12.1全等三角形(1)
12.1全等三角形全等三角形的性质(教案)
本节课旨在让学生在掌握全等三角形知识的基础上,全面提升学科核心素养,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
(1)全等三角形的定义:理解全等三角形的含义,掌握全等三角形的判定条件。
-举例:强调全等三角形是大小和形状完全相同的三角形,要求学生对SSS、SAS、ASA、AAS、HL五种判定方法熟练掌握。
2.教学难点
(1)全等三角形的判定方法的区分与应用:学生容易混淆SSS、SAS、ASA、AAS、HL五种判定方法,不知道在具体情况下如何选择。
-举例:通过典型例题和练习,帮助学生区分各种判定方法,并指导他们在实际问题中灵活运用。
(2)全等三角形性质的应用:学生在解决问题时,往往不知道如何运用全等三角形的性质。
-举例:针对这一问题,设计不同类型的题目,指导学生运用全等三角形的观察和想象全等三角形的过程中,可能存在一定的困难。
-举例:利用几何画板、实物模型等教具,帮助学生培养空间想象能力。
(4)团队合作能力的培养:学生在小组讨论和合作探究过程中,可能存在沟通不畅、分工不明确等问题。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的基本概念、判定方法和在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对全等三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节课后,我进行了深入的思考。首先,我发现学生们对全等三角形的定义和性质的理解程度参差不齐。在讲授过程中,我尽量用简单明了的语言解释全等三角形的判定方法,并通过实例让学生们更好地理解。但我也意识到,对于一些学生来说,这些概念仍然难以消化。在今后的教学中,我需要更加关注这部分学生,采用更为直观和生动的方式,帮助他们真正掌握全等三角形的判定方法和性质。
八年级数学上册 12.1《全等三角形》知识讲解 全等三角形的概念和性质(提高)素材 (新版)新人教版
全等三角形的概念和性质〔提高〕【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确识别全等三角形的对应元素.2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如以下列图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法〔1〕全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;〔2〕全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;〔3〕有公共边的,公共边是对应边;〔4〕有公共角的,公共角是对应角;〔5〕有对顶角的,对顶角一定是对应角;〔6〕两个全等三角形中一对最长的边〔或最大的角〕是对应边〔或角〕,一对最短的边〔或最小的角〕是对应边〔或角〕,等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等;要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、请观察以下列图中的6组图案,其中是全等形的是__________.【答案】〔1〕〔4〕〔5〕〔6〕;【解析】〔1〕〔5〕是由其中一个图形旋转一定角度得到另一个图形的,〔4〕是将其中一个图形翻折后得到另一个图形的,〔6〕是将其中一个图形旋转180°再平移得到的,〔2〕〔3〕形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式1】全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B 与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,假设运动方向相同,那么称它们是真正合同三角形(如图1),假设运动方向相反,那么称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,以下各组合同三角形中,是镜面合同三角形的是( )【答案】B;提示:抓住关键语句,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,B答案中的两个三角形经过翻转180°就可以重合,应选B;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角2、如图,△ABD≌△CDB,假设AB∥CD,那么AB的对应边是〔〕A.DB B. BC C. CD D. AD【答案】C【解析】因为AB∥CD,所以∠CDB=∠ABD,这两个角为对应角,对应角所对的边为对应边,所以,BC和DA为对应边,所以AB的对应边为CD.