010,43(2):190-199.[3]LIAN X,CHEN L.Efficient similarity search over future stream time series[J].IEEE Trans on Knowledge and Data Engineering,2008,20(1):40-54.[4]MARTEAU P F.Time warp edit distance with stiffness adjustment for time series matching[J].IEEE Trans On Pattern A-nalysis and Machine Intelligence,2009,31(2):306-318.[5]RICHARD J.POVINELLI XIN F.A new temporal pattern identification methord for characterization and prediction of complex time series events[J].IEEE Trans on Knowledge and Data Engineering,2003,15(2):339-352.[6]HAN J,GONG W,YIN Y.Efficient mining of partial periodic patterns in time series database[C]//Proc 15th Int'l Conf Data Eng Sydney,Australia,1999:106-115.[7]AREF W G,ELFEKY M G,ELMAGARMID A K.Incremental,online,and merge mining of partial periodic patterns in time-series databases[J].IEEE Trans on Knowledge and Data Engineering,2004,16(3):332-342.[8]欧阳为民,蔡庆生.基于时间窗口的增量式关联规则更新技术[J].软件学报,1999,10(4):427-429.OUYANG Weimin,CAI Qingsheng.A Time-window based incremental technique for updating association rules[J].Journal of software,1999,10(4):427-429。
一种基于事件关联的Timewarp算法
收稿日期:2006-03-02 基金项目:辽宁省教育厅攻关计划项目(2004D116)资助;辽宁省自然科学基金项目(20052007)资助. 作者简介:石祥滨,男,1963年生,博士,教授,研究方向为分布式系统、网络游戏、数据库技术;周兴海,男,1980年生,硕士研究生,研究方向为分布式系统、网络游戏;邢元胜,男,1980年生,硕士研究生,主要研究方向为分布式系统、网络游戏;高 鹏,男,1981年生,硕士研究生,研究方向为分布式系统、网络游戏;王 岩,女,1978年生,硕士,讲师,研究方向为分布式系统、网络游戏.一种基于事件关联的Timewarp 算法石祥滨1,周兴海2,邢元胜2,高 鹏2,王 岩11(沈阳航空工业学院计算机学院,辽宁沈阳110034)2(辽宁大学信息科学与技术学院,辽宁沈阳110036)E-mail:s xb@摘 要:在T im ewar p 算法的基础上引入语义层事件关联机制,提出一种更适合M M O G 的事件同步算法.在这种同步机制下,仅当某新到事件的时间戳在最大可回滚时间内,并且与已经执行完毕但是应在新到事件之后执行的事件语义相关时,才进行状态回滚并重新执行事件队列.实验结果表明该算法可以有效减少游戏回滚次数并降低同步延迟,从而提高了网络游戏的交互性和可玩性.关键词:P 2P ;T imew arp 算法;M M O G中图分类号:T P 393 文献标识码:A 文章编号:1000-1220(2006)11-2067-05An Event Correlation Timewarp AlgorithmSHI Xia ng -bin 1,ZHOU X ing -hai 2,X IN G Y uan-sheng 2,G A O P eng 2,W A N G Y an 11(Sh enyang Institute of A er onautical E ngine ering ,S heny ang 110034,China )2(Inf ormation S cie nces and T echnolog ical Institute of L iaoning Univ ersity ,S henyang 110036,China )Abstract :T his paper pr oposed a new synchr o nizat ion alg or it hm mo re suitable for M M O G w hich intr oduces the co ncept of event cor relation into T im ewar p alg or it hm.U nder t his synchr onizat ion mechanism,st ate r ollback is ex ecuted only w hen there ex ists an event w hose timest amp is w ithin the r ollback time and the ev ent is r elat ed w ith o ther s t ha t sho uld be ex ecuted after it but has been done befor e.T he sim ulation result s sho w that the impro ved alg o fithm can reduce the r ollback number effectiv ely and decr ease sy nchr onization delay ,so t hat M M O G s interactivity and playa bility ar e uplifted .Key words :P2P;timew arp algo rithm;M M OG1 引 言同步是网络游戏中的一个重要问题,同步机制直接影响游戏的可玩性以及玩家之间的交互性.同时如果不能很好的处理同步问题,游戏事件状态一致性也会受到较大影响.传统的M M OG 通常基于C /S 结构,由于只有服务器进行状态维护,基本上不存在复杂的同步问题.但P 2P 结构则不同,由于玩家分布于网络各个终端结点上,玩家状态不一致的概率会随网络延迟及玩家机器处理能力差异的增大而增加.因此事件同步已经成为分布式网络游戏中的一个重要问题.M M O G 中的同步主要解决两个问题:维护玩家状态一致性;在保证状态一致性基础上降低网络延迟对游戏交互性的影响.目前,应用于分布式模拟的同步算法主要有两类:保守同步算法和乐观同步算法.保守算法要求在确定所有玩家都得到相同状态信息之前不进行任何模拟操作.这类算法响应时间较长,不适合用于交互性要求高的游戏.而乐观同步算法无需确认玩家是否已经得到一致信息,就可以模拟游戏的操作.乐观同步算法更适合于交互性要求较高的游戏.由于此类算法很好的保证了虚拟时间和实际时间之间的对应,因此实时性很好.但是这类算法可能引起游戏状态短期不一致现象,此时需要通过某种机制将游戏恢复到一致状态.这类算法在一些实时模拟系统中有较多应用.乐观同步算法在M M OG 中应用广泛.如M imaze 中提出的桶同步算法[1],通过时间桶来缓冲事件,同步玩家间的模拟操作.该算法丢弃迟到事件,如果给定的时间桶中没有事件执行,就通过DR 算法进行预测.但丢弃迟到事件可能导致游戏状态不一致性.文献[2]中提到一种乐观同步算法.该算法类似于桶同步,通过局部标签来实现时间桶;同时引入T imew ar p 算法[3]检测并恢复迟到事件引发的不一致性.算法还讨论了如何在一致性和交互性之间寻求平衡的问题.提出了通过增加同步延迟来减少短期不一致的发生.但由于引入T imew arp 算法,对于每次迟到的事件都需要回滚.类似地也有人提出通过不断判断网络当前状态,动态调整同步延迟值[4]以保证较好的游戏交互性.此外T SS 算法[5,6]通过维护一定数量的游戏状态拷贝来检测并恢复不一致性.该算法通过真实状态来而不是迟到事件检测是否发生不一致,减少了回滚次数,但是该算法限制了迟到事件的延迟上限.本文通过引入语义层事件关联性机制,改进了传统T imew ar p 算法中不一致检测机制,减少了游戏回滚次数,达 第27卷第11期 2006年11月小型微型计算机系统M IN I-M ICR O SY ST EM S Vo l.27No.11 N ov.2006 到减少同步延迟的目的,从而保证了更好的交互性以及可玩性. 2 Timewarp算法T imewa rp算法[3]是一种乐观同步算法,它由两部分组成:局部控制机制和全局控制机制.基本思想是定期对结点游戏状态进行快照,当有事件模拟点前的事件到达时,就把状态回滚到迟到事件之前的快照状态,再重新执行事件列表.此外由全局控制机制维护一个全局虚拟时间GV T,用来保证不会有迟到的事件早于这个时间点.该算法对每个迟到的事件都进行回滚.回滚可能引起画面停顿.因为回滚包括状态还原以及队列事件的重新执行,需要一定的计算时间,这样下一帧画面就不一定能及时产生,可能引起画面停顿.如果回滚经常发生,会很大程度上影响游戏效果.T imew ar p使用anti-messag e作为取消已发送信息的信息.a nt i-messag e是原始事件的拷贝,但是使用特殊标志位标识.当回滚发生时,回滚点后发生的所有事件需要发送anti-messsag e来取消,而且其余结点还可能再发送anti-messsa ge,最终可能引起级联回滚.当然,这个问题在网络游戏中并不明显,因为一般情况下一个事件的产生并不会自动导致其它事件的产生[6].实际上并不是所有迟到事件都会影响游戏结果.本文引入事件关联机制,判断某个事件序列是否有必要全序执行才可以保证在不同结点得到一致状态.3 事件关联一个典型的多玩家游戏由固定的地形信息(terr ain)、玩家控制角色(P C)、易变对象、非玩家角色(N P C)组成[7].事件本身是玩家操纵这些游戏元素的数据表示.事件传输应该满足两个属性:顺序性和可靠性.顺序性保证了事件在各个玩家结点上处理的顺序性,而可靠性保证传输信息的可达性.P2P结构游戏不同于C/S结构,游戏需要每个结点本身进行类似于服务器的状态计算操作.由于结点之间的延迟、带宽差异以及所采用的U DP传输机制,可能产生数据包乱序到达目的端的问题.在游戏中,一系列事件的不同处理顺序往往会得到不同结果.因此需要在不可靠连接条件下保证事件在各个终端以一致的顺序进行处理.通常的做法是使用逻辑序列或者全序列[8].通常需要引入额外的延迟等待逻辑上先发生的事件到达结点以后模拟执行事件序列[8],这在很大程度上降低了游戏性能[9].而实际上事件序列在不同的结点上执行顺序不同不一定会引发不一致性.比如语义独立事件执行顺序不会影响游戏状态[10].Bob射击苹果,A lice移动,这两个事件先执行任何一个都可以.本文引入事件关联机制来判断是否有必要保证所有结点上事件的全序传输.一个事件序列表示为U={e1,e2,e3…en ei∈E}.其中, E表示一个游戏中所有可能的事件集合.事件关联性可以定义为:(关联∞)考虑两个事件ei,ej∈E,存在一个关联∞,如果满足下述条件(ei->ej)=>s1∩(ej->ei)=>s2∩s1≠s2, (s1,s2∈S)(S表示游戏的状态集)则可以说ei∞ej.也就是说ei和ej这两个事件是相关联的.如图1、图2所示.事件关联性可以通过事件操作对象判定,事件操作对象就是被事件改变状态的对象.比如捡物品的动作涉及到物品所属者和物品本身状态变化.O bject(e)表示事件E所操作对图1 事件关联象的集合V,如O bject(ei)=V i.对于两个事件ei和ej,如果ei∞ej就可以推导出Vi∩Vj≠ .显然,如果游戏中的两个事件改变游戏中不同的对象状态,则它们的执行顺序在相对短的时间间隔内对最终游戏结果不会产生影响.因为这两个操作是完全独立的,它们作用于不同游戏对象.图2 事件不关联同时,本文进一步对关联的事件进行分类:更新性事件和非更新性事件.对于更新性事件来说,对象的最新状态值总是由最后发生的事件更新的,如果前一个更新事件延迟到达就不需处理,比如位置变化事件.游戏中只需要求对非更新的关联事件进行全序执行.4 引入事件关联的Timewarp算法T imew ar p算法对每个迟到的事件都进行回滚,可能会引起画面停顿,而且会占用大量的系统资源(回滚以及内存的占用),本文针对游戏本身特点来进行改进,引入事件关联机制,减少回滚次数,提高游戏交互性.本文使用N T P协议实现结点间的物理时钟同步.首先定义算法中的概念:事件的全序执行:每个事件都有物理时间戳,对于事件E (a),用T(a)来表示它的时间戳.如果事件E(a)在E(b)之前发生即T(a)<T(b),则这两个事件在各个结点的执行顺序表示为E(a)→E(b).如果T(a)=T(b),此时仍需保证同时发生的事件在不同结点上得到相同的处理,可以通过同步分割实现[2],如考虑结点机器的IP值对事件进行全局排序进一步的事件全序定义:对于事件E(a),E(b),如果E(a)→E(b)则T (a)<T(b)或者如果T(a)==T(b)且IP(a)<IP(b),则T(a) <T(b).下边给出算法的符号的定义:T(sho w)为事件模拟点的时间戳,T(g vt)为最大可回滚时间点的时间戳,E(c)为新到2068 小 型 微 型 计 算 机 系 统 2006年达结点的事件,T (c )为新到事件的时间戳,E -list 为事件列表中的事件集合.引入事件关联的同步算法描述:类似于T imew ar p 算法,对结点收到的所有GV T 时间点以后的事件,需要维护一个列表记录它们.对于某一个结点来说,收到信息包以后,首先比较新来事件时间戳T (c )和本地的事件模拟点的时间戳T (show ),如果T (c )<T (sho w ),说明对这个结点来说,它是迟到的事件,需要进行关联检测.传统的T imew ar p 算法此时会进行回滚再重新执行事件队列.而在事件关联的T im ewar p 算法中,首先判断迟到事件是否与本应在它后边执行却已经执行的事件相关联,如果不关联,则只需简单执行这个迟到事件即可,不会影响到各个玩家在游戏中状态一致性.图3 事件处理流程图对于相互关联的事件来说,如果迟到的事件属于更新性事件,那么可以简单的进行丢弃.比如位置信息,因为已经执行完的更新值使迟到的值无效.事件处理流程如图3所示.具体算法如下,其中S et E i 是一个满足一定条件的游戏事件集合.For each new comin g eventIf T (gvt)<T (coming)<T(s how ){S et E i ={(T(coming)<T (Ei)<T(s how ))∧(E(i)∞E(coming )) E i∈E -lis t} If S et Ei ==Th en run com ing even t Els e{ If each E (i )∈S et Ei jus t up dates E (coming ) Th en drop E (comin g ); Els e rollb ack to early state ;}}同T imew ar p 算法一样,改进的算法也面临虚拟时间点的问题.传统算法通过不断计算G V T 来保证不会有先于这个时间点的事件存在.但计算GV T 需要大量的网络资源,并不适合于网络连接差异大、玩家人数较多的游戏环境.在T SS 算法[5]中,通过把可回滚点设置的足够长来保证不会有延迟先于这个时间点的事件发生.而这不适用于P 2P 环境中延迟差异较大的情况.本文进一步利用事件操纵对象的概念,通过向被操纵的对象所有者索要该对象最新状态,来保证一致性.类似于T SS 算法,这里设置一个最大可回滚时间值h 来替代全局虚拟时间.如果增加h 值,就会减小不可回滚事件发生的可能性,但是可能会消耗更多的内存空间.这个值的大小可以通过具体游戏来设定.如果迟到事件的时间戳比最大可回滚时间点h 还要早(T (c)<T (h)),可以要求发出此事件的结点重新传输该事件所影响对象的最新状态,此时传输的是状态而不是事件.算法首先判断从这个事件时间戳(即发送方模拟点的时间戳)开始到收到对象状态的结点事件模拟点处,是否有事件改变了对象的状态,如果没有,就更新收到的对象状态.此时,即使结点有迟到事件会影响到该对象状态也不会影响到游戏状态.因为在对象状态的时间戳之前,只有状态发送方可以改变它的状态.如果发送方本身的事件改变了这个对象状态,就重新传输.这种请求状态机制要求其它结点存储该对象状态的副本.针对使用的基于覆盖网络的P 2P 结构[11]来说是满足条件的.下边描述了迟到事件时间戳先于最大可回滚时间h 时的处理算法,其中S(rece)、S (o bj)分别表示接受方迟到事件操纵对象的状态值和发送过来的状态值.If T(coming)<T (h)A sk for th e s tate of the object that th e new -com ing event affected from the ow nerIf (S(rece)==S (obj)) Drop th e comin g s tate E lse { Set Ei ={(T (s tate )<T (Ei )<T (show ))∧(ob ject ∈Object (Ei )) Ei ∈E -list } If S et E i == then up date w ith the comin g object state and notch ange even rollback Else As k for retrans mit }If the s ending part change th e obj's state due to rollback,retransmit the new s tate实际上,由于每个结点普遍会把延迟可回滚的时间点设置足够长,迟到事件的时间戳小于T (h )的可能性比较小.引入事件关联机制的T imewa rp 算法一定程度上减少回滚的次数进而减小了回滚计算量,增加了游戏的交互性,并且提供了当迟到事件先于可回滚的延迟时间时,保证游戏状态一致的方法.5 实验方案及结果分析本文利用ns -2进行仿真实验,通过G T -IM T 生成网络拓扑结构.由于讨论的范围是兴趣域内玩家的同步,所以需要模拟的结点数量不必很多.整个网络由32个结点组成,游戏玩家共20个,分布在叶子结点上.所设定的网络延迟值呈对数正态分布[12],结点之间最大的链路延迟为200ms,最小110ms .结点产生事件的频率设为每个结点每隔150ms 发送一个事件.在游戏逻辑上,为简便起见,用数字表示事件在逻辑上操纵的对象,则每个事件传输包中只需包含这些数字.任意选取206911期 石祥滨等:一种基于事件关联的T imew ar p 算法 一个叶子结点作为测试点,让其余结点发送事件信息包,该结点只接受并处理接收到的事件信息包.为便于测试,不进行具体的回滚操作,只是对迟到的事件进行关联检测,判断是否有必要进行回滚,同时记录产生的回滚次数.为了保证实验环境的近似相同,每次实验模拟等长的游戏时间.图4表示了在不同同步延迟情况下,事件在不同关联比率下的回滚次数同传统T imew ar p 算法事件回滚次数的比较结果.图4 不同关联率下算法性能比较如图4所示,分别描述了关联率为10%,50%,80%情况下不同同步延迟的算法回滚次数同传统算法回滚次数的比较.对于关联率为10%和50%的情况来说,如果把同步延迟降低,则改进后的算法回滚次数并没有像传统T imew ar p 算法那样显著增加.因为对迟到的事件进行了关联分析,由于此图5 不同关联比率下的回滚次数比较时的关联率比较低,所以大部分事件被系统视为孤立事件,并没有回滚操作.而传统算法对所有迟到事件都进行回滚,增加了回滚次数.当然,不同关联比率也很大程度影响了事件的回滚次数.当关联比率达到80%时,事件回滚次数同传统的算法差不多.如果同步延迟增加,结点就会有更多的时间等待事件,此时迟到事件的比率越来越小,从而回滚次数也变得越来越少.正如图4中所示,当同步延迟达到190ms 的时候,改进算法和传统算法回滚次数都明显降低.由于实验中严格限制了事件传输的延迟在190ms 内,所以当同步延迟达到190ms 的时候,几乎没有任何回滚发生,但同时也牺牲了游戏的响应性,进而影响了玩家间的交互性.从上图也可以发现,如果回滚次数设定在400次,当事件关联率在50%的时候,同步延迟可以设置在136ms,而传统算法的同步延迟要设置在155ms 处,这说明改进的算法可以很大程度上的提高游戏响应性.图5是同步延迟为170ms 时,在两个结点上对事件不同关联率下的回滚次数作的分析.由于同步延迟一定,传统算法的回滚次数在不同事件关联比率下基本恒定.改进后的算法则不同,在关联率较低情况下引入关联机制的T im ewar p 算法回滚次数明显降低,而传统的T imew arp 算法回滚次数较多,随着关联比率的增加,事件回滚次数也逐渐增加,当关联比率接近90%时,回滚次数也接近传统算法的回滚次数,此时改进后的算法没有优势.然而,游戏中事件操纵的对象一般较多,事件之间的关联性较低.所以基于关联的T im ewar p 算法可以一定程度上的减少回滚的次数.结点1和结点2分别表示了在不同结点上的测量结果,由于结点1同其他结点间的平均网络延迟小于结点2,因此它在不同关联比率下回滚的次数就会少一些.但当事件关联率较低时,事件回滚次数都会明显变小.图6 CPU 占用率比较当然,对每个事件进行关联检测本身需要占用一定的系统资源,如图6所示,在同步延迟设定为170ms 情况下,分别比较了关联率为10%、50%和90%时系统CP U 占用率同传统算法的比较情况.不难看出关联率在10%的时候,CPU 占用率低于传统算法.因为此时关联率较低,基本没有回滚发生,而关联检测占用的系统资源固定,且明显小于传统算法进行回滚的开销.但是当关联率为90%时,不难发现系统占用率已超过了传统算法.这是因为除了有比较多的回滚以外,算法还要进行关联检测,而回滚次数减少所节省的系统开销小于进行关联检测的系统开销,此时改进算法在系统性能上没有优势.综上可见,改进算法在事件关联率低的条件下会表现出很好的效果.一般游戏中事件类型会很多,事件之间的关联比率不会很高,所以改进的算法可以在保证游戏状态一致性的前提下一定程度上提高玩家间的交互性.6 结 论在分布式的网络游戏游戏中,同步机制是非常重要的方面.本文在T imewar p 算法的基础上引入事件关联机制,很大程度上减少了T imewar p 算法的回滚次数,使游戏在交互性上有一定提高,同时也提高了游戏的可玩性.下一步工作是在同步中引入欺骗检测机制来保证游戏的可靠性和安全性.References :[1]Gautier L ,Diot C.A dis tr ibuted arch itectur e for multiplayer2070 小 型 微 型 计 算 机 系 统 2006年interactive applications on the internet [J ].IEEE Netw ork ,1999,13:6-15.[2]M auve M ,Vogel J,Hilt V,etal.Local-lag and timew arp :providing consistency for replicated continuous ap plications [J ].IEEE Trans actions on M u ltimed ia,2004,6(1):47-57.[3]Low ry M C ,As hen den P J ,Haw ick K A .Distributed high -per formance simu lation us ing time w arp and java[R].T echnical Report 2000/01,Dept Compu ter Scien ce,T he University of Adelaid e,South Australia (February 2000).[4]Euisu k Hong,Dongman Lee.An efficien t s ynch ronization mechanism adapting to dynamic netw or k s tate for n etw orked virtu al environments[R].T ech Report 2002-31.[5]Cronin E ,Filstrup B ,Jamin S ,etal .An efficient s ynch ronizationmechan ism for mir rored gam e architectu res (ex tented ver sion )[J].M ultimedia T ools an d Application s,2004,23(1):7-30.[6]Cr on in E ,Filstrup B ,Kurc A R .A distributed m ultiplayer games erver sys tem[R].T echnical Report U M EECS 589,U nivers ity of M ich igan ,M ay 2001.[7]Knutss on B,Lu H,Xu W ,etal.Peer-to-Peer s upport formassively multiplayer games [J ].INFOCOM 2004,1(3):96-107.[8]Ch eriton D R,Sk een D.U nders tand ing th e lim itations of causaland totally ord ered m ulticast [C ].In Pr oceedings of the 14th S ymposium on Operating System Principles (SOS P'93).[9]D efago X D ,Schiper A ,Urb ′an P .Total order broadcast andmulticas t algor ith ms:T axonomy an d sur vey [R ].Resear ch Report IS -RR -2003-009,Japan Advanced Ins titute of Science and T echnology,Ishik aw a,Japan,S eptember 2003.[10]Ferretti S ,Roccetti M.On d esig ning an event delivery ser vice forM ultiplayer n etw orked games:Anapproachbas edon obs olescence [C ].In Pr oceedings of IAST ED InternationalC on feren ceonIn ternetandM ultimediaSystemsandAp plications,Augu st,2003.[11]S hi Xing -b in ,Zhou Don g -ming .Peer -to -Peer s upport forM M OG[J ].M ini-M icro Systems 2005,26(12):2100-2104.[12]Park K,W illinger W.Self-similar network traffic and perfor man ce evaluation [M ].W iley -In terscien ce ,J anu ary 2000.附中文参考文献:[11]石祥滨,周东明.一种支持M M OG 的对等网络模型[J ].小型微型计算机系统,2005,26(12):2100-2104.中国科学院沈阳计算技术研究所硕士研究生招生简章中科院沈阳计算所是中国科学院研究生院硕士研究生培养单位之一,具有“计算机系统结构”、“计算机软件与理论”、“计算机应用技术”三个专业硕士学位授予权,招生共分三个层面.1.统招生:自1978年以来,该所共招收二十八届学生,已毕业的数百名研究生全部获得硕士学位,现每年招45人.2.硕士进修班:1999年始举办“计算机应用技术”专业的研究生课程进修班,每年招收40名.3.工程硕士生:2004年开始面向全国招收计算机技术工程硕士专业学位研究生,招生40名/年.培养特点为“进校不离岗”,每周六、日上课,实行完全学分制管理.学制2至4年,其中课程学习(1至1.5年),完成学位论文(1至2.5年).凡在上述三个班毕业的研究生均可获得中国科学院研究生院的毕业文凭.该所具有相当规模的教学,科研体系,师资力量雄厚,科研队伍强大,有良好的教学设施和丰富的办学经验.为满足社会需求,充分发挥自身硕士点的优势,敞开大门,面向社会需求,开展多形式、多层次的办学方式,要为社会多培养计算机方面人才.欢迎相关人员报名参加.访问主页:http ://yjs .sict .ac .cn 联系电话:024-******** 024-********207111期 石祥滨等:一种基于事件关联的T imew ar p 算法 。
uppaal-tutorial
A Tutorial on Uppaal4.0Updated November28,2006Gerd Behrmann,Alexandre David,and Kim rsenDepartment of Computer Science,Aalborg University,Denmark{behrmann,adavid,kgl}@cs.auc.dk.Abstract.This is a tutorial paper on the tool Uppaal.Its goal is to bea short introduction on theflavour of timed automata implemented inthe tool,to present its interface,and to explain how to use the tool.Thecontribution of the paper is to provide reference examples and modellingpatterns.1IntroductionUppaal is a toolbox for verification of real-time systems jointly developed by Uppsala University and Aalborg University.It has been applied successfully in case studies ranging from communication protocols to multimedia applications [35,55,24,23,34,43,54,44,30].The tool is designed to verify systems that can be modelled as networks of timed automata extended with integer variables,struc-tured data types,user defined functions,and channel synchronisation.Thefirst version of Uppaal was released in1995[52].Since then it has been in constant development[21,5,13,10,26,27].Experiments and improvements in-clude data structures[53],partial order reduction[20],a distributed version of Uppaal[17,9],guided and minimal cost reachability[15,51,16],work on UML Statecharts[29],acceleration techniques[38],and new data structures and memory reductions[18,14].Version4.0[12]brings symmetry reduction[36], the generalised sweep-line method[49],new abstraction techniques[11],priori-ties[28],and user defined functions to the mainstream.Uppaal has also gen-erated related Ph.D.theses[50,57,45,56,19,25,32,8,31].It features a Java user interface and a verification engine written in C++.It is freely available at /.This tutorial covers networks of timed automata and theflavour of timed automata used in Uppaal in section2.The tool itself is described in section3, and three extensive examples are covered in sections4,5,and6.Finally,section7 introduces common modelling patterns often used with Uppaal.2Timed Automata in UppaalThe model-checker Uppaal is based on the theory of timed automata[4](see[42] for automata theory)and its modelling language offers additional features such as bounded integer variables and urgency.The query language of Uppaal,usedto specify properties to be checked,is a subset of TCTL (timed computation tree logic)[39,3].In this section we present the modelling and the query languages of Uppaal and we give an intuitive explanation of time in timed automata.2.1The Modelling LanguageNetworks of Timed Automata A timed automaton is a finite-state machine extended with clock variables.It uses a dense-time model where a clock variable evaluates to a real number.All the clocks progress synchronously.In Uppaal ,a system is modelled as a network of several such timed automata in parallel.The model is further extended with bounded discrete variables that are part of the state.These variables are used as in programming languages:They are read,written,and are subject to common arithmetic operations.A state of the system is defined by the locations of all automata,the clock values,and the values of the discrete variables.Every automaton may fire an edge (sometimes misleadingly called a transition)separately or synchronise with another automaton 1,which leads to a new state.Figure 1(a)shows a timed automaton modelling a simple lamp.The lamp has three locations:off ,low ,and bright .If the user presses a button,i.e.,synchronises with press?,then the lamp is turned on.If the user presses the button again,the lamp is turned off.However,if the user is fast and rapidly presses the button twice,the lamp is turned on and becomes bright.The user model is shown in Fig.1(b).The user can press the button randomly at any time or even not press the button at all.The clock y of the lamp is used to detect if the user was fast (y <5)or slow (y >=5).press?‚‚‚‚‚press!(a)Lamp.