(苏教版)七年级(上)期中数学试题(含答案)
新苏教版七年级数学上册期中考试测试卷附参考答案
cab苏教版七年级数学上册期中考试测试卷(本卷满分:150分 考试时间:120分钟)一、选择题(每题3分,共24分,每题中只有一个选项正确)1、下列各数22200923122(3) ,0 ,() , ,(1) ,2 ,(8) , 274---------中,负数有 ( ▲ )A .2个B .3个C .4个D .5个2、地球离太阳约有一亿五千万千米,用科学记数法表示这个数是( ▲ ).A .1.5×107 千米B .1.5×108 千米C .15×107 千米D .0.15×109 千米 3、在式子x+y ,0,-a ,-3x 2y ,13x +,1x,单项式的个数为 ( ▲ ) A .5 B .4 C .3 D .2 4、已知:x =3,y =2,且x >y ,则x+y 的值为( ▲ )A .5B .1C .5或1D .-5或-1 5、下列说法:①a 为任意有理数时,21a 总是正数; ②方程x+2=x1是一元一次方程;③若0ab,0a b ,则0a ,0b; ④代数式2t 、3a b 、2b都是整式 ; ⑤若a 2=(-2)2, 则a=-2.其中错误..的有( ▲ ) A .4个 B .3个 C .2个 D .1个6、火车站、机场、邮局等场所都有为旅客提供打包服务的 项目.现有一个长、宽、高分别为a 、b 、c 的箱子,按 如图所示的方式打包,则打包带的长(不计接头处的长) 至少应为 ( ▲ )A.c b a 32++B. c b a 864++C.c b a 4104++D. c b a 642++7、已知:230x y -+=,则代数式2(2)241y x x y --+-的值为( ▲ ).A .5B .14C .13D .78、如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN =NP =PR =1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若a +b =3,则原点是 ( ▲ ) A .M 或R B .M 或N C. N 或PD. P 或R二、填空题(每题3分,共30分) 9、 -2的倒数是 ▲ .10、-1减去65-与61的和,所得的差....是 ▲ . 11、单项式 y x -5352的系数与次数的和是 ▲ .12、在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 ▲ . 13、若4x 2mym +n与-3x 6y 2的和是单项式,则mn = ▲ .14、关于x 的方程(a -2)x 1||-a -2=0是一元一次方程,则a = ▲ . 15、关于x 的方程26=-ax 的解为2=x ,则a = ▲ .16、在数轴上的-7与37之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 ▲ .17、已知:2+=x x ,那么273192011++x x 的值为 ▲ .18、定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为53+n ;②当n 为偶数时,结果为kn 2(其中k 是使kn 2为奇数的正整数),并且运算重复进行.例如,取26=n ,则:若420=n ,则第2015次“F 运算”的结果是 ▲ . 三、解答题(共10题,满分96分)26F ② 13F ① 44F ② 11第1次第2次第3次19、计算(1).20(14)1813------ (2).(3).312(10.5)(3)3--+÷⨯-20、解方程(1) ()34254x x x -+=+ (2) 121146x x -+=+(3)20.310.20.30.1x x +--= .21、先化简,再求值:(1))4(3)125(23m m m -+--,其中m 是最大的负整数。
2020-2021学年苏教版七年级(上)期中考试数学试卷附解析版
2020-2021学年七年级(上)期中考试数学试卷一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给出的四个选项中,只有一项是正确的,只需把答案直接填写在答题卷上相应的位置处)1.﹣的相反数是()A.﹣B.C.D.﹣2.2020年国庆8天长假期间全国共接待国内游客637000000人,数据637000000用科学记数法表示为()A.63.7×105B.6.37×107C.6.37×108D.0.637×109 3.下列各组算式中,结果为负数的是()A.﹣(﹣1)B.(﹣1)2C.(﹣3)×(﹣5)D.﹣|﹣1|4.下列各数:﹣8,3.14,﹣3,,0.66666…,0,9.181181118……,0.112134,其中有理数有()A.6个B.5个C.4个D.3个5.给出下列判断:①2πa2b与b是同类项;②多项式5a+4b﹣1中,常数项是1;③,+1,都是整式;④几个数相乘,积的符号一定由负因数的个数决定.其中判断正确的是()A.①②③B.①③C.①③④D.①②③④6.下列说法中,不正确的是()A.﹣ab2c的系数是﹣1,次数是4B.﹣1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式7.x表示一个两位数,y也表示一个两位数,小明把x放在y的右边组成了一个四位数,则这个四位数用代数式表示为()A.yx B.xy C.100x+y D.100y+x8.如图所示的运算程序中,若开始输入的x值为15,则第1次输出的结果为18,第2次输出的结果为9,…,第2020次输出的结果为()A.3B.4C.6D.99.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.90二、填空题(本大题共9小题,每空2分,共20分.不需写出解答过程,只需把答案直接填写在答题卷上相应的位置处)10.如果向南走20米记为是﹣20米,那么向北走70米记为.11.比较大小:(1)﹣;(2)﹣(﹣5)(﹣2)2.12.写一个负整数,使这个数的绝对值小于3,这个数是.13.若一个数的平方等于9,那这个数是.14.已知2a﹣3b2=2,则8﹣6a+9b2的值是.15.已知|x|=5,|y|=3,且x+y>0,则x﹣y的值是.16.已知多项式(4x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),若多项式的值与字母x的取值无关,则a b=.17.已知a、b为有理数,且a>0,b<0,a+b<0,将四个数a、b、﹣a、﹣b按由小到大的顺序排列是.18.一动点P从数轴上的原点出发,按下列规则运动:(1)沿数轴的正方向先前进5个单位,然后后退3个单位,如此反复进行;(2)已知点P每秒只能前进或后退1个单位.设x n表示第n秒点P在数轴上的位置所对应的数,则x1998为.三.解答题(本大题共8小题,共53分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(12分)计算:(1)﹣1+2﹣3+4;(2);(3);(4)4×[﹣32×(﹣)2+(﹣0.8)].20.(6分)化简:①(﹣2x3+3x2+1)+2(x3﹣x2);②7x+2(x2﹣2)﹣4(x2﹣x+3).21.(6分)先化简,再求值:3(2x2y+xy2)﹣(5x2y+3xy2),其中.22.(6分)有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a+b|﹣|c﹣a|的值.23.(6分)为庆祝我国首个空间实验室“天宫一号”顺利升空,学校开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a、b的代数式表示该截面的面积S;(2)当a=2cm,b=3cm时,求这个截面的面积.24.(4分)计算:.25.(5分)某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、+5、+4、﹣8、+6、﹣3、﹣6、﹣4、+10.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?26.(10分)已知在纸面上有一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣3表示的点与数表示的点重合;(2)若﹣1表示的点与6表示的点重合,回答以下问题:①13表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为2020(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?参考答案与试题解析一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给出的四个选项中,只有一项是正确的,只需把答案直接填写在答题卷上相应的位置处)1.﹣的相反数是()A.﹣B.C.D.﹣【分析】直接利用只有符号不同的两个数叫做互为相反数,分析得出答案.【解答】解:﹣的相反数是:.故选:C.2.2020年国庆8天长假期间全国共接待国内游客637000000人,数据637000000用科学记数法表示为()A.63.7×105B.6.37×107C.6.37×108D.0.637×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:637000000=6.37×108.故选:C.3.下列各组算式中,结果为负数的是()A.﹣(﹣1)B.(﹣1)2C.(﹣3)×(﹣5)D.﹣|﹣1|【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=1,不合题意;B、原式=1,不合题意;C、原式=15,不合题意;D、原式=﹣1,符合题意,故选:D.4.下列各数:﹣8,3.14,﹣3,,0.66666…,0,9.181181118……,0.112134,其中有理数有()A.6个B.5个C.4个D.3个【分析】根据有理数分为整数和分数,进而可得答案.【解答】解:在﹣8,3.14,﹣3,,0.66666…,0,9.181181118……,0.112134中有理数有﹣8,3.14,﹣3,0.66666…,0,0.112134,共6个,故选:A.5.