经典编排-高中数学第十章 计数原理章末检测

合集下载

2019-2020学年高中数学(人教B版 选修2-3)教师用书:第1章 计数原理-章末分层突破

2019-2020学年高中数学(人教B版 选修2-3)教师用书:第1章 计数原理-章末分层突破

章末分层突破[自我校对]①分类加法计数原理②分步乘法计数原理③排列④排列数公式⑤组合数公式⑥组合数⑦二项展开式的通项⑧对称性⑨增减性两个计数原理的应用分类加法计数原理和分步乘法计数原理是本部分内容的基础,对应用题的考查,经常要对问题进行分类或者分步进而分析求解.(1)“分类”表现为其中任何一类均可独立完成所给事情.“分步”表现为必须把各步骤均完成,才能完成所给事情,所以准确理解两个原理的关键在于弄清分类加法计数原理强调完成一件事情的几类办法互不干扰,不论哪一类办法中的哪一种方法都能够独立完成事件.(2)分步乘法计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法.王华同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读.(1)若他从这些参考书中带一本去图书馆,有多少种不同的带法?(2)若带外语、数学、物理参考书各一本,有多少种不同的带法?(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?【精彩点拨】解决两个原理的应用问题,首先应明确所需完成的事情是什么,再分析每一种做法使这件事是否完成,从而区分加法原理和乘法原理.【规范解答】(1)完成的事情是带一本书,无论带外语书,还是数学书、物理书,事情都已完成,从而确定为应用分类加法计数原理,结果为5+4+3=12(种).(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理书中各选1本后,才能完成这件事,因此应用分步乘法计数原理,结果为5×4×3=60(种).(3)选1本外语书和选1本数学书应用分步乘法计数原理,有5×4=20种选法;同样,选外语书、物理书各1本,有5×3=15种选法;选数学书、物理书各1本,有4×3=12种选法.即有三类情况,应用分类加法计数原理,结果为20+15+12=47(种).应用两个计数原理解决应用问题时主要考虑三方面的问题:(1)要做什么事;(2)如何去做这件事;(3)怎样才算把这件事完成了.并注意计数原则:分类用加法,分步用乘法.[再练一题]1.如图1-1为电路图,从A到B共有________条不同的线路可通电.图1-1【解析】先分三类.第一类,经过支路①有3种方法;第二类,经过支路②有1种方法;第三类,经过支路③有2×2=4(种)方法,所以总的线路条数N=3+1+4=8.【答案】8排列、组合的应用排列、组合应用题是高考的重点内容,常与实际问题结合命题,要认真审题,明确问题本质,利用排列、组合的知识解决.(1)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲不到银川,乙不到西宁,共有多少种不同派遣方案?(2)在高三一班元旦晚会上,有6个演唱节目,4个舞蹈节目.①当4个舞蹈节目要排在一起时,有多少种不同的节目安排顺序?②当要求每2个舞蹈节目之间至少安排1个演唱节目时,有多少种不同的节目安排顺序?③若已定好节目单,后来情况有变,需加上诗朗诵和快板2个栏目,但不能改变原来节目的相对顺序,有多少种不同的节目演出顺序?【精彩点拨】按照“特殊元素先排法”分步进行,先特殊后一般.【规范解答】(1)因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案A48种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A38种方法,所以共有3A38种方法;③若乙参加而甲不参加同理也有3A38种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余学生到另两个城市有A28种,共有7A28种方法.所以共有不同的派遣方法总数为A48+3A38+3A38+7A28=4 088种.(2)①第一步,先将4个舞蹈节目捆绑起来,看成1个节目,与6个演唱节目一起排,有A7=5 040种方法;第二步,再松绑,给4个节目排序,有A4=24种方法.根据分步乘法计数原理,一共有5 040×24=120 960种.②第一步,将6个演唱节目排成一列(如下图中的“□”),一共有A6=720种方法.×□×□×□×□×□×□×第二步,再将4个舞蹈节目排在一头一尾或两个节目中间(即图中“×”的位置),这样相当于7个“×”选4个来排,一共有A47=7×6×5×4=840种.根据分步乘法计数原理,一共有720×840=604 800种.③若所有节目没有顺序要求,全部排列,则有A12种排法,但原来的节目已定好顺序,需要消除,所以节目演出的方式有A1212A1010=A212=132种排法.