(b)User.Fig.1.The simple lamp example.We give the basic definitions of the syntax and semantics for the basic timed automata.In the following we will skip the richer flavour of timed automata supported in Uppaal ,i.e.,with integer variables and the extensions of urgent and committed locations.For additional information,please refer to the helpmenu inside the tool.We use the following notations:C is a set of clocks and B (C )is the set of conjunctions over simple conditions of the form x ⊲⊳c or x −y ⊲⊳c ,where x,y ∈C ,c ∈N and ⊲⊳∈{<,≤,=,≥,>}.A timed automaton is a finite directed graph annotated with conditions over and resets of non-negative real valued clocks.Definition 1(Timed Automaton (TA)).A timed automaton is a tuple (L,l 0,C,A,E,I ),where L is a set of locations,l 0∈L is the initial location,C is the set of clocks,A is a set of actions,co-actions and the internal τ-action,E ⊆L ×A ×B (C )×2C ×L is a set of edges between locations with an action,a guard and a set of clocks to be reset,and I :L →B (C )assigns invariants to locations. In the previous example on Fig.1,y:=0is the reset of the clock y ,and the labels press?and press!denote action–co-action (channel synchronisations here).We now define the semantics of a timed automaton.A clock valuation is a function u :C →R ≥0from the set of clocks to the non-negative reals.Let R C be the set of all clock valuations.Let u 0(x )=0for all x ∈C .We will abuse the notation by considering guards and invariants as sets of clock valuations,writing u ∈I (l )to mean that u satisfies I (l ).0000000001111111110001110000000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111110000000000000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110000111100001111<B,x=1><A,x=2><A,x=3><A,x=3>action transition delay(+1) transition delay(+2) transition state: <A,x=1>actiontransitionOK invalid action transition invalid state: invariant x<3 violatedFig.2.Semantics of TA:different transitions from a given initial state.Definition 2(Semantics of TA).Let (L,l 0,C,A,E,I )be a timed automaton.The semantics is defined as a labelled transition system S,s 0,→ ,where S ⊆L ×R C is the set of states,s 0=(l 0,u 0)is the initial state,and →⊆S ×(R ≥0∪A )×S is the transition relation such that:–(l,u )d−→(l,u +d )if ∀d ′:0≤d ′≤d =⇒u +d ′∈I (l ),and –(l,u )a −→(l ′,u ′)if there exists e =(l,a,g,r,l ′)∈E s.t.u ∈g ,u ′=[r →0]u ,and u ′∈I (l ′),3where for d∈R≥0,u+d maps each clock x in C to the value u(x)+d,and [r→0]u denotes the clock valuation which maps each clock in r to0and agrees with u over C\r. Figure2illustrates the semantics of TA.From a given initial state,we can choose to take an action or a delay transition(different values here).Depending of the chosen delay,further actions may be forbidden.Timed automata are often composed into a network of timed automata over a common set of clocks and actions,consisting of n timed automata A i= (L i,l0i,C,A,E i,I i),1≤i≤n.A location vector is a vector¯l=(l1,...,l n). We compose the invariant functions into a common function over location vec-tors I(¯l)=∧i I i(l i).We write¯l[l′i/l i]to denote the vector where the i th element l i of¯l is replaced by l′i.In the following we define the semantics of a network of timed automata.Definition3(Semantics of a network of Timed Automata).Let A i= (L i,l0i,C,A,E i,I i)be a network of n timed automata.Let¯l0=(l01,...,l0n)be the initial location vector.The semantics is defined as a transition system S,s0,→ , where S=(L1×···×L n)×R C is the set of states,s0=(¯l0,u0)is the initial state,and→⊆S×S is the transition relation defined by:–(¯l,u)d−→(¯l,u+d)if∀d′:0≤d′≤d=⇒u+d′∈I(¯l).−−→l′i s.t.u∈g,–(¯l,u)a−→(¯l[l′i/l i],u′)if there exists l iτgru′=[r→0]u and u′∈I(¯l[l′i/l i]).–(¯l,u)a−→(¯l[l′j/l j,l′i/l i],u′)if there exist l i c?g i r i−−−−→l′i and−−−−→l′j s.t.u∈(g i∧g j),u′=[r i∪r j→0]u and u′∈I(¯l[l′j/l j,l′i/l i]).l j c!g j r jAs an example of the semantics,the lamp in Fig.1may have the follow-ing states(we skip the user):(Lamp.off,y=0)→(Lamp.off,y=3)→(Lamp.low,y=0)→(Lamp.low,y=0.5)→(Lamp.bright,y=0.5)→(Lamp.bright,y=1000)...Timed Automata in Uppaal The Uppaal modelling language extends timed automata with the following additional features(see Fig.3:Templates automata are defined with a set of parameters that can be of any type(e.g.,int,chan).These parameters are substituted for a given argument in the process declaration.Constants are declared as const name value.Constants by definition cannot be modified and must have an integer value.Bounded integer variables are declared as int[min,max]name,where min and max are the lower and upper bound,respectively.Guards,invariants,and assignments may contain expressions ranging over bounded integer variables.The bounds are checked upon verification and violating a bound leads to an invalid state that is discarded(at run-time).If the bounds are omitted,the default range of-32768to32768is used.4Fig.3.Declarations of a constant and a variable,and illustration of some of the channel synchronisations between two templates of the train gate example of Section4,and some committed locations.5Binary synchronisation channels are declared as chan c.An edge labelled with c!synchronises with another labelled c?.A synchronisation pair is chosen non-deterministically if several combinations are enabled. Broadcast channels are declared as broadcast chan c.In a broadcast syn-chronisation one sender c!can synchronise with an arbitrary number of receivers c?.Any receiver than can synchronise in the current state must do so.If there are no receivers,then the sender can still execute the c!action,i.e.broadcast sending is never blocking.Urgent synchronisation channels are declared by prefixing the channel decla-ration with the keyword urgent.Delays must not occur if a synchronisation transition on an urgent channel is enabled.Edges using urgent channels for synchronisation cannot have time constraints,i.e.,no clock guards. Urgent locations are semantically equivalent to adding an extra clock x,that is reset on all incoming edges,and having an invariant x<=0on the location.Hence,time is not allowed to pass when the system is in an urgent location. Committed locations are even more restrictive on the execution than urgent locations.A state is committed if any of the locations in the state is commit-ted.A committed state cannot delay and the next transition must involve an outgoing edge of at least one of the committed locations.Arrays are allowed for clocks,channels,constants and integer variables.They are defined by appending a size to the variable name,e.g.chan c[4];clock a[2];int[3,5]u[7];.Initialisers are used to initialise integer variables and arrays of integer vari-ables.For instance,int i=2;or int i[3]={1,2,3};.Record types are declared with the struct construct like in C.Custom types are defined with the C-like typedef construct.You can define any custom-type from other basic types such as records.User functions are defined either globally or locally to templates.Template parameters are accessible from local functions.The syntax is similar to C except that there is no pointer.C++syntax for references is supported for the arguments only.Expressions in Uppaal Expressions in Uppaal range over clocks and integer variables.The BNF is given in Fig.33in the appendix.Expressions are used with the following labels:Select A select label contains a comma separated list of name:type expressions where name is a variable name and type is a defined type(built-in or custom).These variables are accessible on the associated edge only and they will takea non-deterministic value in the range of their respective types.Guard A guard is a particular expression satisfying the following conditions: it is side-effect free;it evaluates to a boolean;only clocks,integer variables, and constants are referenced(or arrays of these types);clocks and clock differences are only compared to integer expressions;guards over clocks are essentially conjunctions(disjunctions are allowed over integer conditions).A guard may call a side-effect free function that returns a bool,although clock constraints are not supported in such functions.6Synchronisation A synchronisation label is either on the form Expression!or Expression?or is an empty label.The expression must be side-effect free, evaluate to a channel,and only refer to integers,constants and channels. Update An update label is a comma separated list of expressions with a side-effect;expressions must only refer to clocks,integer variables,and constants and only assign integer values to clocks.They may also call functions. Invariant An invariant is an expression that satisfies the following conditions:it is side-effect free;only clock,integer variables,and constants are referenced;it is a conjunction of conditions of the form x<e or x<=e where x is a clock reference and e evaluates to an integer.An invariant may call a side-effect free function that returns a bool,although clock constraints are not supported in such functions.2.2The Query LanguageThe main purpose of a model-checker is verify the model w.r.t.a requirement specification.Like the model,the requirement specification must be expressed in a formally well-defined and machine readable language.Several such logics exist in the scientific literature,and Uppaal uses a simplified version of TCTL. Like in TCTL,the query language consists of path formulae and state formulae.2 State formulae describe individual states,whereas path formulae quantify over paths or traces of the model.Path formulae can be classified into reachability, safety and liveness.Figure4illustrates the different path formulae supported by Uppaal.Each type is described below.State Formulae A state formula is an expression(see Fig.33)that can be evaluated for a state without looking at the behaviour of the model.For instance, this could be a simple expression,like i==7,that is true in a state whenever i equals7.The syntax of state formulae is a superset of that of guards,i.e.,a state formula is a side-effect free expression,but in contrast to guards,the use of disjunctions is not restricted.It is also possible to test whether a particular process is in a given location using an expression on the form P.l,where P is a process and l is a location.In Uppaal,deadlock is expressed using a special state formula(although this is not strictly a state formula).The formula simply consists of the keyword deadlock and is satisfied for all deadlock states.A state is a deadlock state if there are no outgoing action transitions neither from the state itself or any of its delay successors.Due to current limitations in Uppaal,the deadlock state formula can only be used with reachability and invariantly path formulae(see below).Reachability Properties Reachability properties are the simplest form of properties.They ask whether a given state formula,ϕ,possibly can be satisfied3Notice that A ϕ=¬E3¬ϕ8there should exist a maximal path such thatϕis always true.4In Uppaal we write A[]ϕand E[]ϕ,respectively.Liveness Properties Liveness properties are of the form:something will even-tually happen,e.g.when pressing the on button of the remote control of the television,then eventually the television should turn on.Or in a model of a communication protocol,any message that has been sent should eventually be received.In its simple form,liveness is expressed with the path formula A3ϕ,mean-ingϕis eventually satisfied.5The more useful form is the leads to or response property,writtenϕ ψwhich is read as wheneverϕis satisfied,then eventu-allyψwill be satisfied,e.g.whenever a message is sent,then eventually it will be received.6In Uppaal these properties are written as A<>ϕandϕ-->ψ, respectively.2.3Understanding TimeInvariants and Guards Uppaal uses a continuous time model.We illustrate the concept of time with a simple example that makes use of an observer.Nor-mally an observer is an add-on automaton in charge of detecting events without changing the observed system.In our case the clock reset(x:=0)is delegated to the observer for illustration purposes.Figure5shows thefirst model with its observer.We have two automata in parallel.Thefirst automaton has a self-loop guarded by x>=2,x being a clock,that synchronises on the channel reset with the second automaton.The second automaton,the observer,detects when the self loop edge is taken with the location taken and then has an edge going back to idle that resets the clock x.We moved the reset of x from the self loop to the observer only to test what happens on the transition before the reset.Notice that the location taken is committed(marked c)to avoid delay in that location.The following properties can be verified in Uppaal(see section3for an overview of the interface).Assuming we name the observer automaton Obs,we have:–A[]Obs.taken imply x>=2:all resets offx will happen when x is above2.This query means that for all reachable states,being in the locationObs.taken implies that x>=2.–E<>Obs.idle and x>3:this property requires,that it is possible to reach-able state where Obs is in the location idle and x is bigger than3.Essentially we check that we may delay at least3time units between resets.The result would have been the same for larger values like30000,since there are no invariants in this model.x>=2reset!‚‚‚‚‚246824"time"c l o c k x (a)Test.(b)Observer.(c)Behaviour:one possible run.Fig.5.First example with anobserver.x>=2reset!246824"time"c l o c k x(a)Test.(b)Updated behaviour with an invariant.Fig.6.Updated example with an invariant.The observer is the same as in Fig.5and is not shown here.We update the first model and add an invariant to the location loop ,as shown in Fig.6.The invariant is a progress condition:the system is not allowed to stay in the state more than 3time units,so that the transition has to be taken and the clock reset in our example.Now the clock x has 3as an upper bound.The following properties hold:–A[]Obs.taken imply (x>=2and x<=3)shows that the transition is takenwhen x is between 2and 3,i.e.,after a delay between 2and 3.–E<>Obs.idle and x>2:it is possible to take the transition when x is be-tween 2and 3.The upper bound 3is checked with the next property.–A[]Obs.idle imply x<=3:to show that the upper bound is respected.The former property E<>Obs.idle and x>3no longer holds.Now,if we remove the invariant and change the guard to x>=2and x<=3,you may think that it is the same as before,but it is not!The system has no progress condition,just a new condition on the guard.Figure 7shows what happens:the system may take the same transitions as before,but deadlock may also occur.The system may be stuck if it does not take the transition after 3time units.In fact,the system fails the property A[]not deadlock .The property A[]Obs.idle imply x<=3does not hold any longer and the deadlock can also be illustrated by the property A[]x>3imply not Obs.taken ,i.e.,after 3time units,the transition is not taken any more.10x>=2 && x<=3reset!246824"time"c l o c k x(a)Test.(b)Updated behaviour with a guard and no invariant.Fig.7.Updated example with a guard and no invariant.P0P1P2Fig.8.Automata in parallel with normal,urgent and commit states.The clocks are local,i.e.,P0.x and P1.x are two different clocks.Committed and Urgent Locations There are three different types of loca-tions in Uppaal :normal locations with or without invariants (e.g.,x<=3in the previous example),urgent locations,and committed locations.Figure 8shows 3automata to illustrate the difference.The location marked u is urgent and the one marked c is committed.The clocks are local to the automata,i.e.,x in P0is different from x in P1.To understand the difference between normal locations and urgent locations,we can observe that the following properties hold:–E<>P0.S1and P0.x>0:it is possible to wait in S1of P0.–A[]P1.S1imply P1.x==0:it is not possible to wait in S1of P1.An urgent location is equivalent to a location with incoming edges reseting a designated clock y and labelled with the invariant y<=0.Time may not progress in an urgent state,but interleavings with normal states are allowed.A committed location is more restrictive:in all the states where P2.S1is active (in our example),the only possible transition is the one that fires the edge outgoing from P2.S1.A state having a committed location active is said to11be committed:delay is not allowed and the committed location must be left in the successor state(or one of the committed locations if there are several ones). 