2019届高考数学二轮复习小题必刷卷一集合与常用逻辑用语文

合集下载

2019年高考数学(文):专题01-集合与常用逻辑用语(命题猜想)(含答案和解析)

2019年高考数学(文):专题01-集合与常用逻辑用语(命题猜想)(含答案和解析)

【考向解读】集合与常用逻辑用语在高考中是以选择题或填空题的形式进行考查的,属于容易题.但命题真假的判断,这一点综合性较强,联系到更多的知识点,属于中挡题.预测高考会以集合的运算和充要条件作为考查的重点.【命题热点突破一】集合的关系及运算集合是高考每年必考内容,题型基本都是选择题、填空题,题目难度大多数为最低档,有时候在填空题中以创新题型出现,难度稍高.在复习中,本部分应该重点掌握集合的表示、集合的性质、集合的运算及集合关系在常用逻辑用语、函数、不等式、三角函数、解析几何等方面的应用.同时注意研究有关集合的创新问题,研究问题的切入点及集合知识在相关问题中所起的作用.1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解. 例1、(2018年全国卷Ⅱ)已知集合,,则A.B.C.D.【答案】C 【解析】,,故选C 。

【变式探究】【2017全国卷1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由320x ->得32x <,所以,选A .【变式探究】设集合,则S T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D 【解析】由解得3x ≥或2x ≤,所以,所以,故选D .【变式探究】【2017天津,文2】设x ∈R ,则“20x -≥”是“|1|1x -≤”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【变式探究】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( ) (A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C【解析】由题意得,,故是必要不充分条件,故选C.【感悟提升】充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.【变式探究】(1)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B(2)给出下列命题:①若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ②a =b 的充要条件是|a |=|b |且a ∥b ;③在△ABC 中,sin A >sin B 的充要条件为A >B ;④在△ABC 中,设命题p :△ABC 是等边三角形,命题q :a ∶b ∶c =sin B ∶sin C ∶sin A ,那么命题p 是命题q 的充分不必要条件.其中正确的命题为________.(把你认为正确的命题序号都填上) 【答案】①③【解析】①正确.因为AB →=DC →, 所以|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB →∥DC →且|AB →|=|DC →|,因此AB →=DC →.②不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.【点评】判断充分、必要条件时应注意的问题(1)先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .9. (2018年北京卷)设a,b,c,d 是非零实数,则“ad =bc ”是“a,b,c,d 成等比数列”的 A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B10. (2018年天津卷)设,则“”是“” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A 【解析】求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“”的充分而不必要条件,本题选择A 选项。

【精选高考】2019-2020高考数学二轮复习小题专项练习(一)集合与常用逻辑用语文

【精选高考】2019-2020高考数学二轮复习小题专项练习(一)集合与常用逻辑用语文
故y=f(x)在(-∞,a)和(b,+∞)上分别单调递增,是y=f(x)在(-∞,a)∪(b,+∞)上为增函数的必要不充分条件.
14.②④
解析:“若xy=0,则x=0”的否命题为“xy≠0,则x≠0”,则①不正确;若A∩B=A,则A⊆B,是真命题,则逆否命题是真命题,②正确;“全等三角形的面积相等”的否命题为假命题,③不正确;“若x2+y2=0,则x,y均为0”的逆命题为“若x,y均为0,则x2+y2=0”,④正确.
A.∃x0≥0,2x0<x B.∀x≥0,2x<x2
C.∃x0≥0,2x0≤x D.∀x≥0,2x≤x2
4.[2018·天津南开中学第五次月考]“lgx,lgy,lgz成等差数列”是“y2=xz”成立的()
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既不充分也不必要条件
5.[2018·河北景县中学月考]设命题p:“∀x∈R,x2+1≥1”的否定是“∃x0∈R,x +1<1”;命题q:函数y=cosx的图象关于直线x= 对称.则下列判断正确的是()
6.D当α=45°,β=405°,α<β,
但tanα=tanβ,D错,故选D.
7.CA={y|y=-ex+4}={y|y<4},
B={x|y=lg[(x+2)(3-x)]}={x|-2<x<3},
∴B⊆A,
∴∁RA⊆∁RB,故选C.
8.C命题“∀x∈R,sinx≥1”的否定是“∃x0∈R,sinx0<1”,A错;若a∥b,当b≠0时,存在唯一的实数λ,使得a=λb,B错;若“p∨q”为真命题,则p与q至少有一个为真,当p假,q真时,p∨q为真命题,但p∧(綈q)为假,D错,C正确,故选C.
C.{-3,-2,-1,0,1,2} D.[0,2]

高考数学(理科)二轮复习【专题1】集合与常用逻辑用语(含答案)

高考数学(理科)二轮复习【专题1】集合与常用逻辑用语(含答案)

第1讲集合与常用逻辑用语考情解读(1)集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年也出现一些集合的新定义问题.(2)高考中考查命题的真假判断或命题的否定或充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.集合的基本运算(1)交集:A∩B={x|x∈A,且x∈B}.(2)并集:A∪B={x|x∈A,或x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.重要结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.基本逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(綈p)∧(綈q);命题p∧q的否定是(綈p)∨(綈q).6.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.热点一集合的关系及运算例1(1)(2014·四川改编)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=________.(2)(2013·广东改编)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列命题正确的是________.①(y,z,w)∈S,(x,y,w)∉S;②(y,z,w)∈S,(x,y,w)∈S;③(y,z,w)∉S,(x,y,w)∈S;④(y,z,w)∉S,(x,y,w)∉S.思维启迪明确集合的意义,理解集合中元素的性质特征.答案(1){-1,0,1,2}(2)②解析(1)因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2}.(2)因为(x,y,z)和(z,w,x)都在S中,不妨令x=2,y=3,z=4,w=1,则(y,z,w)=(3,4,1)∈S,(x,y,w)=(2,3,1)∈S,故(y,z,w)∉S,(x,y,w)∉S的说法均错误,可以排除①③④,故②正确.思维升华(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M={1,2,3},N={x∈Z|1<x<4},则M∩N=________.(2)(2013·山东改编)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.答案(1){2,3}(2)5解析(1)集合N是要求在(1,4)范围内取整数,所以N={x∈Z|1<x<4}={2,3},所以M∩N={2,3}.-2,-1,0,1,2.(2)x-y∈{}热点二四种命题与充要条件例2(1)(2014·天津改编)设a,b∈R,则“a>b”是“a|a|>b|b|”的________条件.(2)(2014·江西改编)下列叙述中正确的是________.①若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”;②若a,b,c∈R,则“ab2≥cb2”的充要条件是“a>c”;③命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”;④l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.思维启迪要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义.答案(1)充要(2)④解析(1)当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|.(2)由于“若b2-4ac≤0,则ax2+bx+c≥0”是假命题,所以“ax2+bx+c≥0”的充分条件不是“b2-4ac≤0”,①错;因为ab2>cb2,且b2>0,所以a>c.而a>c时,若b2=0,则ab2>cb2不成立,由此知“ab2>cb2”是“a>c”的充分不必要条件,②错;“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2<0”,③错;由l⊥α,l⊥β,可得α∥β,理由:垂直于同一条直线的两个平面平行,④正确.思维升华(1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a,b都是偶数,则a+b是偶数”的逆否命题是________.(2)“log3M>log3N”是“M>N成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)答案(1)若a+b不是偶数,则a,b不都是偶数(2)充分不必要解析(1)判断词“都是”的否定是“不都是”.(2)由log3M>log3N,又因为对数函数y=log3x在定义域(0,+∞)单调递增,所以M>N;当M>N 时,由于不知道M、N是否为正数,所以log3M、log3N不一定有意义.故不能推出log3M>log3N,所以“log3M>log3N”是“M>N成立”的充分不必要条件.热点三逻辑联结词、量词例3(1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,sin x<x,则下列命题正确的是________.①命题p∨q是假命题②命题p∧q是真命题③命题p ∧(綈q )是真命题 ④命题p ∨(綈q )是假命题(2)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是_________________________________________________________________.思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题要理解量词含义,确定参数范围.答案 (1)③ (2)[1,+∞)解析 (1)对于命题p ,取x =10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,取x =-π2,则sin x =sin(-π2)=-1,此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题,命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题,故③正确.(2)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题,得綈p :∀x ∈R ,mx 2+2>0为真命题,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x ∈R ,x 2-2mx +1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②,得m ≥1.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列命题中正确的是________.①p 真q 假 ②p 假q 真③“p ∧q ”为假 ④“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是________.答案 (1)③ (2)(1,+∞)解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B .故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.(綈p)∧q为真命题,即綈p真且q真,即a>1.1.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江改编)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=________.答案{2}解析因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.2.(2014·重庆改编)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②綈p∧綈q③綈p∧q④p∧綈q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、綈p为假命题,綈q为真命题,綈p∧綈q、綈p∧q为假命题,p∧綈q为真命题,故④为真命题.押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如图所示,得c ≥1.2.已知下列命题:①命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题;③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题.其中正确的命题是________.答案 ②解析 命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错.3.已知p :x +210-x≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要不充分条件,求实数m 的取值范围.解 由x +210-x≥0,得-2≤x <10,即p :-2≤x <10; 由x 2-2x +1-m 2≤0(m <0),得[x -(1+m )]·[x -(1-m )]≤0,所以1+m ≤x ≤1-m ,即q :1+m ≤x ≤1-m .又因为p 是q 的必要条件,所以⎩⎪⎨⎪⎧m +1≥-2,1-m <10,解得m ≥-3, 又m <0,所以实数m 的取值范围是-3≤m <0.(推荐时间:40分钟)1.(2014·陕西改编)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =________. 答案 [0,1)解析 N ={x |-1<x <1},M ∩N =[0,1).2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为_______________________________________________________________. 答案 13解析 若x =5∈A ,y =1∈A ,则x +y =5+1=6∈B ,即点(5,1)∈C ;同理,(5,2)∈C ,(4,1)∈C ,(4,2)∈C ,(4,3)∈C ,(3,2)∈C ,(3,3)∈C ,(3,4)∈C ,(2,3)∈C ,(2,4)∈C ,(2,5)∈C ,(1,4)∈C ,(1,5)∈C .所以C 中所含元素的个数为13.3.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为________.答案 7解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意,知题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.4.“(m -1)(a -1)>0”是“log a m >0”的________条件.答案 必要不充分解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧ m <1,a <1.log a m >0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以前者是后者的必要不充分条件.5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是________. 答案 ∀x ∈(0,π2),使得cos x >x 解析 原命题是一个特称命题,其否定是一个全称命题.而“cos x ≤x ”的否定是“cos x >x ”.6.在△ABC 中,“A =60°”是“cos A =12”的________条件. 答案 充要解析 在A =60°时,有cos A =12,因为角A 是△ABC 的内角,所以,当cos A =12时,也只有A =60°,因此,是充要条件.7.(2013·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B =________.答案 {x |0≤x <2或x >4}解析 ∵A ={x |x ≥0},B ={x |2≤x ≤4},∴A ∩∁R B ={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是_________________________________________________________________.答案 2解析 集合A 表示直线l :x +y -1=0上的点的集合,集合B 表示抛物线C :y =x 2+1上的点的集合.由⎩⎪⎨⎪⎧x +y -1=0,y =x 2+1消去y 得x 2+x =0, 由于Δ>0,所以直线l 与抛物线C 有两个交点.即A ∩B 有2个元素.9.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是________.①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真.答案 ③解析 p 是假命题,q 是假命题,因此只有③正确.10.已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.答案 (1,+∞)解析 由x (x -1)≥0可得x ≤0或x ≥1,则P =(-∞,0]∪[1,+∞);又由x -1>0可得x >1,则Q =(1,+∞),所以P ∩Q =(1,+∞).12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则b a=________.答案 -4解析 由A ={x |x >2或x <-1},A ∪B =R ,A ∩B ={x |2<x ≤4},可得B ={x |-1≤x ≤4},则a=-1,b =4,故b a=-4. 13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________.答案 1解析 根据题意可得:∀x ∈R ,x 2+2x +m >0是真命题,则Δ<0,即22-4m <0,m >1,故a =1.14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x,y)∈{(x,y)|x3+y3-x2y=0},对于k∈(0,1),因为(kx)3+(ky)3-(kx)2·(ky)=0⇒x3+y3-x2y=0,所以(kx,ky)∈{(x,y)|x3+y3-x2y=0},故④是具有性质P的点集.综上,具有性质P的点集是②④.。

