理论力学参考答案第12章 盛冬发

合集下载

理论力学习题解答(8-13章)

理论力学习题解答(8-13章)
力的平衡条件
对于一个物体,如果受到的合力为零,则该物体处于力的平衡状态。
力的平衡与运动状态
力的平衡状态下,物体的运动状态保持不变,即速度和方向都不发生变化。
力矩是力和力臂的乘积,表示力对物体转动作用的物理量。
力矩概念
力矩的方向
力矩的几何意义
力矩的方向按照右手定则确定,即右手四指从转动轴指向力的方向,大拇指指向转动方向。
动量定理,描述了物体加速度与其所受合外力之间的线性关系。
详细描述
牛顿第二定律,也被称为动量定理,表述为F=ma,其中F代表合外力,m代表质量,a代表加速度。该定律揭示了物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
牛顿第二定律
作用与反作用定律,描述了作用力和反作用力大小相等、方向相反的特性。
伯努利方程
层流与湍流,定常流动与非定常流动,一维、二维、三维流动。
流体流动的分类
流体质量守恒,流量连续,无质量亏损或增加。
连续性方程
流体动力学基础
03
拉格朗日法
追踪流体质点运动的方法,描述流场中质点位置随时间变化。
01
微元体分析法
对流场中微小体积元进行分析,列出流体运动和力的平衡方程。
02
欧拉法
描述流体运动随时间变化的方法,基于流体质点运动观点。
天体运动的计算方法
天体运动的计算方法通常涉及到对万有引力定律的应用,以及运用运动学和动力学原理。
总结词
在计算天体运动时,首先需要确定天体的质量、位置和速度等参数,然后根据万有引力定律计算出天体之间的相互作用力。接着,运用牛顿第二定律和运动学原理,可以求解出天体的加速度、速度和位移等参数。最后,通过比较理论计算结果和观测数据,可以对天体运动的规律进行验证和预测。

理论力学(机械工业出版社)第十二章动能定理习题解答

理论力学(机械工业出版社)第十二章动能定理习题解答

习 题12–1 一刚度系数为k 的弹簧,放在倾角为θ的斜面上。

弹簧的上端固定,下端与质量为m 的物块A 相连,图12-23所示为其平衡位置。

如使重物A 从平衡位置向下沿斜面移动了距离s ,不计摩擦力,试求作用于重物A 上所有力的功的总和。

图12-23))((2sin 2st 2st s k s mg W +-+⨯=δδθ 2st 2sin s ks k mgs --=δθ22s k -=12–2 如图12-24所示,在半径为r 的卷筒上,作用一力偶矩M=a ϕ+b ϕ2,其中ϕ为转角,a 和b 为常数。

卷筒上的绳索拉动水平面上的重物B 。

设重物B 的质量为m ,它与水平面之间的滑动摩擦因数为μ。

不计绳索质量。

当卷筒转过两圈时,试求作用于系统上所有力的功的总和。

图12-24322π40π364π8d )+ (d b a b a M W M +===⎰⎰ϕϕϕϕ mgr r mg W F π4π4μμ-=⨯-=)3π16π6π(34π4π364π8232mgr b a mgr b a W μμ-+=-+=∑12–3 均质杆OA 长l ,质量为m ,绕着球形铰链O 的铅垂轴以匀角速度ω转动,如图12-25所示。

如杆与铅垂轴的夹角为θ,试求杆的动能。

图12-25x x l mx x l m v m E d )sin 2()sin )(d (21)(d 21d 2222k θωθω===θωθω2220222k sin 61d )sin 2(ml x x l m E l ⎰==12–4 质量为m 1的滑块A 沿水平面以速度v 移动,质量为m 2的物块B 沿滑块A 以相对速度u 滑下,如图12-26所示。

试求系统的动能。

图12-26])30sin ()30cos [(212122221k ︒++︒+=u v u m v m E)30cos 2(212122221︒+++=uv v u m v m)3(212122221uv v u m v m +++=12–5 如图12-27所示,滑块A 质量为m 1,在滑道内滑动,其上铰接一均质直杆AB ,杆AB 长为l ,质量为m 2。