3Overview of the Uppaal ToolkitUppaal uses a client-server architecture,splitting the tool into a graphical user interface and a model checking engine.The user interface,or client,is imple-mented in Java and the engine,or server,is compiled for different platforms (Linux,Windows,Solaris).7As the names suggest,these two components may be run on different machines as they communicate with each other via TCP/IP. There is also a stand-alone version of the engine that can be used on the com-mand line.3.1The Java ClientThe idea behind the tool is to model a system with timed automata using a graphical editor,simulate it to validate that it behaves as intended,andfinally to verify that it is correct with respect to a set of properties.The graphical interface(GUI)of the Java client reflects this idea and is divided into three main parts:the editor,the simulator,and the verifier,accessible via three“tabs”. The Editor A system is defined as a network of timed automata,called pro-cesses in the tool,put in parallel.A process is instantiated from a parameterised template.The editor is divided into two parts:a tree pane to access the different templates and declarations and a drawing canvas/text editor.Figure9shows the editor with the train gate example of section4.Locations are labelled with names and invariants and edges are labelled with guard conditions(e.g.,e==id), synchronisations(e.g.,go?),and assignments(e.g.,x:=0).The tree on the left hand side gives access to different parts of the system description:Global declaration Contains global integer variables,clocks,synchronisation channels,and constants.Templates Train,Gate,and IntQueue are different parameterised timed au-tomata.A template may have local declarations of variables,channels,and constants.Process assignments Templates are instantiated into processes.The process assignment section contains declarations for these instances.System definition The list of processes in the system.The syntax used in the labels and the declarations is described in the help system of the tool.The local and global declarations are shown in Fig.10.The graphical syntax is directly inspired from the description of timed automata in section2.12Fig.9.The train automaton of the train gate example.The select button is activated in the tool-bar.In this mode the user can move locations and edges or edit labels. The other modes are for adding locations,edges,and vertices on edges(called nails).A new location has no name by default.Two textfields allow the user to define the template name and its eful trick:The middle mouse button is a shortcut for adding new elements,i.e.pressing it on the canvas,a location,or edge adds a new location,edge,or nail,respectively.The Simulator The simulator can be used in three ways:the user can run the system manually and choose which transitions to take,the random mode can be toggled to let the system run on its own,or the user can go through a trace (saved or imported from the verifier)to see how certain states are reachable. Figure11shows the simulator.It is divided into four parts:The control part is used to choose andfire enabled transitions,go through a trace,and toggle the random simulation.The variable view shows the values of the integer variables and the clock con-straints.Uppaal does not show concrete states with actual values for the clocks.Since there are infinitely many of such states,Uppaal instead shows sets of concrete states known as symbolic states.All concrete states in a sym-bolic state share the same location vector and the same values for discretevariables.The possible values of the clocks is described by a set of con-Fig.10.The different local and global declarations of the train gate example.We superpose several screen-shots of the tool to show the declarations in a compact manner.straints.The clock validation in the symbolic state are exactly those that satisfy all constraints.The system view shows all instantiated automata and active locations of the current state.The message sequence chart shows the synchronisations between the differ-ent processes as well as the active locations at every step.The Verifier The verifier“tab”is shown in Fig.12.Properties are selectable in the Overview list.The user may model-check one or several properties,8insert or remove properties,and toggle the view to see the properties or the comments in the list.When a property is selected,it is possible to edit its definition(e.g., E<>Train1.Cross and Train2.Stop...)or comments to document what the property means informally.The Status panel at the bottom shows the commu-nication with the server.When trace generation is enabled and the model-checkerfinds a trace,the user is asked if she wants to import it into the simulator.Satisfied properties are marked green and violated ones red.In case either an over approximation or an under approximation has been selected in the options menu,then it may happen that the verification is inconclusive with the approximation used.In that casethe properties are marked yellow.Fig.11.View of the simulator tab for the train gate example.The interpretation of the constraint system in the variable panel depends on whether a transition in the transition panel is selected or not.If no transition is selected,then the constrain system shows all possible clock valuations that can be reached along the path.If a transition is selected,then only those clock valuations from which the transition can be taken are shown.Keyboard bindings for navigating the simulator without the mouse can be found in the integrated help system.3.2The Stand-alone VerifierWhen running large verification tasks,it is often cumbersome to execute these from inside the GUI.For such situations,the stand-alone command line verifier called verifyta is more appropriate.It also makes it easy to run the verification on a remote UNIX machine with memory to spare.It accepts command line arguments for all options available in the GUI,see Table3in the appendix.4Example1:The Train Gate4.1DescriptionThe train gate example is distributed with Uppaal.It is a railway control system which controls access to a bridge for several trains.The bridge is a critical shared resource that may be accessed only by one train at a time.The system is defined as a number of trains(assume4for this example)and a controller.A train can not be stopped instantly and restarting also takes time.Therefor,there are timing constraints on the trains before entering the bridge.When approaching,15。
最新核专业英语词汇
核专业英语词汇(一)核物理基本概念元素 element粒子 particle离子 ion分子 molecule原子 atom原子的 atomic原子核 nucleus (pl. nuclei) 核的 nuclear质子 proton中子 neutron电子 electron核子 nucleon化学性质 chemical identity 带正电的 positively charged 带负电的 negatively charged 不带电的 uncharged电中性的 electrically neutral (元素)周期表 periodic table 原子序数 atomic number质量数 mass number轨道电子 orbital electron 同位素 isotope天然存在的 naturally occurring 人工的 artificial化学键 chemical bond化合物 compound上标 superscript下标 subscript氧 oxygen氢,氕 hydrogen重氢,氘 heavy hydrogen,deuterium重氢核,氘核 deuterion超重氢,氚 tritium碳 carbon氦 helium放射性的 radioactive加权平均 weighted mean质量 mass动量 momentum能量 energy单位,机组 unit国际单位制 System International, SI 千克 kilogram (kg)伏特 volt (V)摩尔 mole (mol)库仑 coulomb电子伏特 electron-volt (eV)兆电子伏特 mega electron-volt (MeV) 质量亏损 mass defect结合能 binding energy动能 kinetic energy势能 potential, potential energy跃迁 jump核力 nuclear force排斥 repulsion吸引 attraction轰击 bombardment发射(出) emission (n.), emit (v.)能级 energy level裂变 fission聚变 fusion衰变 decay钡 barium 硼 boron铋 bismuth铀 uranium钚 plutonium钍 thorium锂 lithium钠 sodium核反应 nuclear reaction链式反应 chain reaction辐射,射线 radiation超铀元素 transuranium element可裂变的 fissionable易裂变的 fissile碎片 fragment宏观的 macroscopic微观的 microscopic介观的 mesoscopic激发 excite静电的 electrostatic库仑力 Coulomb force电磁辐射 electromagnetic radiation(二)放射性宇宙射线 cosmic ray电离 ionization韧致辐射 bremsstrahlung(brakingradiation)辐射,射线 radiation正比于 be proportional to反比于 be inversely proportional to 根据经验 as a rule of thumb α射线 alpha rayβ射线 beta rayγ射线 gamma ray带电粒子 charged particle 光子 photon散射 scattering衍射 diffraction折射 deflection碰撞 collision铝 aluminum铍 beryllium氦 helium相互作用 interaction摄入 ingest吸入 inhale动能 kinetic energy势能 potential (energy)量子 quantum屏蔽 shielding正电子 positron加速器 accelerator放射性 radioactivity湮灭 annihilation光电效应 photoelectric effect (三)核反应衰减 attenuation 放大 amplification镉 cadmium钴 cobalt氧 oxygen氮 nitrogen汞 mercury弹性的 elastic非弹性的 inelastic宏观截面 macroscopic cross section 微观截面 microscopic cross section 靶恩 barn反冲,反作用 recoil 平均自由程 mean free path转变,转化 transmutation扩散 diffusion中子扩散 neutron diffusion斐克扩散定律 Fick’s law of diffusion 通量 flux中微子 neutrino放射性同位素 radioisotope半衰期 half-life热核反应堆 thermonuclear reactor 化合价 valence(四)核材料燃料 fuel燃料芯块 fuel pellet 慢化剂 moderator 冷却剂 coolant包壳 cladding控制棒 control rod 硼酸 boric acid 铬 chromium铪 hafnium 钆 gadolinium 铟 indium镁 magnesium 镍 nickel锆 zirconium硅 silicon重水 heavy water 石墨 graphite碳化物 carbide氧化物 oxide氧化 oxidize二氧化物 dioxide二氧化碳 carbon dioxide碳氢化合物 hydrocarbon密度 density热导率,传热系数thermalconductivity比热 specific heat粘性 viscosity饱和 saturation热力性质,热物性 thermodynamicproperty反应性 reactivity升华 sublime中子俘获截面 neutron capture crosssection散射截面 scattering cross section 辐照损伤 radiation damage肿胀 swelling燃耗 burnup 合金 alloy镁诺克斯合金 Magnox锆合金 zircaloy金属间化合物 inter-metalliccompound裂变产物 fission product裂变碎片 fission fragment腐蚀产物 corrosion product可燃毒物 burnable poison冷轧 cold pressing烧结 sintering开裂 crack蠕变 creep增殖材料 fertile material增殖比 breeding ratio浓缩铀 enriched uranium高温气冷堆 High Temperature Gas-cooled Reactor(HTGR)(中子)通量展平 flux-shaping(五)核反应堆理论自持的链式反应 self-sustaining chainreaction燃料循环 fuel cycle临界 (a) critical次临界 (a) subcritical超临界 (a) supercritical临界 (n) criticality临界尺寸 critical size共振 resonance弹性散射碰撞 elastic scatteringcollision热中子利用系数 thermal utilizationfactor慢化 slow down热中子 thermal neutron快中子 fast neutron六氟化物 hexafluoride 六氟化铀 uranium hexafluoride离心工艺 centrifuge process气体扩散工艺 gaseous diffusionprocess换料 (v) refuel快中子增殖反应堆,快堆 FastBreeding Reactor(FBR)堆芯,活性区 core再生区 blanket半透膜 semi-permeable membrane 旋转 spin (过去分词:spun)贫铀 depleted uranium热中子反应堆,热堆 thermal reactor 快堆 fast reactor倍增系数 multiplication factor(十)压水反应堆压水反应堆,压水堆 PressurizedWater Reactor(PWR)蒸汽发生器 steam generator一次侧 primary side二次侧 secondary side 发电机 electrical generator,generator燃料芯块 fuel pellet包壳 cladding堆芯 core给水泵 feed(water) pump反应堆(压力)容器 reactor vessel,pressure vessel硼酸 boric acid化学补偿控制 chemical shim control 堆坑 reactor pit气密的 airtight封头 head接管,喷嘴 nozzle点火区 seed再生区 blanket用户,业主,业界 utility卖主,供应商 vendor, supplier制造商 manufacturer多重屏障 multiple barriers纵深防御 defense in depth冗余性 redundancy多样性 diversity独立性 independence包容 contain美国机械工程师协会 AmericanSociety ofMechanicalEngineer (ASME) 美国核学会American Nuclear Society(ANS)安全级 safety class失效 failure安全功能 safety function裕度 margin反应堆冷却剂系统 Reactor CoolantSystem (RCS)在役检查 inservice inspection汽水分离器 moisture separator干燥器 steam dryer堆内构件 reactor internals反应堆冷却剂泵,主泵 reactorcoolant pump(RCP), mainpump稳压器 pressurizer波动管 surge line剖视图 sectional view控制棒 control rod控制棒组件 Control ElementAssembly (CEA) 控制棒驱动机构 Control ElementDrive Mechanism(CEDM)控制棒导向管 Control Rod GuideTube (CRGT) 上部支撑板 upper support plate 燃料组件 fuel assembly进口接管 inlet nozzle出口接管 outlet nozzle堆芯吊篮 core barrel可燃吸收体 burnable absorber管侧 tube side壳侧 shell side蒸汽管线 steam line一次冷却剂 primary coolant主蒸汽 main steam反应性引入 reactivity insertion浓度 concentration参考负荷 reference load冷却剂平均温度 coolant averagetemperature稀释 dilution裂变产物 fission product积累 buildup反应堆调节系统 Reactor RegulatingSystem (RRS) (程序)整定值 programmed value 峰值线释热率 peak linear heat rate 轴向功率分布 axial powerdistribution方位角 azimuthal(中子通量)方位角偏差 azimuthaltilt偏离泡核沸腾 Departure fromNucleate Boiling(DNB)偏离泡核沸腾比 Departure fromNucleate BoilingRatio (DNBR) 堆内测量系统 In-Core DetectorSystem (ICDS) 自给能中子探测器 Self-PoweredNeutron Detector(SPND)信号调理 signal conditioning反应堆紧急停堆 reactor trip汽机脱扣 turbine trip可靠性 reliability规范,法规 code燃耗 burnup(十一)反应堆容器与堆内构件环锻件 ring-forging锻造 forge锻件 forging监视 surveillance样品,试样 specimen安装 mount奥氏体的 austenitic不锈钢 stainless steel法兰 flange热电偶 thermocouple零延性转变温度 nil-ductility transitiontemperature (T NDT) 注量率 fluence集成中子通量 NVT=Total IntegratedNeutron Flux =Integrated Flux =Fluence = Neutrondensity ⨯ Velocity ⨯Time 【unit】:[n/m3⋅m/s⋅s]= [n/m2] 旁通,支路 bypass磷 phosphorous硫 sulfur = sulphur焊 weld临界值,限值 threshold(机)接合,啮合,对位 engage凸缘,凸起部,轮毂 boss逐渐变细的 tapered圆顶 dome围板 shroud(十二)反应堆堆芯与燃料可燃吸收棒 burnable absorber rod 蠕变 creep栅格 lattice中子源 neutron source阻力塞 plug 反应性价值 reactivity worth 比功率 specific power锑 antimony镉 cadmium锎 californium铟 indium陶瓷(状)的 ceramic (机)间隙 clearance污染 contaminate栅格架;电网;网格 grid 因科镍 inconel固有安全性 inherent safety 非能动安全 passive safety 能动安全 active safety套管,套筒 sleeve定位格架 spacer grid星形架,蜘蛛 spider乏燃料 spent fuel(十三)压水堆冷却剂系统主要设备U形管蒸汽发生器 U-tube steamgenerator核供汽系统 Nuclear Steam SupplySystem (NSSS)一次系统 primary system二次系统 secondary system主蒸汽 main steam汽轮机,透平机械 turbine给水与凝汽系统 feed and condensatesystem热管段,热腿 hot leg冷管段,冷腿 cold leg堵管裕量 tube plugging margin 在 情况下 in the event of换热器 heat exchanger (HX) 节热器,省煤器 economizer给水 feedwater一次进口水室 inlet plenum一次进口接管 primary inlet nozzle 一次出口水室 outlet plenum一次出口接管 primary outlet nozzle 管板 tubesheet喷放;(SG)排污 blowdown上升段 riser下降段 downcomer满功率 full power (FP)额定功率 rated power额定负荷 rated load化学和容积控制系统 Chemical andVolume ControlSystem (CVCS)加热,升温 heatup冷却,降温 cooldown喷淋管线 spray line辅助喷淋管线 auxiliary spray line 上充泵 charging pump上充 charge下泄 letdown水位 water level, level备用的 backup过压保护 overpressure protection 安全壳内换料水箱 In-containmentRefueling WaterStorage Tank(IRWST)换料水箱 Refueling Water StorageTank (RWST)安全阀 safety valve卸压阀 relief valve全厂断电 station blackout (SBO) (蒸汽)干度 quality空泡份额 void fraction热冲击 thermal shock急冷,骤冷 quench(十四)压水堆系统与安全壳裂变碎片 fission fragment轻水反应堆 Light Water Reactor(LWR)热机 thermal engine原动机 prime mover焓 enthalpy熵 entropy反馈 feedback 热力学第二定律 second law ofthermo- dynamics 最终热阱 ultimate sink一(次)回路 primary loop二(次)回路 secondary loop核电厂配套子项 Balance of Plant(BOP)一次压力边界 primary pressureboundary隔离阀 isolation valve失效 failure故障 fault, malfuction卡诺效率 Carnot efficiency热机效率 engine efficiency高温热源,热库 hot reservoir低温热源 cold reservoir摩擦 friction余热排出系统 Residual Heat-Removal System(RHRS)换料(n) refueling应急堆芯冷却系统 Emergency Core-Cooling System(ECCS)补水与排水 feed and bleed专设安全设施 Engineered SafetyFeature (ESF)设备冷却水系统 Component CoolingSystem止回阀 non-return valve蓄压箱 accumulator电动阀 motor-driven valve气动阀 pneumatic valve 安注泵 safety injection pump安全壳 containment钢筋混凝土 reinforced concrete预应力钢筋混凝土 prestressedreinforced concrete 英制压力单位 psi = pounds per squareinch英制压力单位(表压)psig = poundsper square inch gauge 环形的 annular潜热 latent heat显热 sensible heat氢氧化物 hydroxide氢氧化钠 sodium hydroxide苛性钠,氢氧化钠 caustic启动 startup飞射物,导弹 missile蒸汽管线 steamline安全壳地坑 containment sump(十五)蒸汽轮机飞轮 flywheel叶片,叶栅 blade, bucket, vane 功 work冲动式汽轮机 impulse turbine 反动式汽轮机 reaction turbine 冲动级 impulse stage反动级 reaction stage反动度 degree of reaction渐缩的 converging渐扩的 diverging喷嘴,接管 nozzle 被称为⋯⋯ be referred to as缸体,箱体 casing推力 thrust拉金 lashing除湿 moisture removal节流阀 stop-throttle valve扭矩 torque每秒⋯转 rev/s = revolutions persecond每分钟⋯转 rpm = revolutions perminute(十六)主蒸汽、给水与凝汽系统汽轮发电机 turbine generator汽动给水泵 turbine driven feedwaterpump蒸汽排放 steam dump汽水分离再热器 Moisture SeperatorReheater (MSR)密封蒸汽系统 gland steam system 限流器 flow restrictor主蒸汽隔离阀 main steam isolationvalve机组 unit 负荷 load主蒸汽集管 main steam header给水联箱 feedwater header给水回热循环 regenerative feedheating cycle磨损 wear污垢,结垢 fouling装量 inventory蒸汽(旁路)排放 steam dump冷凝器排放 condenser steam dump大气排放 atmospheric steam dump 除氧器排放 deoxidizer steam dump 电缆 electric cable辅助给水系统 auxiliary feedwatersystem压差 differential pressure,pressure differential,pressure difference 增压泵 booster pump增压 boost pressure吸入口 suction凝汽器 condenser凝汽器热阱 condenser hotwell给水流量调节阀 feed regulating valve 给水调节旁通阀 feed regulatingbypass valve疏水 drain阶跃变化 step change 线性(斜坡)变化 ramp change溢流阀 overflow valve工艺汽 process steam紧急停堆 trip; scram停堆 shutdown停堆,停堆期 outrage手动地 manually自动地 automatically质量流率 mass flow rate关断阀 shutoff valve(美国)联邦管理法规 CFR = Code ofFederal Regulations 凝结液 condensate水头,压头 head汽机脱扣(甩负荷) turbine trip(十七)核电厂运行工艺热 process heat公用电网 utility grid基础负荷运行 base load operation 退役的 out of service 运行因子 operation factor负荷因子 load factor使用因子,运行因子 service factor 可利用因子 availability技术规范 technical specification稳压器汽空间建立 draw a pressuresteam bubble未能紧急停堆的预计瞬变 AnticipatedTransient WithoutScram (ATWS)未能紧急停堆的预计瞬变 AnticipatedTransient Without Trip(ATWT) 失电 loss of power失流 loss of flow辅助喷淋 auxiliary spray采样 sampling(美国)核管会 Nuclear RegulatoryCommission (NRC) 负荷跟踪 load following(十八)辐射危害与屏蔽屏蔽 shielding核辐射 nuclear radiation发射,发出 emit剂量 dose剂量率 dose rate保健物理 health physics天然本底辐射 natural backgroundradiation轰击 bombardment地壳 the earth’s crust(放射性)坠尘 fallout职业照射 occupational exposure 放射性流出物 radioactive effluent 幸存者 survivor 辐射防护 radiological protection国际辐射防护委员会 InternationalCommission onRadiological Protection(ICRP)合理可行尽量低 As Low AsReasonably Achievable(ALARA)希弗 Sivert急性的 acute慢性的 delayed辐射病 radiation sickness吸入 inhalation摄入 ingestion食物链 food chain权重因子 weighting factor活化产物 activation product 生物屏蔽 biological shield 氡 radon氪 krypton钋 polonium钾 potassium铋 bismuth稀有气体 noble gas残骸 debris征兆 symptom谱 spectrum (pl. spectra) (十九)核安全核安全 nuclear safety过热 overheating裂变速率 fission rate缓发中子 delayed neutron瞬发中子 prompt neutron后果 consequence破裂 rupture置信度 confidence负温度系数 negative temperaturecoefficient事故 accident堆年 reactor-year快堆 fast reactor热堆 thermal reactor失效安全 fail safe 三哩岛事故 Three Mile Islandaccident (TMI accident) 切尔诺贝利事故 Chernobyl accident 设计基准事故 Design Basis Accident(DBA)严重事故 severe accident熔融 meltdown多普勒展宽 Doppler broadening反应性引入事故 Reactivity InsertionAccident (RIA)冷却剂丧失事故,失水事故 Loss-Of-Coolant Accident(LOCA)自动保护系统 Automatic ProtectiveSystem (APS)居里(活度单位) Curie瞬发临界 prompt critical蒸汽发生器传热管破裂 SteamGenerator Tube Rapture(SGTR)确定性安全分析 deterministic safetyanalysis 概率安全分析 Probabilistic SafetyAssessment (PSA)。
时滞忆阻Cohen-Grossberg神经网络周期解的存在性
时滞忆阻Cohen-Grossberg神经网络周期解的存在性王有刚;武怀勤【摘要】研究了一类具有时变时滞的忆阻Cohen-Grossberg神经网络的周期动力行为.借助M-矩阵理论,微分包含理论和Mawhin-like收敛定理,证明了网络系统周期解的存在性.最后,用一个数值算例验证了本文结论的正确性和可行性,并通过图形模拟直观地描述了周期解和平衡点的存在性.%The objective of this paper is to investigate the periodic dynamical behaviors for a class of Memristive Cohen-Grossberg neural networks with time-varying delays. By employing M-matrix theory, differential inclusions theory and the Mawhin-like coin-cidence theorem in set-valued analysis, the existence of the periodic solution for the network system was proved. Finally, an illustra-tive example was given to demonstrate the validity of the theoretical results and the existence of periodic solution and equilibrium point was described visually by graphical simulation.【期刊名称】《西华大学学报(自然科学版)》【年(卷),期】2017(036)005【总页数】10页(P22-30,35)【关键词】忆阻;Cohen-Grossberg神经网络;周期解;时变时滞【作者】王有刚;武怀勤【作者单位】吕梁学院数学系,山西吕梁 033001;燕山大学理学院,河北秦皇岛066004【正文语种】中文【中图分类】TP1831971年, 华裔科学家蔡少棠(Leon O. Chua)从理论推断在电阻、电容和电感器之外,应该还有一种组件,代表着电荷与磁通量之间的关系。
时间窗-时间依赖中国邮路问题的图转换算法
t - e e d n ewo k i d p n e tn t r .wh r h ’ i n ” o ah itre t n i cu i1 Th x c rbe s lig a po c e o td me ee te ’ mig fec ne v n i s r ca. t o e e a tp o lm-ovn p r a h rp re
1 i s le yao 1 1 e r omuain o mp tt n l e ut a erp re n as t f n tn e n h s l h w a e s o db / i a r l o .C m v n f t u ai a rs l r o t o e o s c s dt er ut s o t t o s e d i a a e s h
a o m u a in rf r l t o
Cl s mb r TP3 1 6 a s Nu e 0 .