2019年高考数学理科第二伦专题:集合与常用逻辑用语(名师推荐)

2019年高考数学理科第二伦专题:集合与常用逻辑用语(名师推荐)

U A. ∅ B.{2} C.{5} D.{2,5}答案 B解析 A ={x ∈N |x 2≥5}={x ∈N |x ≥},5故∁U A ={x ∈N |2≤x <}={2},故选B.53.已知集合A ={x |y =},B ={x |x 2<9,x ∈Z },则A ∩B 等于( )2+x -x 2A.[-1,2]B.{0,1}C.{0,2}D.{-1,0,1,2}答案 D解析 由2+x -x 2≥0得-1≤x ≤2,∴A =[-1,2],由题意得B ={-2,-1,0,1,2},∴A ∩B ={-1,0,1,2},故选D.4.设命题p :f (x )=ln x +2x 2+mx +1在(0,+∞)内单调递增,命题q :m ≥-5,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 f ′(x )=+4x +m (x >0),1x 由f ′(x )=+4x +m ≥0,得m ≥-.1x (1x+4x )因为+4x ≥2=4,所以-≤-4,所以m ≥-4,即p :m ≥-4.所以p 是q 1x 1x ·4x (当且仅当x =12时取等号)(1x +4x )的充分不必要条件,故选A.答案:A21.定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B },若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A =( )A .{x |2<x ≤4}B .{x |3≤x ≤4}C .{x |2<x <3}D .{x |2≤x ≤4}解析:∵A ={x |1<x <3},B ={x |2≤x ≤4},∴B △A ={x |3≤x ≤4}.答案:B22.下列说法中正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x -x 0-1>0,则綈p :∀x ∈R ,x 2-x -1<020C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=,则sin α=”的否命题是“若α≠,则sin α≠”π612π612解析:f (0)=0,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x -x 0-1>0,则綈20p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.答案:D23.已知命题p :∀x ∈R,2x >0;命题q :在曲线y =cos x 上存在斜率为的切线,则下列判断正确的是( )2A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题解析:易知,命题p 是真命题,对于命题q ,y ′=-sin x ∈[-1,1],而∉[-1,1],故命题q 为假命题,所以2綈q 为真命题,p ∧(綈q )是真命题.故选C.答案:C24.命题p :∃a ∈,使得函数f (x )=在上单调递增;命题q :函数g (x )=x +log 2x 在(-∞,-14)|x +a x +1|[12,3]区间上无零点.则下列命题中是真命题的是( )(12,+∞)A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )解析:设h (x )=x +.当a =-时,函数h (x )为增函数,且h =>0,则函数f (x )在上必单调递增,ax +112(12)16[12,3]即p 是真命题;∵g =-<0,g (1)=1>0,∴g (x )在上有零点,即q 是假命题,故选D.(12)12(12,+∞)答案:D25.若a ,b ∈R ,则>成立的一个充分不必要条件是( )1a 31b 3A .a <b <0B .b >aC .ab >0D .ab (a -b )<0解析:-==,选项A 可以推出>.故选A.1a 31b 3b 3-a 3ab 3 b -a b 2+ab +a 2 ab 31a 31b 3答案:A26.不等式组Error!的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2;p 2:∃(x ,y )∈D ,x +2y ≥2;p 3:∀(x ,y )∈D ,x +2y ≤3;p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( )A .p 2,p 3B .p 1,p 2C .p 1,p 4D .p 1,p 3解析:不等式组表示的区域D 如图中阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.故选B.答案:B27.已知集合A ={x |2x 2+3x -2<0},集合B ={x |x >a },如果“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是( )A .a ≤-2B .a <-2C .a >-2D .a ≥-2解析:由2x 2+3x -2<0,解得-2<x <,即A ={x |-2<x <},因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以1212A ⊆B ,所以a ≤-2,即实数a 的取值范围是a ≤-2.。

【K12小初高学习】2019年人教版高考数学复习题---集合、常用逻辑用语Word版

【K12小初高学习】2019年人教版高考数学复习题---集合、常用逻辑用语Word版

限时速解训练一 集合、常用逻辑用语(附参考答案)(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)1.已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7}解析:选C.由补集的定义,得∁U A ={2,4,7}.故选C.2.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( )A .-3∈AB .3∉BC .A ∩B =BD .A ∪B =B解析:选C.由题知A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B ,故选C.3.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]解析:选A.M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1],故选A.4.(2016·山东聊城模拟)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4解析:选D.因为A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},所以⎩⎨⎧a 2=16,a =4,则a =4. 5.(2016·湖北八校模拟)已知a ∈R ,则“a >2”是“a 2>2a ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.6.已知集合A={z∈C|z=1-2a i,a∈R},B={z∈C||z|=2},则A∩B等于() A.{1+3i,1-3i} B.{3-i}C.{1+23i,1-23i} D.{1-3i}解析:选A.问题等价于|1-2a i|=2,a∈R,解得a=±32.故选A.7.已知命题p:对任意x>0,总有e x≥1,则綈p为()A.存在x0≤0,使得e x0<1B.存在x0>0,使得e x0<1C.对任意x>0,总有e x<1D.对任意x≤0,总有e x<1解析:选B.因为全称命题的否定是特称命题,所以,命题p:对任意x>0,总有e x≥1的否定綈p为:存在x0>0,使得e x0<1.故选B.8.已知命题p:∃x0∈R,tan x0=1,命题q:∀x∈R,x2>0.下面结论正确的是()A.命题“p∧q”是真命题B.命题“p∧(綈q)”是假命题C.命题“(綈p)∨q”是真命题D.命题“(綈p)∧(綈q)”是假命题解析:选D.取x0=π4,有tanπ4=1,故命题p是真命题;当x=0时,x2=0,故命题q是假命题.再根据复合命题的真值表,知选项D是正确的.9.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若log2x+log x2≥2,则x>1;③“若a>b>0且c<0,则ca>cb”的逆否命题;④若p且q为假命题,则p,q均为假命题.其中真命题是()A.①②③B.①②④C.①③④D.②③④解析:选A.①中不等式可表示为(x-1)2+2>0,恒成立;②中不等式可变为log2x+1log2x≥2,得x>1;③中由a>b>0,得1a<1b,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p且q为假只能得出p,q中至少有一个为假,④不正确.10.(2016·山东济南模拟)设A,B是两个非空集合,定义运算A×B={x|x∈A∪B,且x∉A∩B}.已知A={x|y=2x-x2},B={y|y=2x,x>0},则A×B=() A.[0,1]∪(2,+∞) B.[0,1)∪[2,+∞)C.[0,1] D.[0,2]解析:选A.由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1},所以A∪B =[0,+∞),A∩B=(1,2],所以A×B=[0,1]或(2,+∞).11.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.若“直线y=x+b与圆x2+y2=1相交”,则圆心到直线的距离为d=|b|2<1,即|b|<2,不能得到0<b<1;反过来,若0<b<1,则圆心到直线的距离为d=|b|2<12<1,所以直线y=x+b与圆x2+y2=1相交,故选B.12.(2016·陕西五校二模)下列命题正确的个数是()①命题“∃x0∈R,x20+1>3x0”的否定是“∀x∈R,x2+1≤3x”;②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x2+2x≥ax在x∈[1,2]上恒成立⇔(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.A.1 B.2C .3D .4解析:选B.易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b <0得向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0且a 与b 不反向”,故④不正确.二、填空题(把答案填在题中横线上)13.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎨⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)14.若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是________. 解析:由题意,命题“∀x ∈R ,x 2-2x +m >0”是真命题,故Δ=(-2)2-4m <0,即m >1.答案:(1,+∞)15.已知p :∃x 0∈R ,mx 20+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.解析:因为p ∨q 是假命题,所以p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假命题知,綈p :∀x ∈R ,mx 2+2>0为真命题,所以m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题知,綈q :∃x 0∈R ,x 20-2mx 0+1≤0为真命题,所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②得m ≥1. 答案:[1,+∞)16.下列四个命题中,真命题有________.(写出所有真命题的序号)①若a ,b ,c ∈R ,则“ac 2>bc 2”是“a >b ”成立的充分不必要条件;②命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”;③命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”;④函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点.解析:①若c =0,则不论a ,b 的大小关系如何,都有ac 2=bc 2,而若ac 2>bc 2,则有a >b ,故“ac 2>bc 2”是“a >b ”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,故②为真命题;③命题“若p ,则q ”形式的命题的否命题是“若綈p ,则綈q ”,故命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”,故③为真命题;④由于f (1)f (2)=⎝ ⎛⎭⎪⎫ln 1+1-32⎝ ⎛⎭⎪⎫ln 2+2-32=⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫ln 2+12<0,则函数f (x )=ln x +x -32在区间(1,2)上存在零点,又函数f (x )=ln x +x -32在区间(1,2)上为增函数,所以函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④。