理论力学习题册答案

理论力学习题册答案

第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体)-2 -)e (杆AC 、CB 、整体)f (杆AC 、CD 、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a (球A 、球B 、整体)b (杆BC 、杆AC 、整体班级姓名学号- 3 -第一章静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

WA DBCEOriginal FigureADBCEWWF AxF Ay F BFBD of the entire frame )a(杆AB、BC、整体)b(杆AB、BC、轮E、整体)c(杆AB、CD、整体)d(杆BC带铰、杆AC、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体- 4 -班级姓名学号- 5 -第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。

梁坤京理论力学第十二章动量矩定理课后答案

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: x a cos t y bsin2 t 式中a 、b 和 为常量。

求质点对原点 O 的动量矩。

解:由运动方程对时间的一阶导数得原点的速度V xdxsin t dt aV y dy 2b cos2 t 质点对点 O 的动量矩为L O M o (mV x ) M 0(mV y )mv x y mv y x m ( a sin t) bsin2 t m 2b cos2 t acos t 2mab cos 3 t 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。

轮子轴心为A,质心为C, AC = e ;轮子半径为 R,对轴心A 的转动惯量为J A ; C 、A 、B 三点在同一铅直线上。

(1 )当轮子只 滚不滑时,若 V A 已知,求轮子的动量和对地面上 B 点的动量矩。

(2)当轮子又滚又滑时, 若V A 、 已知,求轮子的动量和对地面上 B 点的动量矩。

解:(1)当轮子只滚不滑时 B 点为速度瞬心。

轮子角速度V A R质心C 的速度V CBCR e轮子的动量p mv Cmv A (方向水平向右)R对B 点动量矩L B J B2 2 2由于 J B J C m (R e) J A me m (R e) 故 L B J A me 2 m (R e )2食 (2)当轮子又滚又滑时由基点法求得 C 点速度。

V C V A V CA V A e 轮子动量 p mv C m(v A e) (方向向右) 对B 点动量矩L B mv C BC J Cm(v A 2e) (R e) (J A me) mv A (R e) (J A mRe) 12-13 如图所示,有一轮子,轴的直径为 50 mm 无初速地沿倾角 20的轨道滚下,设 只滚不滑,5秒内轮心滚动的距离为 s =3m 。

试求轮子对轮心的惯性半径。

解:取轮子为研究对象,轮子受力如图( a )所示,根据刚体平面运动微分方程有 ma C mgsi n F ( 1) J C = Fr ( 2)因轮子只滚不滑,所以有 a c = r ( 3) ® 12将式(3)代入式(1)、(2)消去F 得到mr sinm?g上式对时间两次积分,并注意到 t = 0时 0, 0,则 mgrt 2 sin mgrt 2s in 2(J C mr 2) 2(m 2 mr 2) 把 r = 0.025 m 及 t = 5 s 时,s 'grt 2sin f gt 2sin-r r「s r 1grt 2sin 2( 2 r 2) r 3 m 代入上式得0.0259.8 52si n202 30.09 m 90 mm12-17 图示均质杆 AB 长为I ,放在铅直平面内,杆的一端 A 靠在光滑铅直墙上,另一端 B 放在光滑的水平地板上,并与水平面成 °角。