1 引言16 CP是 90年
相关 , 带时间窗的中国邮路 问题 ( P T E 9 C P W) -3 8 备受关 注, 成为一类重要的弧路 由问题 。 和很多传 统 的 中 国邮路 问题 一 样 , P TW 中 CP 弧 上 的旅 行 时 问被 认 为是 常量 。这 种 假 设 是 实 际 情况 很弱 的近似 。因为 , 多实 际 问题往 往具 有 时 许 变 特性 , 比如实 时系统 测试领 域 的时 间 自动机模 型 中_ 每个 状 态迁 移 发 生 前 的等 待 时 间依 赖 于 到 1 , 达该状 态 的时 刻 。这 样一 来 静 态 模 型求 得 的最 优 解往往 是 这 些 实 际 问题 的 次 优 解 , 至 是 不 可 行 甚
optimization
xj ,
i=1 j =1 i=1 j =i
1 − xj
2
The abbreviation Lotz stands for “Leading Ones, Trailing Zeroes” and means that we want to simultaneously maximize the number of leading ones and trailing zeroes in a bit-string. The first component, the LeadingOnes function, has been analyzed in detail by (Rudolph 1997) and (Droste, Jansen, and Wegener 2002). As there is no single search point that maximizes both components simultaneously, we want to find the whole set of non-dominated points based on the concept of Pareto optimality, here defined for binary decision variables. Definition 2 (Pareto optimality, Pareto set) Let f : X → F where X ⊆ {0, 1}n and X ⊆ IRm . A decision vector x∗ ∈ X is Pareto optimal if there is no other x ∈ X that dominates x∗ . x dominates x∗ , denoted as x x∗ if fi (x) ≥ fi (x∗ ) for all i = 1, . . . , m and fi (x) > fi (x∗ ) for at least one index i. The set of all Pareto optimal decision vectors X ∗ is called Pareto set. F ∗ = f (X ∗ ) is the set of all Pareto optimal objective vectors or the Pareto front.
AMM第644-650卷目录PART 4
Table of ContentsPreface liii PART 4An Improved Scheme of One-Time Password Identity Authentication Based on theS/KEY SystemJ.Y. Li, H. Shi, Y.Q. Deng, J. Gong and Y. Guan (2763)The New Key-Stream Generator Based on the OFB Mode of AESH. Shi, J.W. Lu, Y.F. Ji, C. Wu, J. Gong and Y.Q. Deng (2768)Collaboration Research on Web 2.0B. Wu and C.Y. Zhang (2772)An Online E-Payment System Applying to Auto Insurance Based on Proxy Blind Signature L.M. Sha and S.Z. Yang (2776)Network Security Situation Awareness Based on Phishing DetectionJ.Y. Zhang, C.G. Song and X. Jin (2784)Supermarket Trolley Positioning System Based on ZigBeeZ. Zhang, X.P. Tao, L. Zeng and C. Wang (2788)Study of Web Service Discovery Algorithm Based on SemanticL. Zhao and W. Zhang (2793)Research on Usage Intention of Community Information SystemW.P. Li, J. Yang, K.S. Kim and W. Sun (2797)Discussion on the Application of Networking Technology in Intelligent Campus ConstructionA. Wang and X.Q. Zhang (2804)Design of Pesticide Safety Evaluation of SoftwareX.H. Zhang and Y. Lin (2808)The Key Technology and Application of the Internet of ThingsC.M. Li, R. Wang and L. Huang (2812)A Combined Method for Chinese Micro-Blogging Topic TrackingX. Zhang, B. Shang, L.L. Dong and Y.J. Zhu (2816)A Software Design Model Based on Big DataZ.L. He, X.H. Xiao and Y.H. He (2821)Research on Security of P2P TechnologyL.H. Wang (2826)Research of Network Information Platform Construction of ERP System in Manufacturing J.H. Zhang (2830)Optimization of Clustering Algorithm in Ad Hoc NetworkQ. Yu and P. Zong (2834)Research and Improvement of Dynamic Source Routing Protocol Based on Ad HocP. Zong and J. Qin (2838)Safety Strategy of Campus Network Realize Based on Core SwitchY.Y. Lu, Y. Yang and B. Zang (2842)Complex Opinion Network Correlation ClusteringF.Y. Wang, S. Qiu and Q. Li (2846)The Application of Database Technology in Network Management SystemG.L. Cheng and M.Z. Li (2850)Research on the SDN-Based Architecture of Space-Sky Information NetworkD.M. Yuan and R.W. Ren (2854)Study on the Campus Website ConstructionC. Liu (2857)Research on QoS Guarantee Technology for Intercom System Based on SIPZ. Li, Q.Y. Yang, Y.C. Zhou and H. Ren (2863)Applied Research for Campus Student Credit Management System under the Cloud Storage Y.J. Kang and L. Ma (2868)Assess on E-Commerce Transaction Based on Web TechnologyK. Xiao (2872)NTP DRDoS Attack Vulnerability and MitigationA. Alfraih Abdulaziz Nasser and W.B. Chen (2875)Binary Tree Model-Based Mobile Ad Hoc Network Dynamic Address AllocationMechanism ResearchJ.L. Liu and L. Zhu (2881)A High-Throughout Design of CAVLC Decoder for H.264/AVCY. Wang and X.Q. Su (2886)A Distributed Comprehensive-QoS Multicast Routing Algorithm on WSNsW.J. Xiao and S. Zhong (2890)Mobile Game Development with Flash as the EditorH.T. Zhang, Q.J. Sun and Y.C. Liu (2898)Design and Implementation of Service Traffic Awareness System in LTE NetworkJ. Wang, Z.Z. Zhang and Y.L. Luo (2902)A Hadoop-Based Performance Optimization of Network Stream Input FormatX.P. Wang, J.T. Luo, W. Gao and Y. Liu (2906)Dynamic Non-Cooperative Structured Deep Web SelectionS. Deng (2911)Multimedia Technology of Digital Tourism Based on Android SystemJ. Zhang (2915)Vulnerability Assessment of Information System Based on Weighted Directional Graph andComplex Network TechnologyY.Z. Li (2920)Key Technologies Analysis on Management System Data WarehouseX.F. Yang (2925)Research on Action Design System Based on TechnologyL. Xu, W. Lei and W.M. Xu (2929)Numerical Analysis and Performance Test Based on Multi-Media Internet Architecture J.P. Fan (2934)The Architecture and Implementation for International Trade Settlement Software DesignG.J. Zhang (2939)A Web Services Security Policy Description ModelH. Zeng, Y.W. Zhao and D.F. Ma (2943)The Simulation Platform in City Traffic Environment Based on TinyOS for WirelessSensor NetworksT.J. Ren, H.X. Lv, Z.Q. Wang, Y.R. Chen and Y.L. Liu (2947)Automatic Threat Assessment of Malware Based on Behavior AnalysisJ.G. Jiang, X.J. Ma, X.L. Qiu, M. Yu and C. Liu (2952)Design of Wireless Sensor Networks Border Router Based on IPv6D.W. Xu, L.L. Deng and S. Ren (2957)Research of Network Virtualization in Data CenterX.L. Tan, W.B. Wang and Y.Q. Yao (2961)The Software Support Analysis of Information SystemH. Wang, X.Y. Li, X.N. Wang and W.N. Liu (2965)Study on a Novel GIS-Based Routing StrategyY.W. Wang and D.Y. Ji (2969)Development of a New Routing Protocol Based on GPSR for Wireless Sensor NetworksC.F. Xing, L. Yang and Q.L. Han (2973)The Study of Network Information Security Based on Information Filtering Technology L.L. Wei and W. Yang (2978)The Implementation of Cloud Storage System Based on OpenStack SwiftZ.Y. Duan and Y.Z. Cao (2981)Research and Design on Multilevel Secure Database Inference ControlH.Y. Zhao, R.G. Liu and X.G. Liu (2985)Research on Secure Model in WiFi/WiMAX Mixed Networks Based on Pre-Authentication Z.T. Ni, Y. Zhong and L. Huang (2988)Research on Database Front-End Applications Exploration Based on PowerbuilderL. Huang, Y. Wang and Z.T. Ni (2992)Research on Dynamic Self-Adaptive Network Security Model Based on Mobile Agent K.Q. Fan (2996)Research on the Implementation Methods of Security Management of Distributed DatabaseApplication SystemN. Zheng and Y. Gao (3000)Research on Shared Information Platform for Expressway Management Information SystemC. Wang and Y.L. Li (3004)Research on Ad Hoc Network Security Protection Model Based on Mobile AgentQ. An, Y.J. Luo, H.Y. Zhao and J. Zhao (3008)Research on Information Resources Sharing Patterns Based on Cloud ComputingW.J. Yang, Y.J. Luo, H.Y. Zhao and X.T. Li (3012)Research on the Model of Personalized Recommendation System Based on Multi Agent Q. Wang, J.Z. Ping, L.L. Yu and Z.J. Wang (3016)Research of Music Retrieval System Based on Emotional Music TemplateX. Wang (3020)A New Trust Model in P2P NetworkX.L. Li, L.C. Wu, J.J. Xiang, H.L. Ma and F. Liao (3024)Research on Relay Node Placement Based on Hybrid Greedy Optimization Algorithm inWireless Sensor NetworksH. Xu and H. Zhang (3028)Security Research of the Mobile E-Government TerminalS.Y. Guan, Y. Fan and H.L. Lv (3032)Analysis of College Students' Online Business in ChinaA. Abuduaini and N. Aishanjiang (3036)Thought about the Construction of Digital Employment Information Service System of RuralMigrant Workers in the West Area of JilinX.L. Wang (3040)Design and Implementation on Sina Micro-Blog Client Based on the Android SystemC.Y. Shi (3045)On SOA Community Informationization Foundation Database Generic Interface Design Y.B. Zhou (3049)Research on Storage Strategy of Unstructured Small Files in HDFSL.T. Wu, T.N. Wang and H.R. Hu (3053)The Building of the Database of Art Resources Research for Academy of Fine ArtsM. Zhao (3057)Research and Implementation of Auxiliary Teaching System Based on C/S ModelY.J. Cong (3061)The Improvement of the Public Service System Based on Web TechnologyR. Qian (3065)Design of Extended Event Service Model Based on CORBAC.X. Zhao (3069)Modeling and Analysis of NOTAM Distribution Services Based on Petri NetJ. Hu, X.Y. Song and J.Z. Sun (3073)Research of the Database Access Technology FrameworkX.D. Zhang, Z.M. Teng and D.W. Zhao (3077)Dynamic Visual Elements in the Digital Media DesignT. Sun (3081)Design Research on the Resident Electronic Health Recorder SystermN. Liu (3085)The Web Development Technology Research of Cross Platform Mobile Application S. Sun and S.X. Cao (3090)The Universal Middleware Architecture Based on the Web of ThingsR. Zhang and P. Zhang (3094)Development of Travel Reservation System for Mobile PlatformL.J. Sun (3099)Research on Statistics Based Multi-Priority MAC Protocol for Ad Hoc NetworksP. Wang, H. Li, B.L. Ye, C. Chen and Y.B. Wang (3103)LEACH-EO: A More Energy-Efficient LEACH Protocol for WSNJ. Zhang, H. Yan, Y. Cui, H. Rong and J.P. Wang (3108)Authorization Management System of Micro Video Based on FFmpegQ. Guo, Y.G. Xu and S.X. Cao (3112)Research on Network Video Data Acquisition and Analysis Based on Big DataH. Ji and S.X. Cao (3116)The Design and Implementation of Community Property Management SystemQ.H. Wu and H. Zhao (3120)The Integration of Sports Information in Personalized NetworkH. Zhao, Q.H. Wu and J.B. Zhao (3124)Situation and Development Strategies of Sports Entertainment Groups inNetwork EnvironmentJ.B. Zhao, H.J. Ji and H. Zhao (3129)Reverse Engineering OWL 2 Ontologies to UML ModelsW.J. Li (3133)The Study on Educational iOS and Android Application Program of Sports Skillsand KnowledgeN. Liu and D.Y. Yang (3137)Research on Development of Books Interview PlatformH.M. Zhang and N. Li (3141)The Development of Information Integration System for Oil Production Equipment M.T. Wang (3145)The Design and Implementation of Oil Production Equipment Data Management System M.T. Wang (3149)The Development on Information Collection System Based Internet of ThingsC.W. Luo, X.W. Yin and C.D. Ni (3153)Design and Implementation of Computer Equipment Management System Based onOracle DatabaseX.M. Jiang (3157)Agricultural Products Traceability System Design Based on IOTX. Qian, D. Wang and W.M. Luo (3160)Design and Implementation of the Hospital Information Management System Based onthe M. Li and S.Y. Yang (3166)Professional Software Analysis and Comparison for Graphic DesignR.H. Wang (3170)A Network Security Risk Computation Approach Based on Attack GraphsC. Wang (3174)Application of Computer Network of Virtual Reality in Design of ArtJ. You (3178)Cryptographic Protocol Verification Based on the Extension RuleH. Lin (3181)The Frame Study of Translation System Design Based on Database ManagementL.H. Liu, F.J. Meng, Y. Lei, Y. Sun, J.Q. Mu, Z.L. Zhu, Y. Yan, Y.H. Zhang, L. Sun and Z. Lv (3185)Efficiency Analysis of Command Networks with Cross-Level of Different GroupsL.F. Yu, J.B. Wu, J. Liu, B.X. Xiu and W.M. Zhang (3189)Study and Practice Based on Network TechnologyW.H. Zhao, D.P. Xu, H.Y. Gong and Y. Li (3195)Application Research on Virtual Reality TechnologyY. Li, H.Y. Gong, D.P. Xu and W.H. Zhao (3199)Network Topology Discovery Algorithm Based on OSPF Link State AdvertisementZ.J. Shen and Y.S. Ge (3203)A Cloud-Based Mobile Telemedicine Consultation System Based on iPadH. Wang, T.H. Li and F. Wu (3208)Design of Network System Security System of Digital LibraryS. Liu (3212)Information Management System of Metrological Evaluation Based on SSH Framework S. Zhang, J.M. Zhu, Y.H. Qin and L.L. Qu (3216)Design and Implementation for the Upper Computer Software of the Two-DimensionalTurntable System Based on MFCY.N. Xiang Li and X.J. Yang (3220)Available Storage Space Sensitive Replica Placement Strategy of HDFSW.T. Zhao, Y. Ding and X.H. Zhang (3224)LBSN-Based Personalized Routes RecommendationL.C. Zhu, Z.J. Li and S.X. Jiang (3230)An Intelligent Human-Computer Collaborative Method for Creative DesignJ.W. Wang (3235)Research of Cloud Manufacturing Technology in the Development of Digital IntelligentProduction Control PlatformG.L. Feng (3241)A Remote and Unified Software Automated Deployment PlatformJ.P. Zhao, X.Y. Liu, H.H. Wu, X.L. Chen, L. Yang and D.H. Zhang (3245)Design and Implementation of Multi Granularity Access Framework Based on AOP Q. Wang and Y.B. Wang (3251)A Smart Grid Data Global Placement Strategy Based on