给出下列判断:①2πa2b与b是同类项;②多项式5a+4b﹣1中,常数项是1;③,+1,都是整式;④几个数相乘,积的符号一定由负因数的个数决定.其中判断正确的是()A.①②③B.①③C.①③④D.①②③④【分析】根据同类项、整式、多项式的定义,结合选项进行判定.【解答】解:①2πa2b与b,所含字母相同,并且相同字母的指数也相同,是同类项,故本项正确;②多项式5a+4b﹣1中,常数项是﹣1,故本项错误;③,+1,都是整式,故本项正确;④几个不等于0的数相乘,积的符号由负因数的个数决定,原说法错误,故本项错误;则正确的有①③.故选:B.6.下列说法中,不正确的是()A.﹣ab2c的系数是﹣1,次数是4B.﹣1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式【分析】直接利用整式的定义、多项式次数与项数确定方法分析得出答案.【解答】解:A、﹣ab2c的系数是﹣1,次数是4,正确,不合题意;B、﹣1是整式,正确,不合题意;C、6x2﹣3x+1的项是6x2、﹣3x,1,正确,不合题意;D、2πR+πR2是二次二项式,原说法错误,符合题意.故选:D.7.x表示一个两位数,y也表示一个两位数,小明把x放在y的右边组成了一个四位数,则这个四位数用代数式表示为()A.yx B.xy C.100x+y D.100y+x【分析】根据题意可以用相应的代数式表示这个四位数,本题得以解决.【解答】解:由题意可得,这个四位数用代数式表示为:100y+x,故选:D.8.如图所示的运算程序中,若开始输入的x值为15,则第1次输出的结果为18,第2次输出的结果为9,…,第2020次输出的结果为()A.3B.4C.6D.9【分析】首先分别求出第3次、第4次、第5次、第6次、第7次、第8次输出的结果各是多少,总结出规律,然后判断出第2020次输出的结果为多少即可.【解答】解:把x=15代入得:15+3=18,把x=18代入得:×18=9,把x=9代入得:9+3=12,把x=12代入得:×12=6,把x=6代入得:×6=3,把x=3代入得:3+3=6,依次循环,∵(2020﹣3)÷2=2017÷2=1012…1,∴第2020次输出的结果为6.故选:C.9.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.90【分析】由题意可知,三角形每条边上有3盆花,共计3×3﹣3盆花,正四边形每条边上有4盆花,共计4×4﹣4盆花,正五边形每条边上有5盆花,共计5×5﹣5盆花,…则正n变形每条边上有n盆花,共计n×n﹣n盆花,结合图形的个数解决问题.【解答】解:∵第一个图形:三角形每条边上有3盆花,共计32﹣3盆花,第二个图形:正四边形每条边上有4盆花,共计42﹣4盆花,第三个图形:正五边形每条边上有5盆花,共计52﹣5盆花,…第n个图形:正n+2边形每条边上有n+2盆花,共计(n+2)2﹣(n+2)盆花,则第8个图形中花盆的个数为(8+2)2﹣(8+2)=90盆.故选:D.二、填空题(本大题共9小题,每空2分,共20分.不需写出解答过程,只需把答案直接填写在答题卷上相应的位置处)10.如果向南走20米记为是﹣20米,那么向北走70米记为+70米.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵向南走20米记为是﹣20米,∴向北走70米记为+70米.故答案为:+70米.11.比较大小:(1)>﹣;(2)﹣(﹣5)>(﹣2)2.【分析】(1)先求绝对值,然后根据两个负数比较大小,绝对值大的反而小即可;(2)先化简再比较.【解答】解:(1)∵|﹣|==,|﹣|==,且,∴﹣>﹣;(2)∵﹣(﹣5)=5,(﹣2)2=4,且5>4,∴﹣(﹣5)>(﹣2)2.故答案为:(1)>;(2)>.12.写一个负整数,使这个数的绝对值小于3,这个数是﹣1(或﹣2).【分析】直接利用绝对值的定义得出答案.【解答】解:负整数,绝对值小于3的可以为:﹣1(或﹣2).故答案为:﹣1(或﹣2).13.若一个数的平方等于9,那这个数是±3.【分析】利用平方根的定义计算即可得到结果.【解答】解:若一个数的平方等于9,则这个数是±3,故答案为:±3.14.已知2a﹣3b2=2,则8﹣6a+9b2的值是2.【分析】原式后两项提取﹣3变形后,将已知等式代入计算即可求出值.【解答】解:∵2a﹣3b2=2,∴原式=8﹣3(2a﹣3b2)=8﹣6=2.故答案为:2.15.已知|x|=5,|y|=3,且x+y>0,则x﹣y的值是2或8..【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可确定出x﹣y的值.【解答】解:∵|x|=5,|y|=3,且x+y>0,∴x=5,y=3或x=5,y=﹣3,则x﹣y=2或8.故答案为:2或8.16.已知多项式(4x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),若多项式的值与字母x的取值无关,则a b=9.【分析】原式去括号合并后,根据结果与字母x取值无关求出a与b的值,即可确定出原式的值.【解答】解:原式=4x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(4﹣2b)x2+(a+3)x﹣6y+7,由多项式的值与字母x的取值无关,得到4﹣2b=0,a+3=0,解得:a=﹣3,b=2,则a b=(﹣3)2=9,故答案为:917.已知a、b为有理数,且a>0,b<0,a+b<0,将四个数a、b、﹣a、﹣b按由小到大的顺序排列是b<﹣a<a<﹣b.【分析】先根据a>0,b<0,a+b<0可判断出﹣b>a,b<﹣a<0,再根据有理数比较大小的法则进行比较即可.【解答】解:∵a>0,b<0,a+b<0,∴﹣b>a>0,b<﹣a<0∴b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b.18.一动点P从数轴上的原点出发,按下列规则运动:(1)沿数轴的正方向先前进5个单位,然后后退3个单位,如此反复进行;(2)已知点P每秒只能前进或后退1个单位.设x n表示第n秒点P在数轴上的位置所对应的数,则x1998为502.【分析】本题应先解出点P每8秒完成一个循环,解出对应的数值,再根据规律推导出答案.【解答】解:依题意得,点P每8秒完成一个前进和后退,即前8个对应的数是1、2、3、4、5、4、3、2;9~16是3、4、5、6、7、6、5、4.根据此规律可推导出,1998=8×249+6,故x1998=249×2+4=502.故答案为:502.三.解答题(本大题共8小题,共53分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(12分)计算:(1)﹣1+2﹣3+4;(2);(3);(4)4×[﹣32×(﹣)2+(﹣0.8)].【分析】(1)根据加减混合运算顺序和运算法则计算可得;(2)除法转化为乘法,再约分即可;(3)利用乘法分配律展开计算即可;(4)根据有理数的混合运算顺序和运算法则计算即可.【解答】解:(1)原式=1+1=2;(2)原式=﹣4×××4=﹣8;(3)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣18+20﹣21=﹣19;(4)原式=×(﹣9×﹣0.8)=×(﹣1﹣0.8)=×(﹣1.8)20.(6分)化简:①(﹣2x3+3x2+1)+2(x3﹣x2);②7x+2(x2﹣2)﹣4(x2﹣x+3).【分析】先去括号,然后合并同类项即可解答本题.【解答】解:①原式=﹣2x3+3x2+1+2x3﹣2x2=x2+1;②原式=7x+2x2﹣4﹣2x2+4x﹣12=11x﹣16.21.(6分)先化简,再求值:3(2x2y+xy2)﹣(5x2y+3xy2),其中.【分析】先去括号,进行整式加减,再根据非负数的性质,确定x、y的值,最后代入计算即可.【解答】解:3(2x2y+xy2)﹣(5x2y+3xy2)=6x2y+3xy2﹣5x2y﹣3xy2=x2y;∵,又∵|x﹣1|≥0.(y+)2≥0,∴x﹣1=0,y+=0.∴x=1,y=﹣.当x=1,y=﹣时,原式=x2y=12×(﹣)=﹣.22.(6分)有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a+b|﹣|c﹣a|的值.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化【解答】解:由数轴可得,a<0<b<c,|b|<|a|<|c|,∴b﹣c<0,a+b<0,c﹣a>0,∴|b﹣c|+|a+b|﹣|c﹣a|=c﹣b﹣a﹣b﹣c+a=﹣2b.23.(6分)为庆祝我国首个空间实验室“天宫一号”顺利升空,学校开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a、b的代数式表示该截面的面积S;(2)当a=2cm,b=3cm时,求这个截面的面积.【分析】(1)依据截面的面积=1个三角形的面积+一个矩形的面积+一个梯形的面积求解即可;(2)将a、b的值代入求解即可.【解答】解:(1)原式=ab+a•2a+(a+2a)b=2a2+2ab;(2)将a=2cm,b=3cm代入得:这个截面的面积=2×22+2×2×3=20cm2.24.(4分)计算:.【分析】由于===2(),利用这个结论把题目变形即可求解.【解答】解:,=1+2(﹣+﹣…﹣),=1+2(﹣),=.25.(5分)某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、+5、+4、﹣8、+6、﹣3、﹣6、﹣4、+10.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?【分析】(1)把记录的数字加起来,看结果是正还是负,就可确定是向东还是西;(2)求出记录数字的绝对值的和,再乘以2.4即可.【解答】解:(1)+9﹣3+5+4﹣8+6﹣3﹣6﹣4+10=10.故出租车在鼓楼东方,离出发点10km;(2)(|+9|+|﹣3|+|+5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+10|)×2.4=139.2(元),故司机一个下午的营业额是139.2元.26.