【总结升华】公共边是对应边,对应角所对的边是对应边.类型三、全等三角形性质3、如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,那么∠DAE等于〔〕.A.60°B.45°C.30°D.15°【思路点拨】△AFE是由△ADE折叠形成的,由全等三角形的性质,∠FAE=∠DAE,再由∠BAD=90°,∠BAF=60°可以计算出结果.【答案】D;【解析】因为△AFE是由△ADE折叠形成的,所以△AFE≌△ADE,所以∠FAE=∠DAE,又因为∠BAF=60°,所以∠FAE=∠DAE=90602︒-︒=15°.【总结升华】折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:【变式】如图,在长方形ABCD中,将△BCD沿其对角线BD翻折得到△BED,假设∠1=35°,那么∠2=________.【答案】35°;提示:将△BCD沿其对角线BD翻折得到△BED,所以∠2=∠CBD,又因为AD∥BC,所以∠1=∠CBD,所以∠2=35°.4、如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,假设∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.【思路点拨】〔1〕由∠1,∠2,∠3之间的比例关系及利用三角形内角和可求出∠1,∠2,∠3的度数;〔2〕由全等三角形的性质求∠EBC,∠BCD的度数;〔3〕运用外角求∠α的度数.【答案】∠α=80°【解析】∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x,∠2=5x,∠3=3x,∴28x+5x+3x=36x=180°,x=5°即∠1=140°,∠2=25°,∠3=15°∵△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,∴△ABE≌△ADC≌△ABC∴∠2=∠ABE,∠3=∠ACD∴∠α=∠EBC+∠BCD=2∠2+2∠3=50°+30°=80°【总结升华】此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题.见“比例〞设未知数x是比较常用的解题思路.举一反三:【变式】如图,在△ABC中,∠A:∠ABC:∠BCA =3:5:10,又△MNC≌△ABC,那么∠BCM:∠BCN等于〔〕A.1:2 B.1:3 C.2:3 D.1:4【答案】D;提示:设∠A=3x,∠ABC=5x,∠BCA=10x,那么3x+5x+10x=18x=180°,x=10°. 又因为△MNC≌△ABC,所以∠N=∠B=50°,CN=CB,所以∠N=∠CBN=50°,∠ACB=∠MCN=100°,∠BCN=180°-50°-50°=80°,所以∠BCM:∠BCN=20°:80°=1:4.。
八年级数学12.1全等三角形 (1)优秀课件
C
B
O
A
D
证明:∵△ AOC ≌ △BOD
∴∠A=∠B
∴AC∥BD
思考题:把四边形ABCD纸片沿EF折叠使 点C落在四边形ABCD内部,如图,那么∠C与 ∠1+∠2之间的一种数量关系始终保持不变,这
个规律是( B )
A.∠C=∠1+∠ 2
A
B. 2∠C=∠1+∠2 C.3∠C=∠1+∠2 D.3∠C=2(∠1+∠2)
∠D 与∠C ,∠DAB与∠CEB,
∠ABD与∠EBC是对应角。
例3 如图,△ADE≌△CBF 求证:AE∥CF , DB=FE
AC
DB 证明:∵△ADE ≌ △CBF ∴∠AED=∠CFB , DE=BF ∴AE∥CF ,
DE-BE = BF-BE 即 DB=FE
EF
1、假设△ BCE ≌ △ CBF,那么
B
C′ 12
D
EF
C
△ABD ≌ △EBC ,且 AB=3cm,DE=2cm,求BC的长.
D
2cm
E
解:∵△ABD ≌ △EBC
∴AB=EB,BD=BC
A 3cm B
C ∵AB=3cm
∴EB=3cm
∴BC=BD=DE+BE =2+3=5cm
在找全等三角形的对应元素时一般有什么规律?
