振动和波习题课2014
振动与波习题课
b
c
O
a
.
b
c X t
a 0
b
2
3 c 2
10.如图(a)为t=0时的波形曲线,经0.5s后波形变为(b) 求(1)波动方程 Y (a) (b) u
(2)P点的振动方程
解:O处的振动方程为 0.1
yo A cos(t )
由图得A=0.1 =/2 =4m
( 2k 1) 2 2 1 1 2 ( 2k 1) 4 r1 [ ] 2 ( 2k 1) 2 ( 2k 1)
Y
u=0.08m/s P . 0.02
X yo A cos(t ) -0.04 0.04 P点的振动方程 2 1 T u 0.08 令x=0.02 u 2 2 3 4 y P 0.04 cos(4t ) T 2 x y 0.04 cos[4 ( t ) ] 0.08 2
A A A 2 A1 A2 cos( 2 1 ) A1 sin 1 A2 sin 2 tg A1 cos 1 A2 cos 2 2 1 B.同方向不同频率:拍 拍频为:
A. 同方向同频率:
2 1 2 2
C.两个相互垂直同频率的振动:椭圆 D.两个相互垂直不同频率的振动:李萨如图 5.平面简谐波波动方程:
u 0.84m / s 取 /3
故得波动方程为
17 / 3
O a b
u
X
x y 0.1cos[7 ( t ) ]( m ) 0.84 3
13.题中图a表示一水平轻绳,左端D为振动器,右端 固定于B点。t0时刻振动器激起的简谐波传到O点。其 波形如图b所示。已知OB=2.4m,u=0.8m/s. 求:(1) 以为计时零点,写出O点的谐振动方程;(2)取O 点 为原点,写出向右传播的波动方程;(3)若B 处有 半波损失,写出反射波的波动方程(不计能量损失)。 2 D O 解:(1)由 B u 2 2 y(cm) 得 u 80 4 40 4
振动与波习题课及课后作业解答
π
2π
λ
2OB π = 5π
2π
= 入 反 = π
λ
x (5π +
2π
λ
x) = 6π
4π
2kπ , 波腹 = (2k + 1)π , 波节
0≤x≤1.25λ ≤ ≤ λ
λ
x
3. 空气中声速为 空气中声速为340m/s, 一列车以 一列车以72km/h的速度行驶 车上旅客 的速度行驶, 的速度行驶 听到汽笛声频率为360Hz, 则目送此火车离去的站台上的旅客听到 听到汽笛声频率为 此汽笛声的频率为( 此汽笛声的频率为 B) (A) 360Hz (B) 340Hz (C) 382.5Hz (D) 405Hz 解:
t = ( / 2π )T = T / 12 6
A/2 -π/3
π
ω
x
A
2. 如图为用余弦函数表示的一质点作谐振动曲线 振动圆频率 如图为用余弦函数表示的一质点作谐振动曲线, ,从初始状态到达状态 所需时间为 2s 从初始状态到达状态a所需时间为 . 为 7π/6 π 从初始状态到达状态 分析: 分析:本题的关键是确定各时刻 X(m) 6 的位相, 的位相,在振动曲线上由位移和 3 速度方向(斜率的正负) 速度方向(斜率的正负)定 0 t=0时: -3 X0=A/2,v0<0 = π/3 t=1时: X=0,v>0 ωt+= 3π/2
u vs
s
u = 334m s 1 (3)
u v0 ( 4) λ ′ = ν′ 334 65 = = 0.190m 1418
ω
t = 0, v0 = ωA sin 0 = 10cm / s
3 ∴0 = π 2
振动和波习题课
振动和波习题课壹内容提要一. 振动1.简谐振动的定义:恢复力F=-kx微分方程d2x/d t2+ω2x=0运动方程x=A cos(ωt+ϕ0)弹簧振子ω=(k/m)1/2,单摆ω=(g/l)1/2,复摆ω=(mgh/J)1/2;2.描述谐振动的物理量:(1)固有量:固有频率ω,周期T,频率ν其关系为ω=2π/T=2πνν=1/T(2)非固有量,振幅A A=(x02+v02/ω2)1/2位相ϕϕ=ωt+ϕ0初位相ϕ0tanϕ0=-v0/(ω x0)(再结合另一三角函数定出ϕ0);3.旋转矢量法(略);4.谐振动能量:E k=E sin2(ωt+ϕ0)E p=E cos2(ωt+ϕ0)E=E k+ E p5.谐振动的合成:(1)同方向同频率两谐振动的合成A=[A12+A22+2A1A2cos(ϕ20-ϕ10)]1/2tgϕ0=(A1sinϕ10+A2sinϕ20)/(A1cosϕ10+A2cosϕ20) (再结合另一三角函数定出ϕ0)拍∆ω<<ω1拍频∆ν=|ν2-ν1| (2)相互垂直振动的合成ω1与ω2成简单整数比时成李萨如图形ω1=ω2时为椭圆方程:x2/A12+y2/A22- 2(x/A1)(y/A2)cos(ϕ20-ϕ10)=sin2(ϕ20-ϕ10) 二. 波动1.机械波的产生必须有波源及媒质,机械波的传播实质是相位(或振动状态)的传播;2.描述波的物理量:波长λ,频率ν,周期T,波速u其关系为T=1/ν=λ/u u=λ/T=λν3.平面简谐波的波动方程y=A cos(ωt-x/u+ϕ0)=A cos[2π(t/T-x/λ)+ϕ0]=A cos[(2π/λ)(x-ut)-ϕ0];4.平均能量密度w=ρA2ω2/2,能流密度(波的强度) I=w u=ρA2ω2u/25.惠更斯原理(略);6.波的叠加原理:独立性,叠加性;7.波的干涉(1)相干条件:频率相同,振动方向相同,位相差恒定。
2014教材课后习题答案第08-11章
P184 第八章3. 一简谐波,振动周期21=T s ,波长λ = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求: (1) 此波的表达式; (2) t 1 = T /4时刻,x 1 = λ /4处质点的位移; (3) t 2 = T /2时刻,x 1 = λ /4处质点的振动速度.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2)t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4cos 1.0=-π=(3) 振速 )20/(4sin 4.0x t ty-ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s4. 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π-π-=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式. 解:反射波在x 点引起的振动相位为π+π--+π-=+21)55(4x t t φωπ-π+π+=10214x t反射波表达式为)10214cos(01.0π-π+π+=x t y (SI) 或 )214cos(01.0π+π+=x t y (SI)5. 已知一平面简谐波的表达式为 )24(cos x t A y +π= (SI).(1) 求该波的波长λ ,频率ν 和波速u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3) 求t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻t . 解:这是一个向x 轴负方向传播的波.(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 波速 u = νλ = 2 m/s(2) 波峰的位置,即y = A 的位置. 由 1)24(cos =+πx t有 π=+πk x t 2)24( ( k = 0,±1,±2,…)解上式,有 t k x 2-=.当 t = 4.2 s 时, )4.8(-=k x m .所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8,可得 x = -0.4 的波峰离坐标原点最近.(3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为∆t ,则 ∆t = | ∆x | /u = | ∆x | / (ν λ ) = 0.2 s∴ 该波峰经过原点的时刻 t = 4 s6. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.解:设x = 0处质点振动的表达式为 )cos(0φω+=t A y , 已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π-=21φ ∴ )2cos(0φν+π=t A y )21100cos(1022π-π⨯=-t (SI) 由波的传播概念,可得该平面简谐波的表达式为)/22cos(0u x t A y νφνπ-+π=)2121100cos(1022x t π-π-π⨯=- (SI) x = 4 m 处的质点在t 时刻的位移)21100cos(1022π-π⨯=-t y (SI)该质点在t = 2 s 时的振动速度为 )21200sin(1001022π-π⨯⨯-=-πv= 6.28 m/s7. 沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分 T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ ∴ )2121cos(5.0π+π=t y (SI)x (m)y (m)O u 0.512t = 2 sx (m)y (m)0u0.512t = 0-18. 