(10分)已知在纸面上有一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣3表示的点与数3表示的点重合;(2)若﹣1表示的点与6表示的点重合,回答以下问题:①13表示的点与数﹣8表示的点重合;②若数轴上A、B两点之间的距离为2020(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?【分析】(1)根据中点坐标公式可求对折点为原点,进一步求得﹣3表示的点与数3表示的点重合;(2)①由表示﹣1的点与表示6的点重合可求对折点为2.5,即可找出与表示13的点重合的点表示的数;②设A点表示的数为x,则B点表示的数为x+2020,根据重合两点表示的数之和相等,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)∵表示1的点与表示﹣1的点重合,∴﹣3表示的点与数3表示的点重合.故答案为:3.(2)①∵表示﹣1的点与表示6的点重合,∴对折点为(﹣1+6)÷2=2.5,∴与表示13的点重合的点表示的数为2.5﹣(13﹣2.5)=﹣8.故答案为:﹣8;②设A点表示的数为x,则B点表示的数为x+2020,根据题意得:﹣1+6=x+x+2020,解得:x=﹣1007.5,则x+2020=1012.5.答:A点表示的数为﹣1007.5,B点表示的数为1012.5.。
苏教版七年级数学上册期中考试试卷附参考答案
苏教版七年级数学上册期中考试测试卷(考试时间:120分钟 满分150分)一、选择题(下列各题中只有一个答案是正确的,每题3分,共18分) 1.3的相反数是(▲) A .31 B .3- C .31- D .3 2.下列各式中,次数为3的代数式是 (▲)A .xy 2B .x 4+y 3C .x 3yD .3xy 3.面积是10的正方形,边长最接近下列哪个数(▲)A .2.8B .3C .3.2D .3.4 4.下列各式运算正确的是 (▲) A .3a +4b =7abB .5y 2-2y 2=3C . 7a +a =8aD .4x 2y -2xy 2=2xy5.不论a 取什么值,代数式2--a 的值总是(▲)A .正数B .负数C .非负数D .不能确定 6.如果3,,+--+b a b a b a 中,b a +的值最大,则b 的值可以是(▲)A .-1B .0C .1D .2二、填空题(本大题共10小题,每小题3分,满分30分.请把答案填在题中的横线上) 7.2-的绝对值是_______.8.满足条件大于1-且小于π的整数共有_______个.9.2013年第一季度,泰州市共完成工业投资022********元,022********这个数可用科学记数法表示为_____ ___.10.已知a 、b 互为倒数,d c 、互为相反数,则代数式ab d c 2-+的值为_______. 11.三个连续整数中中间一个数是n ,那么它们的和等于_______. 12.写出b a 32-的一个同类项______ __.13.某公交车原来坐有24人,经过4个站点时上下车情况如下(上车为正,下车为负): (+4,-8),(-5,+6),(-3,+2),(+1,-7),现在车上还有 人. 14.若,,且00<<ab a 化去绝对值符号=--7b a ______.15.如果b -2= a 2,那么代数式b 2-b (a 2+2)+2的值等于________.16.已知整数,,,,4321a a a a …满足下列条件:01=a ,112+-=a a ,223+-=a a ,334+-=a a ,445+-=a a ,…,100100101+-=a a ,则101a 的值为_______.三、解答题(解答需写出必要的文字说明或演算步骤.) 17.(本题满分8分)请把下列各数填在相应的集合内+4,0.333……,-⎪⎪⎪⎪-12,-(+27),π,-(-2),0,2.5,-1.232232223……, 正有理数集合:{ …} 非负整数集合:{ …} 负分数集合:{ …} 无理数集合:{ …}18.(本题满分8分) 画一条数轴,在数轴上把下列各数表示出来,并用“<”连接各数.5.2--,—4.5, 2,0,99)1(-,3--19.(本题满分18分,每小题3分)计算: (1)4-(-4)+(-3); (2) 3125317++-(3)])2(3[134---- (4))31()3(3)31(-⨯-÷⨯-(5)-2×(-216)+(-7)×216+5×136 (6))412(]8.0)31(3[21422-÷--⨯-⨯20.(本题满分10分,每小题5分)先化简,再求值:(1)先化简,再求值:)42()34(22a a a a --+-,其中a =2-;(2)22225(37)(25)x y xy y x -++-,其中2,1-==y x .21.(本题满分9分)邮递员骑车从邮局出发,先向西骑行3km 到达A村,继续向西骑行2km 到达B 村,然后向东骑行7km 到达C 村,再继续向东骑行3km 到达D 村,最后骑回邮局. (1)C 村离A 村有多远? (2)邮递员一共骑行了多少千米?22.(本题满分9分)如果2.2=a ,8.3=b . (1)试求b a 、的值;(2)如果b a 、的和值为整数,试求a -b 的值;23.(本题满分9分)(1)写出一个含有字母x 的代数式,当x =1时,代数式的值等于2;(2)写出一个含有字母x 的代数式,当x =4和x =4-时,代数式的值都等于5; (3)写出两个含有字母x 的三项式,且它们的次数都是2,当x 不论取什么值时,这两个多项式的和总是等于3(列式表示).24.(本题满分9分)请你揭秘:刘谦的魔术表演风靡全国,小亮同学也学起了刘谦,运用所学知识设计了一个魔术节目.他请同学想一个数,然后将这个数按以下步骤操作:乘以3 减去9 除以3 加上2 告诉小亮结果小亮立刻说出同学想的那个数.(1)如果同学小明想的数是-1,那么他告诉小亮的结果应该是;(2)如果小聪想了一个数并告诉小亮结果为2012,那么小亮立刻说出小聪想的那个数是;(3)同学们又进行了几次尝试,小亮都能立刻说出他们想的那个数,请你说出其中的奥妙.(要求:用所学的数学知识写出掲秘的过程.......).25.(本题满分10分)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,第一级:小于或等于25立方米(吨),按正常居民用水价格3元/立方米收费;第二级:超过25立方米且小于或等于35立方米用水区间,其中的25立方米仍按3元/立方米收费,超过部分按4元/立方米收费;第三级:超过35立方米,其中的35立方米仍按第二级方案收费,超过部分按5元/立方米收费. 设每户家庭用水量为x 立方米时,应交水费y 元.(1)当250≤≤x 时, y = 元(用含x 的代数式表示);当3525≤<x 时,y = 元(用化简了的含x 的代数式表示); 当35>x 时,y = 元(用化简了的含x 的代数式表示); (2)小明家十月份缴纳水费95元,那么小明家十月份共用水多少立方米?26.(本题满分12分)如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是60千米/小时,BC段为上山路,车速是45千米/小时,CD段为下山路,车速是72千米/小时,已知下山路的长是上山路的2倍.(1)若AB=12千米,老王开车从A到D共需多少小时?(2)若AB=6千米,老王开车从A到D共需多少小时?(3)当AB的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)D答案一、选择题 BACCBD二、填空题(本大题共10小题,每小题3分)7. 2 8. 4 9. 101023.2⨯ 10. -2 11.3n 12. b a 3(答案不唯一) 13. 14 14. b -a +7 15. 2 16. -50三、解答题(本大题共6小题,共60分. 解答需写出必要的文字说明或演算步骤.) 17.(每空2分)请把下列各数填在相应的集合内正数集合:{+4,0.333……,-(-2), 2.5 …} 非负整数集合:{ +4,-(-2),0, …} 负分数集合:{ -⎪⎪⎪⎪⎪⎪-12,-(+27), …}无理数集合:{π,-1.232232223…… …} 18.(本题8分) 在数轴上把下列各数表示出来,并用“<”连接各数。
苏教版七年级数学上册期中考试质量测试卷附参考答案
苏教版七年级数学上册期中考试测试卷一、选择题(每小题2分,共12分)1.据测算,我国如果每年减少10%的包装纸用量,那么可减排二氧化碳3120000吨,将3120000吨用科学记数法表示为(▲).A .51012.3⨯吨 B .61012.3⨯吨 C .5102.31⨯吨 D .710312.0⨯吨2.把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果为(▲). A .5)2()3(+=+++ B .1)2()3(+=-++ C .5)2()3(-=+-- . D .1)2()3(-=++- 3.下列四个数中,无理数是(▲).A .3.14B .0.33030030003…C .0.3333…D .722 4.下图表示某地区早晨、中午和午夜的的温度(单位:℃),则下列说法正确的是(▲).A .中午和早晨的温差是11℃B .中午和早晨的温差是3℃C .中午和午夜的温差是0℃D .午夜和早晨的温差是11℃5.小明要为自己和弟弟各买一套相同的运动服.已知甲、乙两家商店该种运动服每套的售 价相同, 但甲店规定:若一次买两套,则其中一套可享受七折优惠;乙店规定:若一 次买两套,则可按总价的54收费.下列判断正确的是( ▲). A .甲店比乙店优惠 B .乙店比甲店优惠C .甲、乙两店收费相同D .以上都有可能6.已知整数1234,,,,a a a a ⋅⋅⋅,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则20a 的值为( ▲). A .8- B .9- C . 10- D .20-二、填空题(每小题2分,共20分)7.如果a 与-3互为倒数,那么a 等于 .