Cloud ComputingY.K. Li, D. Xin and H.G. Liu (3256)Design and Implementation of Binary Utilities GeneratorJ.Q. Shen, J. Wu, Z.F. Zhang and H.Q. Ren (3260)SERP: A Simple Energy-Hops-Based Routing Protocol in WSNsM.X. Li, X.C. Zhou, X.H. Fan and S. Wang (3266)Human Error Simulation of Manufacturing Cell Based on Human-Machine Integrated ModelD.F. Zhao, X.D. Zhang, C.J. Gong and C.C. Wang (3270)A Methodology for the Exploration of 802.11BH. Yang (3275)Research on Data Aggregation Application Based on MashupM.Y. Cai and B. Pan (3279)Research on ASIC Firewall Based on State Detection TechnologyS.Q. Wang and H.Y. Chen (3283)Detection Technology for Hostile Attacks to Campus Wireless NetworkL. Ma and H.X. Yang (3287)Research on the Detection Method of the Malicious Attacks on Campus NetworkJ.L. Wang (3291)Detecting Overlapping Communities with MDS and Local Expansion FCML. Li, Z.M. Xia, S.H. Li, L. Pan and Z.H. Huang (3295)Comparison Analysis of RESTful and SOAP-WSDL Applied in the Image Management System R.Y. He (3300)Study on Digital Content Representation from Direct Label Graph to RDF/OWL Language into Semantic WebK.A.L. Khamis, L. Zhong and H.Z. Song (3304)Research on Multilevel Secure Database Inference ChannelH.Y. Zhao, J. Meng and X. Zhang (3310)Design and Realization of IOT-Based Video Monitoring SystemJ. Yin and C.H. Li (3314)Storage Model Based on Oracle InterMedia for Surveillance VideoB. Sun, W.S. Luo, L.B. Du and Q. Lu (3318)A Noise-Optimal Integrator for High-Precision SC Sigma Delta ModulatorsX.L. Wang and Y.W. Zhang (3322)Research on Vehicle Networking Transfer Channel Based on MAC Safety Information System Y. Zhou, T.J. Ren, Z.Q. Wang and Y.L. Liu (3329)Application of Neural Network in Network Intrusion DetectionZ. Yang and H. Du (3334)The Study of the Ontology and Context Verification Based Intrusion Detection ModelG.F. Guo (3338)Environmental Monitoring System Designing: A Internet of Things ApproachG.H. Wu, F. Liu, J.X. Li and W. Wang (3342)Remote Inspection System Algorithm Research of Wireless Base StationM.D. Bai and Y. Dong (3346)Application Research of Visual Simulation Technology in the Field of Marine EngineRoom SimulatorH.S. Shen, J.D. Zhang, Y.B. Li and F. Han (3350)Application of Function Point EstimatingC.H. Zhou (3357)Design and Research of Computer System High Confidence Fault TolerantJ.Q. Qi (3361)FMPC: A Fast Multi-Dimensional Packet Classification AlgorithmZ.H. Guo, L. Li, Q. Wang, M. Lin and R. Pan (3365)Code Protection Technology on iOSJ.T. Weng, Q. Mu, X.Y. Liao, Y.Z. Li, Q.X. Zhang and Y. Tan (3371)Distribution of Database in Cloud Based on Associated MatrixL.Y. Yao and W. Yang (3375)Finite Element Numerical Simulation Research on Fractured Horizontal Well’s Productivity M.X. Liu, J.H. Li and L. Zhang (3379)Research of Augmented Reality for Children’s Books on the Basis of ArtoolkitsW.G. Yang (3383)Research and Practice of Cloud Computing Based on HadoopA.S. Lu, J.J. Cai, W. Jin and L. Wang (3387)Review on Application of Virtual Reality in the Physical SimulationZ.J. Cai (3390)Overhead Analysis of Loop Parallelization with OpenMP DirectivesL.Y. Xiang, Z.Y. Fang, Y. Wang, G.N. Qu and Z. Chen (3394)Design and Implementation of Cloud Management SystemH.Y. Yu, T.X. Yang and X. Fu (3398)Study on Replacing-Element Imagery Design of Dongba Characters Combined withChinese CharactersW.J. Song, Y.F. Yang and R.P. Xu (3402)Research on Multilayer Security Audit Research Based on Attack Graph in Cloud Computing L.B. Wen (3408)An Efficient Secure Multichannel Traffic Management Scheme in 2.4 GHz Home AutomationNetwork with IoT FunctionsM. Wei and P. Wang (3412)Chapter 5: Electronics and Microelectronics, Embedded and IntegratedSystems, Power and Energy, Electric and Magnetic SystemsA Study on Reconfiguring On-Chip Cache with Non-Volatile MemoryM.Q. Wang, J.T. Diao, N. Li, X. Wang and K. Bu (3421)A Circuit Model of the MemcapacitorW. Wang, H. Xu, Y.W. Hou and H.J. Liu (3426)Titanium Oxide Memristor Based Digital Encoder CircuitY.W. Hou, X. Xu, W. Wang, X.B. Tian and H.J. Liu (3430)Application of Digital Coordinate Transformation to a New Posthole Broadband SeismometerC.Y. Peng, B. Xue and J.S. Yang (3434)Research and Design of Asynchronous FIFO Based on FPGAB.Q. Liu, M.Z. Liu, G. Yang, X.B. Mao and H.L. Li (3440)Wind Power Allocation Based on Predictive Power CorrectionZ.H. Feng, T.J. Jia, X.M. Xiao and F.J. Zhang (3445)The Application of LED Lighting in Museum Exhibition HallY. Zheng, L.W. Huang, M.M. Wang, H.Q. Chen and L.Z. Zhang (3449)A High Reliable Communication Method for the Terminal of a Networked and DistributedPower Supply SystemE. Lu, B. Huang, S.S. Li and Y. Yang (3453)A New Method of Cross-Correlation by Magnetic Dipole for Estimating MagnetizationDirection under the Influence of Remanent MagnetizationL. Shi, L.H. Guo and F.Y. Guo (3459)The Condition Assessment of Distribution Transformer Based on Improved AnalyticHierarchy ProcessX.P. Meng, L. Li, H. Wang and X. Ji (3463)Effects of Different Sample Resistances on the Insulator Leakage Current Acquisition Results P.C. Miao and Z.N. Xu (3468)Research and Design of Video Acquisition System Based on FPGAB.L. Liu, B.Q. Liu, L. Pan and L. Wang (3472)High Rate Data Transmission System Based on OFDM for Well LoggingQ.S. Gu, W. Chen and R.Q. Wu (3476)Application of On-Line Ultrasonic and UHF Partial Discharge Detection in 1000kV GISF. Chen, H.Z. Tang and H.G. Li (3480)Synchronization of Hyperchaotic Memristor-Based Chua’s CircuitsH.L. Huang, Y. Peng and J.J. Huang (3485)Prediction of Nuclear Power Project Cost Based on Improved Non-Equidistant GM (1,1) Modeland Exponential Regression ModelB.Y. Liu, D.X. Niu, J.P. Qiu, H. Xu and Y. Wang (3489)Design Principle and Applicative Value of Photovoltaic SystemM. Chen, L. Chen, X. Tang and Y.H. Hu (3493)Research of Signal Integrality in PCB Design for ARM9 Core BoardL.Y. Su (3497)Formal Analysis of Memory Leak DefectsW. Zhang, Z.Y. Ma, Q.L. Lu, L. Wan and D.W. Liu (3501)Research and Application of a Solution to Acquire Electric Energy DataS.Y. Long, X. Lu and Y.S. He (3505)The Transient Characteristics Analysis of Doubly-Fed Induction Generator during theAsymmetric Voltage SagJ.H. Zhang, H.R. Shen, L. Ding and C.L. Dai (3509)Optimal Substation Locating and Sizing Based on Improved Weighted Voronoi Diagram andGenetic AlgorithmP.Q. Miao, Q.B. Meng, Y. Li and Q.B. Tu (3515)Optimal Design of Transmission Line Route Based on GISY. Wang, W. Huang, Y. Li, Q.B. Tu and X. Tain (3522)A Control Method to Suppress Resonance and Improve Current Quality for Inverter Systemwith LCL FilterY.P. Lin, S. Tao, X.N. Xiao and M.R. Wu (3528)Charge and Discharge Protection Circuit of a Mobile Power Supply ImprovementS.G. Li, L.Z. Wang, Z.Z. Gao, X.J. Zhang and L.N. Zhao (3534)Risk Assessment of Power Transformer Life Cycle Cost Based on ExtensibleMatter-Element ModelG.H. Qiao, X.J. Guo, L.M. Wu, H.L. Liu, Z. Ren and N. Bai (3538)A New Method for Power System Transient Stability Assessment: Application of AdaptiveCombined ClassifiersS. Wei, B. Wang, D.C. Liu and J.H. Luo (3542)Influence of Moisture on the Space Charge Migration and Electric Field Behavior inOil-Paper InsulationJ. Fu, J. Hao, H. Yin, G.L. Wu and Q. Wang (3548)Intelligent Four-Probe Resistivity Meter Based on MCUJ.Z. Huo (3552)Routing Selection for Communication of Power System Wide-Area Protection ConsideringBackup PathX.W. Sun (3556)A Novel Broadband Vibration Energy HarvesterY. Liu, X.Y. He, S. Liu, Y. Wu and Y. Ou (3560)Equivalent Circuit of a Planar Transformer Used for TWTAB. Zhao and G. Wang (3564)A Reconfigurable Radix-r FFT Hardware Structure DesignY.X. Zhang, H.P. Zhao and J.Y. Yu (3568)One Kind of Band-Gap Voltage Reference Source with Piecewise High-Order Temperature Compensation and Power Supply Rejection RatioZ.D. Li and L. Xie (3575)Evaluation of Power System Black-Start Schemes Based on Improved DEA/AHPEvaluation ModelC.G. Shi and T. Liu (3579)A TDC Based BIST Scheme for Operational AmplifierJ. Yuan and W. Wang (3583)Design and Simulation of Arrayed Waveguide Grating for Miniature Raman Spectrometer Y.C. Xu, Q.N. Wang and W.Z. Zhu (3588)The Electromagnetic Parameters' Impact of λ/4 Type Dielectric Absorber onAbsorbing PropertiesH.C. Zhao, W.J. Hao, Y.Y. Yi, Y.F. Dong and X.D. Yu (3593)Ballistic Effect and Application in Circuit Design of Wide Band-Gap Semiconductor X.X. Liang, Z.Q. Cheng and M.S. Jia (3597)Design of Programmable DC Power Supply Based on ARMX. Wang, H. Chen and R. Wang (3601)Research on System Integration Technology for Operation & Maintenance Automation Systemof CSG EHV Power Transmission CompanyZ.Z. Zhou, X.Y. Chen and M. Sun (3605)Adaptive Sliding Mode Output Synchronization Tracking for Hyper-Chaotic Lü System Basedon Adaptive PWL FiltersY.B. Zhao, X.Z. Zhang and X.Y. Sun (3610)Steam Generator Water Level Intelligent Control of PWR Nuclear Power Plant Based on FeedWater RegulationX.H. Yang, J. Yang, Y.N. Wang and Y. Xue (3616)Research on Application of all Time Apparent Resistivity Translation Algorithm for LargeFixed Loop TEMF.L. Li and X. Zhu (3620)The ECG Data Storage System Design Based on SD Card and Reliability AnalysisY.L. Zhu and Y.D. Wang (3625)Danger Classes Detection System Design of High Voltage Transmission Conductor Galloping Y.F. Wang and L.L. Liu (3631)UHF RFID Reader DesignD.W. Xu, L.L. Deng and S. Ren (3635)A New Type of Lead Sealing for Electric Energy Meter Packaged on the SpotX.Z. Hou, H. Yan, L. Feng and D. Wei (3639)Design Based on PLC Programming Control De-Dust SystemG.Q. Wang (3643)Circuit Design for an Intelligent Dustbin Controlled by GesturesH.C. Zhou (3647)A New Perspective on ECL CircuitsR.B. Hu, S.T. Zhou, G.B. Chen, D.B. Fu and X.Y. Zhang (3651)Practicability Discussion and Verification of Using FPGA to NAND FlashM. Yang, K. Xu and X.F. Zhang (3655)Research & Development of Three-Phase Full - Controlled Bridge Rectification CircuitsExperiment Device Based on TC787Y. She (3659)A 14-Bit Pipeline ADC Behavior Model Using Verilog-A for SOCW. Liao, L.C. Lei and X.D. Zhou (3663)Applicability Analysis of PTN Technology in Henan Electric Power Transmission Network Y. Yang, J.X. Lv, S.W. Wang, P.L. Cai and W.C. Li (3667)The Researches on the Construction of the Management in Integrated Electric PowerCommunication Network SystemY. Yang, J.X. Lv, L. Sheng, Y. Sun and X.C. Zhao (3671)。
周期性实时任务LLF调度算法改进
制、 航空航天 、 自适应 容错 和机器 人 等 , 这些 领域 都要 求计算 机在允许 的时 限范围内给出响应 。最低松弛度
优先调度算法 (es l i r , L ) 1 ta t fs L F 是一 种高效 的周 a xy it 期性任 务实时调度算法 。为完成实 时处 理任 务而合理 分 配处 理器 , 从而提 高处 理器 的利用 率 。本 文对最 低
s he u e c d l d,i h r s o ft ee i n mo e ure tts r g n a k,t e e e u in a k wih rws fo te p o e s ra he e d o h p ee e uin tme M alb h x c to ts t d a rm h rc so tt n f te r —x c to i . ta
构造的任务控制块代码如下 。
s ut C t c T B{ca a [ ] r hr me 8 ; n
’ c lt yl; nc e
∥任务的名称
/ 当前 C U时钟数 / P
最低松弛度优先 算法 L F是动态 调度算法 , L 可通 过在任务运行 过程中的优先级计算 动态地 改变任务 的
teer etda l ei coe t h o fte q e e Peeeuin t sit d cd it ts o t lbo k( C .atrte ts s h al s edi s ls o te tp o h u u . r.x c t i i nr ue no ak c nr lc T B) f h ak i i n o me o o e
3 算法 的改进
为 使 任务 间频 繁 切换 的 次数 和松 弛 度 计 算 次 数 更
P_第9章-时频分析
信号 x(t) 通过线性时不变系统等价为算子 L 作用于 x(t) ,即 Lx(t) 。容易验证, e jt 是线 性时不变系统算子 L 的特征矢量, 该算子的特征值是 hˆ( ) 。故
372
Le jt hˆ( )e jt
(9.1)
这里 hˆ()
h
t
e jt dt ,
h(t) L (t) 。由于傅立叶变换将一个函数 x(t) 分解为一系
这里,我们也观察到了时-频变换的限制,即在 t, 处,得到的不是精确地描述“时间 t 处,频率 的成分”,而是 t 附近和 附近,面积为 t 的区间内信号的能量分布,如果 有两个频率分量距离小于 ,或两个脉冲距离小于 t ,TFx (t, ) 将无法区分,这就是说, 时-频变换TFx (t, ) 的时间分辨率受 t 限制,频率分辨率受 限制。
以上这些关系奠定了线性时不变系统分析的基础, 对离散信号和系统也有一组相应的
公式存在。但由(9.3)式可以注意到, 要得到 x(t) 的傅立叶变换, 必须在整个时间轴上对 x(t)
和 e jt 进行混合, (9.3)的内积运算的几何解释是求 x(t)在 e jt 分量上的投影,由于 e jt 的单 频率性和无穷伸展性, xˆ( ) 表示了在 , 的时间域上,x(t)中 e jt 分量的强度和相位。
TIME-FREQUENCY ANALYSIS OF SEISMIC REFLECTION SIGNALS
1. INTRODUCTION
In the exploration for oil and gas reservoirs seismic re ection pro ling is a widely used method for subsurface imaging. In seismic re ection pro ling the response of the subsurface to the excitation by a seismic source is measured with an array of seismometers at the surface (Fig.1). The seismic energy will be re ected at velocity and density contrasts in the subsurface. The recorded signal is a time-series of the ground motion or pressure that is caused by the arrival of the re ected energy at the surface. Strati cation of seismic impedance in the subsurface results in speci c interference patterns in the seismic image. The interpretation of seismic images in terms of subsurface strati cation and lithological properties is known as seismic stratigraphy. A basic principle of seismic stratigraphy is that seismic re ection patterns contain geologically signi cant information. Although seismic stratigraphy nowadays is a well-established method for the interpretation of seismic images, only few attempts have been made to come to a more quantitative analysis of seismic re ection patterns. With the increase of the data-volumes as a result of the transition from 2D to 3D subsurface imaging, the demand for quantitative methods for seismic interpretation has grown. Furthermore, a quantitative description