如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求(1) 该波的表达式; (2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. 解:(1) 由P 点的运动方向,可判定该波向左传播.原点O 处质点,t = 0 时φcos 2/2A A =, 0sin 0<-=φωA v所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI)由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2cos[π++π=x t A y (SI) (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 振动速度表达式是 )45500cos(500π+ππ-=t A v (SI)9. 如图所示,S 1,S 2为两平面简谐波相干波源.S 2的相位比S 1的相位超前π/4 ,波长λ = 8.00 m ,r 1 = 12.0 m ,r 2 = 14.0 m ,S 1在P 点引起的振动振幅为0.30 m ,S 2在P 点引起的振动振幅为0.20 m ,求P 点的合振幅.解:=-π--=∆)(21212r r λφφφ422412/r r π-=π+π-πλλ 464.0)cos 2(2/1212221=++=∆φA A A A A m10. 图中A 、B 是两个相干的点波源,它们的振动相位差为π(反相).A 、B 相距 30 cm ,观察点P 和B 点相距 40 cm ,且AB PB ⊥.若发自A 、B 的两波在P 点处最大限度地互相削弱,求波长最长能是多少.解:在P 最大限度地减弱,即二振动反相.现二波源是反相的相干波源,故要 求因传播路径不同而引起的相位差等于 ± 2k π(k = 1,2,…). 由图 =AP 50 cm . ∴ 2π (50-40) /λ = 2k π,∴ λ = 10/k cm ,当k = 1时,λmax = 10 cm11. 如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为)cos(φω+=t A y P ,求(1) O 处质点的振动方程; (2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置.P S S解:(1) O 处质点振动方程 ])(cos[0φω++=u Lt A y (2) 波动表达式 ])(cos[φω+--=uLx t A y(3) ωuk L x L x π±=±=2 (k = 0,1,2,3,…)12.如图为一平面简谐波在t = 0 时刻的波形图,已知波速u = 20 m/s .试画出P 处质点与Q振动方程.解:(1)波的周期T = λ / u =( 40/20) s= 2 s . P 处Q 处质点振动周期与波的周期相等,故P 处质点的振动曲线如图(a) 振动方程为:)21cos(20.0π-π=t y P (SI) 2分(2) Q 处质点的振动曲线如图(b),振动 2分 方程为 )cos(20.0π+π=t y Q (SI) 或)cos(20.0π-π=t y Q (SI)13.两波在一很长的弦线上传播,其表达式分别为:)244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=- (SI)求: (1) 两波的频率、波长、波速; (2) 两波叠加后的节点位置; (3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得:ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …14. 一列横波在绳索上传播,其表达式为 )]405.0(2cos[05.01xt y -π= (SI) (1) 现有另一列横波(振幅也是0.05 m )与上述已知横波在绳索上形成驻波.设这一-横波在x = 0处与已知横波同位相,写出该波的表达式.(2) 写出绳索上的驻波表达式;求出各波节的位置坐标;并写出离原点最近的四个波节的坐标数值.解:(1) 由形成驻波的条件.可知待求波的频率和波长均与已知波相同,传播方向为x 轴的负方向.又知 x = 0处待求波与已知波同相位,∴待求波的表达式为)]405.0(2cos[05.02xt y +π= (2) 驻波表达式 21y y y +=∴ )40cos()21cos(10.0t x y ππ= (SI)波节位置由下式求出. )12(212/+π=πk x k = 0,±1,±2,… ∴ x = 2k + 1 k = 0,±1,±2,…离原点最近的四个波节的坐标是x = 1 m 、-1 m 、3 m 、-3 m.P208 第九章3. 在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D =2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)解:(1) ∆x =20 D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足(n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ所以 (n -1)e = k λ k =(n -1) e / λ=6.96≈7零级明纹移到原第7级明纹处4. 在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm .测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离. 解:由题给数据可得相邻明条纹之间的距离为∆x =12.2 / (2×5)mm =1.22 mm 由公式 ∆x =D λ / d ,得d =D λ / ∆x =0.134 mm5. 在图示的双缝干涉实验中,若用薄玻璃片(折射率n 1=1.4)覆盖缝S 1,用同样厚度的玻璃片(但折射率n 2=1.7)覆盖缝S 2,将使原来未放玻璃时屏上的中央明条纹处O 变为第五级明纹.设单色光波长λ=480 nm(1nm=109m ),求玻璃片的厚度d (可认为光线垂直穿过玻璃片).解:原来, δ = r 2-r 1= 0覆盖玻璃后, δ=( r 2 + n 2d – d )-(r 1 + n 1d -d )=5λ ∴ (n 2-n 1)d =5λ125n n d -=λ= 8.0×10-6 m6. 在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求: (1) 零级明纹到屏幕中央O 点的距离. (2) 相邻明条纹间的距离.S 1 S 2 n 2 n 1 r 1r 2 d屏 dS 2 S 1 l 1 S 0 l 2D解:(1) 如图,设P 0为零级明纹中心则 D O P d r r /012≈- (l 2 +r 2) - (l 1 +r 1) = 0∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()d D d r r D O P /3/120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 明纹条件λδk ±= (k =1,2,....) ()d D k x k /3λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆7. 用波长为λ1的单色光垂直照射牛顿环装置时,测得中央暗斑外第1和第4暗环半径之差为l 1,而用未知单色光垂直照射时,测得第1和第4暗环半径之差为l 2,求未知单色光的波长λ2.解:由牛顿环暗环半径公式 λkR r k =,根据题意可得 11114λλλR R R l =-=22224λλλR R R l =-=212212//l l =λλ211222/l l λλ=8. 折射率为1.60的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600nm (1 nm =10-9 m)的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n =1.40的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小∆l =0.5 mm ,那么劈尖角θ 应是多少?解:空气劈形膜时,间距 θλθλ2sin 21≈=n l液体劈形膜时,间距 θλθλn l 2sin 22≈= ()()θλ2//1121n l l l -=-=∆∴ θ = λ ( 1 – 1 / n ) / ( 2∆l )=1.7×10-4 rad9. 