理论力学(盛冬发)课后习题答案ch11资料

理论力学(盛冬发)课后习题答案ch11资料
第11章 动量矩定理 ·127·
127· R O 2 Q (b) (a) R O 1 Q 图11.28 三、选择题 1. 均质杆AB,质量为m,两端用张紧的绳子系住,绕轴O转动,如图11.29所示。则杆AB对O轴的动量矩为 A 。 (A) 265ml (B) 21213ml (C) 234ml (D) 2121ml 2. 均质圆环绕z轴转动,在环中的A点处放一小球,如图11.30所示。在微扰动下,小球离开A点运动。不计摩擦力,则此系统运动过程中 B 。 (A) 不变,系统对z轴的动量矩守恒 (B) 改变,系统对z轴的动量矩守恒 (C) 不变,系统对z轴的动量矩不守恒 (D) 改变,系统对z轴的动量矩不守恒 3. 跨过滑轮的轮绳,一端系一重物,另一端有一与重物重量相等的猴子,从静止开始以速度v向上爬,如图11.31所示。若不计绳子和滑轮的质量及摩擦,则重物的速度 B 。 (A) 等于v,方向向下 (B) 等于v,方向向上 (C) 不等于v (D) 重物不动 A B l O l l r A z 图11.29 图11.30 4. 在图11.32中,摆杆OA重量为G,对O轴转动惯量为J,弹簧的刚性系数为k,杆在铅垂位置时弹簧无变形。则杆微摆动微分方程为 D (设sin)。 (A) GbkaJ2 (B) GbkaJ2 (C) GbkaJ2 (D) GbkaJ2
第11章 动量矩定理 ·129·
129· 示。试求各物体对通过点O并与图面垂直的轴的动量矩。 (a) O A l O R C (c) (b) O R 图11.35 解:(a)杆OA对通过点O并与图面垂直的轴的动量矩为 231mlJLOO (b)圆盘对通过点O并与图面垂直的轴的动量矩为 221mRJLOO (c)圆盘对通过点O并与图面垂直的轴的动量矩为 22223)21(mRmRmRJLOO 11-2 如图11.36所示,鼓轮的质量11800kgm,半径025mr.,对转轴O的转动惯量2853kgmOJ.。现在鼓轮上作用力偶矩0743kNmM.来提升质量22700kgm的物体 A。试求物体A上升的加速度,绳索的拉力以及轴承O的反力。绳索的质量和轴承的摩擦都忽略不计。 解:(1)选整体为研究对象,受力分析如图所示。应用质点系动量矩定理,有 grmMrmJO2022)( 解得鼓轮转动的角加速度为 )/(21.325.027003.8525.08.927007430222220sradrmJgrmMO 物体A上升的加速度为 )/(8.02smraA (2)要求绳索的拉力,可选物体 A为研究对象,受力分析如图所示。应用质点运动微分方程,有 gmFamT22 解得绳索的拉力为 )(62.288.027008.9270022kNamgmFT (3)要求轴承O的反力,可选鼓轮为研究对象,受力分析如图所示。应用质心运动定

2024年中科大理论力学课后习题答案

2024年中科大理论力学课后习题答案

注意事项
在使用课后习题答案时,学生需要注意以下几点:一是不要完全依赖答案,要 注重自己的思考和总结;二是要注意答案的适用范围和条件,避免盲目套用; 三是要及时反馈和纠正答案中的错误或不足之处。
2024/2/29
6
02 质点与刚体运动 学
2024/2/29
7
质点运动学基本概念
质点的定义
质点是一个理想化的物理模型,忽略 物体的形状和大小,只考虑其质量。
2024/2/29
02
答案
根据牛顿第二定律,合外力$F_{ 合}=ma$,则合外力做的功 $W_{合}=F_{合}l=mal$,其中 $l=v_{0}t+frac{1}{2}at^{2}$为 物体在t时间内的位移。功率 $P_{合}=F_{合}v=mav$,其中 v为物体在t时刻的瞬时速度, $v=v_{0}+at$。
15
实际应用举例及拓展
2024/2/29
01
应用一
汽车行驶过程中的动力学分析。汽车行驶时受到发动机的动力、地面的
摩擦力和空气阻力等作用,通过动力学分析可以优化汽车的设计和行驶
性能。
02
应用二
航空航天领域的动力学问题。航空航天领域涉及大量的动力学问题,如
火箭发射、卫星轨道计算等,需要运用动力学原理进行精确分析和计算
03 题目2
一轻绳跨过定滑轮,两端分别系 有质量为m1和m2的物体,且 m1>m2,开始时两物体均静止 ,当剪断轻绳后,求两物体的加 速度和速度变化。
25
04
答案
剪断轻绳后,两物体均做自由落 体运动,加速度均为g。由于两 物体初始时刻均静止,因此速度 变化量相同,即$Delta v=gt$, 其中t为物体下落的时间。