A
AB=CD, ∠APB=∠CPD
B
P
BP=DP, ∠A=∠C
D
AP=CP, ∠B=∠D
C
对应角所对的边是对应边;
对应边所对的角是对应角。
寻找对应元素的规律
〔1〕公共边是对应边; 〔2〕公共角是对应角; 〔3〕对顶角是对应角; 〔4〕最大边是对应边,最小边是对应边; 〔5〕最大角是对应角,最小角是对应角; 〔6〕对应角所对的边是对应边; 〔7〕对应边所对的角是对应角。
《12.1 全等三角形》学历案-初中数学人教版12八年级上册
《全等三角形》学历案(第一课时)一、学习主题本节课的学习主题是“全等三角形”。
全等三角形是初中数学中的重要概念,涉及图形的性质、判定及其在实际生活中的应用。
本节课是《全等三角形》系列的第一课时,旨在使学生理解全等三角形的定义及常见性质,并学会根据题目给出的信息判定三角形是否全等。
二、学习目标1. 掌握全等三角形的概念,理解全等三角形的定义和性质。
2. 学会识别全等三角形的基本判定方法,如SSS、SAS、ASA等。
3. 培养观察、分析和解决问题的能力,能将实际问题抽象为数学问题。
4. 培养学生的空间想象能力和几何直观能力。
三、评价任务1. 课堂互动评价:通过课堂提问和小组讨论,评价学生对全等三角形概念的理解程度。
2. 作业评价:通过布置相关练习题,评价学生对全等三角形判定方法的掌握情况。
3. 课后测试评价:通过小测验或作业,评价学生综合运用所学知识解决问题的能力。
四、学习过程1. 导入新课:通过回顾之前学过的三角形知识,引出全等三角形的概念,让学生初步了解全等三角形的意义。
2. 新课学习:(1)讲解全等三角形的定义及性质。
(2)通过例题演示如何判定两个三角形是否全等,介绍SSS、SAS、ASA等判定方法。
(3)引导学生观察、分析和总结不同判定方法的特点及适用条件。
3. 课堂练习:提供一组三角形图形,让学生运用所学知识进行判定。
教师巡视指导,及时解答学生疑问。
4. 小组讨论:分组进行讨论,分享各自的解题思路和方法,加深对全等三角形知识的理解。
5. 课堂总结:总结全等三角形的概念、性质及判定方法,强调重点和难点内容。
五、检测与作业1. 课堂检测:进行小测验,检测学生对全等三角形知识的掌握情况。
2. 课后作业:布置相关练习题,包括选择题、填空题和解答题,巩固所学知识。
3. 作业批改与反馈:及时批改作业,了解学生掌握情况,针对共性问题进行讲解和反馈。
六、学后反思1. 教师反思:反思教学过程中存在的问题和不足,总结有效的教学方法和策略,为今后的教学提供借鉴。
人教版八年级数学上册教案:第12章 全等三角形 全等三角形(1课时)
12.1全等三角形一、基本目标【知识与技能】1.掌握全等形、全等三角形的概念,能运用符号语言正确表示两个三角形全等.2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质.【过程与方法】经历探索全等三角形性质的过程,在观察中寻求新知,在探索中培养学生发现问题、解决问题的能力.【情感态度与价值观】在探究和运用全等三角形知识的过程中感受到数学活动的乐趣.二、重难点目标【教学重点】全等三角形的认识.【教学难点】全等三角形的性质的应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P31~P32的内容,完成下面练习.【3 min反馈】1.能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.2.全等用符号≌表示,读作全等于.3.△ABC全等于三角形△DEF,用符号表示为△ABC≌△DEF.4.若△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角是∠E,则∠C与∠F是对应角;AB与DE是对应边,BC与EF是对应边,AC与DF是对应边.5.全等三角形的对应边相等,对应角相等.环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO ≌△AEO,指出这两个三角形的对应角.【互动探索】(引发学生思考)全等三角形的对应元素该如何找?【解答】△BOD与△COE的对应边:BO与CO,OD与OE,BD与CE.△ADO与△AEO的对应角:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.【互动总结】(学生总结,老师点评)找全等三角形的对应元素的关键是准确分析图形.另外,记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.【例2】如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF 的长.【互动探索】(引发学生思考)求角和线段长,从全等三角形的性质出发去思考.【解答】∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC-BF=7-4=3.【互动总结】(学生总结,老师点评)全等三角形的对应边相等,对应角相等.活动2巩固练习(学生独学)1.已知图中的两个三角形全等,则∠α的度数是(D)A.72° B.60°C.58° D.50°2.如图,△ABC≌△DEF,BE=3,AE=2,则DE的长是(A)A.5 B.4C.3 D.23.如图,△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=70°.4.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF.(2)∵EF=NM,EF=2.1 cm,∴MN=2.1 cm.∵FG=MH,FH+HG=FG,FH=1.1 cm,HM=3.3 cm,∴HG=FG-FH=HM-FH=2.2 cm.活动3拓展延伸(学生对学)【例3】如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D=25°,∠EAB=150°,求∠ACB的度数.【互动探索】在△ACB中,已知∠B=25°,要求∠ACB,只要求出∠CAB即可,求∠CAB可以从全等三角形的性质出发.【解答】∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=150°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=150°,∴∠CAB=70°.∵∠B=25°,∴∠ACB=180°-∠CAB-∠B=180°-70°-25°=85°.【互动总结】(学生总结,老师点评)解题时,要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!。
人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)
今日任务—— 课堂作业:课本P31-32习题1、2 家庭作业:3、4
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为
对应边;最大角与最大角(最小角与最小角)为对 应角;
(5)对应角所对的边为对应边;对应边所对 的角为对应角;
(6)根据书写规范,按照对应顶点找对应边 或对应角.