用波长λ=500 nm (1 nm =10-9 m)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈形膜上.劈尖角θ=2×10-4 rad .如果劈形膜内充满折射率为n =1.40的液体.求从劈棱数起第五个明条纹在充入液体前后移动的距离. 解:设第五个明纹处膜厚为e ,则有2ne +λ / 2=5 λ 设该处至劈棱的距离为l ,则有近似关系e =l θ,由上两式得 2nl θ=9 λ / 2,l =9λ / 4n θ 充入液体前第五个明纹位置 l 1=9 λ / 4θ充入液体后第五个明纹位置 l 2=9 λ / 4n θ 充入液体前后第五个明纹移动的距离∆l =l 1 – l 2=9 λ ( 1 - 1 / n ) / 4θ =1.61 mmOP 0 r 1 r 2Dl 2s 1 s 2d l 1 0x10.11.波长为λ的单色光垂直照射到折射率为n 2的劈形膜上,如图所示,图中n 1<n 2<n 3,观察反射光形成的干涉条纹.(1) 从形膜顶部O 开始向右数起,第五条暗纹中心所对应的薄膜厚度e 5是多少?(2) 相邻的二明纹所对应的薄膜厚度之差是多少? 解:∵ n 1<n 2<n 3, 二反射光之间没有附加相位差π,光程差为δ = 2n 2 e第五条暗纹中心对应的薄膜厚度为e 5,2n 2 e 5 = (2k - 1)λ / 2 k = 5()2254/94/152n n e λλ=-⨯= 明纹的条件是 2n 2 e k = k λ 相邻二明纹所对应的膜厚度之差∆e = e k+1-e k = λ / (2n 2)12. 在如图所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率n 1=1.50)之间的空气(n 2=1.00)改换成水(2n '=1.33),求第k 个暗环半径的相对改变量()k k k r r r /'-. 解:在空气中时第k 个暗环半径为λkR r k =, (n 2 = 1.00)充水后第k 个暗环半径为2/n kR r k '='λ , (2n ' = 1.33) 干涉环半径的相对变化量为()λλkR n kR r r r kk k 2/11'-='-n 2n 1n 3O λn 1 n 12/11n '-==13.3%13.P226 第10章3. 用波长λ=632.8 nm(1nm=10−9m)的平行光垂直照射单缝,缝宽a =0.15 mm ,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7 mm ,求此透镜的焦距.解:第二级与第三级暗纹之间的距离∆x = x 3 –x 2≈f λ / a . ∴ f ≈a ∆x / λ=400 mm4. 一束单色平行光垂直照射在一单缝上,若其第3级明条纹位置正好与2600nm λ=的单色平行光的第2级明条纹的位置重合.求前一种单色光的波长?解:单缝衍射明纹估算式:()sin 21(1,2,3,)b k k θ=±+=⋅⋅⋅根据题意,第二级和第三级明纹分别为22sin 2212b λθ=⨯+()33sin 2312b λθ=⨯+()且在同一位置处,则 23sin sin θθ= 解得: 325560042577nm λλ==⨯=5. 某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.解:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3λ此暗纹到中心的距离为 x 3 = f tg ϕ3因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f= 500 nm6. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=400 nm ,λ2=760 nm(1 nm=10-9 m).已知单缝宽度a =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) ()222231221sin λλϕ=+=k af x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= a f x /2322λ=则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm (2) 由光栅衍射主极大的公式 1111sin λλϕ==k d2221sin λλϕ==k d 且有f x /tg sin =≈ϕϕ所以d f x x x /12λ∆=-=∆=1.8 cm7. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b (2) 波长λ2解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+b acm 1036.330sin 341-⨯==+λb a (2) ()2430sin λ=+b a()4204/30sin 2=+=b a λnm8. 以波长400 nm ─760 nm (1 nm =10-9 m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围.解:令第三级光谱中λ=400 nm 的光与第二级光谱中波长为λ' 的光对应的衍射角都为θ, 则 d sin θ =3λ,d sin θ =2λ'λ'= (d sin θ / )2==λ23600nm∴第二级光谱被重叠的波长范围是 600 nm----760 nm9. 钠黄光中包含两个相近的波长λ1=589.0 nm 和λ2=589.6 nm .用平行的钠黄光垂直入射在每毫米有 600条缝的光栅上,会聚透镜的焦距f =1.00 m .求在屏幕上形成的第2级光谱中上述两波长λ1和λ2的光谱之间的间隔∆l .(1 nm =10-9 m)解:光栅常数 d = (1/600) mm = (106/600) nm =1667 nm据光栅公式,λ1 的第2级谱线 d sin θ1 =2λ1 sin θ1 =2λ1/d = 2×589/1667 = 0.70666θ1 = 44.96︒ λ2 的第2级谱线 d sin θ2 =λ2 sin θ2 =2λ2 /d = 2×589.6 /1667 = 0.70738θ2 = 45.02︒∆ lfLOλ1,λ2Gθ1θ2两谱线间隔 ∆ l = f (tg θ2 -tg θ1 ) =1.00×103 ( tg 45.02︒-tg 44.96︒) = 2.04 mm10. 波长600nm λ=的单色光垂直入射到一光栅上,第2、第3级明条纹分别出现在2sin 0.20θ=与3sin 0.30θ=处,且第4级缺级.求:⑴光栅常数;⑵光栅上狭缝的宽度;⑶在屏上实际呈现出的全部级数?解:根据光栅方程sin ,d k θλ=(1)则光栅的光栅常数 6322260010610sin 0.20d mmλθ--⨯⨯===⨯(2)由于第4级缺级,4db= 31.5104db mm -==⨯(3)03max 6sin 9061011060010d k λ--⨯⨯===⨯则出现第0,1,2,3,5,6,7,9k =±±±±±±±级条纹,共15条。
振动和波课后习题答案
− kxc − f = mxc
(1)
fR = (1 mR2 )θ = 1 mR2 xc
2
2R
(2)
由(2)式可得
f
=
1 2 mxc
代入(1)式得:
−
kxc
−
1 2
mxc
=
mxc
推出
3 2
mxc
+
kxc
=
0
k
m
题 6.9 图
ω = 2k 3m
6.10 如题 6.10 图所示,弹簧的倔强系数为 k,定滑轮的质量为 m’,半径为 R,转动惯量为 I,物体的质量为 m。轴处摩擦不计,弹簧和绳的质量也不计,绳与滑轮间无相对滑 动。(1)试求这一振动系统的振动频率,(2)如果在弹簧处于原长时由静止释放物体 m,m 向下具有最大速度时开始计时,并令 m 向下运动为 x 的正坐标,试写出 m 的振 动表达式。
2
2
(4) < Ek
>=< E p
>=
E 2
=
1 KA2 4
=
1 mω 2A2 4
=
4 ×10−6π 2 (J )
ห้องสมุดไป่ตู้
(5) t = 0.1s 时,ϕ = 8π + π = 25 π ; 33
t = 10s 时,ϕ = 80π + π = 241π 。 33
6.14 在阻尼振动中,量τ = 1 叫做弛豫时间。(1)证明 τ 的量纲是时间;(2)经过时间 τ δ
∵ m1 x1 = m2 x2
x
=
m1 + m2 m2
x1
Δx1 + Δx2 = Δx
mm1
大学物理振动和波习题课
12、一质点作简谐振动,周期为 T。质点由平衡
位置向X轴正方向运动时,由平衡位置到二分之一 最大位移这段路程所需要的时间为( )。
A T 4 B T 1 C 2 T 6 D T 8
解:令简谐振动为 xA si n t
则当 xA2 时, si n t0.5
Acos2(t 1) T2
Acos2T(t 13)
.
7.图中所示为两个简谐振动的振动曲线.若以余弦函数表 示这两个振动的合成结果,则合振动的方程为
xx1x2 0.04cos(t)
x (m)
0.08
O
-0.04
1
x1 t (s)
2 x2
.