-4-7午夜+1输入x( )2输出25(第11题)(第12题)abr8.在有理数2)1(,5,310,31,5.0,4-----中,负整数是.9.计算:233)3(÷-=.10.单项式-3x y的系数是,次数是.11.如图(单位:㎝),用代数式表示三角尺(阴影部分)的面积是㎝2.12.如图是数值转换机的示意图,若输出的数是25,则输入的数x的值为.13.已知2a-3b2=5,则10-2a+3b2的值是.14.代数式“0.8a”可以解释为:一件商品原价为a元,现按原价的八折出售,这件商品现售价是0.8a元.请你对“0.8a”再赋予另一个实际含义:.15.按如图的计算程序计算,若开始输入的数为2-,则最后输出的结果是 . 16.观察下列等式:11122=+=-;3121222=+=-;5232322=+=-;7343422=+=-;……若字母n表示自然数,把你观察到的规律用字母n的式子表示出来为: .三、计算与求解(共29分)17.(3分)17)25()12(14--+--18.(3分))15(60)3(4-÷+-⨯19.(4分)32)154(21÷-⨯20.(5分))57()4()2(83+-⨯-÷-+21.(3分))3(25b a b a -++22.(4分))63(3132y y -++23.(7分)先化简 ,再求值:mn mn m mn m 2)32(3)54(22----,其中m =21-,n =2-.四、解下列各题(共39分)24.(6分)如图,正方形的边长为a .(1)用代数式表示阴影部分的面积;(2)当a =8m ,π取3.14时,计算阴影部分的面积.25.(7分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足用正数或负数表示,记录如下表: (1)这批样品的平均质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为250克,则抽样检测的总质量是多少?26.(8分)做大小两个长方体纸盒,尺寸如图(单位:㎝)与标准质量的差值(单位:g )-4 -3 0 1 2 6 袋 数143453aa(第24题)a1.5ac2cb2b(第26题)(1)用a、b、c的代数式表示做这两个纸盒各需用料多少㎝2?(2)当a=10㎝,b=8㎝,c=6㎝时,试计算做大纸盒比做小纸盒多用料多少㎝2?27.(10分)平安加气站某日7︰00前的储气量为10000立方米.加气站在加气过程中每把加气枪均以每小时200立方米的速度为汽车加气.设加气站从7︰00开始加气总时间为x(小时)(加气期间关闭加气枪的时间忽略不计).另外,加气站在不同时间段加气枪的使用数量如下:(1)7︰30时加气站的储气量为立方米;(2)当x>1时,试用含x的代数式表示加气站加气x小时后的储气量(答案要求化简);(3)若每辆车的加气量均为20立方米,试说明前70辆车能否在当天8︰30之前加完气?若能,请加以说明;若不能,则8︰00以后至少还需添加几把枪加气才能保证在当天8︰30之前加完气?28.(8分)(1)阅读下面问题的解法,并填空:4位朋友在一起,每两人握一次手,共握多少次手?小莉是这样分析的:每一位朋友都与其他3位握手,共握3次手,则4位朋友共与其他3人握手3×4次.但以上算法中,将每两位朋友的1次握手重复计算成了2次,因此4 位朋友实际共握手243=6次.用上面的方法思考:n位朋友在一起,每两人握一次手,共握多少次手?每一位朋友都与其他(n-1)位握手,共握(n-1)次手,则n位朋友共与其他(n-1)人握手次.但以上算法中,将每两位朋友的1次握手重复计算成了2次,因此n位朋友实际共握手次.(2)试解决与上面类似的问题:在平面内画50条直线,最多有多少个交点?(要求:写出说理过程)答案一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6 答案 BDBABC二、填空题(每小题2分,共20分)7.31-; 8.5--; 9. 3-; 10.-1、4; 11.)21(2r ab π-;12.4和-6(写一个得1分); 13.5; 14.略; 15.-10; 16.)(121)1(22为自然数n n n n n n +=++=-+.三、计算与求解(共29分)17.解:原式=17251214--+ (1分) 18.解:原式=)4(12-+- (2分)= 26-42 (2分) =16- (3分) =16- (3分)19.解:原式=23)154(21⨯-⨯(1分) 20.解:原式=)2()4()8(8-⨯-÷-+(2分)= 2315421⨯⨯- (2分) =)2(28-⨯+ (3分) = 51-(4分) =4 (5分)21.解:原式= b a b a 325-++ (1分) 22. 解:原式= y y 2132-++(2分)= b b a a 325-++ = 1322++-y y = b a -6 (3分) = 4 (4分)23.解:原式= mn mn m mn m 2965422-+-- (2分)= mn mn mn m m 2956422-+-- = mn m 222+- (4分)当m =21-,n =2-时. 原式= = )2()21(2)21(22-⨯-⨯+-⨯- (5分) =2412+⨯-= 23(7分) 四、解下列各题(共39分)24.解:①阴影部分的面积为22)2(a a π- (3分)②当a =8m ,π取3.14时,22)2(aa π-=22414.38⨯-=13.76 (6分)25.解: (1) 1663251403)3(4)4(1=⨯+⨯+⨯+⨯+-⨯+-⨯, (2分)8.02016= (3分) 所以这批样品的平均质量比标准质量多0.8克 (4分)(2)若每袋标准质量为250克,则抽样检测的总质量=250×20+16=5016克.(7分)26. (1)小长方体用料为:ac bc ab 222++ (2分)大长方体用料为:c a c b b a 25.1222225.12⨯⨯+⨯⨯+⨯⨯= ac bc ab 686++ (4分)(2)(ac bc ab 686++))222(ac bc ab ++-=ac bc ab 464++ (6分)当a =10 ,b =8 ,c =6 时,ac bc ab 464++=61046868104⨯⨯+⨯⨯+⨯⨯=848答:做大纸盒比小纸盒多用料多848㎝2. (8分)27.(1) 9800 (2分)(2)加气x 小时(x >1)加气站的储气量为:)1(620021420021220010000-⨯-⨯⨯-⨯⨯-x =-1200x +10600 . (6分)(3)不能. 因为(2×12×200+4×12×200+6×12×200)÷20=60<70,所以前70辆车不能在8:30之前加完气. (8分)多余车还需要加气:20020)6070(=⨯-, 2)21200(200=⨯÷即8︰00以后至少还需添加2把枪加气才能保证在当天8︰30之前加完气.(10分)28.(8分) (1) 2)1(-n n 次 (2)法一:每一直线都与其它49直线相交,共有49个交点, (4分)则50条直线共与其它49直线相交有49×50个交点, (6分) 但以两条直线相交的每个交点被重复计算了2次,因此平面内画50条直线,最多有25049⨯=1225 个交点. (8分) 法二:当每两条直线都相交且交点不重合时,交点的个数最多. (4分) 此时,求50条直线两两相交有多少个交点个数问题,相当于求50个朋友每两位握 手一次,共握多少次手的问题. (6分) 由(1)当50=n 时,握手次数为12252)150(50=- 即50多直线两两相交,最多共有1225个交点. (8分)法三:可用归纳法得出最多共有1+2+3+…+49个交点.(参照给分)n (n -1) ,; (第1空1分,第2空2分,共3分)。
苏教版七年级数学上册第一学期期中考试试卷及答案
苏教版七年级数学上册第一学期期中考试试卷及答案It was last revised on January 2, 2021苏教版七年级数学上册第一学期期中考试试卷(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共12分)1.如果向东走3 km记作+3 km,那么向西走5 km记作(▲)A.-5 km B.-2 km C.+5 km D.+8 km2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为(▲ )A. B. C. D..3.下列各式中结果为负数的是(▲ )A. B. C. D.4.设边长为a的正方形的面积为2.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;③0<a<1.其中,所有正确的序号是(▲)A.①② B.①③ C.②③ D.①②③5.下列关于单项式-的说法中,正确的是(▲ )A.系数是,次数是3 B.系数是,次数是4C.系数是,次数是4 D.系数是,次数是36.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,点A与点C到点B的距离相等,如果>>,那么该数轴的原点O的位置应该在(▲)CA.点A的左边 B.点A与点B之间C.点B与点C之间 D.点C的右边二、填空题(每小题2分,共20分)7.的相反数是▲,倒数是▲.8.比较大小:▲ .9.用代数式表示“m与n积的平方”:▲ .10.数轴上点A表示-1,到点A距离3个单位长度的点B所表示的数是_____▲____.11.如果x-y=3,m+n=2,则 (y+m)-(x-n)的值是▲ .12.若单项式与的差仍是单项式,则=_____▲____.13.某超市的苹果价格如图所示,试说明代数式100-的实际意义▲.14.如图所示2014年11月份的日历,在日历上任意圈出一个竖列上相邻的3个数.如果被圈出的三个数的和为51,则这三个数中最后一天为2014年11月▲号. 苹果:元/斤(第14题)(第13题)15.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l的规律拼成一列图案:……第一个第二个第三个……第n个图案中有白色纸片▲张.16.如图所示的运算程序中,若开始输入的x值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,…,则第2014次输出的结果为▲.