南华大学理论力学第12章练习答案

南华大学理论力学第12章练习答案
12-1. 在半径为r、质量m为的均质圆盘的直径上固结一长为2r、
质量为m1的均质细杆。圆盘作纯滚动。已知圆盘中心的速度
为v0。求系统的动能。
解:
T T盘 T杆
T盘 1 2 1 1 2 v0 3 2 m v0 m r m v0 2 2 2 4 r
2
v0
O
q
A
A


G 2 P1 3g sinq G 3P1 l
对(a)求导得 G 2 P1 3g cosq G 3P1 l
aC R m A gR( R r ) m( 2 R 2 ) m A ( R r )
(2)研究塔轮
maC FD Fs
m( 2 R 2 ) FD ( R r )
r R C mg
D

m( 2 R 2 ) FD Rr
m( 2 Rr) FS Rr
vK vA cosj r cosj
vA
A
M
vK Dv
A
B
j
O
vr
K
C
1 1 G1 2 2 1 G2 2 1 G3 2 G1 2G2 2G3 cos2 j 2 2 T2 r r 2 g v AB 2 g v K 2 2 g 4 g
由动能定理 T2 T1 Mj 得

4 gMj r 2 (G1 2G2 2G3 cos2 j )
12-4. 图示机构,各构件的质量均为m,曲柄OA=l在不变力偶 矩M作用下绕O轴从图示位置开始转n圈后,求此时曲柄OA的 角速度。 解:由 T2 T1 W ,得
11 2 2 1 3 ml OA m(lOA ) 2 m(lOA ) 2 M 2 πn 23 2 4

理论力学 第六版部分习题答案 第12章

理论力学 第六版部分习题答案  第12章

T=
m 2 2 2 ω l sin θ 6
12-5 自动弹射器如图 13-5a 放置,弹簧在未受力时的长度为 200 mm,恰好等于筒长。 欲使弹簧改变 10 mm,需力 2 N。如弹簧被压缩到 100 mm,然后让质量为 30 g 的小球自弹 射器中射出。求小球离开弹射器筒口时的速度。
Fk 30°
12-9 2 个质量均为 m2 的物体用绳连接,此绳跨过滑轮 O,如图 13-10 所示。在左方 物体上放有 1 带孔的薄圆板,而在右方物体上放有 2 个相同的圆板,圆板的质量均为 m1。 此质点系由静止开始运动,当右方物体和圆板落下距离 x1 时,重物通过 1 固定圆环板,而 其上质量为 2m1 的薄板则被搁住。摩擦和滑轮质量不计。如该重物继续下降了距离 x2 时速 度为零,求 x2 与 x1 的比。 解 第 1 阶段:系统由静止运动 x1 距离。由动能定理
12-6 平面机构由 2 匀质杆 AB,BO 组成,2 杆的质量均为 m,长度均为 l,在铅垂平 面内运动。在杆 AB 上作用 1 不变的力偶矩 M,从图 13-7a 所示位置由静止开始运动。不计 摩擦,求当杆端 A 即将碰到铰支座 O 时杆端 A 的速度。
P
P
θ
B vB
ω AB
vB vC vA
(c)

1 (2m1 g + m2 g ) x1 − (m1 g + m2 g ) x1 = (3m1 + 2m2 )v 2 2 1 (1) m1 gx1 = (3m1 + 2m2 )v 2 2 m2 gx2 − (m1 g + m2 g ) x2 = 0 − 1 (m1 + 2m2 )v 2 2
(2)
图 13-10

《理论力学》课后习题解答(赫桐生版)

《理论力学》课后习题解答(赫桐生版)