8 如果在固定端 x0处反射的反射波方程式是
y2 Aco2stx
设反射波无能量损失,则入射波的方程式是( ) 形成的驻波的表达式是( )。
y1OAcos2vt y2OA cos2vt
形成的驻入 波射 为波 :方 程 y1Acos 2 t x
y y 1 y 2 A c 2 ot s2 x A c 2 ot s2 x
得:
S
wu
1 A22u
2
3.惠更斯原理和波的叠加原理
惠更斯原理:
波阵面上每一点都可以看作是发出球面子波的 新波源,这些子波的包络面就是下一时刻的波阵面。
波的叠加原理:
当几列波在介质中某点相遇时,该质点的
振动位移等于各列波单独传播时在该点引起位 移的矢量和。
.
4.波的干涉: 相干条件: 振动方向相同
频率相同
1.机械波
产生的条件: 波源和弹性介质
描述波动的特征量: 波速、波长、波的周期、频率
2.平面简谐波
波函数 yAcos(tux)
振动与波习题课
L
y2
Acos(t
2
x 2)
t
2
L 2
t
2
L 2
2
4
L
y2
Acos(t
2
x 4
L)
2
能流:单位时间内通过任一截面的能量
P wus P wus 1 A2 2us
2
波的强度: I P 1 A2 2u
3、惠更斯原理
s 2
①同一波面上各点都是发射下一级子波的波源
②下一时刻原波的波面即是各子波波面的包迹
4、干涉 条件:同方向,同频率,位相差恒定或同相 干涉:两列波在空间相遇出现的某些点振动极大,
速度: v A sin t 0 vm A
求某一时刻的速度 v A2 x2
加速度:a A 2 cos t 0 am A 2
能量:
E
Ek
Ep
1 2
kA2
A 2E k
周期性,只有振 动周期的一半
3、迭加 同方向,同频率,合成后仍是谐振动
A A12 A22 2A1 A2 cos 20 10
某些点振动极小的现象。
公式:
20
10
2
r2
r1
2k k 0,1,2 A A1 A2 强
2k 1 k 0,1,2 A A1 A2 弱
若 10 20
k k 0,1,2 强
r2 r1 2k 1 k 0,1,2 弱
2
5、驻波——干涉的特例 条件:①干涉条件,②振幅相同, ③沿同一直线相向传播 性质:①分段振动,各点振幅不同,波形、能量不向 外传播,
知在 x 2处振动方程为 y Acos。t 求(1)该
平面简谐波的波函数;(2)若在波线上 x L
振动和波习题课
20000 5 2 S 1.6 10 J / m s 2 4 10000
10)入射波方程为y1=Acos2 (t/T+x/ ),在自由 端x=0处发生反射后形成驻波,设反射后波的强度 不变,则反射波方程为 ,在x=2/3处 质点合振动的振幅为 。
自由端:在反射点没有半波损失。
波动
1.理解机械波产生的条件;掌握描述平面简谐波 的各物理量及各量间的关系;掌握由已知质点 的简谐振动方程得出平面简谐波的波函数的方 法;能运用波形图线分析和解决问题。 2.理解波的能量传播特征及能流密度概念。 3.了解电磁波的性质。 4.理解惠更斯原理和波的叠加原理;掌握波的相 干条件。能运用相位差和波程差分析、确定相 干波叠加后振幅加强或减弱的条件。 5.理解驻波的概念及其形成条件,能确定波腹和 波节的位置。 6.能用多普勒频移公式计算。
振动练习
1)一弹簧振子作简谐振动,当其偏离平衡位置 的位移大小为振幅的1/4时,其动能为振动总能量的 [E ] (A)7/16
(B)9/16
(C)11/16
(D)13/16
(E)15/16
1 2 2 2 E k m A si n (t 0 ) 2 1 m 2 ( A2 x 2 ) 2
(D)1:1:2
1 1 1 弹簧的串并联: 串联时等效劲度系数 k k1 k 2
并联时等效劲度系数 k k1 k2
4)用余弦函数描述一简谐振动,速度V与时间t的 关系曲线如图所示,则振动初位相为[ A ] ( A) / 6 (B) /3 (C) /2 (D) 2/3 (E) 5/6
Байду номын сангаас振动
1.掌握描述简谐振动的各物理量,特别是相位, 及各物理量之间的关系。掌握位移-时间曲线, 掌握旋转矢量法。能根据给定的初始条件,写 出一维简谐振动的运动方程,并理解其物理意 义;能比较同频率的不同谐振动的相位差。 2.掌握简谐振动的动力学特征,能建立一维简谐 振动(弹簧振子、单摆、复摆等)的微分方程。 3.掌握同方向、同频率的两个简谐振动的合成规 律;了解拍和拍频;了解相互垂直、同频率的 两个简谐振动的合成情况。
2014教材课后习题答案第08-11章
P184 第八章3. 一简谐波,振动周期21=T s ,波长λ = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求: (1) 此波的表达式; (2) t 1 = T /4时刻,x 1 = λ /4处质点的位移; (3) t 2 = T /2时刻,x 1 = λ /4处质点的振动速度.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2)t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4cos 1.0=-π=(3) 振速 )20/(4sin 4.0x t ty-ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s4. 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π-π-=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式. 解:反射波在x 点引起的振动相位为π+π--+π-=+21)55(4x t t φωπ-π+π+=10214x t反射波表达式为)10214cos(01.0π-π+π+=x t y (SI) 或 )214cos(01.0π+π+=x t y (SI)5. 已知一平面简谐波的表达式为 )24(cos x t A y +π= (SI).(1) 求该波的波长λ ,频率ν 和波速u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3) 求t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻t . 解:这是一个向x 轴负方向传播的波.(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 波速 u = νλ = 2 m/s(2) 波峰的位置,即y = A 的位置. 由 1)24(cos =+πx t有 π=+πk x t 2)24( ( k = 0,±1,±2,…)解上式,有 t k x 2-=.当 t = 4.2 s 时, )4.8(-=k x m .所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8,可得 x = -0.4 的波峰离坐标原点最近.(3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为∆t ,则∆t = | ∆x | /u = | ∆x | / (ν λ ) = 0.2 s∴ 该波峰经过原点的时刻 t = 4 s6. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.解:设x = 0处质点振动的表达式为 )c o s (0φω+=t A y , 已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π-=21φ ∴ )2cos(0φν+π=t A y )21100cos(1022π-π⨯=-t (SI) 由波的传播概念,可得该平面简谐波的表达式为)/22c o s (0u x t A y νφνπ-+π=)2121100cos(1022x t π-π-π⨯=- (SI) x = 4 m 处的质点在t 时刻的位移)21100cos(1022π-π⨯=-t y (SI)该质点在t = 2 s 时的振动速度为 )21200sin(1001022π-π⨯⨯-=-πv= 6.28 m/s7. 沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分 T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ ∴ )2121cos(5.0π+π=t y (SI)x (m)y (m)0u0.512t = 0-18. 如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求(1) 该波的表达式;(2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. 解:(1) 由P 点的运动方向,可判定该波向左传播.原点O 处质点,t = 0 时φcos 2/2A A =, 0sin 0<-=φωA v所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI)由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2c o s [π++π=x t A y (SI) (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 振动速度表达式是 )45500cos(500π+ππ-=t A v (SI)9. 