(第16题)三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算(每题5分,共15分)(1);(2);(3).19.(5分)化简:2(2x2-9x) -3(3x2+4x-1) .20.(5分)先化简,再求值:,其中,.21.(6分)已知10箱苹果,以每箱15千克为标准,超过15千克的千克数记为正数,不足15千克的千克数记为负数,称重记录如下:+,-,+,-,-,+,0,-,+,-(1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为千克,则这10箱有几箱不符合标准的?22.(6分)如图,长方形内有两个四分之一圆.(1) 用代数式表示阴影部分的面积;(2) 当a=10,b=4时,阴影部分的面积是多少(取值为23.(7分)(南京青奥会期间,某数学兴趣小组调查了奥运村某个体水果店经销香蕉情况,每千克进价元,售价元,8月16日至8月20日经销情况如下表:日期16日17日18日19日20日购进(kg)55 50 50 55 50售出(kg)51 38 51损耗(kg) 5 2 12 6 0(1)若8月15日晚库存为0,则8月16日晚库存▲ kg;(2)从8月18日这一天的香蕉经销情况看,规定赚钱为正,当天是赚钱还是赔钱?说明理由;(3)青奥会期间8月16日至8月20日,该个体户卖香蕉共赚了多少钱?②24.(7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a、b、c,其中a、b是直角边.正方形的边长分别是a、b.a(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积:方法一:▲ ;方法二:▲ ;(2)观察图②,试写出这四个代数式之间的等量关系;(3)利用你发现的结论,求:的值.25.(7分)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额.消费金额(元) 小于或等于500元500~1000 1000~1500 1500以上返还金额(元) 0 60 100 150注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000(180%)60=260(元).(1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x元(x>1250)的商品,那么该顾客获得的优惠额为多少(用含有x的代数式表示)(3)若顾客在该商场第一次购买一件标价x元(x>1250)的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为▲ 元.苏教版七年级数学上册第一学期期中考试试卷参考答案一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6答案A D C A B C二、填空题(每小题2分,共20分)7. ;38. <9.(mn)210.–4或2 11. -1 12. –613. 用100元买每斤元的苹果x斤余下的钱 14. 2415.3n+1 16. 2三、解答题(本大题共9小题,共68分)17.(1)解:原式 (3)分……………………………………5分(2)解:原式……………………………………3分……………………………………4分……………………………………5分(3)解:原式()……………………………………2分()……………………………………3分() ……………………………………4分……………………………………5分18.(1)解:……………………………………2分……………………………………4分……………………………………5分(2)解:-()()……………………………………1分-……………………………………2分……………………………………4分……………………………………5分19.解:原式=4x2-18x-9x2-12x+3……………………………………3分=-5x2-30x+3 ……………………………………5分20.解:原式……………………………………2分……………………………………3分当,时,原式()()() (4)分()……………………………………5分21.解:(1) (++(—+(++(—+(—+( ++0+(—+(++(— = (千克)……………………………………………………………………………………………2分因此,这10箱苹果的总质量为15×10+ =(千克)……………………………4分(2)这10箱有2箱不符合标准. ………………………………………………………6分22.解:(1)……………………………………………………………….3分(2)………………………………………………………….6分23.(1) kg ……………………………………………2分(2)当天赚钱因为元元则247>225,所以当天赚钱. (4)分(3)()-()-()所以该个体户最后一天香蕉全部售完.……………………………………………5分()-()元答:该个体户卖香蕉共赚了元钱.……………………………………………7分24.(1)(); (2)分(2)()……………………………………………4分(3)解:()……………………………………………7分(特别说明:本题第(1)问的添法不唯一,只要两种不同的方法填写正确均得2分)25.解:(1)标价为1600元的商品按80%的价格出售,消费金额为1440元,消费金额1440元在1000﹣1500之间,返还金额为100元,则顾客获得的优惠额是:1600×(1﹣80%)+100=420(元)………………………………2分(2)当1000<时,()元;……………………………………………3分当>1500时,()元;……………………………………………4分(3)2000 (当1250<x≤1875时,+100+500×=650,得x=2250不合题意;当x>1875时,+150+500×=650,得x=2000符合)……………………………………………7分。
苏教版七年级数学上册期中试卷附答案
苏教版七年级数学上册期中试卷附答案七年级数学上册期中试卷时间:120分钟总分:150分一、选择题(每小题3分,共30分)1.下列选项中,符号“-”的相反数是()A。
5.B。
C。
-5.D。
52.下列等式成立的是()A。
-|-3| = 3.B。
-(-3)3 = (-3)3.C。
-{-[-(-3)]} = |-3|。
D。
-32 = (-3)23.我国第一颗探月卫星“嫦娥一号”从XXX轨道传回第一张月面照片时距地球38万公里。
将38万公里用科学记数法表示应为()A。
38×104公里。
B。
3.8×105公里。
C。
38×106公里。
D。
3.8×104公里4.已知代数式的个数是4,下列各式:-x+1,π+3,9>2,x+y2,其中单项式的个数是()A。
5.B。
4.C。
3.D。
25.若a=b,则下列各式不一定成立的是()A。
a-1 = b-1.B。
=。
C。
-a = -b。
D。
6.若方程(a+3)|a|x - 2-7=0是一个一元一次方程,则a等于( )A。
-3.B。
3.C。
±3.D。
7.下列说法,不正确的是()A。
绝对值最小的数是0.B。
负数的相反数一定大于这个数。
C。
数轴上表示-5的点一定在原点的左边。
D。
异号两数相加和一定比加数大8.若代数式3a4b2x与0.2b3x-1a4和仍然是单项式,则x的值是()A。
2.B。
1.C。
3.D。
09.按如图的程序计算,若开始输入的值x为正整数,最后输出的结果小于20,则输出结果最多有()种。
A。
2个。
B。
3个。
C。
4个。
D。
5个10.如图,圆的周长为4个单位长。
数轴每个数字之间的距离为1个单位长,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合),则数轴上表示-2012的点与圆周上表示数字的点重合。
苏科版七年级上册数学《期中测试卷》含答案
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,每小题3分,共24分)1.的相反数是( ) A.B. 2C.12D. 12-2.下列代数式中a , -2ab ,x y +,22x y +,-1, 2312ab c ,单项式共有( )A 6个B. 5 个C. 4 个D. 3个3.下列计算正确的是( ) A. 2a −a = 2B. 2a + b = 2abC. 3x 2 + 2x 2 = 5x 4D. mn − 2mn = −mn4.下列方程中,是一元一次方程的是( ) A.110x-= B. x ﹣1=0 C. x 2﹣x ﹣1=0 D. 2(x ﹣1)=2x5.关于x 的方程ax +3=1的解为x =2,则a 的值为( ) A. 1B. -1C. 2D. -26.一元一次方程3x+6=2x ﹣8移项后正确的是( ) A. 3x ﹣2x=6﹣8B. 3x ﹣2x=﹣8+6C. 3x ﹣2x=8﹣6D. 3x ﹣2x=﹣6﹣87.按如图所示的运算程序,能使输出的结果为18的是( )A. x =1,y =4B. x = -4,y = 4C. x = -4,y = -1D. x =4,y =48.若规定[a]表示不超过a 的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+74n]的值为( ) A. ﹣3B. ﹣2C. ﹣1D. 0二、填空题(每空2分,共20分)9.-5的绝对值是________.32x y-的次数是_________10.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为_______km 2.11.甲数比乙数的2倍大3,若乙数为x,则甲数为____________.12.已知2m a b -和3n 13a b -是同类项,则m +n = ( ) A. 6B. 5C. 4D. 313.一个多项式加上﹣3-x ﹣2x 2得到x 2+1,这个多项式是________ 14.若|x ﹣2|+(y +3)2=0,则(x +y)2018=________15.若|x |=7,|y |=5,且x >y ,那么x ﹣y 的值是_______________. 16.