△ABC≌△BAD的对应边和
角∴
AB∠-BAACE= ∠=AEBFD-EA AF∠=ABEB=C_=_6_-2∠_=_B4AD
对应角
角 ∠C= ∠D
等式的性质1
谈谈你这节课的收获
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形; (2)全等三角形的性质:对应边相等、对应角相等; (3)全等三角形用符号“≌”表示,且一般对应顶点写在对应位置上.
人教版八年级数学上册
12.1全等三角形
教学目标
知识与能力
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合
思 考 能够完全重合的两个图形叫做 全等形
2021年8月12日星期四
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 )
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
A
D
随堂练习:
B
CE
F
第二题图
1、若△ ABC≌ △ DEF,则∠B= ∠E , ∠BAC= ∠EDF ,
第十二章 全等三角形讲义
例 3. (利用全等三角形证明角等、边等、平行) 如图,AB=CD,BF=DE,E、F 是 AC 上两点,且 AE=CF.求证 AB//CD. 举一反三: 1. 已知:如图:BE=CF,AB=DE,AC=DF ,求证:求证 AC//FD. 2. 已知:如图,A、E、F、B 在一条直线上,AC=BD , AE=BF,CF=DE。求证:AC∥BD 3. 如图,已知:AB=AC,BE=CE ,E 为 AD 上一点,求证:∠BED=∠CED。 4.如图,已知 AB=AC,AD=AE,BD=CE,B,D,E 三点在同一直线上,求证:∠3=∠1+∠2.
例 2. (认识图形条件--对顶角)如图,AD,BC 相交于点 O,OA=OD,OB=OC.求证:BA∥CD. 1. 如图,OA=OC,OB=OD,求证: DA∥CB.
10
例 3. (差条件需要先行证明---角)如图,AB=AD,AC=AE,∠BAE=∠DAC,求证:△ABC≌△ADE. 举一反三: 1.如图,已知,∠AOB=90o,∠EOF=90o,OA=OB,OE=OF,连结 AE、BF. 求证: AE=BF.
举一反三: 1.如图,已知:AC=DF,AC∥FD,AE=DB,求证:△ABC≌△DEF.
11
2.如图,已知 AD⊥BC,D 为 CB 的中点,求证: △ABD≌△ACD. 3. 已知:如图,AD是BC上的中线,且DF=DE.求证:BE∥CF.
4.如图,点 E,F 在 BC 上,BE=CF,AB=DC,∠B=∠C,求证:△ABF≌△DCE. 课后练习: 1.已知:AD∥BC,AD=CB,求证:△ADC≌△CBA. 2.如图:AB=AC,AD=AE,AB⊥AC,AD⊥AE.求证:∠B=∠C. 3.已知:如图,AC=AB,AE=AD,∠1=∠2.求证:∠3=∠4。
数学人教版八年级上册全等三角形(第一节).1全等三角形
【预习导学】
一、自学指导
1、自学1:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”、“全等三角
形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空。
总结归纳:形状、大小相同的图形放在一起能够完全重合 的两个图形
叫做全等形。 能够完全重合的两个三角形
叫做全等三角形。
全等三角形的 对应边相等 ,全等三角形的 对应角相等 。
You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
第十二章 全等三角形
12.1 全等三角形
【学习目标】 1、知道什么是全等形、全等三角形及全
等三角形的对应元素; 2、知道全等三角形的性质,能用符号正
确地表示两个三角形全等; 3、能熟练找出两个全等三角形的对应角、
对应边.