如图所示,S 1,S 2为两平面简谐波相干波源.S 2的相位比S 1的相位超前π/4 ,波长λ = 8.00 m ,r 1 = 12.0 m ,r 2 = 14.0 m ,S 1在P 点引起的振动振幅为0.30 m ,S 2在P 点引起的振动振幅为0.20 m ,求P 点的合振幅.解:=-π--=∆)(21212r r λφφφ422412/r r π-=π+π-πλλ 464.0)cos 2(2/1212221=++=∆φA A A A A m10. 图中A 、B 是两个相干的点波源,它们的振动相位差为π(反相).A 、B 相距 30 cm ,观察点P 和B 点相距 40 cm ,且AB PB ⊥.若发自A 、B 的两波在P 点处最大限度地互相削弱,求波长最长能是多少.解:在P 最大限度地减弱,即二振动反相.现二波源是反相的相干波源,故要求因传播路径不同而引起的相位差等于 ± 2k π(k = 1,2,…). 由图 =AP 50 cm . ∴ 2π (50-40) /λ = 2k π,∴ λ = 10/k cm ,当k = 1时,λmax = 10 cm11. 如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为)cos(φω+=t A y P ,求(1) O 处质点的振动方程; (2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置.P S S解:(1) O 处质点振动方程 ])(c o s [0φω++=u Lt A y (2) 波动表达式 ])(cos[φω+--=uLx t A y (3) ωuk L x L x π±=±=2 (k = 0,1,2,3,…)12.如图为一平面简谐波在t = 0 时刻的波形图,已知波速u = 20 m/s .试画出P 处质点与Q振动方程.解:(1)波的周期T = λ / u =( 40/20) s= 2 s . P 处Q 处质点振动周期与波的周期相等,故P 处质点的振动曲线如图(a) 振动方程为:)21cos(20.0π-π=t y P (SI) 2分(2) Q 处质点的振动曲线如图(b),振动 2分 方程为 )cos(20.0π+π=t y Q (SI) 或)cos(20.0π-π=t y Q (SI)13.两波在一很长的弦线上传播,其表达式分别为:)244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=- (SI)求: (1) 两波的频率、波长、波速; (2) 两波叠加后的节点位置; (3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得:ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …14. 一列横波在绳索上传播,其表达式为 )]405.0(2cos[05.01xt y -π= (SI) (1) 现有另一列横波(振幅也是0.05 m )与上述已知横波在绳索上形成驻波.设这一-横波在x = 0处与已知横波同位相,写出该波的表达式.(2) 写出绳索上的驻波表达式;求出各波节的位置坐标;并写出离原点最近的四个波节的坐标数值.解:(1) 由形成驻波的条件.可知待求波的频率和波长均与已知波相同,传播方向为x 轴的负方向.又知 x = 0处待求波与已知波同相位,∴待求波的表达式为)]405.0(2cos[05.02xt y +π= (2) 驻波表达式 21y y y +=∴ )40cos()21cos(10.0t x y ππ= (SI) 波节位置由下式求出. )12(212/+π=πk x k = 0,±1,±2,… ∴ x = 2k + 1 k = 0,±1,±2,…离原点最近的四个波节的坐标是x = 1 m 、-1 m 、3 m 、-3 m.P208 第九章3. 在双缝干涉实验中,波长λ=550 nm的单色平行光垂直入射到缝间距a=2×10-4m的双缝上,屏到双缝的距离D=2 m.求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e=6.6×10-5 m、折射率为n=1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)解:(1)∆x=20 Dλ/a=0.11 m(2) 覆盖云玻璃后,零级明纹应满足(n-1)e+r1=r2设不盖玻璃片时,此点为第k级明纹,则应有r2-r1=kλ所以(n-1)e = kλk=(n-1) e / λ=6.96≈7零级明纹移到原第7级明纹处4. 在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm.测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm,求双缝间的距离.解:由题给数据可得相邻明条纹之间的距离为∆x=12.2 / (2×5)mm=1.22 mm∆x=Dλ/ d,得d=Dλ/ ∆x=0.134 mm5. 在图示的双缝干涉实验中,若用薄玻璃片(折射率n1=1.4)覆盖缝S1,用同样厚度的玻璃片(但折射率n2=1.7)覆盖缝S2,将使原来未放玻璃时屏上的中央明条纹处O变为第五级明纹.设单色光波长λ=480 nm(1nm=109m),求玻璃片的厚度d(可认为光线垂直穿过玻璃片).解:原来,δ = r2-r1= 0覆盖玻璃后,δ=( r2 + n2d–d)-(r1 + n1d-d)=5λ∴(n2-n1)d=5λ125nnd-=λ= 8.0×10-6m6. 在双缝干涉实验中,单色光源S0到两缝S1和S2的距离分别为l1和l2,并且l1-l2=3λ,λ为入射光的波长,双缝之间的距离为d,双缝到屏幕的距离为D(D>>d),如图.求:(1) 零级明纹到屏幕中央O点的距离.(2) 相邻明条纹间的距离.屏解:(1) 如图,设P 0为零级明纹中心则 D O P d r r /012≈- (l 2 +r 2) - (l 1 +r 1) = 0∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()d D d r r D O P /3/120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 明纹条件 λδk ±= (k =1,2,....)()d D k x k /3λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆7. 用波长为λ1的单色光垂直照射牛顿环装置时,测得中央暗斑外第1和第4暗环半径之差为l 1,而用未知单色光垂直照射时,测得第1和第4暗环半径之差为l 2,求未知单色光的波长λ2.解:由牛顿环暗环半径公式 λkR r k =,根据题意可得 11114λλλR R R l =-=22224λλλR R R l =-=212212//l l =λλ211222/l l λλ=8. 折射率为1.60的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600nm (1 nm =10-9 m)的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n =1.40的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小∆l =0.5 mm ,那么劈尖角θ 应是多少?解:空气劈形膜时,间距 θλθλ2sin 21≈=n l液体劈形膜时,间距 θλθλn l 2sin 22≈=()()θλ2//1121n l l l -=-=∆∴ θ = λ ( 1 – 1 / n ) / ( 2∆l )=1.7×10-4 rad9. 用波长λ=500 nm (1 nm =10-9 m)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈形膜上.劈尖角θ=2×10-4 rad .如果劈形膜内充满折射率为n =1.40的液体.求从劈棱数起第五个明条纹在充入液体前后移动的距离. 解:设第五个明纹处膜厚为e ,则有2ne +λ / 2=5 λ 设该处至劈棱的距离为l ,则有近似关系e =l θ,由上两式得 2nl θ=9 λ / 2,l =9λ / 4n θ 充入液体前第五个明纹位置 l 1=9 λ / 4θ充入液体后第五个明纹位置 l 2=9 λ / 4n θ 充入液体前后第五个明纹移动的距离∆l =l 1 – l 2=9 λ ( 1 - 1 / n ) / 4θ =1.61 mm10.11.波长为λ的单色光垂直照射到折射率为n 2的劈形膜上,如图所示,图中n 1<n 2<n 3,观察反射光形成的干涉条纹.(1) 从形膜顶部O 开始向右数起,第五条暗纹中心所对应的薄膜厚度e 5是多少?(2) 相邻的二明纹所对应的薄膜厚度之差是多少? 解:∵ n 1<n 2<n 3, 二反射光之间没有附加相位差π,光程差为δ = 2n 2 e第五条暗纹中心对应的薄膜厚度为e 5,2n 2 e 5 = (2k - 1)λ / 2 k = 5()2254/94/152n n e λλ=-⨯= 明纹的条件是 2n 2 e k = k λ 相邻二明纹所对应的膜厚度之差∆e = e k+1-e k = λ / (2n 2)12. 在如图所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率n 1=1.50)之间的空气(n 2=1.00)改换成水(2n '=1.33),求第k 个暗环半径的相对改变量()k k k r r r /'-. 