在电子-质子碰撞中识别瞬子末态方法的蒙特卡罗研究
第31卷第2期2007年2月高能物理与核物理HIGH ENERGY PHYSICS AND NUCLEAR PHYSICSVol.31,No.2Feb.,2007在电子–质子碰撞中识别瞬子末态方法的蒙特卡罗研究*许明梅刘连寿1)(华中师范大学粒子物理研究所武汉430079)摘要在e+p深度非弹性散射的光子胶子融合过程中有可能出现瞬子.这是一类特殊的事件,称为瞬子参与的深度非弹性散射事件.本文用蒙特卡罗事件产生器QCDINS讨论了在瞬子参与的深度非弹性散射事件中识别瞬子末态和流喷注的方法.对各种不同方法作了对比研究.找到了一种能使重建得到的喷注能量、瞬子能量、瞬子质量与强子化前的取值均比较接近的最佳方法.关键词电子质子碰撞光子胶子融合QCDINS蒙特卡罗事件产生器瞬子流喷注1引言标准模型中,强相互作用和电弱相互作用都用非阿贝尔规范理论描述.非阿贝尔规范场有丰富的拓扑结构,使得其基态(即真空)简并.规范场真空的这种非平庸拓扑结构与量子力学中的周期位势类似,不同的真空之间由势垒隔开.拓扑不同的真空状态间的隧穿过程形成一种特殊的叫做“瞬子”(instanton)的物质.瞬子是纯Yang-Mills理论在4维情况下的静态孤子解.电弱相互作用的瞬子只在质心能量 10TeV时起作用[1—4],而在QCD中,人们期望瞬子在低得多的能量下就有相当大的效应,这是因为,强相互作用的耦合常数αs比电弱理论中的等价参数α要大得多.由于这个原因,本文主要涉及强相互作用的瞬子,即隧穿QCD真空的拓扑孤子.瞬子的存在影响了e+p深度非弹性散射.在e+p 散射中,类点粒子电子通过电磁力或弱力与具有子结构的质子发生相互作用.这种相互作用可以通过交换一个光子,一个Z0玻色子或者一个W±玻色子来描述,同时从电子转移一份四动量q到质子.这称为深度非弹性散射.交换光子或Z0的事件称为中性流事件,交换W±的事件称为带电流事件.中性流事件和带电流事件对总截面的贡献依赖于交换玻色子的虚度Q2=−q2=−(e−e )2.当Q2取中等大的数值(100到104GeV2)时,与弱力贡献相比电磁力贡献占优势,所以中性流截面占主要.当Q2=104GeV2时,中性流截面与带电流截面才具有相等的大小[5].所以,本文主要考虑交换光子的中性流深度非弹性散射.光子与质子的相互作用,实际上是光子与质子内部的部分子(夸克或胶子)的相互作用.有3种硬散射过程对中性流截面贡献到O(αs)量级[6],它们分别是:夸克部分子模型的过程(质子里面的一个夸克吸收光子),如图1(a);QCD康普顿散射过程(质子里面的一个夸克吸收光子,辐射出一个胶子),如图1(b);以及光子胶子融和过程(质子里面的一个胶子与光子相互作用,交换一个夸克,再各自出射一个夸克),如图1(c).图1对中性流截面贡献到O(αs)量级的过程(a)夸克部分子模型的过程;(b)QCD康普顿散射过程;(c)玻色子(光子)胶子融和过程.2006–06–26收稿*国家自然科学基金(10475030,10375025)和国家教委重大项目培育基金(704035)资助1)E-mail:liuls@119—124120高能物理与核物理(HEP&NP)第31卷瞬子对e+p深度非弹性散射的影响发生在强相互作用顶点(即部分子之间相互作用的顶点)上.图1所示的3种过程中,只有后两种才有强相互作用顶点,而瞬子对第三种过程——光子胶子融和过程的贡献占主要[3].下面详细讨论瞬子对这类过程的影响.在通常的光子胶子融和过程中,光子转化为一对夸克反夸克,其中一个夸克强子化形成流喷注,另一个夸克与胶子融和,产生另一个喷注,这样就形成了双喷注事件,如图2(a).而如果在gqq强作用顶点处有瞬子参与,则形成有瞬子作背景的事件,如图2(b).将光子发射出来的夸克与质子中的胶子相互作用产生末态粒子的过程称为光子胶子融合的硬子过程.在上述两类事件中的硬子过程分别记为qg→X和qg(I)−→X.图2e+p深度非弹性散射中通常的光子胶子融合为双喷注的事件(a)和有瞬子参与的事件(b)在子过程qg(I)−→X中,由于有瞬子的参与,夸克与胶子作用后不是只出射一个夸克,而是出射了丰富的夸克胶子末态,如图2(b).这类有瞬子参与的事件的现象学特征可以总结如下[3]:在硬子过程中,每种味道都有一对夸克反夸克参与相互作用,这一特征通常称为味道平等(flavour democracy);每个硬子过程中辐射的胶子的数目遵从平均值为3的泊松分布,这些胶子加上2n f−1(n f是要考虑的夸克味道的数目)个夸克产生了具有高横能量的高多重数末态;有瞬子参与的顶点产生的那部分末态粒子(称为瞬子末态)在其质心系中是各向同性分布的;瞬子参与的事件最大地违背了手征性守恒.理论上预言,瞬子参与的事件对总截面的贡献约为0.5%[6].运行于德国电子同步加速器中心(DESY)的强子电子储存环(HERA)是世界上唯一的一个进行电子质子碰撞的实验.从实验室系看,电子动量为27.5GeV/c,质子动量为−820GeV/c.HERA上的两个实验组,H1和ZEUS,都做过寻找瞬子末态的工作,观察到了瞬子存在的迹象[6,7].瞬子参与的散射过程,图2(b),其末态由4个部分组成,散射电子,流喷注,瞬子末态和质子剩余物.在强子化之前的部分子阶段,各个部分的划分是相当清楚的.在强子化的时候,为了形成色中性的末态,瞬子产生的部分子与流夸克和质子剩余物中的部分子之间有色交换,这样,末态中的个别强子,可能既包含有瞬子产生的部分子,又包含有流喷注内的部分子或质子剩余物中的部分子.这样就使得重建瞬子末态和流喷注不可能完全严格.QCDINS[8]是一个与HERWIG[9]接口的模块.它以瞬子微扰理论为理论基础,模拟了如图2(b)所示的e+p深度非弹性散射事件中瞬子参与的硬子过程产生部分子.部分子随后的演化和强子化由HERWIG实现.HERWIG是一个具有相干胶子的强子发射反应模型,它处理了强子化时的色关联.瞬子的重建对于研究瞬子末态的性质是一个关键问题.在下一节里,用QCDINS模块产生的e+p碰撞事件,研究瞬子末态和流喷注的重建,分析了各种重建方法的优劣,给出了一种最佳的重建方法.2瞬子末态和流喷注重建方法的研究2.1质子剩余产物的识别在HERWIG模型中,散射电子可以通过粒子的ID和状态编码来识别.首先从末态粒子中把散射电子扔掉,剩下的粒子是流喷注(简记为C),瞬子产物(简记为I),质子剩余产物(简记为R)三者的混合物.把这3部分粒子的四动量变换到它们的质心系(简记为cm3).cm3坐标系实际上是γ+P→C+I+R过程的质心系,取光子动量方向为坐标系的+z方向.图3给出了cm3坐标系中的一些θ分布(θ定义为粒子动量与z 轴的夹角),(a)是这3部分末态粒子的θ分布,(b),(c), (d)分别是强子化前的流夸克、瞬子、质子剩余夸克三者的θ分布.模型中,强子化前的部分子四动量信息是已知的,根据四动量守恒,要识别的3种末态(C,I 和R)的四动量就等于各自在部分子阶段的四动量.从图3可以看出,在cm3坐标系中,末态粒子集中分布在θ=0和π两个背对背的方向,θ<π2方向分布的是C和绝大多数的I,θ>π2方向分布的是R和极少数的I.实验上甩掉R的方法是在cm3坐标系中取θ=π2第2期许明梅等:在电子–质子碰撞中识别瞬子末态方法的蒙特卡罗研究121的截断,θ>π2的所有粒子被认为是R[6].这样就丢掉了一部分I.实际上从图3末态粒子的θ分布来看,R的分布非常窄,集中在θ=π附近宽度远小于π2的区间中.所以,为了去掉R而不损失I,θcut应该选在π2以右的某个位置.我们发现,θcut=2π3比θcut=π2更合理,这反映在对R的能量的重建上.把变量Y重建的误差∆Y定义为变量被重建出来的取值与强子化前的取值相比的差别,表示为∆Y=Y cons−Y0|Y0|×100%,其中Y cons代表变量Y的重建值,Y0代表变量Y在强子化前的取值.与θcut=π2方法相比,θcut=2π3方法重建R的能量的误差更集中在0附近,且宽度更窄,如图4.也就是说,θcut=2π3方法重建的R的能量更加准确.图3cm3坐标系中的一些θ分布(a)是3部分末态粒子的θ分布,(b),(c),(d)分别是强子化前的流夸克、瞬子、质子剩余夸克三者的θ分布.图4在cm3坐标系中对θ取两种截断所得到的R 的能量重建误差(a)是θcut=π2的情况;(b)是θcut=2π3的情况.2.2流喷注的识别用θcut=2π3甩掉R后,剩下的是C+I的混合物.把这两部分粒子的四动量变换到它们的质心系(简记为cm2).以强子化前的流夸克动量方向(也就是流喷注的喷注轴方向)为cm2坐标系的+z方向.两部分末态粒子的θ分布如图5(a),强子化前I的θ分布如图5(b).图5(a)的两个峰分别代表喷注C和瞬子产物I,喷注粒子集中分布在θ=0附近,瞬子末态分布得比较宽,但是大多数集中在与喷注背对背的方向.下面讨论如何把喷注与瞬子产物分开.图5末态粒子(C+I)在其质心系cm2的角分布(a)和强子化前瞬子的角分布(b)在cm2坐标系中把C+I的全部n个粒子按p z的大小排序,重新编号,使得p z1>p z2>···>p zn.p z越大(即在喷注轴方向的动量投影越长)的粒子越像喷注粒子,优先挑选p z大的粒子.从编号为1的粒子算起,把粒子的能量累加,直至加到某个粒子(k)时,累加的能量E k=ε1+ε2+···+εk(εi表示第i个粒子的能量)与强子化前C的能量E C最接近时为止,即喷注的能量重建误差∆E jet=E k−E CE C×100%绝对值达到最小.此时,认为第1,2,···,k个粒子属于喷注,第k+1,···,n个粒子是I产物.这种方法记为方法1.方法1无疑把喷注的能量重建得最好,然而,瞬子的能量和质量都重建得极差,如图6第一行的3个图.原则上讲,由于色交换的存在,流喷注与瞬子产物不可能严格区分开,再加上在这之前对R的能量重建有一定的偏差,导致了喷注的能量重建得好,瞬子的能量却重建得不好.首要目的是要把瞬子产物挑出来,因此,把强子化前的瞬子的动量方向取为+z方向,把这个坐标系定义为cm2p.同样地,把cm2p坐标系中的粒子按p z大小编号,使得p z1>p z2>···>p zn.p z越大的粒子越像瞬子产物,从编号为1的粒子算起,把粒子的能量累加,直至加到某个粒子k时,累加的能量E k与强子化前I的能量E I最接近时为止,即瞬子的能量重建误差122高能物理与核物理(HEP&NP)第31卷∆E I=E k−E IE I×100%绝对值达到最小,此时,认为第1,2,···,k个粒子就是I产物,第k+1,···,n个粒子属于喷注.这种方法记为方法2.方法2无疑把瞬子的能量重建得最好,然而,这时喷注的能量重建得极差,如图6第二行的3个图.进一步,尝试以瞬子的质量为重建的标准,在cm2p中,从编号为1的粒子算起把粒子的四动量累加,直至加到某个粒子k时,累加的四动量对应的质量M k 与强子化前I的质量M I最接近时为止,即瞬子的质量重建误差∆M I=M k−M IM I×100%绝对值达到最小,此时,认为第1,2,···,k个粒子就是I产物,第k+1,···,n个粒子属于喷注.这种方法记为方法3.方法3把瞬子的质量、能量和喷注的能量整体上重建得比前两种方法要好,但喷注能量取大误差的几率仍然相当大,如图6第三行的3个图.再尝试另一种办法.在cm2坐标系中,综合考虑喷注的能量重建误差∆E jet和瞬子的能量重建误差∆E I,从编号为1的粒子算起,把粒子的能量累加到粒子k时认为是喷注.同时,从编号为k+1的粒子累加到n认为是瞬子产物,以总误差∆E=|∆E jet|+|∆E I|2最小为重建的标准,这种方法记为方法4.方法4把喷注的能量重建得好,瞬子能量误差分布太宽,如图6第4行的3个图.改进方法4,提高瞬子能量误差在总误差中的比重,令∆E=0.4×|∆E jet|+0.6×|∆E I|,这种方法记为方法5.喷注和瞬子的能量误差都集中分布在0附近,只是误差大的事件仍有一定的几率,且质量重建得不理想,如图6第5行的3个图.图65种重建方法比较第1列是喷注能量的重建误差∆E jet,第2列是瞬子能量的重建误差∆E I,第3列是瞬子质量的重建误差∆M I.上面5行分别对应5种方法的结果,第6行是第5种方法在取了∆E<10%截断的结果(即方法6).第2期许明梅等:在电子–质子碰撞中识别瞬子末态方法的蒙特卡罗研究123尝试在方法5的基础上,对∆E加一个截断,只保留∆E<10%的事件.这样保留的事件占总事件数的33%.结果使瞬子质量误差得到明显改善,如图6第6行的3个图.这种方法记为方法6.2.3各种重建方法的比较把各种方法对喷注能量,瞬子能量,瞬子质量的重建误差∆E jet,∆E I,∆M I画在一张图上以做对比,如图6.从图6可以看出,方法1,以喷注的能量重建得好为识别喷注的标准,结果瞬子的能量和质量都重建得差;方法2,以瞬子的能量重建得好为识别瞬子的标准,结果喷注的能量重建得差;方法3,以瞬子的质量重建得好为识别瞬子的标准,结果瞬子的质量,能量,和喷注的能量整体上重建得比前两种方法要好,但喷注能量取大误差的几率仍然相当大;方法4,综合考虑喷注的能量和瞬子的能量,以∆E=|∆E jet|+|∆E I|2最小为重建标准,结果喷注的能量重建得好,瞬子的能量重建误差集中在0附近,但是误差大的事件仍有相当大的几率;方法5,以∆E=0.4×|∆E jet|+0.6×|∆E I|最小为重建标准,结果喷注的能量重建误差和瞬子的能量重建误差都集中在0附近,误差大的事件的几率很小,瞬子质量重建稍差一些;方法6,对∆E加一个截断,只保留∆E<10%的事件.这样会丢掉67%的事件,而使瞬子的质量重建情况改善很多.评判重建好坏的标准是重建得到的喷注能量、瞬子能量、瞬子质量与强子化前的取值接近,即重建误差在0附近、宽度窄.从图6来看方法6是最理想的.把这种方法识别出来的喷注和瞬子的末态粒子的角分布画出来,如图7.喷注粒子集中分布在θ=0附近,瞬子末态集中分布在θ=π附近,θ在中间值时二者有重叠,本文是通过按p z排序,把二者区分开来.图7喷注和瞬子末态粒子的角分布综上所述,识别瞬子末态和流喷注的最佳方法是:(1)在(C+I+R)的质心系cm3中,做θ=2π3的截断,θ>2π3的粒子被认为是R,扔掉;(2)在(C+I)的质心系cm2(取流夸克动量方向为坐标系的+z方向)中,粒子按p z大小排序,p z越大的粒子越像喷注产物,从编号为1的粒子算起,把粒子的能量累加到粒子k时认为是喷注,同时,从编号为k+1的粒子累加到n认为是瞬子产物,找到合适的k,使∆E=0.4×|∆E jet|+0.6×|∆E I|最小,认为第1,2,···,k个粒子属于喷注,第k+1,···,n个粒子是瞬子产物.(3)对∆E加一个截断,只保留∆E<10%的事件. 3小结本文对QCDINS事件产生器中识别瞬子末态和流喷注的几种不同方法作了对比研究,提出了一种能使重建得到的喷注能量、瞬子能量、瞬子质量与强子化前的取值均比较接近的最佳方法.采用这一方法,能对瞬子末态的性质进行蒙特卡罗研究.同时这一方法对于在实验中区别出瞬子末态也有参考价值.参考文献(References)1Ringwald A et al.Nucl.Phys.,1991,B365:32Gibbs M et al.Z.Phys.,1995,C66:2853Ringwald A,Schrempp F.Towards the Phenomenology of QCD-Instanton Induced Particle Production at HERA.hep-ph/9411217.In:Quarks’94,Proc.8th Int.Seminar.Vladimir,Russia,1994.ed.by Grigoriev D et al.World Scientific,Singapore1995.1704Ringwald A.Vacuum Structure and High-Energy Scatter-ing.Preprint DESY-02-158,hep-ph/0210209and references therein5ZHANG Z(H1Coll).Structure Function Results from H1, contribution to ICHEP02,Amsterdam,20026Sonja Hillert’s Doctoral Dissertation.A Search for QCD-Instantons in Deep-Inelastic ep Scattering with the ZEUS Detector at HERA.http://www-library.desy.de/ diss02.html7H1Collab(AdloffC et al).Search for QCD Instanton In-duced Processes in Deep-Inelastic Scattering at HEAR.Eur.Phys.J.,2002,C25:495—5098Ringwald A,Schrempp F.QCDINS 2.0—A Monte Carlo Generator for Instanton-Induced Processes in Deep-Inelastic mun.,2000,132: 267.hep-ph/99115169Marchesini G et mun.,1992,67: 465124高能物理与核物理(HEP&NP)第31卷A Monte Carlo Study on the Reconstruction Method for Instantonin Deep-Inelastic e+p Scattering*XU Ming-Mei LIU Lian-Shou1)(Institute of Particle Physics,Huazhong Normal University,Wuhan430079,China)Abstract Instantons can induce characteristic events in deep-inelastic e+p scattering.Such effects are expected to become sizable in QCD.In the present paper QCD-instanton induced events are modelled by the Monte Carlo generator QCDINS.Different methods to reconstruct the instanton part and the current jet are tried in the boson-gluon fusion events of deep-inelastic e+p scattering with instantons as background,using QCDINS Monte Carlo event generator.A comparison among these methods are performed and an optimum method is proposed,which can reconstruct well the energies of current jet and instanton as well as the mass of instanton.The proposed method will be useful in the Monte Carlo study of the physical properties of instanton,and can serve as a reference in the experimental identification of instanton.Key words deep-inelastic e+p scattering,boson-gluon fusion,QCDINS,instanton,current jetReceived26June2006*Supported by NSFC(10475030,10375025)and CFKSTIP(704035)1)E-mail:liuls@。
基于周期采样的分布式动态事件触发优化算法
第38卷第3期2024年5月山东理工大学学报(自然科学版)Journal of Shandong University of Technology(Natural Science Edition)Vol.38No.3May 2024收稿日期:20230323基金项目:江苏省自然科学基金项目(BK20200824)第一作者:夏伦超,男,20211249098@;通信作者:赵中原,男,zhaozhongyuan@文章编号:1672-6197(2024)03-0058-07基于周期采样的分布式动态事件触发优化算法夏伦超1,韦梦立2,季秋桐2,赵中原1(1.南京信息工程大学自动化学院,江苏南京210044;2.东南大学网络空间安全学院,江苏南京211189)摘要:针对无向图下多智能体系统的优化问题,提出一种基于周期采样机制的分布式零梯度和优化算法,并设计一种新的动态事件触发策略㊂该策略中加入与历史时刻智能体状态相关的动态变量,有效降低了系统通信量;所提出的算法允许采样周期任意大,并考虑了通信延时的影响,利用Lyapunov 稳定性理论推导出算法收敛的充分条件㊂数值仿真进一步验证了所提算法的有效性㊂关键词:分布式优化;多智能体系统;动态事件触发;通信时延中图分类号:TP273文献标志码:ADistributed dynamic event triggerring optimizationalgorithm based on periodic samplingXIA Lunchao 1,WEI Mengli 2,JI Qiutong 2,ZHAO Zhongyuan 1(1.College of Automation,Nanjing University of Information Science and Technology,Nanjing 210044,China;2.School of Cyber Science and Engineering,Southeast University,Nanjing 211189,China)Abstract :A distributed zero-gradient-sum optimization algorithm based on a periodic sampling mechanism is proposed to address the optimization problem of multi-agent systems under undirected graphs.A novel dynamic event-triggering strategy is designed,which incorporates dynamic variables as-sociated with the historical states of the agents to effectively reduce the system communication overhead.Moreover,the algorithm allows for arbitrary sampling periods and takes into consideration the influence oftime delay.Finally,sufficient conditions for the convergence of the algorithm are derived by utilizing Lya-punov stability theory.The effectiveness of the proposed algorithm is further demonstrated through numer-ical simulations.Keywords :distributed optimization;multi-agent systems;dynamic event-triggered;time delay ㊀㊀近些年,多智能体系统的分布式优化问题因其在多机器人系统的合作㊁智能交通系统的智能运输系统和微电网的分布式经济调度等诸多领域的应用得到了广泛的研究[1-3]㊂如今,已经提出各种分布式优化算法㊂文献[4]提出一种结合负反馈和梯度流的算法来解决平衡有向图下的无约束优化问题;文献[5]提出一种基于自适应机制的分布式优化算法来解决局部目标函数非凸的问题;文献[6]设计一种抗干扰的分布式优化算法,能够在具有未知外部扰动的情况下获得最优解㊂然而,上述工作要求智能体与其邻居不断地交流,这在现实中会造成很大的通信负担㊂文献[7]首先提出分布式事件触发控制器来解决多智能体系统一致性问题;事件触发机制的核心是设计一个基于误差的触发条件,只有满足触发条件时智能体间才进行通信㊂文献[8]提出一种基于通信网络边信息的事件触发次梯度优化㊀算法,并给出了算法的指数收敛速度㊂文献[9]提出一种基于事件触发机制的零梯度和算法,保证系统状态收敛到最优解㊂上述事件触发策略是静态事件触发策略,即其触发阈值仅与智能体的状态相关,当智能体的状态逐渐收敛时,很容易满足触发条件并将生成大量不必要的通信㊂因此,需要设计更合理的触发条件㊂文献[10]针对非线性系统的增益调度控制问题,提出一种动态事件触发机制的增益调度控制器;文献[11]提出一种基于动态事件触发条件的零梯度和算法,用于有向网络的优化㊂由于信息传输的复杂性,时间延迟在实际系统中无处不在㊂关于考虑时滞的事件触发优化问题的文献很多㊂文献[12]研究了二阶系统的凸优化问题,提出时间触发算法和事件触发算法两种分布式优化算法,使得所有智能体协同收敛到优化问题的最优解,并有效消除不必要的通信;文献[13]针对具有传输延迟的多智能体系统,提出一种具有采样数据和时滞的事件触发分布式优化算法,并得到系统指数稳定的充分条件㊂受文献[9,14]的启发,本文提出一种基于动态事件触发机制的分布式零梯度和算法,与使用静态事件触发机制的文献[15]相比,本文采用动态事件触发机制可以避免智能体状态接近最优值时频繁触发造成的资源浪费㊂此外,考虑到进行动态事件触发判断需要一定的时间,使用当前状态值是不现实的,因此,本文使用前一时刻状态值来构造动态事件触发条件,更符合逻辑㊂由于本文采用周期采样机制,这进一步降低了智能体间的通信频率,但采样周期过长会影响算法收敛㊂基于文献[14]的启发,本文设计的算法允许采样周期任意大,并且对于有时延的系统,只需要其受采样周期的限制,就可得到保证多智能体系统达到一致性和最优性的充分条件㊂最后,通过对一个通用示例进行仿真,验证所提算法的有效性㊂1㊀预备知识及问题描述1.1㊀图论令R表示实数集,R n表示向量集,R nˑn表示n ˑn实矩阵的集合㊂将包含n个智能体的多智能体系统的通信网络用图G=(V,E)建模,每个智能体都视为一个节点㊂该图由顶点集V={1,2, ,n}和边集E⊆VˑV组成㊂定义A=[a ij]ɪR nˑn为G 的加权邻接矩阵,当a ij>0时,表明节点i和节点j 间存在路径,即(i,j)ɪE;当a ij=0时,表明节点i 和节点j间不存在路径,即(i,j)∉E㊂D=diag{d1, ,d n}表示度矩阵,拉普拉斯矩阵L等于度矩阵减去邻接矩阵,即L=D-A㊂当图G是无向图时,其拉普拉斯矩阵是对称矩阵㊂1.2㊀凸函数设h i:R nңR是在凸集ΩɪR n上的局部凸函数,存在正常数φi使得下列条件成立[16]:h i(b)-h i(a)- h i(a)T(b-a)ȡ㊀㊀㊀㊀φi2 b-a 2,∀a,bɪΩ,(1)h i(b)- h i(a)()T(b-a)ȡ㊀㊀㊀㊀φi b-a 2,∀a,bɪΩ,(2) 2h i(a)ȡφi I n,∀aɪΩ,(3)式中: h i为h i的一阶梯度, 2h i为h i的二阶梯度(也称黑塞矩阵)㊂1.3㊀问题描述考虑包含n个智能体的多智能体系统,假设每个智能体i的成本函数为f i(x),本文的目标是最小化以下的优化问题:x∗=arg minxɪΩðni=1f i(x),(4)式中:x为决策变量,x∗为全局最优值㊂1.4㊀主要引理引理1㊀假设通信拓扑图G是无向且连通的,对于任意XɪR n,有以下关系成立[17]:X T LXȡαβX T L T LX,(5)式中:α是L+L T2最小的正特征值,β是L T L最大的特征值㊂引理2(中值定理)㊀假设局部成本函数是连续可微的,则对于任意实数y和y0,存在y~=y0+ω~(y -y0),使得以下不等式成立:f i(y)=f i(y0)+∂f i∂y(y~)(y-y0),(6)式中ω~是正常数且满足ω~ɪ(0,1)㊂2㊀基于动态事件触发机制的分布式优化算法及主要结果2.1㊀考虑时延的分布式动态事件触发优化算法本文研究具有时延的多智能体系统的优化问题㊂为了降低智能体间的通信频率,提出一种采样周期可任意设计的分布式动态事件触发优化算法,95第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀夏伦超,等:基于周期采样的分布式动态事件触发优化算法其具体实现通信优化的流程图如图1所示㊂首先,将邻居和自身前一触发时刻状态送往控制器(本文提出的算法),得到智能体的状态x