【学习重、难点】 重点:掌握全等三角形的对应元素,以及 性质的应用。 难点:全等三角形性质的应用。
.
4、△OCA≌△OBD,且OC=3cm,BD=4cm,OD=6cm. 则△OCA的周长为_13cm _.
∠C=110°,∠A=30°,则∠BOC=_140° .
点பைடு நூலகம்精讲:全等三角形的对应边、对应角、周长分别对应相等。
【合作探究】小组讨论交流解题思路,小组活动后,小组代表展示活动成果。
探究1 如图,下面各图的两个三角形全等,指出它们的对应顶点、对
一条直线上.•求证:BE=CF,AC∥DF;‚若∠D+∠F=90°,试判断AB与BC的位置关 系.
人教版数学八年级上册12.1全等三角形[1]-课件
C
示出这种关系:_△__O_A__D_≌__△__O_B_C___
O
⑵.找出对应边,它们有什么关系?(口答)
对应边:_O__A_和_=_O_B_ _O__D_和_=_O__C_ _A_D_和_=__B_C_
⑶.找出对应角,它们有什么关系? (口答) 对应角:∠__A__和=__∠_B_ ∠__D__和=__∠_C__
通过这节课的学习,你对 全等图形有哪些认识?
1 两个能够重合的图形称为全等图形。 2 全等图形的形状和大小都相同.
A1
A1
B1
C1
B1
C1
能够完全重合的两个三角形称为全等三角形。 记作:△ABC≌△A1B1C1
A
A1
B
C
B1
C1
对应顶点:点A和点A1,点B和点B1,点C和点C1, 对应边:AB和A1B1,AC和A1C1,BC和 B1C1 对应角:∠A 和∠A1, ∠B ∠和B1, ∠C ∠和C1
全等三角形的对应边相等,对应角相等。
A
A1
B
C
B1
C1
对应顶点:点A和点A1,点B和点B1,点C和点C1,
对应边:AB和= A1B1,AC和= A1C1,BC和= B1C1 对应角:∠A 和=∠A1, ∠B ∠和=B1, ∠C ∠和C=1
1、⑴. 已知:如图1,△OAD与△OBC全等,请用式子表 D
A
B
图1
_∠_D_O_A___和=__∠_C_O__B_
⑷.如果∠A=35°,∠D=75°,那么∠COB=__7_0_° A
C
2、如图2,如果△ADE ≌ △CBF,那么AE∥CF吗?
_是__ (口答“是”或“不是”)
DB
12.1全等三角形的判定(一)
12.1全等三角形的判定(一)(1)一、 学习目标 1、掌握全等形、全等三角形及相关概念和全等三角形性质。
2、理解“平移、翻折、旋转”前后的图形全等。
3、熟练 确定全等三角形的对应元素。
二、 自学指导自学课本P31-32页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
三、展示内容:1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__,____相等。
6、课本P4练习1、27、如图1,△ABC ≌△DEF ,对应顶点是__________,对应角是____________,对应边是___________________。
878、如图2,△ABC ≌△CDA ,AB 和CD ,BC 和DA 是对应边,写出其他对应边及对应角_____________________________9、如图3,△ABN ≌△ACM ,∠B =∠C ,AC =AB ,则BN =____,∠BAN=______,_____=AN,_____= ∠AMC.10910、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD 和∠BCE相等吗?为什么?课堂小结通过本节课学习,你有什么收获?。
12.1 全等三角形第一课时
3.如图,矩形ABCD沿AM折叠,使D点落在BC上的N 点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则 7 cm, NM= ___ 12°. 5 cm, ∠NAB= ___ AN= ___
C F
A
B
D
E
你能否直接从记作∆ABC≌∆DEF中判断出所有 的对应顶点、对应边和对应角?