已知2x ﹣3y=3,则代数式6x ﹣9y+5的值为_____.17.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为_____.三、解答题(本大题共56分,解答时应写出必要的文字说明、计算过程或演算步骤)18.画一条数轴,并把 -4,-(-3.5),212,0,32- 各数在数轴上表示出来,并用“<”把它们连接起来. 19.计算:(1)()8121623-+---- (2)(-8)÷(-4)-(-3)3×(-123) (3)(12-59+712)×(-36) (4)()31210.7510514143⨯--⨯+÷ 20.(1)化简:5m 2-7n -8mn +5n -9m 2+8mn .(2)已知:a -2b =4,ab =1.试求代数式(-a +3b +5ab )-(5b -2a +6ab )的值. 21.解方程:(1)43(5)6x x --=; (2)121146x x +--=. 22.已知代数式A =x 2+3xy +x -12,B =2x 2-xy +4y -1 (1)当x =y =-2时,求2A -B 的值; (2)若2A -B 值与y 的取值无关,求x 的值. 23.有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:-c 0,+ 0,c - 0. (2)化简:| b -c|+|+b|-|c -a|24.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽米,回答下列问题:(1)修建十字路的面积是多少平方米?(2)草坪(阴影部分)面积是多少?(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?25.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):进出数量-3 4 -1 2 -5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库原料比原来增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.26.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t代数式表示AM的长为(2)当t= 秒时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.的相反数是( ) A. B. 2 C.12D. 12-【答案】B 【解析】 【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.下列代数式中a , -2ab ,x y +,22x y +,-1, 2312ab c ,单项式共有( )A. 6个B. 5 个C. 4 个D. 3个【答案】C 【解析】试题分析:根据单项式的定义:数字与字母的积,或单独的数字和字母都叫单项式.即可求解. 解:单项式有:a , -2ab ,-1, 2312ab c ,共4个. 故选C.3.下列计算正确的是( ) A. 2a −a = 2 B. 2a + b = 2abC. 3x 2 + 2x 2 = 5x 4D. mn − 2mn = −mn【答案】D 【解析】 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】A .2a −a = a ,故A 错误; B .不是同类项不能合并,故B 错误; C .3x 2 + 2x 2 = 5x 2,故C 错误; D .mn − 2mn = −mn ,故D 正确. 故选D .【点睛】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题的关键.4.下列方程中,是一元一次方程的是( )A. 110x-= B. x﹣1=0 C. x2﹣x﹣1=0 D. 2(x﹣1)=2x【答案】B【解析】【分析】根据一元一次方程定义进行分析即可.【详解】A.不是一元一次方程,故此选项错误;B.是一元一次方程,故此选项正确;C.不是一元一次方程,故此选项错误;D.不是一元一次方程,故此选项错误.故选B.【点睛】本题主要考查了一元一次方程定义,关键是掌握只含有一个未知数(元),且未知数次数是1,这样的方程叫一元一次方程.5.关于x的方程ax+3=1的解为x=2,则a的值为( )A. 1B. -1C. 2D. -2【答案】B【解析】【分析】把x=2代入方程可得关于a 的方程,解之即可得.【详解】把x=2代入方程ax+3=1得,2a+3=1,解得:a=-1,故选B.【点睛】本题考查了一元一次方程的解,方程的解是能使方程两边相等的未知数的值.6.一元一次方程3x+6=2x﹣8移项后正确的是( )A. 3x﹣2x=6﹣8B. 3x﹣2x=﹣8+6C. 3x﹣2x=8﹣6D. 3x﹣2x=﹣6﹣8【答案】D【解析】试题解析:根据移项法则得:3x﹣2x=﹣6﹣8,故选D.7.按如图所示的运算程序,能使输出的结果为18的是()A. x=1,y=4B. x= -4,y= 4C. x= -4,y= -1D. x=4,y=4 【答案】C【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】A.x=1,y=4时,输出结果为12+2×4=9,不符合题意;B.x=﹣4,y=4时,输出结果为(﹣4)2+2×4=24,不符合题意;C.x=﹣4,y=﹣1时,输出结果为(﹣4)2﹣2×(﹣1)=18,符合题意;D.x=4,y=4时,输出结果为42+2×4=24,不符合题意.故选C.【点睛】本题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+74n]的值为( )A. ﹣3B. ﹣2C. ﹣1D. 0 【答案】A【解析】∵[a]表示不超过a的最大整数,m=[π]=3,n=[﹣2.1]=﹣3,∴[m+74n]=[3+74×(﹣3)]=[﹣94]=﹣3,故选A.二、填空题(每空2分,共20分)9.-5的绝对值是________.32x y的次数是_________【答案】(1). 5(2). 4【解析】【分析】根据绝对值的代数意义和单项式次数的概念求解.【详解】-5的绝对值是5,单项式32x y-的次数是4.故答案为5,4.【点睛】本题考查了绝对值和单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.10.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为_______km 2. 【答案】1.026×105 【解析】 【分析】科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂, 【详解】解:102 600=1.026×105 故答案为:1.026×105 【点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键. 11.甲数比乙数的2倍大3,若乙数为x,则甲数为____________. 【答案】2x +3 【解析】 【分析】由题意先表示出乙数的2倍,再加上3,即可得到结果. 【详解】解:乙数x 的2倍为2x, 所以甲数为:2x+3, 故答案为2x+3.【点睛】本题考查了列代数式,读懂语句列出代数式是解题的关键.12.已知2m a b -和3n 13a b -是同类项,则m +n = ( ) A. 6 B. 5C. 4D. 3【答案】A 【解析】 【分析】根据相同字母的指数相同列方程求解即可. 【详解】由题意得m=3,n-1=2,∴n=3,∴m+n=3+3=6.故选A.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.13.一个多项式加上﹣3-x﹣2x2得到x2+1,这个多项式是________【答案】3x2+x+4【解析】【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【详解】设这个整式为M,则M=x2+1﹣(﹣3﹣x﹣2x2)=x2+1+3+x+2x2=(1+2)x2+x+(1+3)=3x2+x+4.故答案为3x2+x+4.【点睛】解决此类题目的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简.14.若|x﹣2|+(y+3)2=0,则(x+y)2018=________【答案】1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x﹣2=0,y+3=0,解得:x=2,y=﹣3,所以,(x+y)2018=(2﹣3)2018=1.故答案为1.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若|x|=7,|y|=5,且x>y,那么x﹣y的值是_______________.【答案】2或12【解析】【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可确定出x﹣y的值.【详解】∵|x|=7,|y|=5,且x>y,∴x=7,y=5或x=7,y=﹣5,∴x﹣y=7﹣5=2或7﹣(﹣5)=12.故答案为2或12.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解答本题的关键.16.已知2x﹣3y=3,则代数式6x﹣9y+5值为_____.【答案】14.【解析】【详解】代数式6x-9y+5可变形为3(2x-3y)+5,又2x-3y=3,所以6x-9y+5=3×3+5=14.故答案为14.17.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子数为_____.【答案】【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(−1),3+(−1)+b=−1+b+c,∴a=−1,c=3,∴数据从左到右依次为3、−1、b、3、−1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、−1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为−1.