解:在空气中时第k 个暗环半径为 λkR r k = , (n 2 = 1.00)充水后第k 个暗环半径为2/n kR r k '='λ , (2n ' = 1.33) 干涉环半径的相对变化量为()λλkR n kR r r r k k k 2/11'-='-32/11n '-==13.3%13.P226 第10章3. 用波长λ=632.8 nm(1nm=10−9m)的平行光垂直照射单缝,缝宽a =0.15 mm ,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7 mm ,求此透镜的焦距.解:第二级与第三级暗纹之间的距离∆x = x 3 –x 2≈f λ / a . ∴ f ≈a ∆x / λ=400 mm4. 一束单色平行光垂直照射在一单缝上,若其第3级明条纹位置正好与2600nm λ=的单色平行光的第2级明条纹的位置重合.求前一种单色光的波长?解:单缝衍射明纹估算式:()sin 21(1,2,3,)b k k θ=±+=⋅⋅⋅根据题意,第二级和第三级明纹分别为22sin 2212b λθ=⨯+()33sin 2312b λθ=⨯+()且在同一位置处,则 23sin sin θθ= 解得: 325560042577nm λλ==⨯=5. 某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.解:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3λ此暗纹到中心的距离为 x 3 = f tg ϕ3因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f= 500 nm6. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=400 nm ,λ2=760 nm(1 nm=10-9 m).已知单缝宽度a =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) ()222231221sin λλϕ=+=k af x /tg 11=ϕ , f x /tg 22=ϕ由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= a f x /2322λ=则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm (2) 由光栅衍射主极大的公式 1111sin λλϕ==k d2221sin λλϕ==k d 且有f x /tg sin =≈ϕϕ所以d f x x x /12λ∆=-=∆=1.8 cm7. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b (2) 波长λ2解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm8. 以波长400 nm ─760 nm (1 nm =10-9 m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围.解:令第三级光谱中λ=400 nm 的光与第二级光谱中波长为λ' 的光对应的衍射角都为θ, 则 d sin θ =3λ,d sin θ =2λ'λ'= (d sin θ / )2==λ23600nm ∴第二级光谱被重叠的波长范围是 600 nm----760 nm9. 钠黄光中包含两个相近的波长λ1=589.0 nm 和λ2=589.6 nm .用平行的钠黄光垂直入射在每毫米有 600条缝的光栅上,会聚透镜的焦距f =1.00 m .求在屏幕上形成的第2级光谱中上述两波长λ1和λ2的光谱之间的间隔∆l .(1 nm =10-9 m)解:光栅常数 d = (1/600) mm = (106/600) nm =1667 nm据光栅公式,λ1 的第2级谱线 d sin θ1 =2λ1 sin θ1 =2λ1/d = 2×589/1667 = 0.70666θ1 = 44.96︒ λ2 的第2级谱线 d sin θ2 =λ2 sin θ2 =2λ2 /d = 2×589.6 /1667 = 0.70738θ2 = 45.02︒∆ lλ两谱线间隔 ∆ l = f (tg θ2 -tg θ1 ) =1.00×103 ( tg 45.02︒-tg 44.96︒) = 2.04 mm10. 波长600nm λ=的单色光垂直入射到一光栅上,第2、第3级明条纹分别出现在2sin 0.20θ=与3sin 0.30θ=处,且第4级缺级.求:⑴光栅常数;⑵光栅上狭缝的宽度;⑶在屏上实际呈现出的全部级数?解:根据光栅方程sin ,d k θλ=(1)则光栅的光栅常数 6322260010610s i n 0.20d m m λθ--⨯⨯===⨯(2)由于第4级缺级,4db= 31.5104db mm -==⨯(3)03max 6sin 9061011060010d k λ--⨯⨯===⨯则出现第0,1,2,3,5,6,7,9k =±±±±±±±级条纹,共15条。
振动和波习题课
习题:1. 下面关于声波的说法中正确的是 ( )A. 同一种声波在水中传播时的波长要比空气中传播时的波长要大B. 声波的传播速度与介质的种类及声源的振动频率有关C. 声波不论在什么介质中传播都是纵波D. 声波可以发生反射,也可以发生干涉和衍射2. 右图,两单摆的摆长相同,平衡时两球刚好接触,现将摆球A 向左拉开一小角度后释放,相碰后,两球分开各自做简谐振动。
以m A ,m B 分别代表A ,B 的质量,则: ( )A. 如果m A >m B ,下一次碰撞将发生在平衡位置的右侧。
B. 如果m A <m B ,下一次碰撞将发生在平衡位置的左侧。
C. 无论两球的质量之比是多少,下一次碰撞都不可能在平衡位置的右侧。
D. 无论两球的质量之比是多少,下一次碰撞都不可能在平衡位置的左侧。
3. 单摆的摆长为L ,最大摆角为θ(θ>5º),摆球的质量为m ,摆球由最大位移向平衡位置运动过程中:( ) A. 重力的冲量为gL m 2π B. 合力的冲量为gL m )cos 1(θπ-C. 合力的冲量为)cos 1(2θ-gL mD. 合力的冲量为gL m2π 4. 在波的传播方向上有M 、N 两个质点,相距3.0米。
(小于一个波长)右图为这两个质点的振动图象。
其中实线为M 质点的振动图象,虚线为N 质点的振动图象,则这列波的传播方向和传播速度可能为( )A. 向右传播,v =3米/秒B. 向右传播,v =1米/秒C. 向左传播,v =3米/秒D. 向左传播,v =1米/秒5. 水平弹簧振子的振动图线如图7所示,弹簧振子在1.0s 时的弹性势能是0.40J ,若振子的质量是0.20kg ,则振子在4.0s 时的速度大小是 ;方向是 ;加速度的大小是 。
6. 轻质线绳od的悬点与一单摆的悬点o´相靠近,且处于同一水平线上,如右图所示。
在悬线上穿着一个小球B,它可沿悬线滑动,将单摆的摆球A由偏角小于5º处释放,与此同时将B球由悬点o释放,当A第一次通过它的平衡位置时,正好与滑行中的B球相碰,求B球与悬线之间的摩擦力与B球所受重力之比。
高中物理练习振动与波(习题含答案)
1.下列关于简谐振动和简谐波的说法,正确的是A.媒质中质点振动的周期一定和相应的波的周期相等B.媒质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和媒质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的A.频率、振幅都不变B.频率、振幅都改变C.频率不变、振幅改变D.频率改变、振幅不变3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。
对这一现象,下列说法正确的是A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是A.两波源的振动频率一定相同B.虚线一定是波谷与波谷相遇处C.两列波的波长都为2mD.两列波的波长都为1m5.频率一定的声源在空气中向着静止的接收器匀速运动。
以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。
若u增大,则A.v增大,V增大 B. v增大,V不变C. v不变,V增大D. v减少,V不变6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是A.图示时刻质点b的加速度将减小B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4mC.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50HzD.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象7.一列沿x轴正方向传播的简谐横波,周期为0.50s。
振动与波习题课
6、简谐振动的合成: 简谐振动的合成: 同方向、同频率的简谐振动的合成: 同方向、同频率的简谐振动的合成:
v A2
ϕ2 ϕ ϕ1
v A
v A1
x1
x (t ) = x1 (t ) + x2 (t )
= A cos(ωt + ϕ )
o
合成结果仍为同频率的简谐运动
x2
x
x
A=
2 A12 + A2 + 2 A1 A2 cos( ϕ 2 − ϕ 1 )
2π (r2 − r1 ) = ±2kπ k = 0,1,2,3,.....