思考……
△ABC≌△DEF,对应边有什么关系?对应角呢?
A D
C B
F E
全等三角形的性质: 全等三角形的对应边相等 全等三角形的对应角相等
巩固训练
1. 如果△ABC≌△ADC,AB=AD,∠B=70°,BC=3cm, 3 那么,∠D=_____ 70° ,DC=____cm
a
54°
c
b1c来自60°b∠1=66°
这节课你学了什么?
全等形 全等三角形
全等三角形的性质:
对应边相等 对应角相等
知识延伸
找对应关系,必须弄清一个三角形经过怎样的运动得 到另一个三角形,你能想象出下列各图的变化吗?
E A
D
E A
D
B
D
C
A
B
C
D A B
B
C
E
A
C
E
B
D
C
(1)
(2)
思考:什么样的三角形是全等三角形?
能够完全重合的两个三角形叫做全等 三角形. D
A
C B
F E
专题12.1 全等三角形(解析版)
专题12.1 全等三角形1.基本概念(1)全等形:能够完全重合的两个图形叫做全等形.(2)全等三角形:能够完全重合的两个三角形叫做全等三角形. (注意对应的顶点写在对应的位置上)(3)对应顶点:全等三角形中互相重合的顶点叫做对应顶点.(4)对应边:全等三角形中互相重合的边叫做对应边.(5)对应角:全等三角形中互相重合的角叫做对应角.2.基本性质全等三角形的性质:全等三角形的对应边相等,对应角相等.【例题1】如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.【答案】见解析。
【解析】证明:∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.【点拨】在利用角边角判定该定理证明全等后,全等三角形对应边相等。
【例题2】已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF【答案】C.【解析】A.∵△ABC≌△DEF,∴AC=DF,故此结论正确;B.∵△ABC≌△DEF,∴AB=DE;∵DB是公共边,∴AB﹣BD=DE﹣BD,即AD=BE;故此结论正确;C.∵△ABC≌△DEF,∴AC=DF,故此结论DF=EF错误;D.∵△ABC≌△DEF,∴BC=EF,故此结论正确。
【点拨】考查平行线性质,全等三角形对应边相等。
【例题3】如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°【答案】D.【解析】∵△ABC≌△DEF,∠A=45°,∠F=35°∴∠D=∠A=45°∴∠E=180°﹣∠D﹣∠F=100°.【点拨】全等三角形对应角相等。
12.1 全等三角形课件
探索新知
探索新知
有一条边对应相等的三角形
有一个角对应相等的三角形
探索新知
两条边
两个角
一边一角
6cm
30° 50° 50°
30° 3cm
探索新知
1、三个角
90°
90°
30°
60°
60°
不不一一定定全全等等
探索新知
2、三条边 小 游 戏 —— 拼三角形
探索新知
2、三条边
三边对应相等的两个三角形全等, 简写为“边边边”或“SSS”。
2
0
1
9
探索三角形
全等的条件(1)
回顾知识
01.全等三角形的概念 02.全等三角形的性质
C
A
B
D
F E
回顾知识
C
F
A
B
D
E
边:AB=DE,AC=DE,BC=EF 角:∠A=∠D,∠B=∠E,∠C=∠F
想一想
为班级文化建设,装饰教室,现在需要每人做一面三 角形的彩旗,你需要知道几个与边或角有关的条件才能做 出一个和它全等的彩旗呢?
BE=CD(已证) △ABE≌△ACD(SSS)
BE
DC
练一练
如图,AB=CD,BF=DE,E,F是AC上两点,且 AE=CF.请你判断BF与DE的位置关系,并说明理由.
取出三根硬纸条钉成一个三角形,你能拉动其 中两边,使这个三角形的形状发生变化吗?
取出四根硬纸条钉成一个四边形,拉动其中两边, 这个四边形的形状改变了吗?钉成 一个五边形, 又会怎么样?