解排列、组合应用题的解题策略1.特殊元素优先安排的策略.2.合理分类和准确分步的策略.3.排列、组合混合问题先选后排的策略.4.正难则反、等价转化的策略.5.相邻问题捆绑处理的策略.6.不相邻问题插空处理的策略.7.定序问题除序处理的策略.8.分排问题直排处理的策略.9.“小集团”排列问题中先整体后局部的策略.10.构造模型的策略.简单记成:合理分类,准确分步;特殊优先,一般在后;先取后排,间接排除;集团捆绑,间隔插空;抽象问题,构造模型;均分除序,定序除序.[再练一题]2.(1)一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( )A.40B.74C.84D.200 (2)(2016·山西质检)A ,B ,C ,D ,E ,F 六人围坐在一张圆桌周围开会,A 是会议的中心发言人,必须坐最北面的椅子,B ,C 二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )A.60种B.48种C.30种D.24种【解析】 (1)分三类:第一类,前5个题目的3个,后4个题目的3个; 第二类,前5个题目的4个,后4个题目的2个;第三类,前5个题目的5个,后4个题目的1个.由分类加法计数原理得C 35C 34+C 45C 24+C 5C 14=74.(2)由题意知,不同的座次有A 2A 4=48种,故选B. 【答案】 (1)B (2)B二项式定理问题的处理方法和技巧对于二项式定理的考查常出现两类问题,一类是直接运用通项公式来求特定项.另一类,需要运用转化思想化归为二项式定理来处理问题.(1)若二项式⎝ ⎛⎭⎪⎫2x +a x 7的展开式中1x3的系数是84,则实数a =( )A.2B.54 C.1D.24(2)已知(1+x +x 2)⎝ ⎛⎭⎪⎫x +1x3n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n =________.【导学号:62980030】(3)设(3x -1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 6+a 4+a 2+a 0的值为________. 【精彩点拨】 (1)、(2)利用二项式定理的通项求待定项; (3)通过赋值法求系数和.【规范解答】 (1)二项式⎝ ⎛⎭⎪⎫2x +a x 7的展开式的通项公式为T r +1=C r 7(2x )7-r ⎝ ⎛⎭⎪⎫a x r=C r 727-r a r x 7-2r,令7-2r =-3,得r =5.故展开式中1x3的系数是C 5722a 5=84,解得a =1.(2)⎝ ⎛⎭⎪⎫x +1x3n 展开式的通项是T r +1=C r n x n -r ⎝ ⎛⎭⎪⎫1x3r =C r n x n -4r ,r =0,1,2,…,n , 由于(1+x +x 2)⎝⎛⎭⎪⎫x +1x3n 的展开式中没有常数项,所以C r n x n -4r ,x C r n x n -4r =C r n x n -4r +1和x 2C r n x n -4r =C r n x n -4r +2都不是常数,则n -4r ≠0,n -4r +1≠0,n -4r +2≠0,又因为2≤n ≤8,所以n ≠2,3,4,6,7,8,故取n =5.(3)令x =1,得a 6+a 5+a 4+a 3+a 2+a 1+a 0=26=64.令x =-1,得a 6-a 5+a 4-a 3+a 2-a 1+a 0=(-4)6=4 096. 两式相加,得2(a 6+a 4+a 2+a 0)=4 160, 所以a 6+a 4+a 2+a 0=2 080. 【答案】 (1)C (2)5 (3)2 0801.解决与二项展开式的项有关的问题时,通常利用通项公式.2.解决二项展开式项的系数(或和)问题常用赋值法.[再练一题]3.(1)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A.45B.60C.120D.210(2)设a ∈Z ,且0≤a <13,若512 016+a 能被13整除,则a =( ) A.0 B.1 C.11D.12【解析】 (1)因为f (m ,n )=C m 6C n 4, 所以f (3,0)+f (2,1)+f (1,2)+f (0,3) =C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.(2)512 016+a =(13×4-1)2 016+a ,被13整除余1+a ,结合选项可得a =12时,512 016+a 能被13整除.【答案】 (1)C (2)D排列、组合中的分组与分配问题n个不同元素按照条件分配给k个不同的对象称为分配问题,分定向分配与不定向分配两种问题;将n个不同元素按照某种条件分成k组,称为分组问题,分组问题有不平均分组、平均分组、部分平均分组三种情况.