§22.1.2 二次函数y=ax2的图象与性质
22.1.2二次函数y=ax2的图象和性质
知识点三
画二次函数的图象,列表时取的点越多,图象往往越准确,但是 一般采用“五点法”或“七点法”画图,画图时应注意: (1)描点法所画的图象只是整个函数图象的一部分,是近似的, 由于x可取一切实数,所以图象是向两方无限延伸的; (2)点取得越多,图象画得越精确,在限定条件下(即限定自变量 的取值范围)或在实际问题中,函数的图象必须要根据自变量 的取值范围取其中的一部分; (3)所画图象必须平滑(符合点的发展变化的趋势),尤其是顶点 不能画成“尖”形的.
22.1.2
二次函数y=ax2的图象和性质
知识点一
知识点二
知识点三
知识点一二次函数y=x2的图象和性质 二次函数y=ax2+bx+c的图象是抛物线,对称轴与抛物线的交点叫 做顶点,顶点是抛物线的最低点或最高点. 对于特殊的二次函数y=x2,对称轴是y轴,顶点是(0,0),顶点是它的 最低点,在对称轴的左侧,抛物线从左到右下降;在对称轴的右侧,抛 物线从左到右上升.也就是说,当x<0时,y随x的增大而减小;当x>0 时,y随x的增大而增大. 名师解读:理解和记忆二次函数的性质时,可以从y=x2得到启发, 其他二次函数的图象及性质可类比y=x2的图象和性质,主要从开口 方向、对称轴、顶点、增减性等几个方面去进行.
知识点一
知识点二
知识点三
知识点二y=ax2的图象 一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线 的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下, 顶点是抛物线的最高点.对于y=ax2,|a|越大,抛物线的开口越小. 名师解读:二次函数y=ax2的图象是抛物线,结合图象可知,二次项 系数a的符号决定了开口方向,|a|决定了开口的大小.
人教版九年级上册数学 22.1.2 二次函数 y=ax2的图象和性质课件
a<0
1 -5-4-3-2-1 -1o1 2 3 4 5 x -2 -3 -4 -5 -6 -7 -8 -9 1 -10 y x2
y
2
y 2 x 2
y x2
总结性质
1.形如二次函数 y=ax2 的图象都是顶点为
( 0 , 0) ______ 的抛物线,反之,顶点在(0,0)
2 y = ax 的抛物线的形式是_________.
体验画图
抛物线的定义:
实际上,二次函数的图象是抛物线,
它们开口向上或向下,一般地,二次
函数 y ax bx c 的图象叫做抛
2 2
物线 y ax bx c .
体验画图
3. 拓展与延伸: 3 个点, (1)画二次函数的图象一般需要___
哪些点比较关键? 抛物线
yx
2
轴 对称图形,对称 是__
y 10 9 8 7 6 5 4 3 2 1 -5-4-3-2-1 O1 2 3 4 5 x
a>0
体验画图
(3)以上都是当a >0时,二次函数 y ax 的图象,
2
那么当 a<0时,试在同一直角坐标系画出二次函数:
1 2 y x ,y x ,y 2 x 2 的图象. 2
2
关于 y 轴对称 原点(0,0)
对称性
顶点
总结提高
2. 二次项系数 a 对形如 y=ax2 的函数值 y 又有
何影响?对图象又有何影响?