理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。

解:习题1-2.画出下列各物系中指定物体的受力图。

解:习题1-3.画出下列各物系中指定物体的受力图。

解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。

解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。

解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。

求撑杆BC所受的力。

解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。

解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。

(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。

习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。

解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。

解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。

理论力学第十二章 动能定理

理论力学第十二章 动能定理

§12-1 力的功
II. 弹性力的功
一端固定的弹簧与一质点M相连接,弹簧的原始长 度为l0,在弹性变形范围内,弹簧弹性力F的大小与其 变形量δ成正比,即
F=kδ
当质点M由M运动时,弹性力的功仍按上式计算,即弹性力的功也 只决定于弹簧初始位置与终了位置的变形量,而与质点的运动轨迹无关。
由于功只有正负值, 不具有方向意义,所 以功是代数量。
§12-1 力的功
II. 变力的功
设质点M在变力F作用下作曲线运动,当质点从M1 沿曲线运动到M2时,力F所做的功的计算可处理为: (1)整个路程细分为无数个微段dS;(2)在微小路程上, 力 F 的 大 小 和 方 向 可 视 为 不 变 ; (3)dr 表 示 相 应 于 dS 的微小位移,当dS足够小时,∣dr∣=dS。根据功的 定义,力F在微小位移dr上所做的功(即元功)为
直角坐标形式为
力F在曲线路程 上所做的功等于该力在各微段的元功之和,即
§12-1 力的功
Ⅲ. 合力的功
合力在任一路程上所做的功等于各分力在同一路程上所作功的代数和。即
常见力的功
I. 重力的功
设有一重力为G的质点,自位置M1沿某曲线运动至M2 ,
上式表明,重力的功等于质点的重量与其起始位置与终了位置 的高度差的乘积,且与质点运动的轨迹形状无关.
第十二章 动能定理
主要研究内容
力的功 功率与机械效率 动能 动能定理
§12-1 力的功
功的概念
功是度量力的作用的一个物理量。它反映的是力在一段路程上对物体作用 的累积效果,其结果是引起物体能量的改变和转化。力的功包含力和路程 两个因素。
I. 常力的功
设有大小和方向都不变的力F作用在物体上,力的 作用点向右作直线运动。则此常力F在位移方向的投 影Fcosα与位移的大小S的乘积称为力F在位移S上所 做的功,用W表示,即 W=S·Fcosa 。可知,当a<90 度时,功W为正值,即力F做正功;当a>90度时,功 W为负值,即力F做负功;当a=90度时,功为零,即 力与物体的运动方向垂直,力不做功。

理论力学练习册及答案

理论力学练习册及答案
解:动点取杆OA上A点,动系固连杆O1C上,定系固连机架。
由速度合成定理 作速度平行四边形。
由加速度合成定理 作加速度图。
取 方向投影,得:
再取动点杆O1C上C点,动系固连套筒B上,定系固连机架。
由速度合成定理 作速度平行四边形。
由加速度合成定理:
作加速度图。
取 方向投影,得:
取 方向投影,得:
第八章 刚体平面运动
8-1.已知图示机构滑块B,沿水平方向按规律SB=0.01t2+0.18t m移动,通过连杆AB带动半径R=0.1 m的轮子沿水平方向只滚不滑。求当t=1 s时,点A和点C在图示位置的速度和加速度。
解:当 时,
由于杆AB作瞬时平动,且P为轮C
的速度瞬心,故有:
8-2.曲柄OA=17 cm,绕定轴O转动的角速度ωOA=12 rad/s,AB=12 cm,BD=44 cm,滑块C、D分别沿着铅垂与水平滑道运动,在图示瞬时OA铅垂,求滑块C与D的速度。
2、研究滑块A运动副,求 ,
3、分别作套筒o运动副、滑块A运动副
加速度图,
4、研究杆BE,作O、A加速度图,
5、分别列O、A点加速度投影式求解
7-7.圆盘半径OA=r,可绕其边缘上一点A转动,从而带动直杆BC绕B点转动,AB=3r,且直杆与圆盘始终相切,当圆盘中心运动到AB连线上时,圆盘转动的角速度为ω,角加速度为ε,求此瞬时直杆BC的角速度和角加速度。
8-5.滑块B、D在铅直导槽中滑动,通过连杆BA及CD与轮子A相连,各连接处都是光滑铰链。轮A放在水平面上,AB=10 cm,CD=13 cm。在图示瞬时,即轮心A至两铅垂导槽的距离均为8 cm时,可在水平面上自由滚动的轮子,其轮心速度νA=30 cm/s,方向水平向右。求此时滑块D的速度。