【配套K12】[学习](文理通用)2019届高考数学大二轮复习 第1部分 专题1 集合、常用逻辑用语

【配套K12】[学习](文理通用)2019届高考数学大二轮复习 第1部分 专题1 集合、常用逻辑用语

第一部分专题一第一讲集合与常用逻辑用语A组1.(文)(2018·天津卷,1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( C )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}[解析]∵A={1,2,3,4},B={-1,0,2,3},∴A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴ (A∪B)∩C={-1,0,1}.故选C.(理)(2018·天津卷,1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( B )A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}[解析]全集为R,B={x|x≥1},则∁R B={x|x<1}.∵集合A={x|0<x<2},∴A∩(∁R B)={x|0<x<1}.故选B.2.(2018·蚌埠三模)设全集U={x|e x>1},函数f(x)=1x-1的定义域为A,则∁U A=( A )A.(0,1] B.(0,1)C.(1,+∞) D.[1,+∞)[解析]全集U={x|x>0},f(x)的定义域为{x|x>1},所以∁U A={x|0<x≤1}.3.命题“∀x∈[0,+∞),x3+x≥0”的否定是( C )A.∀x∈(-∞,0),x3+x<0B.∀x∈(-∞,0),x3+x≥0C.∃x0∈[0,+∞),x30+x0<0D.∃x0∈[0,+∞),x30+x0≥0[解析]全称命题“∀x∈[0,+∞),x3+x≥0”的否定是特称命题“∃x0∈[0,+∞),x30+x0<0”.4.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ;p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2;p 4:若复数z ∈R ,则z ∈R .其中的真命题为( B ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4[解析] 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题. 对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R , 则ab =0.当a =0,b ≠0时,z =a +b i =b i ∉R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题. 5.已知命题p :在等差数列{a n }中,若a m +a n =a p +a q (m ,n ,p ,q ∈N *),则有m +n =p +q ,命题q :∃x 0>0,2-x 0=e x 0,则下列命题是真命题的是( C )A .p ∧qB .p ∧綈qC .p ∨qD .p ∨綈q[解析] 命题p 是假命题,因为当等差数列{a n }是常数列时显然不成立,根据两个函数的图象可得命题q 是真命题,∴p ∨q 是真命题,故选C .6.设集合M ={x |x 2+3x +2<0},集合N ={x |(12)x ≤4},则M ∪N =( A )A .{x |x ≥-2}B .{x |x >-1}C .{x |x ≤-1}D .{x |x ≤-2}[解析] 因为M ={x |x 2+3x +2<0}={x |-2<x <-1},N =[-2,+∞),所以M ∪N =[-2,+∞),故选A .7.设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( D ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件[解析] 取a =-b ≠0,则|a |=|b |≠0,|a +b |=|0|=0,|a -b |=|2a |≠0,所以|a +b |≠|a -b |,故由|a |=|b |推不出|a +b |=|a -b |.由|a +b |=|a -b |,得|a +b |2=|a -b |2,整理得a·b =0,所以a ⊥b ,不一定能得出|a |=|b |,故由|a +b |=|a -b |推不出|a |=|b |.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.故选D .8.下列四个命题中正确命题的个数是( A )①对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1>0; ②m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充要条件; ③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程为y ^=1.23x +0.08;④若实数x ,y ∈[-1,1],则满足x 2+y 2≥1的概率为π4. A .1 B .2 C .3D .4[解析] ①错,应当是綈p :∀x ∈R ,均有x 2+x +1≥0;②错,当m =0时,两直线也垂直,所以m =3是两直线垂直的充分不必要条件;③正确,将样本点的中心的坐标代入,满足方程;④错,实数x ,y ∈[-1,1]表示的平面区域为边长为2的正方形,其面积为4,而x 2+y 2<1所表示的平面区域的面积为π,所以满足x 2+y 2≥1的概率为4-π4.9.(文)已知全集U =R ,集合A ={x |0<x <9,x ∈R }和B ={x |-4<x <4,x ∈Z }关系的Venn 图如图所示,则阴影部分所求集合中的元素共有( B )A .3个B .4个C .5个D .无穷多个[解析] 由Venn 图可知,阴影部分可表示为(∁U A )∩B .由于∁U A ={x |x ≤0或x ≥9},于是(∁U A )∩B ={x |-4<x ≤0,x ∈Z }={-3,-2,-1,0},共有4个元素.(理)设全集U =R ,A ={x |x (x -2)<0},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( B )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[解析] 分别化简两集合可得A ={x |0<x <2},B ={x |x <1},故∁U B ={x |x ≥1},故阴影部分所示集合为{x |1≤x <2}. 10.下列命题的否定为假命题的是( D ) A .∃x ∈R ,x 2+2x +2≤0 B .任意一个四边形的四顶点共圆 C .所有能被3整除的整数都是奇数 D .∀x ∈R ,sin 2x +cos 2x =1[解析] 设命题p :∀x ∈R ,sin 2x +cos 2x =1,则綈p :∃x ∈R ,sin 2x +cos 2x ≠1,显然綈p 是假命题.11.已知全集U =R ,设集合A ={x |y =ln(2x -1)},集合B ={y |y =sin(x -1)},则(∁UA )∩B 为(C )A .(12,+∞)B .(0,12]C .[-1,12]D .∅[解析] 集合A ={x |x >12},则∁U A ={x |x ≤12},集合B ={y |-1≤y ≤1},所以(∁U A )∩B ={x |x ≤12}∩{y |-1≤y ≤1}=[-1,12].12.给定命题p :函数y =ln[(1-x )(1+x )]为偶函数;命题q :函数y =e x-1e x +1为偶函数,下列说法正确的是( B )A .p ∨q 是假命题B .(綈p )∧q 是假命题C .p ∧q 是真命题D .(綈p )∨q 是真命题[解析] 对于命题p :y =f (x )=ln[(1-x )(1+x )], 令(1-x )(1+x )>0,得-1<x <1.所以函数f (x )的定义域为(-1,1),关于原点对称, 因为f (-x )=ln[(1+x )(1-x )]=f (x ), 所以函数f (x )为偶函数,所以命题p 为真命题;对于命题q :y =f (x )=e x-1e x +1,函数f (x )的定义域为R ,关于原点对称,因为f (-x )=e -x -1e -x +1=1e x -11ex +1=1-ex1+ex =-f (x ),所以函数f (x )为奇函数,所以命题q 为假命题,所以(綈p )∧q 是假命题.13.已知命题p :x ≥1,命题q :1x<1,则綈p 是q 的既不充分也不必要条件.[解析] 由题意,得綈p 为x <1,由1x<1,得x >1或x <0,故q 为x >1或x <0,所以綈p是q 的既不充分也不必要条件.14.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.[解析] 全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.15.已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于3. [解析] A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3},集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}.故A ∩Z 中所有元素之和为0+1+2=3.16.已知命题p :∀x ∈R ,x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p 且q ”是真命题,则实数a 的取值范围为(-∞,-2].[解析] 由已知条件可知p 和q 均为真命题,由命题p 为真得a ≤0,由命题q 为真得a ≤-2或a ≥1, 所以a ≤- 2.组1.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z },则A ∩B =( C ) A .{-1} B .{0} C .{-1,0}D .{0,1}[解析] 本题主要考查一元二次不等式的解法与集合的表示方法、集合间的基本运算. 依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z }={-1,0},选C .2.已知全集U =R ,集合A ={x |y =lg(x -1)},集合B ={y |y =x 2+2x +5},则A ∩B =( C )A .∅B .(1,2]C .[2,+∞)D .(1,+∞)[解析] 由x -1>0,得x >1,故集合A =(1,+∞),又y =x 2+2x +5=x +2+4≥4=2,故集合B =[2,+∞),所以A ∩B =[2,+∞),故选C .3.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >c b”的逆否命题; ④若p 且q 为假命题,则p ,q 均为假命题. 其中真命题的是( A ) A .①②③ B .①②④ C .①③④D .②③④[解析] ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x ≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.4.设x 、y ∈R ,则“|x |≤4且|y |≤3”是“x 216+y 29≤1”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] “|x |≤4且|y |≤3”表示的平面区域M 为矩形区域,“x 216+y 29≤1”表示的平面区域N 为椭圆x 216+y 29=1及其内部,显然N M ,故选B .5.(文)若集合A ={x |2<x <3},B ={x |(x +2)(x -a )<0},则“a =1”是“A ∩B =∅”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 当a =1时,B ={x |-2<x <1},∴A ∩B =∅,则“a =1”是“A ∩B =∅”的充分条件;当A ∩B =∅时,得a ≤2,则“a =1”不是“A ∩B =∅”的必要条件,故“a =1”是“A ∩B =∅”的充分不必要条件.(理)设x ,y ∈R ,则“x ≥1且y ≥1”是“x 2+y 2≥2”的( D ) A .既不充分又不必要条件 B .必要不充分条件 C .充要条件 D .充分不必要条件[解析] 当x ≥1,y ≥1时,x 2≥1,y 2≥1,所以x 2+y 2≥2;而当x =-2,y =-4时,x 2+y 2≥2仍成立,所以“x ≥1且y ≥1”是“x 2+y 2≥2”的充分不必要条件,故选D .6.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A ×B ={(x ,y )|x ∈A ,y ∈B },则集合A ×B 中属于集合{(x ,y )|log x y ∈N }的元素个数是( B )A .3B .4C .8D .9[解析] 用列举法求解.由给出的定义得A ×B ={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)}.其中log 22=1,log 24=2,log 28=3,log 44=1,因此,一共有4个元素,故选B .7.(2018·东北三省四市一模)已知命题p :函数y =lg(1-x )在(-∞,1)内单调递减,命题q :函数y =2cos x是偶函数,则下列命题中为真命题的是( A )A .p ∧qB .(綈p )∨(綈q )C .(綈p )∧qD .p ∧(綈q )[解析] 命题p :函数y =lg(1-x )在(-∞,1)上单调递减,是真命题; 命题q :函数y =2cos x是偶函数,是真命题.则p ∧q 是真命题.故选A .8.已知条件p :x 2-2x -3<0,条件q :x >a ,若p 是q 的充分不必要条件,则a 的取值范围为( D )A .a >3B .a ≥3C .a <-1D .a ≤-1[解析] 由x 2-2x -3<0得-1<x <3,设A ={x |-1<x <3},B ={x |x >a },若p 是q 的充分不必要条件,则A B ,即a ≤-1. 9.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的a 的取值范围为( D )A .(1,9)B .[1,9]C .[6,9)D .(6,9][解析] 依题意,P ∩Q =Q ,Q ⊆P , 于是⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9]. 10.下列说法正确的是( D )A .命题“存在x 0∈R ,x 20+x 0+2 018>0”的否定是“任意x ∈R ,x 2+x +2 018<0” B .两个三角形全等是这两个三角形面积相等的必要条件 C .函数f (x )=1x在其定义域上是减函数D .给定命题p ,q ,若“p 且q ”是真命题,则綈p 是假命题[解析] 对于A ,特称命题的否定为全称命题,所以命题“存在x 0∈R ,x 20+x 0+2 018>0”的否定是“任意x ∈R ,x 2+x +2 018≤0”,故A 不正确.对于B ,两个三角形全等,则这两个三角形面积相等;反之,不然.即两个三角形全等是这两个三角形面积相等的充分不必要条件,故B 不正确.对于C ,函数f (x )=1x在(-∞,0),(0,+∞)上分别是减函数,但在定义域(-∞,0)∪(0,+∞)内既不是增函数,也不是减函数,如取x 1=-1,x 2=1,有x 1<x 2,且f (x 1)=-1,f (x 2)=1,则f (x 1)<f (x 2),所以函数f (x )=1x在其定义域上不是减函数,故C 不正确.对于D ,因为“p 且q ”是真命题,则p ,q 都是真命题,所以綈p 是假命题,故D 正确.11.如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B ={0,6}.[解析] 由题意可知,-2x =x 2+x , 所以x =0或x =-3,而当x =0时,不符合元素的互异性,舍去; 当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.12.命题“∀x ∈[1,2],使x 2-a ≥0”是真命题,则a 的取值范围是(-∞,1]. [解析] 命题p :a ≤x 2在[1,2]上恒成立,y =x 2在[1,2]上的最小值为1, 所以a ≤1.13.设p :(x -a )2>9,q :(x +1)(2x -1)≥0,若綈p 是q 的充分不必要条件,则实数a 的取值范围是(-∞,-4]∪[72,+∞).[解析] 綈p :(x -a )2≤9,所以a -3≤x ≤a +3,q :x ≤-1或x ≥12,因为綈p 是q 的充分不必要条件, 所以a +3≤-1或a -3≥12,即a ≤-4或a ≥72.14.给出下列结论:①若命题p :∃x 0∈R ,x 20+x 0+1<0,则綈p :∀x ∈R ,x 2+x +1≥0; ②“(x -3)(x -4)=0”是“x -3=0”的充分而不必要条件;③命题“若b =0,则函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)是偶函数”的否命题是“若b ≠0,则函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)是奇函数”;④若a >0,b >0,a +b =4,则1a +1b的最小值为1.其中正确结论的序号为①④.[解析] 由特称命题的否定知①正确;(x -3)(x -4)=0⇒x =3或x =4,x =3⇒(x -3)(x -4)=0,所以“(x -3)·(x -4)=0”是“x -3=0”的必要而不充分条件,所以②错误;函数可能是偶函数,奇函数,也可能是非奇非偶的函数,结论③中“函数是偶函数”的否定应为“函数不是偶函数”,故③不正确;因为a >0,b >0,a +b =4,所以1a +1b =a +b 4·(1a +1b )=12+b 4a +a 4b ≥12+2b 4a ·a4b=1,当且仅当a =b =2时取等号,所以④正确.。

(文理通用)2019届高考数学大二轮复习 第1部分 专题1 集合、常用逻辑用语等 第1讲 集合与常用逻辑用语

(文理通用)2019届高考数学大二轮复习 第1部分 专题1 集合、常用逻辑用语等 第1讲 集合与常用逻辑用语

高考真题体验
• 1.(文)(2018·全国卷Ⅰ,1)已知集合A={0,2},B={-2
,-1A,0,1,2},则A∩B=( )
• A.{0,2}
B.{1,2}
• C.{0} D.{-2,-1,0,1,2}
• [解析] A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.
• 故选A.
(理)(2018·全国卷Ⅰ,2)已知集合 A={x|x2-x-2>0},则∁RA=( B ) A.{x|-1<x<2} B.{x|-1≤x≤2} C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2} [解析] ∵ x2-x-2>0,∴ (x-2)(x+1)>0,∴ x>2 或 x<-1,即 A={x|x>2 或 x<-1}.在数轴上表示出集合 A,如图所示.
根据真值表可知 p∧(綈 q)为真命题,p∧q,(綈 p)∧q,(綈 p)∧(綈 q)为假命题.
故选 B.
(理)(2017·山东卷,3)已知命题 p:∀x>0,ln(x+1)>0;命题 q:若 a>b,则 a2>b2. 下列命题为真命题的是( B )
A.p∧q
B.p∧(綈 q)
C.(綈 p)∧q
D.(綈 p)∧(綈 q)
• 故选C.
• (理)(2018·全国卷Ⅱ,2)已知集合A={(x,y)|x2+y2≤3, x∈Z,y∈ZA},则A中元素的个数为( )
• A.9 B.8
• C.5 D.4
• [解析] 将满足x2+y2≤3的整数x,y全部列举出来,即(- 1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1 ,-1),(1,0),(1,1),共有9个.