y=ax2
开口
a>0 开口向上
a<0 开口向下
增减性 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
LOGO
22.1.2二次函数y=ax2的图象和性质 参考解析
22.1.2二次函数y=ax2的图象和性质课前预习1.二次函数y=ax2的图象是一条抛物线,对称轴是y 轴,顶点坐标是(0,0).当a>0时,抛物线开口向上,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大,此时抛物线有最低点,即当x=0时,y取得最小值0 ;当a<0时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,此时抛物线有最高点,即当x=0时,y取得最大值0 .|a|越大,抛物线的开口越小,|a|相等说明抛物线的开口大小相同.课堂练习知识点1 二次函数y=ax2的图象1.填写下列抛物线的开口方向、对称轴、顶点坐标以及最值.2.某同学画二次函数y=ax2的图象时,列下列表格:(1)将表格中的空格补全;(2)这个二次函数的解析式为y=-1x2;2(3)在平面直角坐标系中画出二次函数的图象.解:(3)函数图象如图所示.知识点2 二次函数y=ax2的性质3.已知二次函数y=(m-2)x2的图象开口向上,则m的取值范围是m>2 .4.下列各点在二次函数y=-2x2图象上的是( B )A.(-1,2)B.(-1,-2)C.(-2,-4)D.(-2,4)5.关于函数y=x2的图象,下列说法错误的是( C )A.它的图象是一条抛物线B.它的开口向上,且关于y轴对称C.它的顶点是抛物线的最高点D.它的顶点在原点处,坐标为(0,0)课时作业1.与二次函数y=x2开口大小相同,方向相反的二次函数是y=-x2.2.二次函数y=-0.2x2的图象是一条开口向下的抛物线,对称轴是y轴,顶点坐标为(0,0).当x= 0 时,函数有最大值0 ;当x >0时,y随x的增大而减小.3.关于函数y=3x2的性质,下列说法正确的是( C )A.无论x为任何实数,y的值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、第三象限内4.已知A (-1,y ₁),B (-2,y ₂)都在二次函数y=x 2上,则y ₁,y ₂之间的大小关系是( C )A.y ₁>y ₂B.y ₁=y ₂C.y ₁<y ₂D.不能确定 5.二次函数y=ax 2(a >0)的图象经过点(3,4),则其图象一定经过点( C ) A.(3,-4) B.(-3,-4) C.(-3,4) D.(4,3)6.如图,当ab >0时,函数y=ax 2与函数y=bx+a 的大致图象是( C )7.二次函数y=2x 2,y=-2x 2,y=12x 2的共同性质是( B ) A.开口向上 B.对称轴是y 轴 C.都有最高点 D.y 随x 的增大而增大 8.已知函数y=(m+2)226m m x +-是关于x 的二次函数. (1)求m 的值;(2)当m 为何值时,函数图象的顶点为最低点? (3)当m 为何值时,函数图象的顶点为最高点? 解:(1)根据二次函数的定义得22026 2.m m m +≠+-=⎧⎨⎩,解得⎩⎨⎧-==.4,221m m ∴m 的值为2或-4;(2)当m=2时,抛物线的开口向上,函数有最小值,函数图象的顶点为最低点; (3)当m=-4时,抛物线的开口向下,函数有最大值,函数图象的顶点为最高点.9.在同一个平面直角坐标系中,画出下列函数的图象:①y=x 2;②y=12x 2;③y=-x 2;④y=-12x 2.从图象上对比,说出解析式中二次项系数a对抛物线的形状有什么影响?解:列表如下描点、连线,函数图象如图所示a的绝对值相同,抛物线的形状相同;a的绝对值越大,开口越小.10.如图,A,B为抛物线y=x2上的两点,且AB∥x轴,与y轴交于点C,以点O为圆心,OC为半径画圆,若2.解:∵AB=22∴BC=122∴点B的横坐标为2代入抛物线的解析式得y=2.∵AB∥x轴,∴点B与点C的纵坐标相同.∴OC=2,即圆的半径为2.由二次函数的对称性得,图中阴影部分的面积等于圆面积的14, 即S 阴影=14π×22=π.11.函数y=ax 2(a ≠0)的图象与直线y=2x-3交于点(1,b ). (1)求a 和b 的值;(2)x 在什么范围时,二次函数y=ax 2中的y 随x 的增大而增大? (3)求抛物线y=ax 2与直线y=-2的两个交点及顶点所围成的三角形的面积. 解:(1)把点(1,b )代入y=2x-3,得b=-1. ∴交点坐标为(1,-1). 把(1,-1)代入y=ax 2,得a=-1. ∴a=-1,b=-1;(2)由(1)得y=-x 2,当x ≤0时,y 随x 的增大而增大; (3)根据题意,得2,2.y x y ⎧=-⎨=-⎩解得2x y ⎧=⎪⎨=-⎪⎩或 2.x y ⎧=⎪⎨=-⎪⎩ ∴两交点坐标分别为(-2),(-2).故S △=12×。
22.1.2 二次函数y=ax2的图象和性质
2.下列关于二次函数y=ax²(a≠0)的说法中,错 误的是( C ) A.它的图像的顶点是原点 B.当a<0,在x=0时,y取得最大值 C.a越大,图像开口越小;a越小,图像开口越大 D.当a>0,在x>0时,y随x的增大而增大
3.请在同一坐标系中画出函数y1=x和y2=-x²的图 像,结合图像,指出当x取何值时,y1>y2;当x 取何值时,y1<y2。 列表如下:
a值越大,
开口越大, a值越小, 开口越小
y轴
(0,0)
1.二次函数y=ax2的图像是一条向上或向下的 抛物线。
2.二次函数y=小,开口越大。 |a|值相同,开口形状相同。
随堂演练
1.若抛物线y=ax²与y=4x²的形状及开口方向 均相同,则a= 4
不同点?