i (t )㊂然后,预设一个固定采样周期h ,使得所有智能体在同一时刻进行采样㊂同时,在每个智能体上都配置了事件检测器,只在采样时刻检查是否满足触发条件㊂接着,将前一采样时刻的智能体状态发送至构造的触发器中进行判断,当满足设定的触发条件时,得到触发时刻的智能体状态x^i (t )㊂最后,将得到的本地状态x^i (t )用于更新自身及其邻居的控制操作㊂由于在实际传输中存在时延,因此需要考虑满足0<τ<h 的时延㊂图1㊀算法实现流程图考虑由n 个智能体构成的多智能体系统,其中每个智能体都能独立进行计算和相互通信,每个智能体i 具有如下动态方程:x ㊃i (t )=-1h2f i (x i )()-1u i (t ),(7)式中u i (t )为设计的控制算法,具体为u i (t )=ðnj =1a ij x^j (t -τ)-x ^i (t -τ)()㊂(8)㊀㊀给出设计的动态事件触发条件:θi d i e 2i (lh )-γq i (lh -h )()ɤξi (lh ),(9)q i (t )=ðnj =1a ij x^i (t -τ)-x ^j (t -τ)()2,(10)㊀㊀㊀ξ㊃i (t )=1h[-μi ξi (lh )+㊀㊀㊀㊀㊀δi γq i (lh -h )-d i e 2i (lh )()],(11)式中:d i 是智能体i 的入度;γ是正常数;θi ,μi ,δi 是设计的参数㊂令x i (lh )表示采样时刻智能体的状态,偏差变量e i (lh )=x i (lh )-x^i (lh )㊂注释1㊀在进行动态事件触发条件设计时,可以根据不同的需求为每个智能体设定不同的参数θi ,μi ,δi ,以确保其能够在特定的情境下做出最准确的反应㊂本文为了方便分析,选择为每个智能体设置相同的θi ,μi ,δi ,以便更加清晰地研究其行为表现和响应能力㊂2.2㊀主要结果和分析由于智能体仅在采样时刻进行事件触发条件判断,并在达到触发条件后才通信,因此有x ^i (t -τ)=x^i (lh )㊂定理1㊀假设无向图G 是连通的,对于任意i ɪV 和t >0,当满足条件(12)时,在算法(7)和动态事件触发条件(9)的作用下,系统状态趋于优化解x ∗,即lim t ңx i (t )=x ∗㊂12-β2φm α-τβ2φm αh -γ>0,μi+δi θi <1,μi-1-δi θi >0,ìîíïïïïïïïï(12)式中φm =min{φ1,φ2}㊂证明㊀对于t ɪ[lh +τ,(l +1)h +τ),定义Lyapunov 函数V (t )=V 1(t )+V 2(t ),其中:V 1(t )=ðni =1f i (x ∗)-f i (x i )-f ᶄi (x i )(x ∗-x i )(),V 2(t )=ðni =1ξi (t )㊂令E (t )=e 1(t ), ,e n (t )[]T ,X (t )=x 1(t ), ,x n (t )[]T ,X^(t )=x ^1(t ), ,x ^n (t )[]T ㊂对V 1(t )求导得V ㊃1(t )=1h ðni =1u i (t )x ∗-x i (t )(),(13)由于ðni =1ðnj =1a ij x ^j (t -τ)-x ^i (t -τ)()㊃x ∗=0成立,有V ㊃1(t )=-1hX T (t )LX ^(lh )㊂(14)6山东理工大学学报(自然科学版)2024年㊀由于㊀㊀X (t )=X (lh +τ)-(t -lh -τ)X ㊃(t )=㊀㊀㊀㊀X (lh )+τX ㊃(lh )+t -lh -τhΓ1LX^(lh )=㊀㊀㊀㊀X (lh )-τh Γ2LX^(lh -h )+㊀㊀㊀㊀(t -lh -τ)hΓ1LX^(lh ),(15)式中:Γ1=diag (f i ᶄᶄ(x ~11))-1, ,(f i ᶄᶄ(x ~1n ))-1{},Γ2=diag (f i ᶄᶄ(x ~21))-1, ,(f i ᶄᶄ(x ~2n))-1{},x ~1iɪ(x i (lh +τ),x i (t )),x ~2i ɪ(x i (lh ),x i (lh+τ))㊂将式(15)代入式(14)得㊀V ㊃1(t )=-1h E T (lh )LX ^(lh )-1hX ^T (lh )LX ^(lh )+㊀㊀㊀τh2Γ2X ^T (lh -h )L T LX ^(lh )+㊀㊀㊀(t -lh -τ)h2Γ1X ^T (lh )L T LX ^(lh )㊂(16)根据式(3)得(f i ᶄᶄ(x ~i 1))-1ɤ1φi,i =1, ,n ㊂即Γ1ɤ1φm I n ,Γ2ɤ1φmI n ,φm =min{φ1,φ2}㊂首先对(t -lh -τ)h2Γ1X ^T (lh )L T LX ^(lh )项进行分析,对于t ɪ[lh +τ,(l +1)h +τ),基于引理1和式(3)有(t -lh -τ)h2Γ1X ^T (lh )L T LX ^(lh )ɤβhφm αX ^T (lh )LX ^(lh )ɤβ2hφm αðni =1q i(lh ),(17)式中最后一项根据X^T (t )LX ^(t )=12ðni =1q i(t )求得㊂接着分析τh2Γ2X ^(lh -h )L T LX ^(lh ),根据引理1和杨式不等式有:τh2Γ2X ^T (lh -h )L T LX ^(lh )ɤ㊀㊀㊀㊀τβ2h 2φm αX ^T (lh -h )LX ^(lh -h )+㊀㊀㊀㊀τβ2h 2φm αX ^T (lh )LX ^(lh )ɤ㊀㊀㊀㊀τβ4h 2φm αðni =1q i (lh -h )+ðni =1q i (lh )[]㊂(18)将式(17)和式(18)代入式(16)得㊀V ㊃1(t )ɤβ2φm α+τβ4φm αh -12()1h ðni =1q i(lh )+㊀㊀㊀τβ4φm αh ðni =1q i (lh -h )+1h ðni =1d i e 2i(lh )㊂(19)根据式(11)得V ㊃2(t )=-ðni =1μih ξi(lh )+㊀㊀㊀㊀ðni =1δihγq i (lh -h )-d i e 2i (lh )()㊂(20)结合式(19)和式(20)得V ㊃(t )ɤ-12-β2φm α-τβ4φm αh ()1h ðni =1q i (lh )+㊀㊀㊀㊀τβ4φm αh 2ðn i =1q i (lh -h )+γh ðni =1q i (lh -h )-㊀㊀㊀㊀1h ðni =1(μi -1-δi θi)ξi (lh ),(21)因此根据李雅普诺夫函数的正定性以及Squeeze 定理得㊀V (l +1)h +τ()-V (lh +τ)ɤ㊀㊀㊀-12-β2φm α-τβ4φm αh()ðni =1q i(lh )+㊀㊀㊀τβ4φm αh ðni =1q i (lh -h )+γðni =1q i (lh -h )-㊀㊀㊀ðni =1(μi -1-δiθi)ξi (lh )㊂(22)对式(22)迭代得V (l +1)h +τ()-V (h +τ)ɤ㊀㊀-12-β2φm α-τβ2φm αh-γ()ðl -1k =1ðni =1q i(kh )+㊀㊀τβ4φm αh ðni =1q i (0h )-㊀㊀12-β2φm α-τβ4φm αh()ðni =1q i(lh )-㊀㊀ðlk =1ðni =1μi -1-δiθi()ξi (kh ),(23)进一步可得㊀lim l ңV (l +1)h -V (h )()ɤ㊀㊀㊀τβ4φm αh ðni =1q i(0h )-16第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀夏伦超,等:基于周期采样的分布式动态事件触发优化算法㊀㊀㊀ðni =1(μi -1-δi θi )ðl =1ξi (lh )-㊀㊀㊀12-β2φm α-τβ2φm αh-γ()ð l =1ðni =1q i(lh )㊂(24)由于q i (lh )ȡ0和V (t )ȡ0,由式(24)得lim l ң ðni =1ξi (lh )=0㊂(25)基于ξi 的定义和拉普拉斯矩阵的性质,可以得到每个智能体的最终状态等于相同的常数,即lim t ңx 1(t )= =lim t ңx n (t )=c ㊂(26)㊀㊀由于目标函数的二阶导数具有以下性质:ðni =1d f ᶄi (x i (t ))()d t =㊀㊀㊀㊀-ðn i =1ðnj =1a ij x ^j (t )-x ^i (t )()=㊀㊀㊀㊀-1T LX^(t )=0,(27)式中1=[1, ,1]n ,所以可以得到ðni =1f i ᶄ(x i (t ))=ðni =1f i ᶄ(x ∗i )=0㊂(28)联立式(26)和式(28)得lim t ңx 1(t )= =lim t ңx n (t )=c =x ∗㊂(29)㊀㊀定理1证明完成㊂当不考虑通信时延τ时,可由定理1得到推论1㊂推论1㊀假设通信图G 是无向且连通的,当不考虑时延τ时,对于任意i ɪV 和t >0,若条件(30)成立,智能体状态在算法(7)和触发条件(9)的作用下趋于最优解㊂14-n -1φm -γ>0,μi+δi θi <1,μi-1-δi θi >0㊂ìîíïïïïïïïï(30)㊀㊀证明㊀该推论的证明过程类似定理1,由定理1结果可得14-β2φm α-γ>0㊂(31)令λn =βα,由于λn 是多智能体系统的全局信息,因此每个智能体很难获得,但其上界可以根据以下关系来估计:λn ɤ2d max ɤ2(n -1),(32)式中d max =max{d i },i =1, ,n ㊂因此得到算法在没有时延情况下的充分条件:14-n -1φm -γ>0㊂(33)㊀㊀推论1得证㊂注释2㊀通过定理1得到的稳定性条件,可以得知当采样周期h 取较小值时,由于0<τ<h ,因此二者可以抵消,从而稳定性不受影响;而当采样周期h 取较大值时,τβ2φm αh项可以忽略不计,因此从理论分析可以得出允许采样周期任意大的结论㊂从仿真实验方面来看,当采样周期h 越大,需要的收剑时间越长,但最终结果仍趋于优化解㊂然而,在文献[18]中,采样周期过大会导致稳定性条件难以满足,即算法最终难以收敛,无法达到最优解㊂因此,本文提出的算法允许采样周期任意大,这一创新点具有重要意义㊂3㊀仿真本文对一个具有4个智能体的多智能体网络进行数值模拟,智能体间的通信拓扑如图2所示㊂采用4个智能体的仿真网络仅是为了初步验证所提算法的有效性㊂值得注意的是,当多智能体的数量增加时,算法的时间复杂度和空间复杂度会增加,但并不会影响其有效性㊂因此,该算法在更大规模的多智能体网络中同样适用㊂成本函数通常选择凸函数㊂例如,在分布式传感器网络中,成本函数为z i -x 2+εi x 2,其中x 表示要估计的未知参数,εi 表示观测噪声,z i 表示在(0,1)中均匀分布的随机数;在微电网中,成本函数为a i x 2+b i x +c i ,其中a i ,b i ,c i 是发电机成本参数㊂这两种情境下的成本函数形式不同,但本质上都是凸函数㊂本文采用论文[19]中的通用成本函数(式(34)),用于证明本文算法在凸函数上的可行性㊂此外,通信拓扑图结构并不会影响成本函数的设计,因此,本文的成本函数在分布式网络凸优化问题中具有通用性㊂g i (x )=(x -i )4+4i (x -i )2,i =1,2,3,4㊂(34)很明显,当x i 分别等于i 时,得到最小局部成本函数,但是这不是全局最优解x ∗㊂因此,需要使用所提算法来找到x ∗㊂首先设置重要参数,令φm =16,γ=0.1,θi =1,ξi (0)=5,μi =0.2,δi =0.2,26山东理工大学学报(自然科学版)2024年㊀图2㊀通信拓扑图x i (0)=i ,i =1,2,3,4㊂图3为本文算法(7)解决优化问题(4)时各智能体的状态,其中设置采样周期h =3,时延τ=0.02㊂智能体在图3中渐进地达成一致,一致值为全局最优点x ∗=2.935㊂当不考虑采样周期影响时,即在采样周期h =3,时延τ=0.02的条件下,采用文献[18]中的算法(10)时,各智能体的状态如图4所示㊂显然,在避免采样周期的影响后,本文算法具有更快的收敛速度㊂与文献[18]相比,由于只有当智能体i 及其邻居的事件触发判断完成,才能得到q i (lh )的值,因此本文采用前一时刻的状态值构造动态事件触发条件更符合逻辑㊂图3㊀h =3,τ=0.02时算法(7)的智能体状态图4㊀h =3,τ=0.02时算法(10)的智能体状态为了进一步分析采样周期的影响,在时延τ不变的情况下,选择不同的采样周期h ,其结果显示在图5中㊂对比图3可以看出,选择较大的采样周期则收敛速度减慢㊂事实上,这在算法(7)中是很正常的,因为较大的h 会削弱反馈增益并减少固定有限时间间隔中的控制更新次数,具体显示在图6和图7中㊂显然,当选择较大的采样周期时,智能体的通信频率显著下降,同时也会导致收敛速度减慢㊂因此,虽然采样周期允许任意大,但在收敛速度和通信频率之间需要做出权衡,以选择最优的采样周期㊂图5㊀h =1,τ=0.02时智能体的状态图6㊀h =3,τ=0.02时的事件触发时刻图7㊀h =1,τ=0.02时的事件触发时刻最后,固定采样周期h 的值,比较τ=0.02和τ=2时智能体的状态,结果如图8所示㊂显然,时延会使智能体找到全局最优点所需的时间更长,但由于其受采样周期的限制,最终仍可以对于任意有限延迟达成一致㊂图8㊀h =3,τ=2时智能体的状态36第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀夏伦超,等:基于周期采样的分布式动态事件触发优化算法4 结束语本文研究了无向图下的多智能体系统的优化问题,提出了一种基于动态事件触发机制的零梯度和算法㊂该机制中加入了与前一时刻智能体状态相关的动态变量,避免智能体状态接近最优值时频繁触发产生的通信负担㊂同时,在算法和触发条件设计中考虑了采样周期的影响,在所设计的算法下,允许采样周期任意大㊂对于有时延的系统,在最大允许传输延迟小于采样周期的情况下,给出了保证多智能体系统达到一致性和最优性的充分条件㊂今后拟将本算法向有向图和切换拓扑图方向推广㊂参考文献:[1]杨洪军,王振友.基于分布式算法和查找表的FIR滤波器的优化设计[J].山东理工大学学报(自然科学版),2009,23(5):104-106,110.[2]CHEN W,LIU L,LIU G P.Privacy-preserving distributed economic dispatch of microgrids:A dynamic quantization-based consensus scheme with homomorphic encryption[J].IEEE Transactions on Smart Grid,2022,14(1):701-713.[3]张丽馨,刘伟.基于改进PSO算法的含分布式电源的配电网优化[J].山东理工大学学报(自然科学版),2017,31(6):53-57.[4]KIA S S,CORTES J,MARTINEZ S.Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication[J].Automatica,2015,55:254-264.[5]LI Z H,DING Z T,SUN J Y,et al.Distributed adaptive convex optimization on directed graphs via continuous-time algorithms[J]. IEEE Transactions on Automatic Control,2018,63(5):1434 -1441.[6]段书晴,陈森,赵志良.一阶多智能体受扰系统的自抗扰分布式优化算法[J].控制与决策,2022,37(6):1559-1566. [7]DIMAROGONAS D V,FRAZZOLI E,JOHANSSON K H.Distributed event-triggered control for multi-agent systems[J].IEEE Transactions on Automatic Control,2012,57(5):1291-1297.[8]KAJIYAMA Y C,HAYASHI N K,TAKAI S.Distributed subgradi-ent method with edge-based event-triggered communication[J]. IEEE Transactions on Automatic Control,2018,63(7):2248 -2255.[9]LIU J Y,CHEN W S,DAI H.Event-triggered zero-gradient-sum distributed convex optimisation over networks with time-varying topol-ogies[J].International Journal of Control,2019,92(12):2829 -2841.[10]COUTINHO P H S,PALHARES R M.Codesign of dynamic event-triggered gain-scheduling control for a class of nonlinear systems [J].IEEE Transactions on Automatic Control,2021,67(8): 4186-4193.[11]CHEN W S,REN W.Event-triggered zero-gradient-sum distributed consensus optimization over directed networks[J].Automatica, 2016,65:90-97.[12]TRAN N T,WANG Y W,LIU X K,et al.Distributed optimization problem for second-order multi-agent systems with event-triggered and time-triggered communication[J].Journal of the Franklin Insti-tute,2019,356(17):10196-10215.[13]YU G,SHEN Y.Event-triggered distributed optimisation for multi-agent systems with transmission delay[J].IET Control Theory& Applications,2019,13(14):2188-2196.[14]LIU K E,JI Z J,ZHANG X F.Periodic event-triggered consensus of multi-agent systems under directed topology[J].Neurocomputing, 2020,385:33-41.[15]崔丹丹,刘开恩,纪志坚,等.周期事件触发的多智能体分布式凸优化[J].控制工程,2022,29(11):2027-2033. [16]LU J,TANG C Y.Zero-gradient-sum algorithms for distributed con-vex optimization:The continuous-time case[J].IEEE Transactions on Automatic Control,2012,57(9):2348-2354. [17]LIU K E,JI Z J.Consensus of multi-agent systems with time delay based on periodic sample and event hybrid control[J].Neurocom-puting,2016,270:11-17.[18]ZHAO Z Y.Sample-baseddynamic event-triggered algorithm for op-timization problem of multi-agent systems[J].International Journal of Control,Automation and Systems,2022,20(8):2492-2502.[19]LIU J Y,CHEN W S.Distributed convex optimisation with event-triggered communication in networked systems[J].International Journal of Systems Science,2016,47(16):3876-3887.(编辑:杜清玲)46山东理工大学学报(自然科学版)2024年㊀。
时间序列 傅里叶 python
时间序列分析是指对一系列随时间变化而变化的数据进行分析和建模的过程。
它在多个领域都有着重要的应用,例如经济学、气象学、生态学等。
时间序列分析可以帮助我们理解数据的变化规律,预测未来的趋势,以及进行决策和规划。
傅里叶分析是时间序列分析中的一种重要方法。
它是以法国数学家傅里叶的名字命名的,用于将一个非周期性的函数表示成为若干不同频率的正弦和余弦函数之和。
通过傅里叶分析,我们可以将复杂的时间序列数据分解成若干简单的周期性成分,从而更好地理解数据的特性和规律。
在进行时间序列分析和傅里叶分析时,Python是一种常用的编程语言。
它拥有丰富的数据处理和科学计算库,例如NumPy、SciPy和Pandas,这些库提供了丰富的函数和工具,可以方便地进行时间序列数据的处理、分析和可视化。
1. 导入数据:我们需要导入时间序列数据,可以是从文件中读取,也可以是通过API获取。
在Python中,可以使用Pandas库中的read_csv()或read_excel()函数来导入数据。
2. 数据预处理:我们需要对数据进行预处理,例如去除缺失值、异常值,进行平滑处理等。
Pandas库中提供了丰富的数据处理函数和方法,可以帮助我们进行数据清洗和预处理工作。
3. 时间序列分析:一般来说,时间序列分析包括描述统计分析、序列平稳性检验、自相关和偏自相关分析、趋势分析等。
我们可以使用Pandas、StatsModels等库提供的函数和方法来完成这些分析工作。
4. 傅里叶分析:傅里叶分析可以通过快速傅里叶变换(FFT)来实现。
NumPy库中提供了fft.fft()函数来进行傅里叶变换,它可以将时域上的信号转换到频域上,得到信号的频谱信息。
5. 结果展示:我们可以使用Matplotlib库来展示分析的结果,例如绘制时间序列图、自相关图、频谱图等。
Matplotlib提供了丰富的绘图函数和样式,可以帮助我们制作出具有良好可视化效果的图表。
时间序列分析和傅里叶分析在Python中的实现相对来说比较简单,但需要对数据处理、统计学和信号处理等知识有一定的了解和掌握。
电力时间序列的分布式索引算法
电力时间序列的分布式索引算法作者:吴裔郭棋林陈颢天郭乃网来源:《哈尔滨理工大学学报》2021年第06期摘要:时间序列的研究已经被应用到越来越多的领域中。
越来越多的领域应用需要索引和分析海量的时间序列,代表性的比如金融,电力,生物信息等等。
这类应用往往面临数以亿计的时间序列的处理,然后从中识别出一些隐藏的模式来。
然而目前对时间序列的索引技术都是单机版本,需要用漫长的时间来对大量的时间序列进行索引,限制了时间序列分析的产出率。
提出了一种基于Isax表达的分布式时间序列索引算法,并在Spark分布式计算框架下实现算法。
首先,给出了基于Isax的分布式索引算法的朴素实现想法,指明了其存在的问题。
然后提出一种先建立索引结构,再将时间序列哈希到相应叶子节点的分布式索引算法。
最终,构建了一个完整的电力时间序列的近邻近似查询系统,再保证查询精确率的前提下大大提高了计算效率。
并在实验数据集上证明了算法的正确性、高效性和可扩展性。
关键词:时间序列;分布式;索引DOI:10.15938/j.jhust.2021.06.011中图分类号: TP392文献标志码: A文章编号: 1007-2683(2021)06-0081-06A Distributed Algorithm for Indexing Power Time SeriesWU Yi1, GUO Qi-lin2, CHEN Hao-tian1, GUO Nai-wang1(1.State Grid Shanghai Municipal Electric Power Company, Shanghai 200122, China;2.School of Economics, Fudan University, Shanghai 200433, China)Abstract:Time series research has been applied to more and more areas. More and more domain applications need to index and analyze massive time series, such as finance, electricity,bioinformatics, and so on. Such applications are often faced with hundreds of millions of time series of processing, and then identify some hidden pattern from the model. Firstly, we give a simple idea of the distributed indexing algorithm based on Isax, which points out its existing problems. Then we propose a distributed indexing algorithm to establish the index structure and then insert the time series to the corresponding leaf node. Finally, this paper constructs a complete approximation query system of power time series, and greatly improves the computational efficiency under the premise of ensuring the accuracy of query. The correctness, efficiency and expansibility of the algorithm are proved on the experimental data set.Keywords:time series; distributed algorithm; index0 引言随着配用电网技术的发展、电力采集设备的更新,电力系统积累了海量用电负荷数据。
时间序列的小波分析及等值线图、小波方差制作之欧阳文创编
时间序列的小波分析时间序列(Time Series)是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis)为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ(1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t (a)t (2/1b ,a -=-ψψ其中,0a R,b a,≠∈(2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
lest时间衰减算法
我了解到"Lest时间衰减算法",它是一种基于时间衰减的排序算法,用于对项目或内容进行排序。
该算法常用于电子商务平台、推荐系统或新闻网站等场景,以提供个性化的排序结果。
Lest算法的核心思想是将物品或内容的权重与时间相关联,根据时间的衰减来降低较早项目的影响力。
具体步骤如下:
1. 给予每个项目一个初始权重,并记录项目的创建时间。
2. 定义一个衰减函数来衡量时间对权重的影响,通常选择指数衰减函数或幂函数。
该函数使得最近创建的项目权重更高,逐渐降低过去项目的影响力。
3. 根据时间衰减函数对每个项目的权重进行调整。
较新的项目将获得较高的分数,而较早的项目将获得较低的分数。
4. 对项目进行排序,按照权重(经过时间衰减调整后)从高到低进行排列。
需要注意的是,选择合适的衰减函数和调整参数是至关重要的,这取决于具体的应用场景和用户需求。
不同的衰减函数可能会导致不同的排序结果,因此需要根据实际情况进行调整和优化。
"Lest时间衰减算法"是一种常用的排序算法,特别适用于需要考虑时间因素,并希望展示最新和有关联性内容的场景。
具有延迟时间的自由作业排序问题——最坏性能比分析
具有延迟时间的自由作业排序问题——最坏性能比分析时凌
【期刊名称】《湖北民族学院学报(自然科学版)》
【年(卷),期】2002(020)001
【摘要】研究一类具有延迟时间的自由作业问题,证明在机器台数任意的情况下,一个简单的贪婪算法的最坏性能比不超过2.特别当m=2时,证明了该算法的最坏性能比为3/2,其中m为机器的台数.