分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使2组元素个数相同,但因所属对象不同,仍然是可区分的.对于后者必须先分组再排列.按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本.【精彩点拨】这是一个分配问题,解题的关键是搞清事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.【规范解答】(1)无序不均匀分组问题.先选1本有C16种选法,再从余下的5本中选2本有C25种选法,最后余下3本全选有C3种选法.故共有C16C25C3=60(种).(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在第(1)问基础上,还应考虑再分配,共有C16C25C3A3=360(种).(3)无序均匀分组问题.先分三步,则应是C26C24C2种方法,但是这里出现了重复.不妨记6本书为A、B、C、D、E、F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则C26C24C2种分法中还有(AB,EF,CD),(AB,CD,EF),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共A3种情况,而这A3种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有C26C24C22A33=15(种).(4)有序均匀分组问题.在第(3)问基础上再分配给3个人,共有分配方式C26C24C22A33·A3=C26C24C2=90(种).(5)无序部分均匀分组问题.共有C46C12C11A22=15(种).(6)有序部分均匀分组问题.在第(5)问基础上再分配给3个人,共有分配方式C46C12C11A22·A3=90(种).(7)直接分配问题.甲选1本有C16种方法,乙从余下5本中选1本有C15种方法,余下4本留给丙有C4种方法.共有C16C15C4=30(种).均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数.[再练一题]4.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有多少种?【解】取出的4张卡片所标数字之和等于10,共有3种情况:1 144,2 233,1 234.所取卡片是1 144的共有A4种排法.所取卡片是2 233的共有A44种排法.所取卡片是1 234,则其中卡片颜色可为无红色,1张红色,2张红色,3张红色,全是红色,共有排法A44+C14A44+C24A44+C34A44+A44=16A44种.所以共有18A44=432种.1. (x2+x+y)5的展开式中,x5y2的系数为( )A.10B.20C.30D.60【解析】法一:(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.故选C.法二:(x2+x+y)5为5个(x2+x+y)之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为C25C23C13=30.故选C.【答案】 C2.如图1-2,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )图1-2A.24B.18C.12D.9【解析】从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.【答案】 B3.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2.”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1.”丙说:“我的卡片上的数字之和不是5.”则甲的卡片上的数字是________.【解析】先确定丙的卡片上的数字,再确定乙的卡片上的数字,进而确定甲的卡片上的数字.法一:由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法.故甲的卡片上的数字是1和3.法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.【答案】1和34. (2x +x )5的展开式中,x 3的系数是________.(用数字填写答案) 【解析】 (2x +x )5展开式的通项为T r +1= C r 5(2x )5-r (x )r =25-r ·C r 5·x 5-r2.令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10. 【答案】 10。