(2)当a<0时,二次函数
y=ax² 的图象有什么特点?
二次函数y=ax²的图像及其性质
抛物线 a的 开口方向 符号 与大小
开口向上 a值越大, a>0 开口越小, a值越小, 开口越大 开口向上 a<0 y轴 (0,0)
对称轴
顶点 最大(小) 增减性 坐标 值
在对称轴左侧, 当X=0时 y随x增大而减 小;在对称轴 y有最小 右侧, 值, y随x 增大而 y最小=0 增大 在对称轴左侧, 当X=0时 y随x增大而增 大;在对称轴 y有最大 右侧, 值, y随x 增大而 y最大=0 减小
(3)根据图像指出,当x>0时,若x增大,y怎么变化? 当x<0时,若x增大,y怎样变化?
(4)当x取何值时,y有最大(或最小)值,其值为多少?
(1)求这个二次函数的解析式 解:设这个二次函数解析式为 y =ax2,将(-1,)代入得y=
1 4
22.1.2二次函数y=ax2图像与性质
y=ax2+c (a≠0) 开口方向 顶点坐标 对称轴 增 减 性 极值
a>0 向上 (0 ,c) y轴
当x<0时, y随着x的增大而减小。 当x>0时, y随着x的增大而增大。
a<0 向下 (0 ,c) y轴
当x<0时, y随着x的增大而增大。 当x>0时, y随着x的增大而减小。
x=0时,y最小=c
x y = x2 · · · · · · -3 -2 -1 0 1 2 3 · · · · · ·
9
4
1
0
1
9
4
9
2. 根据表中x,y的数值在 坐标平面中描点(x,y) 3.连线 如图,再用平 滑曲线顺次连接各点, -3 2 就得到y = x 的图象.
y = x2
6
3 3
二次函数 y = x2的图象是一条曲线,它的形状类似 于投篮球时球在空中所经过的路线,只是这条曲线 开口向上,这条曲线叫做抛物线 y = x2 , 二次函数的图象都是抛物线, 它们的开口或者向 上或者向下. 一般地,二次函数 y = ax2 + bx + c (a≠0)的图象叫做抛物线y = ax2 + bx + c y = x2
m2+m
解②得:m1=-2, m2=1 由①得:m>-1 ∴ m=1 此时,二次函数为: y=2x2,
x ….. y=x2 …… y=x2+1 ……
-2 4
-1 1
0 0
y
8
1 1
2 4
…… ……
5
2
0
2
5
y=x2+1
函数y=x2+1的图象与y=x2的 图象的位置有什么关系? 函数y=x2+1的图 象与y=x2的图象 的形状相同吗?