【总页数】5页(P33-37)
【作者】时凌
【作者单位】湖北民族学院,数学系,湖北,恩施,445000
【正文语种】中文
【中图分类】O223
【相关文献】
1.机器不同时开工排序问题算法Akk的最坏情况性能比 [J], 吕程;李蒙;吕佳;唐国春
2.具有准备时间的流水作业时间表问题启发式算法与最坏性能比分析 [J], 时凌
3.自由作业问题的一种启发式算法及最坏性能比分析 [J], 时凌
4.排序问题Fm││Cmax的几种启发式算法在最坏情况下性能比上界的… [J], 杨汉兴
5.带准备时间的自由作业排序问题——最坏性能比分析 [J], 杜玉祥; 杜东雷; 张国川
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Periodic Timetable Optimization in Public TransportChristian LiebchenInstitut f¨u r Mathematik,Kombinatorische Optimierung und Graphenalgorithmen,Technische Universit¨a t Berlin,Germanyliebchen@math.tu-berlin.deSummary.”The timetable is the essence of the service offered by any provider of public transport.“(Jonothan Tyler,CASPT 2006)Despite this observation,in the practice of planning public transportation,only some months ago OR decision support has still been limited to operations planning (vehicle scheduling,duty scheduling,crew rostering).We describe the optimization techniques that were employed in computing the very first optimized timetable that went into daily service:the 2005timetable of Berlin Underground.This timetables improved on both,the passenger travel times and the operating efficiency of the company.The basic graph model,the Periodic Event Scheduling Problem (PESP),is known for 15years and it had attracted many research groups.Nevertheless,we report on significant progress that has been made only recently on issues like solu-tion strategies or modeling capabilities.The latter even includes the integration of further planning tasks in public transport,such as line planning.On the theory side,we give a more precise notion of the asymptotical complexity of the PESP,by providing a MAXSNP-hardness proof as a kind of negative result.On the positive side,the design of more efficient algorithms gave rise to a much deeper understanding of cycle bases of graphs,another very hot topic in discrete mathematics during the last three years.In 2005,this culminated in both,drawing the complete map for the seven relevant classes of cycle bases,and the design of the fastest algorithms for the Minimum Directed Cycle Basis Problem and for the Minimum 2-Basis Problem.The book version of this extended abstract is available as reference [8].1TimetablingIt is a very important competitive advantage of public transport to be much less expensive than a taxi service.This requires many passengers to share the same vehicle.Typically,this is achieved by offering public transport along fixed sets of routes,the lines.These serve as input to timetabling.This work has been supported by the DFG Research Center Matheon in Berlin.30Christian LiebchenThere is a large toolbox of different types of timetables,which we introduce from the most general one to the most specialized one:timetables that are composed of individual trips,periodic timetables,i.e.the headway between any two successive trips of the same line is the same,symmetric periodic timetables,and so-called “Integrated Fixed-Interval Timetables.”Here,a periodic timetable is called symmetric ,if for every passenger the transfer times that he faces during his outbound trip are identical to the transfer times during his return trip,which here is assumed to have the same route.In particu-lar,the periodic timetables of most European national railway companies are in-deed symmetric,because marketing departments consider this being a competitive advantage—at least in long-distance traffic.Theorem 1([7]).There exist example networks showing that each more specialized family of timetables causes a nominal loss in quantifiable criteria,such as average passenger waiting time.We are only aware of periodic timetables being able to clearly outweigh their nominal loss (when comparing with general irregular timetables)by adding benefit in qualitative criteria.Hence,in the remainder we focus on periodic timetables.Typically,the period time T varies over the day.For instance,Berlin Under-ground distinguishesrush hour service (T =4minutes),”normal“service (T =5minutes),weak traffic service (T =10minutes,when retail shops are closed),and night service (T =15minutes,only on weekends).Computing “the timetable”thus decomposes into computing a periodic timetable for each period time,and finally glue these together.2A Model for Periodic TimetablingA literature review of different models for periodic scheduling reveals that the most promising earlier studies on medium-sized networks are based on the Periodic Event Scheduling Problem (Pesp ,[18]),see [17,14,9,16].The vertices in this graph model represent events,where an event v ∈V is either an arrival or a departure of a directed line in a specific station.A timetable πassigns to each vertex v a point in time πv ∈[0,T )within the period time T .Constraints may then be given in the following form.T-Periodic Event Scheduling Problem (T-Pesp)Instance:A directed graph D =(V,A )and vectors ,u ∈Q A .Task:Find a vector π∈[0,T )V that fulfills(πv −πu − a )mod T ≤u a − a (1)(or πv −πu ∈[ a ,u a ]T ,for short)for every arc a =(u,v )∈A ,ordecide that none exists.Periodic Timetable Optimization in Public Transport31 In Figure1we provide an example instance of T-Pesp,which contains the eventsof two pairs of directed lines and twostations.Fig.1.A Pesp model for two lines and two stations Here,the straight arcs model either stops(within the black box that repre-sents the station)or trips,and the dotted arcs model either passenger transfers or turnarounds of the trains.Besides these most elementary requirements,there have been modeled most practical requirements that railway engineers have([11]).This even includes decisions of line planning and vehicle scheduling,which traditionally were treated as fully separate planning steps([1]).Unfortunately,this modeling power has its price in terms of complexity. Theorem2.Let a set of PESP constraints be given.Finding a timetable vectorπthat satisfies a maximum number of constraints is MAXSNP-hard.To make T-Pesp accessible for integer programming(IP)techniques,the modulo-operator is resolved by introducing integer variables:min w T(B Tπ+T p)s.t.B Tπ+T p≤uB Tπ+T p≥π∈[0,T)Vp∈{0,1,2}A.(2)Here,the matrix B is the vertex-arc incidence matrix of the constraint graph D= (V,A).But this is not the only way to formulate T-Pesp as an IP.Rather,we may replace the vertex variablesπ(or node potentials)—which carry time information —with arc variables x(tensions),and/or replace the integer arc variables p with integer cycle variables z.This way,we end with the following integer program([14])min w T xs.t.x≤ux≥ΓT x−T z=0x∈Q Az∈Z B,(3)32Christian LiebchenwhereΓdenotes the arc-cycle incidence matrix of an integral cycle basis B of the constraint graph D=(V,A).There have also been identified lower and upper bounds on these integer variables z.Theorem3([15]).Let C be an oriented circuit and z C the integer variable that we associate with it.The following inequalities are valid⎡⎢⎢⎢1T⎛⎝a∈C+a−a∈C−u a⎞⎠⎤⎥⎥⎥=:zC≤z C≤z C:=⎢⎢⎢⎣1T⎛⎝a∈C+u a−a∈C−a⎞⎠⎥⎥⎥⎦.The following rule-of-thumb could be derived from empirical studies.Remark1([4]).The shorter a circuit C∈B with respect to the sum of the spans u a− a of its arcs,the less integer values the corresponding variable z C may take.Moreover,the less values all the integer variables may take,the shorter the solution times for solving this IP.3Integral Cycle BasesIn a directed graph D=(V,A),we consider oriented circuits.These consist of forward arcs and maybe also backward arcs,such that re-orienting the backward arcs yields a directed circuit.The incidence vectorγC∈{−1,0,1}A of an oriented circuit C has a plus(minus)one entry precisely for the forward(backward)arcs of C.Then,the cycle space C(D)can be defined asC(D):=span({γC|C is an oriented circuit of D}).A cycle basisB of C(D)is a set of oriented circuits,which is a basis of C(D). An integral cycle basis allows to combine every oriented circuit of D as an integer linear combination of the basic circuits.Fortunately,in order to decide upon the integrality of a cycle basis,we do not have to check all these linear combinations.Lemma1([4]).LetΓbe the arc-cycle incidence matrix of a cycle basis.For two submatricesΓ1,Γ2with rank(Γ1)=rank(Γ2)=rank(Γ),there holdsdetΓ1=±detΓ2.(4) Definition1(Determinant of a cycle basis,[4]).Let B be a cycle basis and Γ1as in the above lemma.We define the determinant of B asdet B:=|detΓ1|.(5) Theorem4([4]).A cycle basis B is integral,if and only if det B=1.According to Remark1,in the application of periodic timetabling we seek for a minimum integral cycle basis of D.To illustrate the benefit of short integral cycle we provide the following example.Periodic Timetable Optimization in Public Transport33Fig.treeExample1.Consider the sunflower graph SF(3)in Figure2.Assume each arc models a Pesp constraint of the form[7,13]10,i.e.subject to a period time of T=10.According to the initial IP formulation(2),we could deduce that in order to identify an optimum timetable simply by considering every possible timetable vec-torπwe need to check|{0,...,9}||V|=1,000,000vectorsπ.Alternatively,we might check for|{0,1,2}||A|=19,683vectors p to pervade the search space.It will turn out,that these two perspectives have much redundancies within them.In contrast,the valid inequalities of Theorem3reveal that every4-circuit C in D yields an integer variable z C which may only take the three values{−1,0,1}. Even better,a triangle C in D induces afixed variable z C.Thus,the integral cycle basis B that can be derived from the spanning tree F (Fig.2on the right)already reduces the upper bound on the size of the search space to only1·1·1·3=3possible vectors for z.Moreover,considering the minimum cycle basis of D—which for this graph turns out to be integral as it consists of the circuits that bound the fourfinite faces of this plane graph—we end with just one single vector z describing the complete instance.Ideally,we would like to compute a minimum integral cycle basis of D according to the edge weights u a− a.Unfortunately,we are not aware of the asymptotical com-plexity of this combinatorial optimization problem.However,recently there has been achieved much progress on the the asymptotical complexity for the corresponding minimum cycle basis problems for related classes of cycle bases,see[13,2]and ref-erenced therein.We depict these results in Figure3.Notice that any of these classes demands for specific algorithms,because none of these problems coincide([13]).4Summary of Computational ResultsEarlier,in several autonomous computational studies,there had been applied various algorithms to periodic timetabling.We have executed thefirst unified computational study,which covers algorithms as variegated as a Cut-and-Branch Algorithm for Integer Programs,Constraint Programming,and even Genetic Algorithms([12]).To any of these,quite a number of different promising parameter settings was applied. In particular for Integer Programming this amounts to hundreds of different runs onfive different data sets.All the data sets have been provided to us by industrial partners,and they range from long-distance traffic over regional traffic down to undergrounds,comprising between10and40commercial lines each.With respect to both solution quality and independence of parameter settings, both our Genetic Algorithm(GA)and our Cut-and-Branch Algorithm—which is34Christian Liebchendirectedundirected integral weakly strictly TUM 2-basesO (m 3n...)O (m 2n...)(open)O (n )(open)(open)NPC Fig.3.Map of the complexity of the seven variants of the Minimum Cycle Basis Problem for general graphs ([4,13])using CPLEX 9.1—perform considerably well.On the one hand,IP techniques turn out to be extremely sensitive with respect to the choice of several important parameters.On the other hand,in particular for medium-sized instances for which IP techniques still attain an optimum solution,the quality achieved by the GA is somewhat worse.5Improvements for Berlin UndergroundMost important,in a long-term cooperation with Berlin Underground we continu-ously kept on improving our mathematical models of the real world ([10,6]).Finally,in 2004we were able to formulate a mathematical program which covered all the practical requirements that the practitioners have.As a consequence,the optimum solution that was computed by our algorithms convinced Berlin Underground:By December 12,2004,our timetable became the first optimized timetable that went into service—presumably worldwide.This may be compared to the fact that only in operations planning (vehicle scheduling,duty scheduling),Operations Research had already entered the practice.Compared to the former timetable,with our timetable the passengers of Berlin Underground are offered simultaneously improvements in two key criteria,which typically are conflicting:transfer waiting time and dwell time of trains.In more detail,our achievements are:The number of transfers,for which a maximum transfer waiting time of 5minutes can be guaranteed,increases from 95to 103(+8%).The maximum dwell time of any train in the network was reduced from 3.5min-utes to only 2.5minutes (−30%).The timetable could even be operated with one train less.Periodic Timetable Optimization in Public Transport35 The part of the network in which the most significant improvements have been achieved is given in work waiting time charts emerged as a by-product from our cooperation with Berlin Underground([6,7]).Such charts constitute the first visualization of the transfer quality of a timetable.In particular,they made the discussion of pros and cons of different timetables most efficient,as for instance long transfer waiting times(marked in black)along important transfers(marked as bold arcs)become obvious.work waiting time charts for an excerpt of the Berlin subway network—before and after invoking mathematical optimizationThe successful transfer from theory to practice has even been reflected by articles and interviews in nationwide newspapers and radio transmissions:Berliner Zeitung,November9,2005,in German([3])http://www.berlinonline.de/berliner-zeitung/archiv/.bin/dump.fcgi/2005/1109/wissenschaft/0002/index.htmlDeutschlandfunk,December9,2005,16:35h,in Germanhttp://www.dradio.de/dlf/sendungen/forschak/446751/References1.Michael R.Bussieck,Thomas Winter,and Uwe Zimmermann.Discreteoptimization in public rail transport.Mathematical Programming B,79:415–444,1997.2.Ramesh Hariharan,Telikepalli Kavitha,and Kurt Mehlhorn.A FasterDeterministic Algorithm for Minimum Cycle Bases in Directed Graphs.InMichele Bugliesi et al.,editors,ICALP,volume4051of Lecture Notes inComputer Science,pages250–261.Springer,2006.3.Reinhard Huschke.Schneller Umsteigen.Berliner Zeitung,61(262):12,2005.Wednesday,November9,2005,In German.4.Christian Liebchen.Finding short integral cycle bases for cyclictimetabling.In Giuseppe Di Battista and Uri Zwick,editors,ESA,volume2832of Lecture Notes in Computer Science,pages715–726.Springer,2003.5.Christian Liebchen.A cut-based heuristic to produce almost feasible pe-riodic railway timetables.In Sotiris E.Nikoletseas,editor,WEA,volume3503of Lecture Notes in Computer Science,pages354–366.Springer,2005.36Christian Liebchen6.Christian Liebchen.Der Berliner U-Bahn Fahrplan2005–Realisierungeines mathematisch optimierten Angebotskonzeptes.In HEUREKA’05:Optimierung in Transport und Verkehr,Tagungsbericht,number002/81.FGSV Verlag,2005.In German.7.Christian Liebchen.Fahrplanoptimierung im Personenverkehr—Muss esimmer ITF sein?Eisenbahntechnische Rundschau,54(11):689–702,2005.In German.8.Christian Liebchen.Periodic Timetable Optimization in Public Transport.dissertation.de,2006.PhD thesis.9.Thomas Lindner.Train Schedule Optimization in Public Rail Transport.Ph.D.thesis,Technische Universit¨a t Braunschweig,2000.10.Christian Liebchen and Rolf H.M¨o hring.A case study in periodictimetabling.Electr.Notes in Theoretical Computer Science,66(6),2002.11.Christian Liebchen and Rolf H.M¨o hring.The modeling power of the peri-odic event scheduling problem:Railway timetables–and beyond.Preprint020/2004,TU Berlin,Mathematical Institute,2004.To appear in SpringerLNCS Volume Algorithmic Methods for Railway Optimization.12.Christian Liebchen,Mark Proksch,and Frank H.Wagner.Performanceof algorithms for periodic timetable optimization.To appear in SpringerLNEMS PProceedings of the Ninth International Workshop on Computer-Aided Scheduling of Public Transport(CASPT).To appear.13.Christian Liebchen and Romeo Rizzi.Cycles bases of graphs.TechnicalReport2005-018,TU Berlin,Mathematical Institute,2005.accepted forpublication in Discrete Applied Mathematics.14.Karl Nachtigall.Periodic Network Optimization and Fixed IntervalTimetables.Habilitation thesis,Universit¨a t Hildesheim,1998.15.Michiel A.Odijk.A constraint generation algorithm for the constructionof periodic railway timetables.Transp.Res.B,30(6):455–464,1996.16.Leon W.P.Peeters.Cyclic Railway Timetable Optimization.Ph.D.thesis,Erasmus Universiteit Rotterdam,2003.17.Alexander Schrijver and Adri G.Steenbeek.Dienstregelingontwikkelingvoor Railned.Rapport CADANS1.0,Centrum voor Wiskunde en Infor-matica,December1994.In Dutch.18.Paolo Serafini and Walter Ukovich.A mathematical model for pe-riodic scheduling problems.SIAM Journal on Discrete Mathematics,2(4):550–581,1989.。