理论力学(盛冬发)课后习题答案ch12

理论力学(盛冬发)课后习题答案ch12

理论力学(盛冬发)课后习题答案ch12|第12章动能定理.143.第12章动能定理1,真或假问题(括号内正确打勾,错误打勾“*”)1。

当一个圆形车轮纯滚动时,与地面接触点的法向约束力和滑动摩擦力不起作用。

(√) 2。

理想约束的约束反力所做的功之和等于零(√) 3。

因为粒子系统中的内力成对出现,所以内力功的代数和等于零(×) 4。

弹簧压缩了10厘米,从原来的长度延长了10厘米,弹簧力也同样起作用。

(√) 5。

粒子系统动能的变化与作用在粒子系统上的外力有关,而与内力无关。

(×) 6。

如果相同质量的三个粒子以相同的初始速度从相同的高度向上、水平和向下抛向地面,这三个粒子将以相同的速度落到地面。

(√)7。

动能定理的方程是向量(×) 8。

弹簧从其自然位置拉长10厘米,再拉长10厘米。

在这两个过程中,弹力的作用是相等的。

(x) 2。

填写问题1。

当一个粒子刚刚在一个垂直平面上转动一次,它的重力做功是02.在理想约束条件下,约束反力所做功的代数和为零3。

如图12.19所示,质量为m1的均质杆OA的一端铰接在质量为m2的均质圆形车轮的车轮中心,另一端位于水平面上。

圆形的轮子在地上滚动。

如果车轮中心的速度是vo,系统的动能t?1322m1v0?M2v0244..圆轮的一端连接一个刚度系数为K的弹簧,另一端连接一个重量为P的重物,如图12.201所示最初,春天自然很长。

当重量降到h时,系统的总功w?博士?kh22 o VO a k p h图12.19图12.205。

如图12.21所示,滑块a和滑块BC之间的摩擦力是系统的内力。

假设已知的摩擦力是f,等于一个常数,曲柄每转一周的摩擦力功是?4Fr6。

平行四边形机构如图12.22,O1A?O2B?R,O1A//O2B,以角速度转动O1A?5次旋转如果所有的棒都是同质的,质量是m,那么动能T =mr2?26. 143 .. 144 .理论力学7。

梁坤京理论力学第十二章动量矩定理课后答案

梁坤京理论力学第十二章动量矩定理课后答案

梁坤京理论力学第十二章动量矩定理课后答案案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

理论力学课后习题答案1-13章

理论力学课后习题答案1-13章
解:设孔心位置与x轴夹角θ,半径r1
则有

联立求解得
2-24一悬臂圈梁,其轴线为 =4m的 圆弧。梁上作用着垂直匀布荷载, =2kN/m。求该匀布荷载的合力及其作用线位置。
解:合力大小 ,铅直向下。
作用线位置在圆弧的形心处即平分轴上距离圆心

3-1作下列指定物体的示力图。物体重量除图上已注明者外,均略去不计。假设接触处都是光滑的。
解:整体:
先判断零杆如图。
取Ⅰ-Ⅰ截面右半部分
5-5 (b)试用最简捷的方法求图示桁架指定杆件的内力。
解:取Ⅰ-Ⅰ截面上半部分
取Ⅱ-Ⅱ截面右半部分

5-8杆系铰接如图所示,沿杆3与杆5分别作用着力FP1与FP2,试求各杆内力。
解:先判断零杆如图。 ,则
5-21板 长 , 、 两端分别搁在倾角 =50°, =30°的两斜面上。已知板端与斜面之间的摩擦角 =25°。欲使物块M放在板上而板保持水平不动,试求物块放置的范围。板重不计。
2.绕A点滚动,B点达到极限状态

3.绕B点滚动,A点达到极限状态

故,FT的最小值为 。
5-29一个半径为300mm、重为3kN的滚子放在水平面上。在过滚子重心 而垂直于滚子轴线的平面内加一力 ,恰足以使滚子滚动。若滚动摩擦因数δ=5mm,求 的大小。
解:滚子受力如图
6-5半圆形凸轮以匀速v=10mm/s沿水平方向向左运动,活塞杆AB长l,沿铅直方向运动。当运动开始时,活塞杆A端在凸轮的最高点上。如凸轮的半径R=80mm,求活塞B的运动方程和速度方程。
解:OA杆力偶系平衡(由于A滑块,FA垂直O1A)
整体力偶系平衡
4—14求下列面积的形心。图中长度单位是m。