学习目标
①经历探索三角形全等条件的过程,体会 利用操作、归纳、获得数学结论的过程;
②掌握利用“边边边”作为条件判定三角 形全等的方法,能进行简单推理。
12.1全等三角形1
4
1.如图△ ABD ≌ △CDB,若
AB=4,AD=5,BD=6Leabharlann 则BC= 5 ,CD= 4 。
A
5
D
4
6
B
C
2.如图, △ABC ≌△ADC,若AB=4cm,
AC=6cm, BC=5cm, 则AD=__4__cm, CD=__5___cm,
3.如图, △ABE ≌△ACD,AB和AC、AD 和AE是对应边, ∠A=43°,∠B=30°。
30 则∠C=____°
107 ∠AEB=_____°
107 ∠ADC=____°
A
E
如图,已知△ABC≌△ADE,
BD
C
想一想: ∠ BAD= ∠ CAE吗?为什么?
答:相等.理由如下: ∵△ABC≌△ADE(已知) ∴∠ BAC= ∠ DAE(全等三角形的对应角相等) ∴∠ BAC - ∠ DAC= ∠ DAE - ∠ DAC(等式性质) 即∠ BAD= ∠ CAE
C
E
F
“全等”用符号“≌ ”
表示
比如△ABC≌△DEF
读做“三角形ABC全等于三角形DEF”
对应顶点→对应位置
想一想
能否记作 ∆ABC≌ ∆DEF?
A
D
B
CE
F
不能。应该记作:∆ABC≌ ∆DFE 原因: A与D、B与F、C与E对应。
对应顶点要写在对应位置上。
考眼力
如图,△ABC≌△DFE, 你能找出两个全等三角形的对应 顶点、对应边、对应角吗?
右图是一个
等边三角形,你 能把它分成两个 全等的三角形吗? 你能把它分成三 个、四个全等的 三角形吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.1全等三角形(1)
学习目标:
1、 认识全等形,全等三角形,会确定全等三角形的对应边、对应角;
2、 掌握全等三角形的数学语言表示,全等三角形的性质并灵活应用;
3、 感受数学中的对应与转化;
重点:找对应边、对应角,全等三角形的性质; 难点:全等三角形性质的灵活应用。
教学过程: 一、基础自学: 1、什么是全等形?
2、什么是全等三角形?
3、将一个三角形平移、翻折、旋转后所得到的三角形与原三角形全等吗?为什么?
4、什么是两个全等三角形的对应顶点?对应边?对应角?
5、如图,将△ABC 沿直线BC 平移,得到△DEF ,则△ABC 和△DEF ,用数学符
号语言表示为
6、全等三角形的对应边、对应角有什么关系?为什么?
7、怎样确定两个全等三角形的对应边、对应角?结合具体问题说明。
二、新知探索: 1、(1)若ABC ≌△DEF ,且AB =5cm ,AC =4cm ,BC =3cm ,则DE = 。
(2)若以A 、B 、C 为顶点的三角形与△DEF 全等,且AB =5cm ,AC =4cm ,BC =3cm ,则DE= 。
归纳:
2、如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,ABC ≌△DEF , 求证:(1)BF=CE ; (2)AC ∥
DF
3、如图,将一块含30°角的直角三角板Rt △ABC 绕点A 旋转到△AEF ,若AB=5,GH ⊥AB ,GH=2,则阴影部分的面积为 。
三、课堂检测:
1、如图,在长方形ABCD 中,AD >AB ,将长方形ABCD 折叠,使点C 与点A 重合, 折痕为MN ,若∠BAM=
20,则∠ENM= 。
2、如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠BOE=
120,则∠DAC= 。
3、如图将△ABC 平移至△DEF ,若四边形GBCF 面积为10,则阴影部分面积为 。
4、如图,A ,D ,E 三点在同一直线上,且△BAD ≌△ACE ,试说明: (1)
BD
=DE+CE ;
(2)△ABD 满足什么条件时,BD ∥CE ?
C。