故答案为−1.【点睛】此题考查数字的变化规律以及有理数的加法,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.三、解答题(本大题共56分,解答时应写出必要的文字说明、计算过程或演算步骤)18.画一条数轴,并把 -4,-(-3.5),212,0,32各数在数轴上表示出来,并用“<”把它们连接起来.【答案】答案见解析.【解析】 【分析】在数轴上把各个数表示出来,再根据在数轴上表示的数,右边的总比左边的数大比较即可. 【详解】在数轴上表示为:用“<”把它们连接为:﹣4<0<32-<122<﹣(﹣3.5). 【点睛】本题考查了数轴和有理数的大小比较,注意:在数轴上表示的数,右边的总比左边的数大. 19.计算:(1)()8121623-+---- (2)(-8)÷(-4)-(-3)3×(-123) (3)(12-59+712)×(-36) (4)()31210.7510514143⨯--⨯+÷ 【答案】(1)-3;(2)-43;(3)-19;(4)-84 【解析】 【分析】(1)先算绝对值,把减法转化为加法,然后计算即可; (2)按照有理数混合运算的顺序,先乘方后乘除最后算加减; (3)运用乘法的分配律计算;(4)把除法转化为乘法后,运用乘法的分配律计算. 【详解】(1)原式=-8+12+16-23=-3; (2)原式=52273-⨯=2-45=-43; (3)原式=-18+20-21=-19;(4)原式=21×(-0.75)-105×0.75+14×0.75=0.75×(-21-105+14)=0.75×(-112)=-84. 【点睛】本题考查了有理数的混合运算.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣. 20.(1)化简:5m 2-7n -8mn +5n -9m 2+8mn .(2)已知:a -2b =4,ab =1.试求代数式(-a +3b +5ab )-(5b -2a +6ab )的值.【答案】(1)-4m 2-2n ;(2)3.【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.【详解】(1)原式=﹣4m 2﹣2n ;(2)原式=﹣a +3b +5ab ﹣5b +2a ﹣6ab =a ﹣2b ﹣ab,当a ﹣2b =4,ab =1时,原式=4-1=3.【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.21.解方程:(1)43(5)6x x --=; (2)121146x x +--=. 【答案】(1)x=3;(2)x=-7.【解析】【分析】(1)先去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解;(2)先去分母,再去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解.【详解】(1)去括号得:4x ﹣15+3x =6,移项得:4x +3x =6+15,合并同类项得:7x =21,化系数为1得:x =3;(2)去分母得:3(x +1)﹣2(2x ﹣1)=12,去括号得:3x +3﹣4x +2=12,移项得:3x ﹣4x =12﹣3﹣2,合并同类项得:﹣x =7,化系数为1得:x =﹣7.【点睛】本题考查了一元一次方程的求解方法,去分母,去括号,移项,合并同类项,化系数为1,是常用的一元一次方程的求解方法.22.已知代数式A =x 2+3xy +x -12,B =2x 2-xy +4y -1 (1)当x =y =-2时,求2A -B 的值;(2)若2A -B 的值与y 的取值无关,求x 的值.【答案】(1)2A -B =7xy+2x-4y ;(2)47x =【解析】【分析】(1)把A与B代入2A﹣B中,去括号合并后,把x与y的值代入计算即可得到结果;(2)由2A﹣B与x取值无关,确定出y的值即可.【详解】(1)2A﹣B=2(x2+3xy+x﹣12)﹣(2x2﹣xy+4y﹣1),= 2x2+6xy+2x﹣1﹣2x2+xy﹣4y+1,=7xy+2x﹣4y,当x=﹣2,y=﹣2时,2A﹣B=7xy+2x﹣4y =7×(﹣2)×(﹣2)+2×(﹣2)﹣4×(﹣2)=28-4+8=32;(2)由(1)可知2A﹣B=7xy+2x﹣4y =(7x﹣4)y+2x,若2A﹣B的值与y的取值无关,则7x﹣4=0,解得:47x .【点睛】本题考查了有理数的减法,熟练掌握运算法则是解答本题的关键.23.有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:-c0,+0,c-0.(2)化简:| b-c|+|+b|-|c-a|【答案】(1)<,<, >;(2)-2b【解析】【分析】(1)根据数轴得出a<0<b<c,|b|<|a|<|c|,即可求出答案;(2)去掉绝对值符号,合并同类项即可.【详解】(1)∵从数轴可知:a<0<b<c,|b|<|a|<|c|,∴b−c<0,a+b<0,c−a>0,(2)∵b−c<0,a+b<0,c−a>0,∴|b−c|+|a+b|−|c−a|=c−b+(−a−b)−(c−a)=c−b−a−b−c+a=−2b.【点睛】此题考查数轴、绝对值、整式的加减,解题关键在于结合数轴判断绝对值的大小.24.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽米,回答下列问题:(1)修建十字路的面积是多少平方米?(2)草坪(阴影部分)的面积是多少?(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?【答案】(1)50x-x2;(2)600-50x+x2;(3)504【解析】【分析】(1)根据修建的十字路面积=两条路的面积和﹣重叠部分的面积得出;(2)阴影面积等于矩形面积减去道路面积;(3)根据长方形草坪的面积﹣十字路的面积=草坪(阴影部分)的面积得出.【详解】(1)30x+20x﹣x2=50x﹣x2.答:修建十字路的面积是(50x﹣x2)平方米.(2)草坪的面积为:30×20﹣(50x﹣x2)=600﹣50x+x2;(3)600﹣50x+x2=600﹣50×2+2×2=504(平方米).答:草坪(阴影部分)的面积504平方米.【点睛】本题考查了列代数式及代数式求值的问题,应熟记长方形的面积公式.另外,整体面积=各部分面积之和;阴影部分面积=原面积﹣空白的面积.进出数量-3 4 -1 2 -5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库的原料比原来增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.【答案】(1)仓库原料比原来减少9吨;(2)选方案二运费少;(3)当a=2b时,两种方案运费相同.【解析】【分析】(1)将进出数量×进出次数,再把它们相加即可求解;(2)分别求出两种方案的钱数,再相加即可求解;(3)根据两种方案的运费相同,列出等式求解即可.【详解】(1)﹣3×2+4×1﹣1×3+2×3﹣5×2=﹣6+4﹣3+6﹣10=﹣9.答:仓库的原料比原来减少9吨.(2)方案一:(4+6)×5+(6+3+10)×8=50+152=202(元),方案二:(6+4+3+6+10)×6=29×6=174(元),因为174<202,所以选方案二运费少.(3)根据题意得:5a+8b=6(a+b),解得:a=2b.答:当a=2b时,两种方案运费相同.【点睛】本题考查了有理数的混合运算,列代数式,以及正数和负数,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.26.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t的代数式表示AM的长为(2)当t= 秒时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.【答案】(1)1+t,(2)192;(3)10,83.【解析】分析:(1)根据点M开始表示的数结合其运动速度和时间,即可得出运动后点M的表示的数,再依据点A表示的数为-1即可得出结论;(2)分别找出AM、BN,根据AM+BN=11即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论;(3)假设能够相等,找出AM、BN,根据AM=BN即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论.本题解析:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,∴移动后M 表示的数为t,N 表示的数为t+2,∴AM=t﹣(﹣1)=t+1.(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,∵AM+BN=11,∴t+1+|9﹣t|=11, 解得:192t = (3)假设能相等 ,则点A 表示的数为2t ﹣1,M 表示的数为t,N 表示的数为t+2,B 表示的数为11﹣t, ∴AM=|2t﹣1﹣t|=|t ﹣1|,BN=|t+2﹣(11﹣t)|=|2t ﹣9|,∵AM=BN ,∴|t﹣1|=|2t ﹣9|,1210,83t t ==解得 故在运动的过程中AM 和BN 能相等,此时运动的时间为 秒和8秒.点睛:本题考查了数轴及一元一次方程的应用,根据数量关系列出一元一次方程是解答试题的关键.。
苏教版七年级数学上学期期中试卷含答案