哈尔滨工业大学 第七版 理论力学12

哈尔滨工业大学 第七版 理论力学12

求飞轮的转动惯量和轴承的摩擦力矩。
Mf
ω
FAx
A
FAy
m1 g
(a)
(b)
图 12-8
解 取飞轮 A 及重物为质点系,设摩阻力偶矩为 Mf,飞轮转动惯量为 JA,如图 12-8b
所示。根据对轴 A 的投影式动量矩定理有
dLA dt
=
−M f
+ m1gR , LA
=
J Aω
+ m1ωR2
两边积分得
(J A + m1R2 )dω = (M f +m1gR)dt
LO = m ⋅ vA ⋅ 2R + J Aωa
=
m ⋅ 2RωO
⋅ 2R +
1 mR2 2
⋅ (ωO
+ ωr )
= 5ωOmR2
=
20
kgm 2 /s
156
理论力学(第七版)课后题答案 哈工大.高等教育出版社
(3)在图 12-2c1 中,轮 A 绕 O 作圆周曲线平移
LO = m ⋅ 2RωO ⋅ 2R + J Aωa
12-10 如图 12-10 所示离心式空气压缩机的转速 n = 8 600 r/min,体积流量 qV = 370 m3/min,第 1 级叶轮气道进口直径为 D1 = 0.355 m,出口直径为 D2 = 0.6 m。气流进口绝对
速度 v1 = 109 m/s,与切线成角θ1 = 90° ;气流出口绝对速度 v2 = 183 m/s,与切线成角
(a)
(b)
图 12-4
解 以人和圆盘为质点系,由于作用于系统的外力(重力和轴 O 的约束力)对轴 O 的
矩均为零,所以人和圆盘组成的系统对轴 O 的动量矩守恒。设人在盘上绕轴 O 顺时针走圆

理论力学(盛冬发)课后习题答案ch10

理论力学(盛冬发)课后习题答案ch10

·115·第10章 动量定理一、是非题(正确的在括号内打“√”、错误的打“×”)1.内力虽不能改变质点系的动量,但可以改变质点系中各质点的动量。

( √ ) 2.内力虽不影响质点系质心的运动,但质点系内各质点的运动,却与内力有关。

( √ ) 3.质点系的动量守恒时,质点系内各质点的动量不一定保持不变。

( √ ) 4.若质点系所受的外力的主矢等于零,则其质心坐标保持不变。

( × ) 5.若质点系所受的外力的主矢等于零,则其质心运动的速度保持不变。

( √ ) 二、填空题1.质点的质量与其在某瞬时的速度乘积,称为质点在该瞬时的动量。

2.力与作用时间的乘积,称为力的冲量。

3.质点系的质量与质心速度的乘积称为质点系的动量。

4.质点系的动量随时间的变化规律只与系统所受的外力有关,而与系统的内力无关。

5.质点系动量守恒的条件是质点系所受外力的主矢等于零,质点系在x 轴方向动量守恒的条件是质点系所受外力沿x 轴方向投影的代数和等于零。

6.若质点系所受外力的矢量和等于零,则质点系的动量和质心速度保持不变。

三、选择题1.如图10.12所示的均质圆盘质量为m ,半径为R ,初始角速度为0ω,不计阻力,若不再施加主动力,问轮子以后的运动状态是( C )运动。

(A) 减速(B) 加速(C) 匀速 (D) 不能确定2.如图10.13所示的均质圆盘质量为m ,半径为R ,可绕O 轴转动,某瞬时圆盘的角速度为ω,则此时圆盘的动量大小是( A )。

(A) 0P = (B) P m R =ω (C) 2P m R =ω(D) 2P m R /=ω图10.12 图10.133.均质等腰直角三角板,开始时直立于光滑的水平面上,如图10.14所示。

给它一个微小扰动让其无初速度倒下,问其重心的运动轨迹是( C )。

(A) 椭圆 (B) 水平直线 (C) 铅垂直线(D) 抛物线ABC图10.14·116·4.质点系的质心位置保持不变的必要与充分条件是( D )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档