λ 相消干涉: 相消干涉:∆ϕ = (ϕ20 − ϕ10 ) − 2π (r2 − r1 ) = ±(2k + 1)π k = 0,1,2,3,..... λ
相位、相位差和初相位的求法: 相位、相位差和初相位的求法:
解析法和 常用方法为解析法 旋转矢量法。 常用方法为解析法和旋转矢量法。 1、由已知的初条件求初相位: 、由已知的初条件求初相位: 已知初位置的大小、正负以及初速度的正负。 ①已知初位置的大小、正负以及初速度的正负。 A [例1]已知某质点振动的初位置 y0 = 且v0 > 0 。 例 已知某质点振动的初位置 2 y = A cos( ω t + ϕ )
A1 sin ϕ 1 + A2 sin ϕ 2 ϕ = arctg A1 cos ϕ 1 + A2 cos ϕ 2
机械波: 二、机械波:
1、产生的条件:波源及弹性媒质。 产生的条件:波源及弹性媒质。 2、描述波的物理量: 、描述波的物理量: 波长: 波传播时, 在同一波线上两个相邻的相位差为2 波长 波传播时 在同一波线上两个相邻的相位差为 π 的 质元之间的距离 ( λ )。 周期:波前进一个波长的距离所需的时间( 周期:波前进一个波长的距离所需的时间(T )。 频率:单位时间内波动传播距离中所包含的完整波长的数目(ν)。 频率:单位时间内波动传播距离中所包含的完整波长的数目 。 波速: 波在介质中的传播速度为波速。( 。(u 波速 波在介质中的传播速度为波速。( ) 各物理量间的关系: 各物理量间的关系:
振动和波习题
k 0,1,2,3,...
k 0,1,2,3,...
干涉相长
A Amax A1 A2
I I max I1 I 2 2 I1 I 2
干涉相消
A Amin | A1 A2 |
I I min I1 I 2 2 I1 I 2
振动和波习题课
D ( 20 10) 2 r2 r1
当两相干波源为同相波源时 干涉相长
r2 r1 k ,
干涉相消
r2 r1 (2k 1) , 2
k 0,1,2,3,...
k 0,1,2,3,...
称为波程差
波的非相干叠加
A
vm A
v a
x
am A
2
x A cos(t 0 )
π v A cos( t 0 ) 2
a A 2 cos(t 0 )
振动和波习题课 6-4、已知一质点沿y轴作简谐振动.其振动方程为
y A cos(t 3 / 4)
振动和波习题课
6-7、一弹簧振子作简谐振动,总能量为E1,如果简谐振动振 幅增加为原来的两倍,重物的质量增为原来的四倍,则它的 总能量E2变为
(A) E1/4. (B) E1/2. (C) 2E1. (D) 4 E1 .
6-15、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m, 重物的质量m = 6 kg,重物静止在平衡位置上.设以一水平恒 力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向 左运动了0.05 m时撤去力F.当重物运动到左方最远位置时开始 计时,求物体的运动方程.
p
振动与波习题课
(九)波传播过程中,任一体积元的动能、 势能、总机 械能均随 t 作周期性变化,且变化是同相位的。平衡位置时, 体积元的动能、势能和总机械能均最大;位移最大时,三者 均为零。
平衡位置处 释放能量 最大位移处
Ek,Ep,E 吸收能量
0
(2)任一体积元都在不断地接收和放出能量,即不断地传 播能量。任一体积元的机械能不守恒。波动是能量传递的一 种方式。
二、基本内容
(一)简谐振动的特征
1.动力学特征 F kx
简谐振动动力学特征是物体受线性回复力作用。
简谐振动的动力学方程
d2 x 2x 0
dt2
简谐振动的特征式
2.运动学特征 x Acos(t 0 )
简谐振动的运动学方程(振动表达式或振动方程)
简谐振动的速度和加速度
v
0 )
2.时间推迟法 t x
u
y
A cos[ (t
x) u
0
]
3.波动表式的物理意义
(1)当x 一定时(x = x0)表示x0处质点的振动表式
(2)当t 一定时(t = t0)表示t0时
y/m
0.1
刻的波形曲线
o
0.05 3
(3)x、t 都变化反映了波形的传播
u 36 m/s
(2)周期 T 、频率ν和角频率ω
2π 2π
T
(3)相位 ( t 0 )和初相位 0
cos 0
x0 A
sin 0
v0
A
对给定的振动系统,频率由系统本身性质决定。
2.简谐振动的矢量图示法
M
旋转矢量表示法 3.振动曲线(x - t 图)
振动和波习题课(级)
能量极 小
X
能量极 大
能量极大
能量极 小
16、惠更斯原理:波阵面上的每一点,都是发射 子波的新波源,其后任意时刻,这些子波的包络 面就是新的波阵面。
17、相干条件:两波源应满足:振动方向相同,
频率相同,位相差恒定。
18、波的干涉 在P点引起的合振动的振幅为:
2 1 2 2
S2 S1
r2
p
2 ( 2 1 )+ ( r1 r2 ) A A A 2 A1 A2 cos S1 r1 若波在两种不同介质中传播
2
y a O b u x
[A]
11.一质点同时参与了三个简谐振动,它们的振动 1 5 方程分别为 x1 A cos( t π ) x2 A cos( t π)
x3 A cos( t π ) 其合成运动的运动方程为x = ___ 0 .
3
3
12. 一简谐波沿x轴负方向传播,波速为1 m/s,在 x轴上某质点的振动频率为1 Hz、振幅为0.01 m.t =0 时该质点恰好在正向最大位移处.若以该质点 的平衡位置为x轴的原点.求此一维简谐波的表达 式. 结 果 : y 0 . 01 cos 2π ( t x ) (SI) 13. 当机械波在媒质中传播时,一媒质质元的最大 变形量发生在 : (A) 媒质质元离开其平衡位置最大 位移处. (B) 媒质质元离开其平衡位置( 2 A / 2 )处 (A是振动振幅). (C) 媒质质元在其平衡位置处. 1 [C] (D) 媒质质元离开其平衡位置 2 A 处.