2019年高考数学真题分类汇编:专题(01)集合与常用逻辑用语(文科)及答案

2019年高考数学真题分类汇编:专题(01)集合与常用逻辑用语(文科)及答案

2019年高考数学真题分类汇编 专题01 集合与常用逻辑用语 文1.【2018高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D 【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D. 考点:集合运算【名师点睛】对集合运算问题,首项要确定集合类型,其次确定集合中元素的特征,先化简集合,若元素是离散集合,紧扣集合运算定义求解,若是连续数集,常结合数轴进行集合运算,若是抽象集合,常用文氏图法,本题是考查元素是离散的集合交集运算,是基础题.2.【2018高考重庆,文1】已知集合{1,2,3},B {1,3}A ==,则A B =( ) (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3} 【答案】C【解析】由已知及交集的定义得A B ={1,3},故选C. 【考点定位】集合的运算.【名师点睛】本题考查集合的概念和运算,本题属于基础题,注意观察的仔细. 3.【2018高考浙江,文3】设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】D【解析】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的即不充分也不必要条件.故选D.【考点定位】1.充分条件、必要条件;2.不等式的性质.【名师点睛】本题主要考查充分条件和必要条件.解答本题时要根据不等式的性质,采用特殊值的方法,对充分性与必要性进行判断.本题属于容易题,重点考查学生对不等式的性质的处理以及对条件的判断. 4.【2018高考重庆,文2】“x 1=”是“2x 210x -+=”的( ) (A) 充要条件 (B) 充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件【答案】A【解析】由“x 1= ”显然能推出“2x 210x -+=”,故条件是充分的,又由“2x 210x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.【考点定位】充要条件.【名师点睛】本题考查充要条件的概念和判断,采用推出法进行判断,本题属于基础题,注意推理的正确性. 5.【2018高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P=( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)PQ =,故选A.【考点定位】1.一元二次不等式的解法;2.集合的交集运算.【名师点睛】本题主要考查集合的交集运算.利用解一元二次不等式确定集合P 的范围,从而进行两个集合的交集运算.本题属于容易题,要注意不等式解的准确性.6.【2018高考天津,文1】已知全集{1,2,3,4,5,6}U =,集合{2,3,5}A =,集合{1,3,4,6}B =,则集合A U B =()ð( )(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B【解析】{2,3,5}A =,{2,5}U B =ð,则{}A 2,5U B =()ð,故选B. 【考点定位】本题主要考查集合的交集与补集运算.【名师点睛】集合是高考中的高频考点,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算. 7.【2018高考天津,文4】设x R Î,则“12x <<”是“|2|1x -<”的( )(A) 充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 【答案】A【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.【考点定位】本题主要考查不等式解法及充分条件与必要条件.【名师点睛】本题考查的知识点有两个,一是绝对值不等式的解法,与本题有关的结论是:若0a >,则()()f x a a f x a <⇔-<<,另一个是充分条件与必要条件,与本题有关的结论是:对于非空集合,A B ,若A是B 的真子集,则x A ∈是x B ∈的充分不必要条件.8.【2018高考四川,文1】设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =( )(A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 【答案】A9.【2018高考山东,文1】 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( ) (A )1,3() (B )1,4() (C )(2,3() (D )2,4()) 【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C . 【考点定位】1.集合的基本运算;2.简单不等式的解法. 【考点定位】1.集合的基本运算;2.简单不等式的解法.【名师点睛】本题考查集合的基本运算及简单不等式的解法,不等式中出现一次因式积的形式,降低了不等式求解的难度.本题属于基础题,注意基本概念的正确理解以及基本运算方法的准确性.10.【2018高考四川,文4】设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.选A 【考点定位】本题考查对数函数的概念和性质、充要条件等基本概念,考查学生综合运用数学知识和方法解决问题的能力.【名师点睛】判断条件的充要性,必须从“充分性”和“必要性”两个方向分别判断,同时注意涉及的相关概念和方法.本题中涉及对数函数基本性质——单调性和函数值的符号,因此可以结合对数函数的图象进行判断,从而得出结论.属于简单题.11.【2018高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤,所以[0,1]M N =,故答案选A .【考点定位】集合间的运算.【名师点睛】1.本题考查以不等式为基础的集合间的运算,解不等式时注意原式意义的范围.2.本题属于基础题,高考常考题型,注意运算的准确性.12.【2018高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B【解析】∵{}6,5,1=B C U ,∴()U AC B ={}1,∴选B. 【考点定位】本题主要是考查了集合的交集、补集运算.【名师点睛】在判断充分、必要条件时,考生一定要作好三个步骤:①p ⇒q 是否成立;②p q ⇒是否成立;③形成结论,本题考查了考生的逻辑分析能力.13.【2018高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C 【解析】{}1MN =,故选C .【考点定位】集合的交集运算.【名师点晴】本题主要考查的是集合的交集运算,属于容易题.解题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.14.【2018高考山东,文5】设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否 (A )若方程20x x m +-=有实根,则0m > (B) 若方程20x x m +-=有实根,则0m ≤ (C) 若方程20x x m +-=没有实根,则0m > (D) 若方程20x x m +-=没有实根,则0m ≤ 【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D . 【考点定位】 【名师点睛】本题考查15.【2018高考湖南,文3】设x ∈R ,则“x >1”是“2x >1”的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 【答案】C【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不一定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A. 【考点定位】充要关系【名师点睛】判断充分条件和必要条件的方法 (1)设“若p ,则q”为原 ①原 ②原 ③原 ④原(2)集合判断法:从集合的观点看,建立 ①若A ⊆B ,则p 是q 的充分条件;若时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若时,则p 是q 的必要不充分条件;③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件. (3)等价转化法:p 是q 的什么条件等价于綈q 是綈p 的什么条件.16.【2018高考福建,文2】若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D【解析】由交集定义得{}0,1MN =,故选D .【考点定位】集合的运算.【名师点睛】本题考查集合的交集运算,理解交集的含义是正确解答的前提,属于基础题. 17.【2018高考湖北,文3】命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-【答案】C .【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C . 【考点定位】本题考查特称 【名师点睛】本题主要考查特称18.【2018高考北京,文1】若集合{}52x x A =-<<,{}33x x B =-<<,则AB =( )A .{}32x x -<< B .{}52x x -<< C .{}33x x -<< D .{}53x x -<< 【答案】A【解析】在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得,AB 为图中阴影部分,即{}32x x -<<,故选A.【考点定位】集合的交集运算.【名师点晴】本题主要考查的是集合的交集运算,属于容易题.解题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误. 19.【2018高考安徽,文3】设p :x<3,q :-1<x<3,则p 是q 成立的( ) (A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】C【解析】∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C. 【考点定位】本题主要考查充分、必要条件的判断.【名师点睛】在判断充分、必要条件时,考生一定要作好三个步骤:①p ⇒q 是否成立;②p q ⇒是否成立;③形成结论,本题考查了考生的逻辑分析能力.20.【2018高考湖南,文11】已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (U B ð)=_____.【答案】{1,2,3}.【解析】由题U B ð={2},所以A (U B ð)={1,2,3}.【考点定位】集合的运算【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或不属于集合B 的元素的集合. 本题需注意检验集合的元素是否满足互异性,否则容易出错.21.【2018高考上海,文2】设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U .【答案】}4,1{【解析】因为}32|{<≤=x x B ,所以2|{<=x x B C U 或}3≥x ,又因为}4,3,2,1{=A , 所以}4,1{)(=B C A U . 【考点定位】集合的运算.【名师点睛】先求B C U ,再求)(B C A U .集合的运算是容易题,应注意用描述法表示集合应注意端点值是否取号.【2018高考上海,文15】设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 【答案】A【考点定位】复数的概念,充分条件、必要条件的判定.【名师点睛】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ,二是由条件q 能否推得条件p.对于带有否定性的。