人教版数学九年级上册22.1.2二次函数y=ax2的图像与性质 课件(21张PPT)
二二次次函函数数y的=图x2象的都图是象抛是物一线条,曲线它,们它的的开形口状或类者似向于上投或篮者球向 时下球.在一空般中地所,经二过次的函路数线y,=只ax是2 +这b条x +曲c线(开a≠口0)向的上图,象这叫条做曲抛 线物叫线做y =抛a物x2线+ byx=+xc2 ,
9 6 3
-3
3
实y轴际是上抛,物每线条y抛= 物x 2线的都对有称对轴称,轴抛,物抛线物y 线= x与2 对与称它轴的的对交称点轴 叫的做交抛点物(线0,的0顶)点叫.做顶抛点物是线抛y =物x线2 的的顶最点低,点它或是最抛高物点线.y = x 2 的最低点.
交点坐标
y
求抛物线与直线的 交点坐标的方法: 两解析式联列方程
组
y=4x2 y=3x+1
O
x
1.若抛物线y=ax²与y=4x²的形状及开口方向 均相同,则a= 4
2.下列关于二次函数y=ax²(a≠0)的说法中,错误 的是( C ) A.它的图像的顶点是原点 B.当a<0,在x=0时,y取得最大值
(2)说出函数图象的顶点坐标、对称轴、
开口方向和图象的位置;
在x轴的下方
解: (1)依题意,得 (2)2 a 3
解得
a=
3 4
∴ 该函数的解析式为 y
3 4
x2
例3、y=kx2与y=kx-2(k≠ 0)在同一坐标系中, 可能是( B )
A
B
C
D
例4、求抛物线y=4x2与直线y=3x+1的
描点法
列表、描点、连线
以0为中心 选取7个x值
画最简单的二次函数 y = x2 的图象列表
22.1.2 二次函数y=ax2的图象和性质
x
… -2 -1
0
1
y=2x2 …
y=2x2
…
(2)描点并连线:
2
…
…
…
【思路点拨】 首先列表求出函数图象上点的坐标,进而描点连线画出图象即可.注 意连线时一定要用平滑的实线连接.
解:(1)8 2 0 2 8 -8 -2 0 -2 -8 (2)
类型二:二次函数y=ax2图象的性质的应用
例2 已知函数y=ax2的图象过点(1, 1 ).
2
增大而减小.
(2)在其图象上有两点(x1,y1),(x2,y2),且x1>x2>0,比较y1,y2的大小.
【思路点拨】 (2)二次函数y=ax2的对称轴为y轴,由(1)知a<0,所以在其对称轴 的右侧y随x的增大而减小,又x1>x2>0,故y1<y2. 解:(2)因为x1>x2>0, 所以y1<y2.
(1)简述函数y=ax2的性质;
2
【思路点拨】 (1)把点(1, 1 )代入函数y=ax2的解析式求得a的值,即可判定函
数的性质.
2
解:由题意得 a=- 1 ,所以 y=- 1 x2.
2
2
(1)函数 y=- 1 x2,开口向下,在 y 轴左侧 y 随 x 的增大而增大,在 y 轴右侧 y 随 x 的
22.1.2 二次函数y=ax2的图象和性质
1.二次函数y=ax2的图象
二次函数y=ax2的图象是 抛物线 ,对称轴与抛物线的交点叫做 顶点 ,顶点是
(0,0) ,当a>0时,抛物线的开口 向上 ,顶点是抛物线的最 低 点;当a<0时, 抛物线的开口 向下 ,顶点是抛物线的最 高 点.对于y=ax2,|a|越 大 ,抛物 线的开口越小.
数学人教版九年级上册22.1.2二次函数y=ax2的图象与性质
y=-x2
1. 二次函数的图像都是抛物线.