七年级第一学期期中数学试卷一.精心选一选(本大题共18分,每小题3分)1.下列算式中,运算结果为负数的是( ) A. 2- B. )2(-- C. 2)2(- D. 22-3-2.下列各组代数式中,不是同类项的是( )A .6与6-B .x -与x 2014C .4ab 与a b 49-D .3与a 33.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,28 000万这个数据用科学记数法表示为( )A .4108.2⨯B .91028.0⨯C .8108.2⨯D .71028⨯4.某种品牌的彩电降价30℅以后,每台售价为a 元,则该品牌彩电每台原价为( )A .0.7a 元 B.0.3a 元 C.3.0a 元 D.7.0a 元 5.请阅读一小段约翰·斯特劳斯的作品,根据乐谱中的信息,确定最后一个音符的时间长应为( )A .18B .12C .14D .346.在排成每行七天的日历表中取下一个33⨯方块(如图),若所有日期数之和为135,则n 的值为( )A .13B .14C .15D .9二.认真填一填(本大题共30分,每小题3分)7.3-的相反数是 1 B D C9.单项式52ab -的系数与次数的和是_______. 10.已知1=x 是方程352+=-a ax 的解,则=a .11. 如果n 为整数,那么[]20141121+-+⨯-n )(= . 12.若122++-x x 的值是4,则5422--x x 的值是 .13.一个学生由于粗心,在计算m 213-的值时,误将“-”看成“+”,结果得21,则m 213-的值应为______ __.14. 我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水占有量的51,中、美两国人均淡水资源占有量之和为138003m ,若设中国人均淡水占有量为x 3m ,则可列的一元一次方程是 __.15.如图,边长为a 的正方形,现分别以正方形的两个顶点为圆心,a 为半径,在正方形中画了两个41的圆, 则阴影部分的面积是 .16.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②). 如果规定a 1=1,a 2=3,a 3=6,a 4=10,…;b 1=1,b 2=4,b 3=9,b 4=16,…;y 1=2a 1+b 1,y 2=2a 2+b 2,y 3=2a 3+b 3,y 4=2a 4+b 4,…,那么,按此规定,=7y 。
苏教版七年级数学上册期中测试卷(含参考答案)
aO b 苏教版七年级数学上册期中考试试卷6姓名__________成绩_________一、选择题(共10小题,每小题2分,共20分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填在括号中)1.︱-3︱的相反数是 ( ) A 、 ±3 B 、 -3 C 、31-D 、 3 2.下列说法错误的是 ( ) A 、零是绝对值最小的有理数 B 、若是两个数互为相反数,那么它们的绝对值相等. C 、任何有理数的绝对值都是正 D 、两个互为相反数的商是-13.在|-2|,-(-2)2,-|-2|,(-2)3,-(-2)3,(-1)2n(n 是正整数),这6个数中,负数的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个北京奥运国家运动场“鸟巢”建筑面积达万平方米,用科学记数法表示应为( ) A 、×104m 2B 、×105m 2C 、×105m 2D 、×106m25.四个有理数的积是负数,则这四个数中负因数的个数是 ( ) A 、1个 B 、3个 C 、1个或3个 D 、不能确信6.如有理数a 、b 在数轴上的位置如图所示,则下列各式中不成立的是 ( ) A 、a >-bB 、b -a <0C 、|a|>|b|D 、a+b <07.下列去括号正确的是 ( ) A 、-(a+b-c)=-a+b-c B 、-2(a+b-3c)=-2a-2b+6c C 、-(-a-b-c)=-a+b+c D 、-(a-b-c)=-a+b-c8.多项式5a 3-6a 3b +3a 2b -3a 3+6a 3b -5-2a 3-3ba 2的值 ( ) A 、只与a 有关 B 、只与b 有关 C 、与字母a 、b 都有关 D 、与字母a 、b 都无关9.已知n 表示正整数,则2)1(21nn -+= ( ) A 、0 B 、 1 C 、0 或1 D 、 无法确信,随n 值的不同而不同10.若代数式x 2的值和代数式2x + y- 1的值相等,则代数式9-2(y +2x) +2x 2的值是 ( )A 、7B 、 4C 、1D 、不能确信二、填空题(共12小题,每小题2分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共8小题,每题2分,共16分,请把正确答案的编号填在括号内.) 1.下列各数中,是负数的是……………………………………………………………( ) A .―(―3) B .2012 C .0 D .―24
2.下列结论正确的是…………………………………………………………………( )
A .有理数包括正数和负数
B .无限不循环小数叫做无理数
C .0是最小的整数
D .数轴上原点两侧的数互为相反数 3.下列各组数中,数值相等的是……………………………………………………( ) A .34和43 B .―42和(―4)2 C .―23和(―2)3 D .(―2×3)2和―22×32 4.如果||a +2+ (b -1)2=0,那么(a +b )2013的值等于………………………………( ) A .- 1 B .-2013 C .1 D . 2013
5.在下列代数式中,次数为3的单项式是…………………………………………( )
A .xy 2
B .x 3+y 3
C .x 3y
D .3xy
6.关于x 的方程2x +a -9=0的解是x =2,则a 的值是…………………………( ) A .2 B .3 C .4 D .5
7.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长度是……………………………( ) A .b +1a 米 B .(b a +1)米 C .(a +b a +1)米 D .(a
b
+1)米
8.按如图所示的程序计算,若开始输入的x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有…………………………………………………………………( )
二、填空题(本大题共10小题,每空2分,共24分,请把结果直接填在题中的横线上.) 9.-1
3
的相反数是 ,倒数是 .
10.平方得16的数为 , 的立方等于-8. 11.满足条件大于-2而小于π的整数共有 个.
12.去年11月,我国第六次全国人口普查中,具有大学(指大专以上)文化程度的人口约
为120 000 000,将这个数据用科学记数法可表示为 .
1
3 5
3
5 7
3 5
7 9
58
14
13. 若3x m +5y 2与x 3y n 的和仍为单项式,则m n = .
14.已知a 、b 互为倒数,c 、d 互为相反数,则代数式ab ―c ―d 的值为 . 15.若x 2+x +2的值为3,则代数式2x 2+2x +5的值为 .
16.数轴上与-1表示的点相距为两个单位长度的点所表示的数为 . 17.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m = .
18. 若关于x 的一元一次方程(5a +3b )x 2+ax +b =0有唯一解,则x = . 三、解答题(本大题共6小题,共60分. 解答需写出必要的文字说明或演算步骤.) 19.(6分)请把下列各数填在相应的集合内
+4,-1,-⎪⎪⎪⎪-12,-(+2
7),-(-2),0,2.5,π,-1.22,100% 正数集合:{ …} 非负整数集合:{ …} 负分数集合:{ } 20.(16分)计算:① 8×(-1)2―(―4)+(-3); ② -413-512+71
3
③ -14×(-216)+(-5)×216+4×136 ④ (-2)3÷
||-32+1-(-512)×4
11
21.(12分)化简:① (8a -7b )-(4a -5b ) ② 5xyz -2x 2y +[3xyz -(4xy 2-x 2y )]
•
•
•
x
y
③ 先化简,再求值:-3(2m +3n )-1
3(6n -12m ),其中m =5,n =-1.
22.(8分)解方程:① 2(3-x )=-4x +5 ② 2x +13-5x
6
=1
23.(6分)有理数x 、y 在数轴上对应点如图所示:
(1)在数轴上表示-x 、||y ;
(2)试把x 、y 、0、-x 、||y 这五个数从小到大用“<”号连接; (3)化简 ||x +y -||y -x +||y .
24.(6分)已知代数式A =2x 2+3xy +2y -1,B =x 2-xy +x -1
2
(1)当x =y =-2时,求A -2B 的值; (2)若A -2B 的值与x 的取值无关,求y 的值.
25.(6分)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商
场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取. 某顾客购买的电器价格是x 元. (1)当x =850时,该顾客应选择在 商场购买比较合算;
(2)当x >1000时,分别用代数式表示在两家商场购买电器所需付的费用; (3)当x =1700时,该顾客应选择哪一家商场购买比较合算?说明理由.
参考答案与评分标准
2012.11
一、选择(每题2分) D B C A A D B B
2
4. A -2B =5xy -2x +2y ………………………………………………………… (2分) (1)当x =y =-2时,求A -2B =5×4=20……………………………………(4分) (2)令5y -2=0,得y =2
5 .…………………………………………………… (6分)
25. (1)乙………………………………………………………………………… (2分) (2)当x >1000时,甲商场需付款1000+(x -1000)90%=100+0.9x ………… (3分) 乙商场需付款500+(x -500)95%=25+0.95x …………… (4分) (3)当x =1700时,甲商场需付款100+0.9x =100+0.9×1700=1630(元)
乙商场需付款25+0.95x =25+0.95×1700=1640(元)…(5分)
因此,在甲商场购买比较合算. ……………………………………………… (6分)。