2019届高考数学二轮复习小题必刷卷一集合与常用逻辑用语文

2019届高考数学二轮复习小题必刷卷一集合与常用逻辑用语文

小题必刷卷(一) 集合与常用逻辑用语考查范围:第1讲~第3讲题组一刷真题角度1集合1.[2018·全国卷Ⅲ]已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.[2018·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.[2017·全国卷Ⅰ]已知集合A={x|x<2},B={x|3-2x>0},则()} B.A∩B=⌀A.A∩B={x|x<32} D.A∪B=RC.A∪B={x|x<324.[2015·全国卷Ⅰ]已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.25.[2018·天津卷]设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}6.[2017·天津卷]设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}7.[2015·陕西卷]设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]8.[2013·江西卷]若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4B.2C.0D.0或49.[2013·福建卷] 若集合A={1,2,3},B={1,3,4},则A ∩B 的子集个数为 ( ) A .2 B .3 C .4 D .16角度2 命题、充要条件10.[2014·全国卷Ⅱ] 函数f (x )在x=x 0处导数存在.若p :f'(x 0)=0,q :x=x 0是f (x )的极值点,则 ( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件11.[2018·天津卷] 设x ∈R,则“x-12<12”是“x 3<1”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件12.[2015·山东卷] 设m ∈R,命题“若m>0,则方程x 2+x-m=0有实根”的逆否命题是( )A .若方程x 2+x-m=0有实根,则m>0 B .若方程x 2+x-m=0有实根,则m ≤0 C .若方程x 2+x-m=0没有实根,则m>0 D .若方程x 2+x-m=0没有实根,则m ≤013.[2018·北京卷] 设a ,b ,c ,d 是非零实数,则“ad=bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件14.[2014·广东卷]在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件角度3简单的逻辑联结词、全称量词与存在量词15.[2014·湖南卷]设命题p:∀x∈R,x2+1>0,则x p为()A.∃x0∈R,x02+1>0B.∃x0∈R,x02+1≤0C.∃x0∈R,x02+1<0D.∀x∈R,x2+1≤016.[2017·山东卷]已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是()A.p∧qB.p∧x qC.x p∧qD.x p∧x q17.[2018·北京卷]设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A题组二刷模拟18.[2018·西南名校联考]函数y=e x的值域为M,函数y=ln x的值域为N,则M∩N= ()A.{y|y>1}B.{y|y≥0}C.{y|y>0}D.{y|y∈R}19.[2018·河北衡水联考]已知命题p:∀x∈R,(2-x)12<0,则命题x p为()A.∃x0∈R,(2-x0)12>0 B.∀x∈R,(2-x)12>0C.∀x∈R,(2-x)12≥0 D.∃x0∈R,(2-x0)12≥020.[2018·佛山二模]已知函数f(x)=3x-3-x,a,b∈R,则“a>b”是“f(a)>f(b)”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件21.[2018·南昌4月模拟]已知集合A={x|y=√4−x,x∈N*},B={x|x=2n+1,n∈Z},则A∩B=()A.(-∞,4]B.{1,3}C.{1,3,5}D.[1,3]22.[2018·乌鲁木齐二模]若集合A={x|x(x-1)<0},B={y|y=x2},则()A.A=BB.A⊆BC.A∪B=RD.B⊆A23.[2018·湖北重点中学联考]已知集合A={x∈Z|-2≤x<2},B={y|y=|x|,x∈A},则集合B 的子集的个数为()A.7B.8C.15D.1624.[2018·哈尔滨九中二模]设非空集合P,Q满足P∩Q=P,则()A.∀x∈Q,x∈PB.∀x∉Q,x∉PC.∃x0∉Q,x0∈PD.∃x0∈P,x0∉Q图X1-125.[2018·云南曲靖一测]已知全集U=R,集合A={x|y=√ln x},集合B=yy=x12+32,则图X1-1中阴影部分表示的集合是()A.1,32B.1,32C.1,32D.32,+∞26.[2018·四川4月联考]已知命题p:“事件A与事件B对立”的充要条件是“事件A与事件B互斥”,命题q:偶函数的图像一定关于y轴对称.下列命题为假命题的是()A.p或qB.p且qC.x p或qD.x p且q27.[2018·湖南湘潭三模]已知集合M={x|-1<x<2},N={x|x2-mx<0},若M∩N={x|0<x<1},则m 的值为()A.1B.-1C.±1D.228.[2018·安徽蚌埠三模]已知命题p:∃m∈R,f(x)=x2+mx是偶函数,命题q:若a<b,则1x >1 x.下列命题为真命题的是()A.p∧x qB.x p∧qC.p∧qD.x p∧x q29.[2018·西安一模]已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N 的关系是()A.M=NB.N⫋MC.M⊆ND.M∩N=⌀30.[2018·河北衡水中学月考]已知数集A={-1,0,1,2,3},B={-1,0,1},设函数f(x)是从A 到B的函数,则函数f(x)的值域的可能情况的个数为()A.1B.3C.7D.831.[2018·郑州三模]已知S n是等差数列{a n}的前n项和,则“S n<na n对n≥2恒成立”是“数列a n为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≥m”是假命题,则实数m的取值范围32.[2018·太原二模]若命题“∀x∈(0,+∞),x+1x是.小题必刷卷(一)1.C [解析]∵A={x|x ≥1},B={0,1,2},∴A ∩B={1,2}.2.A [解析] 当x=-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x=1时,y=-1,0,1.所以集合A={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)},共有9个元素.3.A [解析] 由题得,B={x |x <32},故B ⊆A ,所以A ∩B=B={x |x <32},A ∪B=A={x|x<2}.故选A .4.D [解析] 集合A={2,5,8,11,14,17,…},所以A ∩B={8,14},所以A ∩B 中有2个元素.5.B [解析]∁R B={x|x<1},所以A ∩(∁R B )={x|0<x<1}.故选B .6.B [解析](A ∪B )∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.7.A [解析] 由题得集合M={0,1},N=(0,1],所以M ∪N=[0,1].8.A [解析] 当a=0时,A=⌀;当a ≠0时,Δ=a 2-4a=0,则a=4,故选A . 9.C [解析]A ∩B={1,3},子集共有22=4(个),故选C .10.C [解析] 函数在x=x 0处有导数且导数为0,x=x 0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x=x 0为函数的极值点,则函数在x=x 0处的导数一定为0,所以p 是q 的必要不充分条件.11.A [解析] 由x-12<12,解得0<x<1,可推出x 3<1,反之不成立,故为充分而不必要条件. 12.D [解析]∵逆否命题是将原命题的条件与结论互换并分别否定,∴命题“若m>0,则方程x 2+x-m=0有实根”的逆否命题是“若方程x 2+x-m=0没有实根,则m ≤0”.13.B [解析] 当ad=bc 时,例如1×8=4×2,但1,4,2,8不能构成等比数列,故充分性不成立;反之,由等比数列的性质易得必要性成立.14.A [解析] 设R 是三角形外接圆的半径,R>0.由正弦定理,得a=2R sin A ,b=2R sin B.∵sin A ≤sin B ,∴2R sin A ≤2R sin B ,∴a ≤b.同理也可以由a ≤b 推出sin A ≤sin B.故选A . 15.B [解析] 由全称命题的否定形式可得x p :∃x 0∈R,x 02+1≤0.16.B [解析] 易知命题p 为真命题,命题q 为假命题,所以x q 为真命题,由复合命题真值表知,p ∧x q 为真命题,故选B .17.D [解析] 当a=0时,A 为空集,排除A;当a=2时,(2,1)∈A ,排除B;当a=32时,作出可行域如图中阴影部分所示,由{x -x =1,32x +x =4,得P (2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D .18.C [解析] 依题意得M={y|y=e x}={y|y>0},N={y|y=ln x }={y|y ∈R},所以M ∩N={y|y>0}.故选C .19.D [解析] 含有一个量词的命题的否定写法是“变量词,否结论”,故x p :∃x 0∈R,(2-x 0)12≥0.故选D .20.C [解析] 因为y=3x为增函数,y=3-x为减函数,所以f (x )=3x-3-x为增函数,故a>b ⇔f (a )>f (b ).故选C .21.B [解析] 由题意可得A={x|x ≤4,x ∈N *}={1,2,3,4},B={…,-5,-3,-1,1,3,5,…},所以A ∩B={1,3}.故选B .22.B [解析] 由已知得A={x|x (x-1)<0}={x|0<x<1},B={y|y=x 2}={y|y ≥0},所以A ⊆B.故选B .23.B [解析] 依题意得,A={-2,-1,0,1},B={0,1,2},所以集合B 的子集有23=8(个),故选B . 24.B [解析] 由于P ∩Q=P ,因此不属于集合Q 的元素一定不属于集合P.故选B . 25.A [解析]A={x|y=√ln x }={x|x ≥1},B=yy=x 12+32=yy ≥32,∁U B=yy<32,题图中阴影部分表示的集合是A ∩(∁U B ),且A ∩(∁U B )=1,32.故选A .26.B [解析] 由于“事件A 与事件B 对立”是“事件A 与事件B 互斥”的充分不必要条件,故命题p 是假命题.显然命题q 为真命题,所以“p 且q ”是假命题.故选B . 27.A [解析] 因为M={x|-1<x<2},M ∩N={x|0<x<1},显然m>0,所以N={x|x 2-mx<0}={x|0<x<m },则m=1.故选A .28.A [解析] 当m=0时,f (x )=x 2+mx 是偶函数,所以命题p 是真命题.当a<0,b>0时,a<b ,但1x >1x不成立,所以命题q 是假命题,从而x q 是真命题,所以p ∧x q 是真命题.故选A . 29.B [解析] 因为M={-1,0,1},N={x|x=ab ,a ,b ∈M 且a ≠b },所以N={-1,0},于是N ⫋M.故选B .30.C [解析] 函数f (x )的值域是B 的非空子集,即{-1},{0},{1},{-1,0},{0,1},{-1,1},{-1,0,1},共7种不同的情况.故选C .31.C[解析] 设{a n}的公差为d,由S n<na n得x(x1+x x)2<na n,即na1<na n,a1<a n,所以a1<a1+(n-1)d,因为n≥2,所以d>0,所以数列{a n}为递增数列;反之,若数列{a n}为递增数列,则d>0,即S n<na n(n≥2).故选C.32.(2,+∞)[解析] 原命题的否命题“∃x0∈(0,+∞),x0+1x0<m”为真命题,所以m>x+1x min=2,当且仅当x=1时取等号,所以m∈(2,+∞).。

专题01 集合与常用逻辑用语-2019年高考真题和模拟题分项汇编数学(文)(解析版)

专题01 集合与常用逻辑用语-2019年高考真题和模拟题分项汇编数学(文)(解析版)

A.2
B. 2, 3
C.1, 2,3
D.1, 2,3, 4
【答案】D
【解析】因为 A C {1, 2} ,所以 ( A C) B {1, 2,3, 4}.
故选 D. 【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结 合,即借助数轴、坐标系、韦恩图等进行运算.
故α∥β的充要条件是α内有两条相交直线与β平行.
3
故选 B.
【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观
臆断.
10.【2019 年高考北京文数】设函数 f(x)=cosx+bsinx(b 为常数),则“b=0”是“f(x)为偶函数”的
A.充分而不必要条件
D.
【答案】C 【解析】由题知, A B (1, 2) .
故选 C.
【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易
错点是理解集合的概念及交集概念有误,不能借助数轴解题.
3.【2019 年高考全国Ⅲ卷文数】已知集合 A {1, 0,1, 2}, B {x | x 2 1} ,则 A B
【答案】A
【解析】∵ ðU A { 1,3} ,∴ ðU A B {1} .
故选 A.
【名师点睛】注意理解补集、交集的运算.
6.【2019 年高考天津文数】设集合 A {1,1, 2, 3, 5}, B {2, 3, 4}, C {x R |1 x 3},则 ( A C) B
故选 B.
【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到 x 的取值范围.

2019年高考数学(文)二轮送分专练1 集合与常用逻辑用语

2019年高考数学(文)二轮送分专练1 集合与常用逻辑用语

该部分在高考中难度偏低,且考点相对集中,通过一轮的复习,绝大分考生已能熟练掌握.为节省宝贵的二轮复习时间,我们的复习策略是“以练代讲,练中促学”,在练中抓牢基础题型,在练中提升解题准度和速度,确保送分题一分不丢!该部分近三年高考考情统计见下表:送分专练1集合与常用逻辑用语(建议用时:40分钟)一、选择题1.(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( )A .{0}B .{1}C .{1,2}D .{0,1,2}C [法一:由题意得A ={x |x ≥1},B ={0,1,2},所以A ∩B ={1,2},故选C.法二:x 取0,1,2,分别代入不等式x -1≥0,可排除A ,B ,D ,故选C.]2.(2018·沈阳模拟)已知集合A ={0,1,2},B ={1,m },若B ⊆A ,则实数m 的值是( )A .0B .2C .0或2D .0或1或2C [由B ⊆A 得m =0或2,故选C.]3.(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32B .A ∩B =∅C .A ∪B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32D .A ∪B =RA [因为B ={x |3-2x >0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32,A ={x |x <2},所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32,A ∪B ={x |x <2}. 故选A.]4.以下四个命题中,真命题的个数是( )①“若a +b ≥2,则a ,b 中至少有一个不小于1”的逆命题;②存在正实数a ,b ,使得lg(a +b )=lg a +lg b ;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”;④在△ABC 中,A <B 是sin A <sin B 的充分不必要条件.A .0B .1C .2D .3C[对于①,原命题的逆命题为:若a,b中至少有一个不小于1,则a+b≥2,而a=2,b=-2满足a,b中至少有一个不小于1,但此时a+b=0,故①是假命题;对于②,根据对数的运算性质,知当a=b=2时,lg(a+b)=lg a+lg b,故②是真命题;对于③,易知“所有奇数都是素数”的否定就是“至少有一个奇数不是素数”,③是真命题;对于④,根据题意,结合边角的转换,以及正弦定理,可知A<B⇔a<b(a,b为角A,B所对的边)⇔2R sin A<2R sin B(R为△ABC外接圆的半径)⇔sin A<sin B,故A<B是sin A<sin B的充要条件,故④是假命题.选C.]5.(2018·临沂模拟)设α,β是两个不同的平面,l是直线且l∥α,“l⊥β”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[l∥α,l⊥β⇒α⊥β,但α⊥β,l∥αD/⇒l⊥β,因此“l⊥β”是“α⊥β”的充分不必要条件.]6.下列说法错误的是()A.命题“若x2-4x+3=0,则x=1”的逆否命题为:“若x≠1,则x2-4x +3≠0”B.“a>1”是“1a<1”的充分不必要条件C.若“p∨綈q”为假命题,则q为假命题D.命题“∃x0∈R,使得x0sin x0<0”的否定为“∀x∈R,都有x sin x≥0”C[对于C,“p∨綈q”为假命题,则p与綈q都是假命题,从而q为真命题,故C错误.]7.(2018·哈尔滨模拟)李大姐常说“便宜没好货”,她这句话的意思是:“好货”是“不便宜”的()A.充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件A [“便宜没好货”的逆否命题是“好货不便宜”因此“好货”是“不便宜”的充分条件,故选A.]8.(2018·武汉模拟)设a ,b ,c 均为非零向量,则a =c 是a·b =b·c 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [当a =c 时,a·b =b·c 显然成立,充分性成立;反之当a =(0,1),b =(1,0),c =(0,-1)时,a·b =b·c ,但a ≠c ,必要性不成立,所以“a =c ”是“a·b =b·c ”成立的充分不必要条件,故选A.]9.(2018·开封联考)命题p :存在x ∈⎣⎢⎡⎦⎥⎤0,π2,使sin x +cos x >2;命题q :“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是“∀x ∈(0,+∞),ln x ≠x -1”,则四个命题:(綈 p )∨(綈 q ),p ∧q ,(綈 p )∧q ,p ∨(綈 q )中,真命题的个数为( )A .1B .2C .3D .4B [因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2,故命题p 为假命题;特称命题的否定为全称命题,根据命题的否定知命题q 为真命题,则(綈 p )∨(綈 q )为真命题,p ∧q 为假命题,(綈 p )∧q 为真命题,p ∨(綈 q )为假命题.]10.已知命题“∃x 0∈R ,x 20+ax 0-4a <0”为假命题,则实数a 的取值范围为( )A .[-16,0]B .(-16,0)C .[-4,0]D .(-4,0)A [由题意可知“∀x ∈R ,x 2+ax -4a ≥0”为真命题,所以Δ=a 2+16a ≤0,解得-16≤a≤0,故选A.]11.下列命题中假命题的是()A.∃x0∈R,ln x0<0B.∀x∈(-∞,0),e x>x+1C.∀x>0,5x>3xD.∃x0∈(0,+∞),x0<sin x0D[对于A,比如x0=1e时,ln1e=-1,是真命题;对于B,令f(x)=ex-x-1,f′(x)=e x-1<0,f(x)递减,所以f(x)>f(0)=0,是真命题;对于C,函数y=a x当a>1时是增函数,是真命题;对于D,令g(x)=x-sin x,g′(x)=1-cos x≥0,g(x)递增,所以g(x)>g(0)=0,是假命题.故选D.]12.命题p:函数y=log2(x2-2x)的单调增区间是[1,+∞),命题q:函数y=13x+1的值域为(0,1).下列命题是真命题的为()A.p∧q B.p∨qC.p∧(q) D.qB[令t=x2-2x,则函数y=log2(x2-2x)化为y=log2t,由x2-2x>0,得x<0或x>2,所以函数y=log2(x2-2x)的定义域为(-∞,0)∪(2,+∞).函数t=x2-2x的图象是开口向上的抛物线,且对称轴方程为x=1,所以函数t=x2-2x在定义域内的增区间为(2,+∞).又因为函数y=log2t是增函数,所以复合函数y=log2(x2-2x)的单调增区间是(2,+∞).所以命题p为假命题;由3x>0,得3x+1>1,所以0<13x+1<1,所以函数y =13x +1的值域为(0,1),故命题q 为真命题.所以p ∧q 为假命题,p ∨q 为真命题,p ∧(綈 q )为假命题,綈 q 为假命题,故选B.]二、填空题13.(2018·佛山模拟)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为________.1 [∵B ={a ,a 2+3},A ∩B ={1},∴a =1或a 2+3=1,∵a ∈R ,∴a =1,经检验,满足题意.]14.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. ∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点 [全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.]15.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪ 12<2x <8,B ={x ∈R |-1<x <m +1},若x ∈B成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.(2,+∞) [A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪ 12<2x <8={x |-1<x <3}, 因为x ∈B 成立的一个充分不必要条件是x ∈A ,所以A ⊆B ,所以m +1>3,即m >2.]16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 不是年龄最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄由小到大依次是________.c ,a ,b [显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,则a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“若a 的年龄不是最小,则b 的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b 最大,a次之,c最小.]。