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点. (2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点; 当a<0时,抛物线的开口向下,顶点是 抛物线的最高点; |a|越大,抛物线的开口越小 ;
y
a>0
o
x
a<0
跑的越快,遇到风的阻力越大。阻 力与成就相伴随。
没有斗狼的胆量,就不要牧羊。
望远镜---可以望见远的目标,却不 能代替你走半步。
只有脚踏实地的人,才能够说:路 ,就在我的脚下。
站在巨人的肩上是为了超过巨人。
成绩和劳动是成正比例的,有一分 劳动就有一分成绩。
你既然认准一条道路,何必去打听 要走多久。
抛物线 y= -x2在x轴下方(除顶点外),顶点 是它的最高点,开口向下,并且向下无限伸展, 当x=0时,函数y的值最大,最大值是0.
y
y x
2
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
例1.画出函数y=x2、y=2x2、y= 2 x2的图象:
1
探究
顶点坐标
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
增 减 增增 大 小 大大
(0,0) 最高点
y轴
向下
增 增 增减 大 大 大小
老师寄语:
• 老师能给你们的唯有这无形的知识,但老 师希望你们用这些无形的知识创造出有形 的世界,实现你们的中国梦,老师就是你 们的筑梦人!
一帆风顺,并不等于行驶的是一条 平坦的航线。
y=2x2
பைடு நூலகம்
九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质
4.函数y=ax2与y=-ax+b图象可能是(
)
B
第8页
5.下列函数中,当 x>0 时,y 随着 x 的增大而增大的是( D )
A.y=-x+1
B.y=-x-1
C.y=-x2
D.y=x2
*6.已知 m 为实数,下列各点中:A(m,-am2),B(m,-m),C(m2,
-m),D(-m,am2),抛物线 y=-ax2 一定不经过的点是____D_______.
22.1 二次函数图象和性质
22.1.2 二次函数y=ax2图象和性质
第1页
1.二次函数y=ax2图象 二次函数y=ax2图象是一条抛物线,它含有以下特点: (1)顶点在__原__点___、对称轴为__y_轴____; (2)当a>0时,抛物线开口____向__上_,a越大,抛物线开口越______小; 当a<0时,抛物线开口____向__下_,a越小,抛物线开口越_______小_. 2.二次函数y=ax2性质 (1)假如a>0,则: 当x<0时,y随x增大而_____减__小_; 当x>0时,y随x增大而_____增__大_; 当x=0时,y取最___小___值0,即y最小=__0____. (2)假如a<0,则: 当x<0时,y随x增大而_____增__大_; 当x>0时,y随x增大而_____减__小_; 当x=0时,y取最___大___值0,即y最大=__0__.
*7.如图,正方形的边长为 4,以正方形中心为原点建立平面直角 坐标系,作出函数 y=13x2 与 y=-13x2 的图象,则阴影部分的面积是
__8____.
*8.已知 a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数 y
=x2 的图象上,则 y1,y2,y3 的大小关系是_y_1_1>__y_2_>__y__3__.
22.1.2 二次函数y=ax2的图象和性质
(1) 列表 (2) 描点 (3) 连线
x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …
y=2x2 … 8 4.5 2 0.5 0 0.5 2 4.5 8 …
y = 2x2 y
10
9 8 7 6 5 4
3 2 1
y = x2 y = ▁21 x2
-5 -4 -3 -2 -1 0 1 2 3 4 5 x
二次函数 y = x2的图 象是轴对称图形, 对称轴是 y 轴
10 y
9 8
7 6 5 4 3 2 1
y = x2
-5 -4 -3 -2 -1 0 1 2 3 4 5 x
从左到右:上升 y随x:增大而增大
抛物线 y = x2与它的对称轴的 交点(0,0)叫做抛物线 y = x2的 顶点 它是抛物线 y = x2的最低点.
1
-3 -2 -1 0 1 2 3 x
(3) 连线
-1
y 1 x2
-2
2
-3
y x2
-4
-5 y 2 x2
22.1.2 二次函数 y=ax²的图象和性质
函数 y=- 1 x2(橘黄线), y=-2x2(绿线)的图象与
2
函数 y=-x2(蓝线)的图象相比,有什么共同点和不同点?