2
2
(C)
3 x2 A cos( t π ) 2
t π ) [B] (D)x2 A cos(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16、惠更斯原理:波阵面上的每一点,都是发射 子波的新波源,其后任意时刻,这些子波的包络 面就是新的波阵面。
17、相干条件:两波源应满足:振动方向相同,
频率相同,位相差恒定。
18、波的干涉
S2 S1
r2
p
在P点引起的合振动的振幅为:
2 A A12 A2 2 A1 A2 cos
[B]
(C)
(D) x2 A cos( t a π)
5. 一简谐振动曲线如图所示.则振动周期是
x (cm)
(A) 2.62 s. (B) 2.40 s. (C) 2.20 s. (D) 2.00 s. [B]
4 2 O
t (s) 1
6. 一系统作简谐振动,周期为T,以余弦函数
1 表达振动时,初相位为零。在 0 t T 范围 2
4 .两个质点各自作简谐振动,它们的振幅相同、 周期相同.第一个质点的振动方程为 x1 = Acos(t + a).当第一个质点从相对于其平衡 位置的正位移处回到平衡位置时,第二个质点正 在最大正位移处.则第二个质点的振动方程为
(A) (B)
1 x2 A cos( t a π ) 2 1 x2 A cos( t a π ) 2 3 x2 A cos( t a π ) 2
1 1 2 E Ek E p mvm kA2 2 2
动能和势能的变化频率是振动频率的两倍 8. 已知简谐振动的初始条件(x0 、v0),求A和
1 2 1 2 1 2 E mv0 kx0 kA 2 2 2
A
2 mV 2 0 x0 k
2 V 2 x0 0 2 ω0
求出A后,再作旋转矢量图,由x0 、v0画出旋转矢量的 位置而求出初位相或利用公式 tan φ0 V0
ωX
9.同频同方向谐振动合成后仍然是同频率的简谐 A sin φ A sin φ 振动 x A cos( t ) tgφ
1os φ 2
t时刻
t
u
例:如图,画出该时刻 v~x之间的 0 A 关系图 V V y(v) 0
1 1
2
X
2
X
15.波形图上能量极值点 波形图上任意一点的动能与势能值时刻相等,在
平衡位置动能与势能同时达到最大,而在谷峰位 置动能与势能同时达到最小值(为零)。
Y
能量极 小
X
能量极小 能量极 大
能量极大
(2k+1)
A A1-A2
减弱
2. 波程差条件
r1 r2 k 加强
r1 r2 (2k 1)
2 减弱
k 0, 1, 2, ...
1. 如图所示,质量为m的物体由劲度系数为k1和 k2 的两个轻弹簧连接,在水平光滑导轨上作微 小振动,则系统的振动频率为
A A A 2 A1 A2 cos( 2 1 )
2 1 2 2
( 必在1、 2 之间 )
A
A1
(1) 2 1 2k
k 0,1,2,
A2
A A1 A2
振动加强; 此时有= 1= 2
X
(2) 2 1 (2k 1)
O
A1
A2
x
振动2比振动1超前
A2
反相 同相
6.谐振动的动力学特征:f= -kx * 无阻尼自由振动的弹簧振子作简 k 谐振动,其固有圆频率为 ω = m 7.简谐振动的能量 1 1 2 2 E mv 动能: k 2 势能: E p kx
2
m k f X o x
简谐振动能量:
r1
其中 ( 2 1 )-
2
( r2 r1 )
若波在两种不同介质中传播
( 2 1 ) ( 2
2
r2
2
S1
1
r1 )
S2
r1 1 r2 2
极值条件
1. 位相差条件
2k
A A1 A2
加强
k 0, 1, 2, ...
y A cos[ (t u ) ]
u
或 y A cos[ t
2
( x ) ]
p
O
X
12、t 时刻的波形图
y
O
u t
u
•波线上两质点之间的位 相差
X
x 1 x2
2 1
y
O
y
2
x2 x1
t+ t 时 13、x一定时的振动曲线 14. 速度的旋转矢量
t= 4 s
t 3 t= 0 (1) x 5 2 10 cos( )( SI ) 4 4 3 2 (2) v = A sin 5 2 10 sin( ) 4 4 3.93 102 m / s
a B x O a t= 2 s
11. 一简谐波沿 x 轴负方向传播,波速为 1 m/s ,在 x 轴上某质点的振动频率为 1 Hz 、 振幅为0.01 m.t =0时该质点恰好在正向最 大位移处.若以该质点的平衡位置为x轴的 原点.则此一维简谐波的表达式为 y 0.01cos 2π(t x) (SI) _______________________
T/8或3T/8 内,系统在t = _________
时动能和势能相等。
7. 一质点作简谐振动,其振动方程为 1 1 x = 0.24 cos( t ) (SI),试用旋转矢量法求出质 2 3 点由初始状态运动到x = -0.12 m,v < 0的状态所需 最短时间t. 解: t / 0.667 ( s ) 8. 一质点同时参与了三个简谐振动,它们的振动 1 方程分别为 x1 A cos( t π) 3 5 x3 A cos( t π ) x2 A cos( t π) 3
12.一平面简谐波以速度u 沿x 轴正方向传播, t t 在 时波形曲线如图所示.则坐标原点 O 的振动方程为 [A]
A
B
u π y a cos[ π (t t ) ] b 2
u π y a cos[ (t t ) ] b 2 u π y a cos[ π (t t ) ] b 2
* 加速度的位相比位移超前或落后 (或加速度 与位移反相)
5、简谐振动的矢量图表示法(旋转矢量法)
O
# 逆时针旋 转为正角。
O
A
x
# 顺时针旋 转为负角。
t
A0
x
旋转矢量的端点在 x轴上的投影点作简谐振动 1、2象限 v<0 ; 3、4象限 v>0
A2
O
A1
x
O
A1
x
14.如图所示, 两相干波源S1与S2相距3/4, 为 波长.设两波在S1 S2连线上传播时,它们的振 幅都是A,并且不随距离变化.已知在该直线 上在S1左侧各点的合成波强度为其中一个波强 度的4倍,则两波源应满足的相位条件是
1 2 2
S1 (3/4)
S2
15. 图中A、B是两个相干的点波源,它们的振 动相位差为(反相).A、B相距 30 cm, 观察点P和B点相距 40 cm,且 PB AB 若发自A、B的两波在P点处最大限度 地互相削弱,求波长最长能是多少?
振动和波总结 1. 简谐振动的定义式 x( t ) Acos( t )
2. 圆频率与周期之间的关系: 2 3. 简谐振动速度
v A sin( t ) 速度的位相比位移超前 速度振幅vm A 2
(简谐振动的运动学特征)
4. 加速度 a 2 x
20. 一平面简谐波以波速u=0.5m/s沿x轴负方向传 播, t=2s时刻的波形如图所示, 求波动方程.
y(m)
0.5 o 1
u 2 x(m)
波动方程为:
x y 0.5cos[ ( t ) ] (m) 2 0.5 2
21. 一质点同时参与两个同方向的简谐振动,其 1 振动方程分别为:x 5 10 cos(4t ) (SI) 3 1 x 3 10 sin(4t )(SI) 6 画出两振动的旋转矢量图,并求合振动的振动方程.
P
解:
10 k
max 10cm
A 30 cm
40 cm
B
16. 一平面简谐波的表达式为 t x / u) y A cos ( t x / u) A cos( 其中x /u表示 波从坐标原点传至x处所需时间 ; x/ u表示 x处质点比原点处质点滞后的振动相位 ; y表示 t 时刻x处质点的振动位移 .
A | A1 A2 | 振动减弱
k 0,1,2,
A2
A1
A
X
与振幅大的分振动的初相相同 y 10. 描述波动的几个物理量 (波长;波的周期T;波速u)
λ u T
u
X
0 1 2 3 4 56
11、平面简谐波的波动方程的推导 将 t 理解为已知点振动了的时间,求出任一点 实际振动的时间,以此代替已知点振动方程中的t 就可得到任一点的振动方程,即为波动方程。 照抄已知点的振动方程,再将任一点振动超前 于或落后于已知点振动的位相补上,就得任一点 的振动方程,即为波动方程。(超前就“+”, 落后就 “ -” 。) t ) 例:如图,已知P点的振动方程:yP Acos( y x
其合成运动的运动方程为x =
0
.
解 2 - 2a ; 2 2a , a 4 4 A 3 a A 5 / cos a 5 2 cm ; ( a )