2019版高考数学大二轮复习 板块二 练透基础送分小考点 第1讲 集合与常用逻辑用语优选习题 文

2019版高考数学大二轮复习 板块二 练透基础送分小考点 第1讲 集合与常用逻辑用语优选习题 文

第1讲 集合与常用逻辑用语[考情考向分析] 1.集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年有时也会出现一些集合的新定义问题.2.高考中考查命题的真假判断或命题的否定,考查充要条件的判断.1.(2018·全国Ⅰ)已知集合A ={}x |x 2-x -2>0,则∁R A 等于( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-1≤x ≤2}. 故选B.2.(2018·安徽省江南十校联考)已知集合A ={x |y =ln(1-2x )},B ={x |e x>1},则( ) A .A ∪B ={x |x >0}B .A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <12 C .A ∩∁R B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <12 D .(∁R A )∪B =R答案 B解析 ∵A ={x |y =ln(1-2x )}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <12, B ={x |e x >1}={x |x >0},∴A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <12,故选B. 3.A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.在下列四个命题中,为p 的逆否命题的是( ) A .若及格分不低于70分,则A ,B ,C 都及格B .若A ,B ,C 都及格,则及格分不低于70分 C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分 答案 C解析 根据原命题与它的逆否命题之间的关系知,命题p :若及格分低于70分,则A ,B ,C 都没有及格,p 的逆否命题是:若A ,B ,C 至少有1人及格,则及格分不低于70分.故选C. 4.(2018·长春模拟)设命题p :∀x ∈(0,+∞),ln x ≤x -1,则綈p 是 A .綈p :∀x ∈(0,+∞),ln x >x -1 B .綈p :∀x ∈(-∞,0],ln x >x -1 C .綈p :∃x 0∈(0,+∞),ln x 0>x 0-1 D .綈p :∃x 0∈(0,+∞),ln x 0≤x 0-1 答案 C解析 因为全称命题的否定是特称(存在性)命题,所以命题p :∀x ∈(0,+∞),ln x ≤x -1的否定綈p 为∃x 0∈(0,+∞),ln x 0>x 0-1.故选C.5.(2018·宜昌调研)已知命题p :∃x 0∈⎣⎢⎡⎦⎥⎤0,π2,x 0≥sin x 0,则命题p 的否定为( )A .∀x ∈⎣⎢⎡⎦⎥⎤0,π2,x ≥sin xB .∃x 0∈⎣⎢⎡⎦⎥⎤0,π2,x 0<sin x 0C .∀x ∈⎣⎢⎡⎦⎥⎤0,π2,x <sin xD .∃x 0∉⎣⎢⎡⎦⎥⎤0,π2,x 0≥sin x 0 答案 C解析 命题p :∃x 0∈⎣⎢⎡⎦⎥⎤0,π2,x 0≥sin x 0的否定为∀x ∈⎣⎢⎡⎦⎥⎤0,π2,x <sin x .故选C.6.有关命题的说法正确的是( )A .命题“若xy =0,则x =0”的否命题为:“若xy =0,则x ≠0”B .命题“∃x 0∈R ,使得2x 20-1<0”的否定是:“∀x ∈R,2x 2-1<0” C .“若x +y =0,则x ,y 互为相反数”的逆命题为真命题 D .命题“若cos x =cos y ,则x =y ”的逆否命题为真命题答案 C解析 对于A 选项,命题“若xy =0,则x =0”的否命题为“若xy ≠0,则x ≠0”,否命题是条件和结论的双重否定,故A 错误;对于B 选项,命题“∃x 0∈R ,使2x 20-1<0”的否定是“∀x ∈R ,2x 2-1≥0”,故B 错误;选项C 的逆命题为真命题,故C 正确;选项D 的原命题是假命题,则逆否命题与之对应也是假命题,故D 错误,故选C.7.(2018·天津)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1, 当x ≤0时,⎪⎪⎪⎪⎪⎪x -12≥12,即“x 3<1”⇏“⎪⎪⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分不必要条件.故选A.8.(2018·山东枣庄市第三中学调研)若f (x )=sin(2x +θ),则“f (x )的图象关于x =π3对称”是“θ=-π6”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 若f (x )的图象关于x =π3对称,则2×π3+θ=π2+k π,k ∈Z ,解得θ=-π6+k π,k ∈Z ,此时θ=-π6不一定成立,反之成立,即“f (x )的图象关于x =π3对称”是“θ=-π6”的必要不充分条件,故选B. 9.(2018·武汉调研)给出下列两个命题:p 1:∃x 0∈R,3sin x 0+4cos x 0=3x 20+4;p 2:若lg a 2+2lg b =0,则a+b ≥2,那么下列命题为真命题的是( ) A .p 1∧p 2 B .p 1∨(綈p 2) C .p 1∨p 2 D .(綈p 1)∧p 2答案 B解析 因为3sin x +4cos x =5sin(x +φ)∈[]-5,5, 而3x 2+4≥6,所以p 1为假命题.对于p 2,由题设有a 2b 2=1,b >0,所以ab =1或ab =-1, 取a =-3,b =13,则a +b =-83<2,故p 2为假命题,所以p 1∨(綈p 2)为真命题,故选B.10.(2018·漳州调研)已知命题p :椭圆25x 2+9y 2=225与双曲线x 2-3y 2=12有相同的焦点;命题q :函数f (x )=x 2+5x 2+4的最小值为52,下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .綈(p ∨q )D .p ∧(綈q )答案 B解析 p 中椭圆为x 29+y 225=1,双曲线为x 212-y 24=1,焦点坐标分别为(0,±4)和(±4,0),故p 为假命题;q 中f (x )=x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4,设t =x 2+4≥2(当且仅当x =0时,等号成立),则f (t )=t +1t 在区间[2,+∞)上单调递增,故f (x )min =52,故q 为真命题.所以(綈p )∧q 为真命题,故选B.11.用C (A )表示非空集合A 中的元素个数,定义A *B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C (B ),C (B )-C (A ),C (A )<C (B ),若A ={1,2},B ={x |(x 2+ax )(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值构成的集合是S ,则C (S )等于( )A .4B .3C .2D .1 答案 B解析 由A ={1,2},得C (A )=2, 由A *B =1,得C (B )=1或C (B )=3. 由(x 2+ax )(x 2+ax +2)=0, 得x 2+ax =0或x 2+ax +2=0.当C (B )=1时,方程(x 2+ax )(x 2+ax +2)=0只有实根x =0,这时a =0;当C (B )=3时,必有a ≠0,这时x 2+ax =0有两个不相等的实根x 1=0,x 2=-a ,方程x 2+ax +2=0必有两个相等的实根,且异于x 1=0,x 2=-a .由Δ=a 2-8=0,得a =±22,可验证均满足题意,故S ={-22,0,22},故C (S )=3.12.已知集合A ={x |x >2},集合B ={x |x >3},以下命题正确的个数是( ) ①∃x 0∈A ,x 0∉B ;②∃x 0∈B ,x 0∉A ;③∀x ∈A 都有x ∈B ;④∀x ∈B 都有x ∈A . A .4B .3C .2D .1 答案 C解析 因为A ={x |x >2},B ={x |x >3},所以B ⊆A ,即B 是A 的子集,①④正确,②③错误,故选C.13.设全集U =R ,函数f (x )=lg(|x +1|+a -1)(a <1)的定义域为A ,集合B ={x |cos πx =1},若(∁U A )∩B 恰好有两个元素,则a 的取值集合为__________. 答案 {a |-2<a ≤0}解析 方法一 由|x +1|+a -1>0,可得x >-a 或x <a -2,故∁U A =[a -2,-a ].而B ={x |x =2k ,k ∈Z },注意到[a -2,-a ]关于x =-1对称,所以由题设可得⎩⎪⎨⎪⎧-a ≥0,-a <2,即-2<a ≤0.方法二 由方法一得,∁U A =[a -2,-a ],区间长度为-a -(a -2)=2-2a ,B ={x |x =2k ,k ∈Z },因为(∁U A )∩B 恰好有两个元素, 所以2≤2-2a <6,所以-2<a ≤0.14.(2018·北京)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 f (x )=sin x (答案不唯一)解析 设f (x )=sin x ,则f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,在⎣⎢⎡⎦⎥⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.15.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是______________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪0≤a ≤12 解析 p :|4x -3|≤1,∴12≤x ≤1;q :x 2-(2a +1)x +a (a +1)≤0,∴a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件, ∴q 是p 的必要不充分条件, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1(等号不能同时成立),∴0≤a ≤12.16.若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ,则称τ是集合X 上的一个拓扑.已知集合X ={a ,b ,c },对于下面给出的四个集合τ: ①τ={∅,{a },{c },{a ,b ,c }}; ②τ={∅,{b },{c },{b ,c },{a ,b ,c }}; ③τ={∅,{a },{a ,b },{a ,c }};④τ={∅,{a ,c },{b ,c },{c },{a ,b ,c }}. 其中是集合X 上的一个拓扑的集合τ是______.(填序号) 答案 ②④解析 ①τ={∅,{a },{c },{a ,b ,c }},但是{a }∪{c }={a ,c }∉τ,所以①错;②④都满足集合X 上的一个拓扑集合τ的三个条件.所以②④正确;③{a ,b }∪{a ,c }={a ,b ,c }∉τ,所以③错.。