y
相同点:开口:向下, 顶点:原点(0,0)——最高点
实际上, 二次函数的图象都是抛物线,
一般地,二次函数 y = ax2 + bx + c(a≠0) 的图象叫做抛物线 y = ax2 + bx + c
y 10
9
8 7
y = x2
6
5
4
3
2
1
22.1.2《二次函数y=ax2的图象和性质》ppt课件
(1) y x
2
1 2 (2) y x (3) y 2 x 2 2
y 当a<0时,抛物线 y=ax2 的开口向下, -4 -3 -2 -1 0 1 2 3 4 -1 对称轴是y轴,顶点 -2 是原点,顶点是抛 -3 -4 物线的最低高点,a -5 越小,开口越小 -6 2 1 2 y x -7 y x 2 -8 2 y 2 x |a|越大,抛物线开口越小 -9
2
试一试:
1、函数y=2x2的图象的开口 ,对称轴 是 ,顶点是 ;在对称轴的左 侧,y随x的增大而 y随x的增大而 ; ,在对称轴的右侧,
2、函数y=-3x2的图象的开口 ,对称轴 是 ,顶点是 ;在对称轴的左 侧,y随x的增大而 y随x的增大而 ; ,在对称轴的右侧,
3、y=kx2与y=kx-2(k≠ 0)在同一坐标系中,可能是( B )
y ax
2
二次函数的定义: 2 一般地,形如 y ax bx c (a、 一般地,形如 b、c是常数,a≠0)的函数叫做二次 函数,其中a为二次项系数,b为一次 项系数,c为常数项。
导入
1.你知道下列函数的图象分别是什么吗?
(1) y 2 x (2) y -2 x 3
一条直线
y1、 y2、y3的大小关系是 。
x
结论:二次函数 y=ax2 的图象与性质
1. 对称轴都是y轴; 2. 当a>0时,开口向上; 当a<0时,开口向下. 3.图象的顶点都在原点. 当a>0时,顶点是图象的最低点, 当a<0时,顶点是图象的最高点. |a|越大,抛物线开口越小(越陡)
二次函数y=ax2的性质
y=ax2 图象 开口 方向 开口向上 开口向下 a>0 a<0
22.1 二次函数的图象和性质 公开课课件.ppt 22.1.2 二次函数y=ax2的图象和性质 公开课课件
22.1.2 二次函数y=ax2的图象和性质
1 . 由 解 析 式 画 函 数 图 象 的 步 骤 是 __列__表___ 、 __描__点____ 、 ___连__线_____.
2.一次函数y=kx+b(k≠0)的图象是__一__条__直__线___. 3.二次函数y=ax2(a≠0)的图象是一条__抛__物__线____,其对称轴为 ____y____轴,顶点坐标为___(_0_,__0_) ___. 4.抛物线y=ax2与y=-ax2关于_____x__轴对称.抛物线y=ax2, 当a>0时,开口向________上,顶点是它的最________低点;当a<0时, 开口向________,下顶点是它的最________点高,随着|a|的增大,开口 越来越________. 小
增大而减小;当x=0时,函数y有___最__大____(填“最大”或“最小”)
值是___0_____.
8.如图是一个二次函数的图象,则它的解析式为__y_=__12_x_2____,当x =___0_____时,函数图象的最低点为__(_0_,__0_)__.
9.已知二次函数y=mxm2-2. (1)求m的值; (2)当m为何值时,二次函数有最小值?求出这个最小值,并指出x 取何值时,y随x的增大而减小; (3)当m为何值时,二次函数的图象有最高点?求出这个最高点,并 指出x取何值时,y随x的增大而增大. 解:(1)m=±2 (2)m=2,y最小=0;x<0 (3)m=-2,最高点(0,0),x<0
10.二次函数y=
1 5
x2和y=5x2,以下说法:①它们的图象都是开口向
上;②它们的对称轴都是y轴,顶点坐标都是原点(0,0);③当x>0
时,它们的函数值y都是随着x的增大而增大;④它们开口的大小是一
22.1.2二次函数y=ax2的图象和性质
反三二、举一反三(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象.提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
由图象可得二次函数y=x2的性质:1.二次函数y=x2是一条曲线,把这条曲线叫做______________.2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.3.自变量x的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.6.抛物线y=x2有____________点(填“最高”或“最低”).三、趁1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:函数y=ax2的图象是一条________,它关于______对称,它的热打铁顶点坐标是______。
如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?让学生观察y=x2、y=2x2的图象,填空;当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
22.1.2 二次函数y=ax2的图象和性质
3•. 单连击线此:处如编图辑,母再版用文平本滑样曲式线顺次连接各点,就得
到y =• x第2 二的级图象.