2019高考数学狠抓基础题专题01集合与常用逻辑用语文20180816668

2019高考数学狠抓基础题专题01集合与常用逻辑用语文20180816668

专题01 集合与常用逻辑用语一、集合1.元素与集合之间有且仅有“属于(∈)”和“不属于(∉)”两种关系,且两者必居其一. 2.集合中元素的特性:确定性、互异性、无序性. 3.常用数集及其记法:集合 非负整数集(自然数集)正整数集 整数集 有理数集 实数集 复数集符号N*N 或+NZQRC注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义. 4.理解子集、真子集的概念,知道由“若x A ∀∈,有x B ∈”得A 是B 的子集,记作A B ⊆; 上述条件下,若“0x B ∃∈,0x A ∉”得A 是B 的真子集,记作A B ⊂≠. 注意子集表示符号“⊆”与元素和集合关系符号“∈”的区别.5.给定一个集合,能够写出其子集、真子集、非空子集的个数,如给定集合的元素个数为n ,则其子集、真子集、非空子集的个数分别为2,21,22nnn--. 6.交集:{}|A B x x A x B =∈∈且,取两个集合的公共元素组成集合;并集:{}|A B x x A x B =∈∈或,取两个集合所有元素组成集合;补集:{}|UA x x U x A =∈∉或,取全集中不属于集合A 的元素组成集合.注意:(1)空集不含任何元素,在解题过程中容易被忽略,特别是在隐含有空集参与的集合问题中,往往容易因忽略空集的特殊性而导致漏解. (2)集合的运算顺序,如()UA B 表示先计算A 的补集,再进行并集计算;()UA B 则表示先进行A与B 的并集计算,再进行补集计算. 二、四种命题及其关系1.四种命题命题 表述形式 原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝ 逆否命题若q ⌝,则p ⌝2.四种命题间的关系三、充分条件、必要条件 1.充分条件与必要条件的概念(1)若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)若p ⇒q 且q /⇒p ,则p 是q 的充分不必要条件; (3)若p /⇒q 且q ⇒p ,则p 是q 的必要不充分条件; (4)若p ⇔q ,则p 是q 的充要条件;(5)若p /⇒q 且q /⇒p ,则p 是q 的既不充分也不必要条件. 2.判断充分条件、必要条件的方法:(1)定义法:寻找,p q 之间的推理关系,即对“若p 则q ”的真假进行判断,获得结论; (2)集合法:借助集合间的基本关系进行充分性与必要性的判断; (3)等价法:借助原命题与逆否命题的真假等价性进行判断. 四、逻辑联结词、全称量词与存在量词 1.常见的逻辑联结词:或、且、非一般地,用联结词“且”把命题p 和q 联结起来,得到一个新命题,记作p q ∧,读作“p 且q ”;用联结词“或”把命题p 和q 联结起来,得到一个新命题,记作p q ∨,读作“p 或q ”; 对一个命题p 的结论进行否定,得到一个新命题,记作p ⌝,读作“非p ”. 2.复合命题的真假判断“p 且q ”“p 或q ”“非p ”形式的命题的真假性可以用下面的表(真值表)来确定:pqp ⌝q ⌝p q ∨p q ∧真 真 假 假 真 真 真 假 假 真 真 假 假 真 真 假 真 假 假假真真假假3.全称量词和存在量词量词名称 常见量词符号表示全称量词 所有、一切、任意、全部、每一个等 ∀存在量词存在一个、至少一个、有些、某些等∃4.含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示:命题命题的否定,()x M p x ∀∈ 00,()x M p x ∃∈⌝00,()x M p x ∃∈,()x M p x ∀∈⌝一、考查集合间的基本关系 【例1】已知集合22{|0},{|,}2x A x B y y x x A x -=∈≤==∈+Z ,则集合B 的子集的个数为 A .7B .8C .15D .16【答案】B【解析】集合2{|0}2x A x x -=∈≤+Z {}1,0,1,2=-,2{|,}B y y x x A ==∈{}0,1,4=,故集合B 的子集的个数为328=.故选B.【名师点睛】对于集合间的基本关系,高考中一般考查求子集的个数或由集合间的关系求参数的取值范围问题.二、考查集合的基本运算【例2】已知集合{|lg(2)}A x y x ==-,{|2,0}xB y y x ==≥,则()A B =RA .(0,2)B .(0,2]C .[1,2]D .(1,2)【答案】C【解析】由已知得{|2}A x x =>,则{|2}A x x =≤R,又{|1}B y y =≥, 故(){|12}A B x x =≤≤R,故选C.【例3】已知集合{}| 1 A x x =<,{}|e 1 x B x =<,则 A .{}| 1 A B x x =<B .{}| e A B x x =<C .AB =RRD .{}()|01A B x x =<<R【答案】C【解析】∵集合{}|e 1 x B x =<,∴{}|0 B x x =<. ∵集合{}| 1 A x x =<, ∴{}|0 AB x x =<,{}| 1 A B x x =<,AB =RR ,()A B =∅R .故选C .【名师点睛】集合间的运算问题,常和函数等其他知识相结合,求解时注意区分是求有限集间集合的运算还是无限集间集合的运算,若是有限集间集合的运算问题,一般使用定义法和Venn 图法;若是无限集间集合的运算,则一般用数轴求解.三、充分条件、必要条件 【例4】已知条件p :函数13x y x -=+的定义域,条件2:56q x x ->,则p ⌝是q ⌝的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】依题意,要使函数13x y x -=+有意义,则103x x -≥+,得或,故命题:或.由得,则,则q p ⇒,但p 不能推出q , 故是的充分不必要条件.【例5】已知a ,b ∈R ,若221a b +≥的一个充分不必要条件是ab m ≤(0)m <,则实数m 的取值范围是 A .1,2⎛⎤-∞- ⎥⎝⎦B .(],2-∞-C .1,02⎡⎫-⎪⎢⎣⎭D .[)2,0-【答案】A【解析】由基本不等式得,221212a b ab ab +≥≥⇒≥,由102ab ab <⇒≤-, 又因为221a b +≥的一个充分不必要条件是ab m ≤(0)m <, 则12m ≤-,故选A. 【名师点睛】注意区分A 是B 的充分条件与A 的充分条件是B :(1)“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ,即B ⇒A 且A /B ;(2)“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ,即A ⇒B 且B /A . 四、含有逻辑联结词的命题真假的判断【例6】已知命题p : x ∀∈R ,()22log 231x x ++>;命题q :0x ∃∈R ,0sin 1x >,则下列命题中为真命题的是 A .p q ⌝∧⌝B .p q ∧⌝C .p q ⌝∧D .p q ∧【答案】A 【解析】()2223122x x x ++=++≥,()22log 231x x ∴++≥,故p 为假命题,p ⌝为真命题.因为x ∀∈R ,sin 1x ≤,所以命题q :0x ∃∈R ,0sin 1x >为假命题,所以q ⌝为真命题,则p q ⌝∧⌝为真命题,故选A .【名师点睛】(1)判断“p q ∧”、“p q ∨”形式复合命题真假的步骤: 第一步,确定复合命题的构成形式; 第二步,判断简单命题p 、q 的真假; 第三步,根据真值表作出判断.注意:一真“或”为真,一假“且”为假.(2)不含逻辑联结词的复合命题,通过辨析命题中词语的含义和实际背景,弄清其构成形式. (3)当p q ∨为真,p 与q 一真一假;p q ∧为假时,p 与q 至少有一个为假. 五、全称命题与特称命题 【例7】下列命题中是假命题的是A .,,αβ∃∈R 使sin()sin sin αβαβ+=+B .ϕ∀∈R ,函数()sin(2)f x x ϕ=+都不是偶函数C .m ∃∈R,使243()(1)mm f x m x -+=-是幂函数,且在(0,)+∞上单调递减D .0a ∀>,函数2()ln ln f x x x a =+-有零点 【答案】B【解析】对于选项A ,如当==0αβ时,sin()sin sin ,αβαβ+=+所以选项A 的命题为真命题; 对于选项B ,当2,2k k ϕπ=π+∈Z 时,函数()sin(2)f x x ϕ=+ππsin(22π)sin(2)22x k x =++=+cos2x =是偶函数,因此选项B 中的命题为假命题;对于选项C ,如当2m =时,11()=f x x x-=,()f x 在(0,)+∞上单调递减,所以选项C 中的命题为真命题;对于选项D ,当()0f x =时,2ln ln 0x x a +-=,则22111ln ln (ln )244a x x x =+=+-≥-,所以0a ∀>,函数2()ln ln f x x x a =+-有零点,所以选项D 中的命题为真命题.【名师点睛】全称命题与特称命题的真假判断在高考中出现时,常与数学中的其他知识点相结合,题型以选择题为主,难度一般不大.【例8】已知命题()31,,168p x x x ∀∈+∞+>:,则命题p 的否定为A .()31,,168p x x x ⌝∀∈+∞+≤:B .()31,,168p x x x ⌝∀∈+∞+<:C .()30001,,168p x x x ⌝∃∈+∞+≤:D .()30001,,168p x x x ⌝∃∈+∞+<:【答案】C【解析】全称命题的否定为特称命题,故其否定为()30001,,168p x x x ⌝∃∈+∞+≤:.故选C.【名师点睛】全称(或特性)命题的否定与命题的否定有着一定的区别,全称(或特性)命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定,而命题的否定则直接否定结论即可.从命题形式上看,全称命题的否定是特征命题,特征命题的否定是全称命题.1.已知集合{}|00{},1x x ax +==,则实数a 的值为 A .−1 B .0 C .1 D .2【答案】A2.命题“∃x 0∈R ,20x +x 0+1<0”的否定为 A .“∃x 0∈R ,20x +x 0+1≥0” B .“∃x 0∈R ,20x +x 0+1≤0” C .“∀x ∈R ,x 2+x+1≥0” D .“∀x ∈R ,x 2+x+1<0”【答案】C【解析】本题考查全称量词与存在量词.易知原命题的否定为“∀x ∈R ,x 2+x+1≥0”. 3.设{|5},A x x =∈≤Z {1}B x x =∈>Z |,那么A B 等于A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{|15}x x <≤【答案】B【解析】因为{|5},A x x =∈≤Z {|1}B x x =∈>Z ,所以{15}{2,3,4,5}A B x x =∈<≤=Z |.4.已知集合P ={x |0<x <4},Q ={x |x =2y,y ∈P },则()P Q =RA .{x |0<x <2}B .{x |0<x <4}C .{x |2≤x <4}D .{x |x ≤0或x >2}【答案】C【解析】因为P ={x|0<x <4},所以Q ={x|0<x <2},所以Q R={x|x ≤0或x ≥2},则{(|24})PQ x x =≤<R ,故选C .5.已知命题p :∀x >0,x +4x≥4,命题q :∃x 0∈(0,+∞),0122x=,则下列判断正确的是A .p 是假命题B .q 是真命题C .p ∧(¬q )是真命题D .( ¬p )∧q 是真命题【答案】C【解析】由基本不等式,知p 为真命题; 由0122x =,知x 0=-1,故q 为假命题. 所以p ∧(¬q )为真命题,故选C .6.已知命题p : “关于x 的方程240x x a -+=有实根”,若非p 为真命题的充分不必要条件为31a m >+,则实数m 的取值范围是 A .()1,+∞ B .[)1,+∞ C .(),1-∞ D .(],1-∞【答案】A【解析】由命题p :“关于x 的方程240x x a -+=有实根”,得1640a ∆=-≥,则4a ≤,所以非p 为真命题时,4a >.又31a m >+是4a >的充分不必要条件,所以314m +>,即1m >, 则m 的取值范围为()1,+∞.所以选A.7.命题:若,则,其否命题是___________.【答案】若,则【解析】根据否命题的定义,原命题为:若,则,则否命题为:若,则.8.已知条件p (x ):x 2+2x-m>0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围是____________. 【答案】[3,8)【解析】由p (1)是假命题,知12+2×1-m=3-m ≤0,得m ≥3; 又由p (2)是真命题,知22+2×2-m=8-m>0,得m<8. 所以m 的取值范围是[3,8). 9.下面四个命题:1p :命题“2,2n n n ∀∈>N ”的否定是“0200,2n n n ∃∉≤N ”; 2p :向量()(),1,1,m n ==-a b ,则m n =是⊥a b 的充分且必要条件;3p :“在ABC △中,若A B >,则sin sin A B >”的逆否命题是“在ABC △中,若sin sin A B ≤,则A B ≤”;4p :若“p q ∧”是假命题,则p 是假命题.其中为真命题的是_________.(填所有真命题的序号) 【答案】23,p p【解析】对于1p :命题“2,2n n n ∀∈>N ”的否定是“0200,2n n n ∃∈≤N ”,所以1p 是假命题;对于2p :向量()(),1,1,m n ==-a b ,所以⊥a b 等价于m −n =0即m =n ,则m n =是⊥a b 的充分且必要条件,所以2p 是真命题;对于3p :“在ABC △中,若A B >,则sin sin A B >”的逆否命题是“在ABC △中,若sin sin A B ≤,则A B ≤”,所以3p 是真命题;对于4p :若“p q ∧”是假命题,则p 或q 是假命题,所以4p 是假命题. 故填23,p p .10.设有两个命题,p :关于x 的不等式1xa >(0a >,且1a ≠)的解集是{|0}x x <;q :函数()2lg y ax x a =-+的定义域为R .如果p q ∨为真命题,p q ∧为假命题,则实数a 的取值范围是_________.【答案】1(0,][1,)2+∞ 【解析】易知p :0<a <1.函数()2lg y ax x a =-+的定义域为R ,等价于2,0x ax x a ∀∈-+>R ,则:20140a a ∆>⎧⎨=-<⎩,解得:12a >,即1:2q a >,所以实数a 的取值范围是1(0,][1,)2+∞.1.(2018新课标全国Ⅰ文科)已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02, B .{}12,C .{}0D .{}21012--,,,, 【答案】A【解析】根据集合的交集中元素的特征,可以求得,故选A.2.(2018新课标全国Ⅲ文科)已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}路漫漫其修远兮,吾将上下而求索 - 百度文库 11 【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =,故选C.3.(2017新课标全国Ⅰ文科)已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x =<<=<,选A . 4.(2017新课标全国Ⅱ文科)设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A【解析】由题意{1,2,3,4}A B =,故选A.5.(2018天津文科)设x ∈R ,则“38x >”是“||2x >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“” 的充分而不必要条件.故选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小题必刷卷(一)集合与常用逻辑用语考查范围:第1讲~第3讲题组一刷真题角度1集合1.[2018·全国卷Ⅲ]已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.[2018·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.[2017·全国卷Ⅰ]已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=B.A∩B=⌀C.A∪B=D.A∪B=R4.[2015·全国卷Ⅰ]已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.25.[2018·天津卷]设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}6.[2017·天津卷]设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}7.[2015·陕西卷]设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]8.[2013·江西卷]若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4B.2C.0D.0或49.[2013·福建卷]若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2B.3C.4D.16角度2命题、充要条件10.[2014·全国卷Ⅱ]函数f(x)在x=x0处导数存在.若p:f'(x0)=0,q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件11.[2018·天津卷]设x∈R,则“x-<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.[2015·山东卷]设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤013.[2018·北京卷]设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.[2014·广东卷]在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的 ()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件角度3简单的逻辑联结词、全称量词与存在量词15.[2014·湖南卷]设命题p:∀x∈R,x2+1>0,则p为()A.∃x0∈R,+1>0B.∃x0∈R,+1≤0C.∃x0∈R,+1<0D.∀x∈R,x2+1≤016.[2017·山东卷]已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是()A.p∧qB.p∧qC.p∧qD.p∧q17.[2018·北京卷]设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤时,(2,1)∉A题组二刷模拟18.[2018·西南名校联考]函数y=e x的值域为M,函数y=ln x的值域为N,则M∩N= ()A.{y|y>1}B.{y|y≥0}C.{y|y>0}D.{y|y∈R}19.[2018·河北衡水联考]已知命题p:∀x∈R,(2-x<0,则命题p为()A.∃x0∈R,(2-x0>0B.∀x∈R,(2-x>0C.∀x∈R,(2-x≥0D.∃x0∈R,(2-x0≥020.[2018·佛山二模]已知函数f(x)=3x-3-x,a,b∈R,则“a>b”是“f(a)>f(b)”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件21.[2018·南昌4月模拟]已知集合A={x|y=,x∈N*},B={x|x=2n+1,n∈Z},则A∩B=()A.(-∞,4]B.{1,3}C.{1,3,5}D.[1,3]22.[2018·乌鲁木齐二模]若集合A={x|x(x-1)<0},B={y|y=x2},则()A.A=BB.A⊆BC.A∪B=RD.B⊆A23.[2018·湖北重点中学联考]已知集合A={x∈Z|-2≤x<2},B={y|y=|x|,x∈A},则集合B的子集的个数为()A.7B.8C.15D.1624.[2018·哈尔滨九中二模]设非空集合P,Q满足P∩Q=P,则()A.∀x∈Q,x∈PB.∀x∉Q,x∉PC.∃x0∉Q,x0∈PD.∃x0∈P,x0∉Q图X1-125.[2018·云南曲靖一测]已知全集U=R,集合A={x|y=},集合B=y y=+,则图X1-1中阴影部分表示的集合是()A.1,B.1,C.1,D.,+∞26.[2018·四川4月联考]已知命题p:“事件A与事件B对立”的充要条件是“事件A与事件B互斥”,命题q:偶函数的图像一定关于y轴对称.下列命题为假命题的是()A.p或qB.p且qC.p或qD.p且q27.[2018·湖南湘潭三模]已知集合M={x|-1<x<2},N={x|x2-mx<0},若M∩N={x|0<x<1},则m的值为()A.1B.-1C.±1D.228.[2018·安徽蚌埠三模]已知命题p:∃m∈R,f(x)=x2+mx是偶函数,命题q:若a<b,则>.下列命题为真命题的是()A.p∧qB.p∧qC.p∧qD.p∧q29.[2018·西安一模]已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()A.M=NB.N⫋MC.M⊆ND.M∩N=⌀30.[2018·河北衡水中学月考]已知数集A={-1,0,1,2,3},B={-1,0,1},设函数f(x)是从A到B的函数,则函数f(x)的值域的可能情况的个数为()A.1B.3C.7D.831.[2018·郑州三模]已知S n是等差数列{a n}的前n项和,则“S n<na n对n≥2恒成立”是“数列a n为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件32.[2018·太原二模]若命题“∀x∈(0,+∞),x+≥m”是假命题,则实数m的取值范围是.小题必刷卷(一)1.C[解析]∵A={x|x≥1},B={0,1,2},∴A∩B={1,2}.2.A[解析] 当x=-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x=1时,y=-1,0,1.所以集合A={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)},共有9个元素.3.A[解析] 由题得,B=,故B⊆A,所以A∩B=B=,A∪B=A={x|x<2}.故选A.4.D[解析] 集合A={2,5,8,11,14,17,…},所以A∩B={8,14},所以A∩B中有2个元素.5.B[解析]∁R B={x|x<1},所以A∩(∁R B)={x|0<x<1}.故选B.6.B[解析](A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.7.A[解析] 由题得集合M={0,1},N=(0,1],所以M∪N=[0,1].8.A[解析] 当a=0时,A=⌀;当a≠0时,Δ=a2-4a=0,则a=4,故选A.9.C[解析]A∩B={1,3},子集共有22=4(个),故选C.10.C[解析] 函数在x=x0处有导数且导数为0,x=x0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x=x0为函数的极值点,则函数在x=x0处的导数一定为0,所以p是q的必要不充分条件.11.A[解析] 由x-<,解得0<x<1,可推出x3<1,反之不成立,故为充分而不必要条件.12.D[解析]∵逆否命题是将原命题的条件与结论互换并分别否定,∴命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.13.B[解析] 当ad=bc时,例如1×8=4×2,但1,4,2,8不能构成等比数列,故充分性不成立;反之,由等比数列的性质易得必要性成立.14.A[解析] 设R是三角形外接圆的半径,R>0.由正弦定理,得a=2R sin A,b=2R sin B.∵sin A≤sin B,∴2R sin A≤2R sin B,∴a≤b.同理也可以由a≤b推出sin A≤sin B.故选A.15.B[解析] 由全称命题的否定形式可得p:∃x0∈R,+1≤0.16.B[解析] 易知命题p为真命题,命题q为假命题,所以q为真命题,由复合命题真值表知,p∧q为真命题,故选B.17.D[解析] 当a=0时,A为空集,排除A;当a=2时,(2,1)∈A,排除B;当a=时,作出可行域如图中阴影部分所示,由得P(2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D.18.C[解析] 依题意得M={y|y=e x}={y|y>0},N={y|y=ln x}={y|y∈R},所以M∩N={y|y>0}.故选C.19.D[解析] 含有一个量词的命题的否定写法是“变量词,否结论”,故p:∃x0∈R,(2-x0≥0.故选D.20.C[解析] 因为y=3x为增函数,y=3-x为减函数,所以f(x)=3x-3-x为增函数,故a>b⇔f(a)>f(b).故选C.21.B[解析] 由题意可得A={x|x≤4,x∈N*}={1,2,3,4},B={…,-5,-3,-1,1,3,5,…},所以A∩B={1,3}.故选B.22.B[解析] 由已知得A={x|x(x-1)<0}={x|0<x<1},B={y|y=x2}={y|y≥0},所以A⊆B.故选B.23.B[解析] 依题意得,A={-2,-1,0,1},B={0,1,2},所以集合B的子集有23=8(个),故选B.24.B[解析] 由于P∩Q=P,因此不属于集合Q的元素一定不属于集合P.故选B.25.A[解析]A={x|y=}={x|x≥1},B=y y=+=y y≥,∁U B=y y<,题图中阴影部分表示的集合是A∩(∁U B),且A∩(∁U B)=1,.故选A.26.B[解析] 由于“事件A与事件B对立”是“事件A与事件B互斥”的充分不必要条件,故命题p是假命题.显然命题q为真命题,所以“p且q”是假命题.故选B.27.A[解析] 因为M={x|-1<x<2},M∩N={x|0<x<1},显然m>0,所以N={x|x2-mx<0}={x|0<x<m},则m=1.故选A.28.A[解析] 当m=0时,f(x)=x2+mx是偶函数,所以命题p是真命题.当a<0,b>0时,a<b,但>不成立,所以命题q是假命题,从而q是真命题,所以p∧q是真命题.故选A.29.B[解析] 因为M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},所以N={-1,0},于是N⫋M.故选B.30.C[解析] 函数f(x)的值域是B的非空子集,即{-1},{0},{1},{-1,0},{0,1},{-1,1},{-1,0,1},共7种不同的情况.故选C.31.C[解析] 设{a n}的公差为d,由S n<na n得<na n,即na1<na n,a1<a n,所以a1<a1+(n-1)d,因为n≥2,所以d>0,所以数列{a n}为递增数列;反之,若数列{a n}为递增数列,则d>0,即S n<na n(n≥2).故选C.32.(2,+∞)[解析] 原命题的否命题“∃x0∈(0,+∞),x0+<m”为真命题,所以m>x+min=2,当且仅当x=1时取等号,所以m∈(2,+∞).。

相关文档
最新文档