• 第三级
y
• 第四级 • 第五级
9
6
3
-4 -2 o 2 4 x
2019/9/21
5
单当击取更此多个处点编时,母函版数y标=x2的题图样象如式下:
y
• 单击此处编辑母版文本9样式
• 第二级
• 第三级
11
二单二击次函此数y处=a编x2的母性质版标题样式
问•题单1击:此观处察编图辑形母,版y随文x本的样变式化如何变化?
• 第二级
• 第三级
(-2,4)
• 第四级 (2,4)
• 第五级
(-1,1)
(1,1)
y x2
y ax2
2019/9/21
12
单击此处编母版标题样式知源自要点• 单击此处编辑母版文本样式 • 第对•二于第级三抛级物线 y = ax 2 (a>0)
的特点.(难点• )第五级 3.掌握形如y=ax²的二次函数图象的性质,并会应用.
(难点)
2019/9/21
2
导入新课
单击此处编母版标题样式
情境引入
• 单击此处编辑母版文本样式
• 第二级
• 第三级
• 第四级 • 第五级
2019/9/21
3
讲授新课
一单二击次函此数处y=a编x2的母图象版标题样式
典例精析
边空白部分面积,
∴S阴影部分面积之和=2×8=16.
2019/9/21
28
单击此处编母版标题样式
方法总结
• 单击二此次处函编数辑y=母a版x2的文图本象样关式于y轴对称,因此左 右两• 部第二分级折叠可以重合,在二次函数比较大小中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方向
顶点
对称轴
有最高或最低点
最值
a>0
当x=____时,y有最_______值,是______.
a<0
当x=____时,y有最_______值,是______.
2.抛物线y=x2与y=-x2关于________对称,因此,抛物线y=ax2与y=-ax2关于_______对称,开口大小_______________.
5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2
的_________.因此,抛物线与对称轴的交点叫做抛物线的_________.
6.抛物线y=x2有____________点(填“最高”或“最低”)
二、请认真观察和思考课本第5页例1和探究,完成下表:
1.抛物线y=ax2的性质
图象(草图)
3.当a>0时,a越大,抛物线的开口越___________;
当a<0时,|a|越大,抛物线的开口越_________;
因此,|a|越大,抛物线的开口越________,反之,|a|越小,抛物线的开口越________.
练习展演(20′)
练一练:分别写出函数y= x2与y=- x2的图象的开口方向、对称轴和顶点坐标。
通边中学九年级数学导学案
班级
执教日期
执教者
审批者
学生
学案编号
11
课题
§22.1.2二次函数y=ax2的图象与性质
第1课时
课型
新授课
预习准备
1.一般地,形如____________________________的函数,叫做二次函数。其中x是________,a是__________,b是___________,c是_____________.
2.若函数y=(a-1)x2+2x+a2-1是二次函数,则()A.a=1B.a=±1C.a≠1D.a≠-1
3.下列函数中,是二次函数的是()A.y=x2-1 B.y=x-1C.y= D.y=
学习目标
熟练掌握二次函数y=ax2的图和性质
难点
掌握二次函数y=ax2的性质,并会灵活应用
1.二次函数y=x2是一条曲线,把这条曲线叫做______________.
2.二次函数y=x2中,二次项系数a=_______,抛物线y=x2的图象
开口__________.
3.自变量x的取值范围是____________.
4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描
出的各对应点关于________对称,从而图象关于___________对称.
自主学习
(15′)
认真预习课本P4—P6页内容,完成以下问题:
一、画二次函数y=x2的图象.
【提示:画图象的一般步骤:①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】
列表:
x
…
-3
-2
-1
0
1
2
3
…
y=x2
…
…
由图象可得二次函数y=x2的性质:
x
…
-3
-2
-1
0
1
2
3
…
y= x2
…
…
y=- x2
…
…