第六章计数原理章末综合训练-2021-2022学年高二下学期数学人教A版(2019)选择性必修第三册

第六章计数原理章末综合训练-2021-2022学年高二下学期数学人教A版(2019)选择性必修第三册

第六章 计数原理 章末综合训练一、选择题1. 若 100 件产品中有 6 件次品.现从中任取 3 件产品,则至少有 1 件次品的不同取法的种数是 ( )A . C 61C 942B .C 61C 992 C . C 1003−C 943D . C 1003−C 9422. 从 5 件不同的礼物中选出 3 件分别送给了 3 位同学,不同方法的种数是 ( )A . A 53B .C 53 C . 35D . 53 3. 从 1,2,3,4,5 五个数中任取 3 个,可组成不同的等差数列的个数为 ( ) A . 2B . 4C . 6D . 8 4. 把 (√3i −x)10 按二项式定理展开,展开式的第 8 项的系数是 ( )A . 135B . −135C . −360√3iD . 360√3i5. 从甲、乙、丙、丁、戊五名志愿者中选派三人分别从事翻译、导游、礼仪三项不同的工作,若乙和丙只能从事前两项工作,其余三人均能从事这三项工作,则不同的选派方案有 ( )A . 36 种B . 12 种C . 18 种D . 24 种 6. 在 (x +2y )7 的展开式中,系数最大的项是 ( )A . 68y 7B . 112x 3y 4C . 672x 2y 5D . 1344x 2y 57. 1−90C 101+902C 102−903C 103+⋯+9010C 1010 除以 88 的余数是 ( ) A . 2 B . 1 C . 86 D . 878. 如果一个三位正整数如" a 1a 2a 3 "满足 a 1<a 2,且 a 2>a 3,则称这样的三位数为凸数(如 120,343,275 等),那么所有凸数的个数为 ( )A .240B .204C .729D .920二、填空题9. 某搬运工不慎将 4 件次品与 6 件正品混在一起,由于产品外观一样,需要用仪器对产品一一检测,直至找到所有次品为止,若至多检测 6 次就能找到所有次品,则不同的检测方法共有 种.10. 设 n ∈N ∗,若 (2+√x)n的二项展开式中,有理项的系数之和为 29525,则 n = .11. 若 (x −1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则 a 0+a 2+a 4 的值为 .12. 已知 (x −λ)2n =a 0x 2n +a 1x 2n−1+a 2x 2n−2+⋯+a 2n−2x 2+a 2n−1x +a 2n ,其中 n ∈N ∗,实数λ 为非零常数,设 A =a 0+a 2+⋯+a 2n−2+a 2n ,B =a 1+a 3+⋯+a 2n−1,若 A +B =(A −B )2,则实数 λ 的值为 .三、多选题13.下列结论正确的是( )A.3个孩子,4把椅子,让孩子都坐下,有24种方法(每把椅子只坐一个孩子)B.3个孩子,4间屋子,让孩子都进屋,有81种结果(每个屋子可以进多个孩子)C.3朵花,4个孩子,把花分给孩子,每人至多一朵,不区分花,有4种分法D.3朵花,4个孩子,把花分给孩子,不区分花,有20种分法14.下列关系中,能成立的是( )A.C n m=mn C n−1m−1B.Cnm=n!(n−m)!m!C.m!=A n mC n m D.A n m+mA n m−1=A n+1m15.对于(1x2+x5)n(n∈N+),下列判断正确的是( )A.对任意n∈N+,展开式中有常数项B.存在n∈N+,展开式中有常数项C.对任意n∈N+,展开式中不含x项D.存在n∈N+,展开式中含x项16.下列结论正确的是( )A.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有70种B.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有140种C.某天上午要排语文、数学、体育、计算机4节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有18种D.某天上午要排语文、数学、体育、计算机4节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有36种四、解答题17.已知x满足等式C16x2−x=C165x−5,求A9x的值.18.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入1号瓶内,那么不同的放法共有多少种?19.某学校共有34人自愿组成数学建模社团,其中高一年级13人,高二年级12人,高三年级9人.(1) 每个年级各选一名组长,有多少种不同的选法?(2) 选两人作为社团发言人,这两人需要来自不同的年级,有多少种不同的选法?20.在二项式(√x3−)n的展开式中,前3项的系数的绝对值成等差数列.求:(1) 展开式中的第4项.(2) 展开式中各项的二项式系数之和与各项的系数之和.21.已知(x2−3x+2)5=a0+a1x+a2x2+⋯+a10x10.求:(1) a0+a1+a2+⋯+a10;(2) (a0+a2+a4+a6+a8+a10)2−(a1+a3+a5+a7+a9)2.22.已知(1+x2)n展开式中的n+1项按x的升幂排列依次为f1(x),f2(x),f3(x),⋯,f n(x),f n+1(x).(1) 若f2(2)=8,求n值;(2) 记a k=2k f k(2)(k=1,2,⋯,n+1),求和S n+1=a1+a2+⋯+a n+a n+1.。

2020秋高中数学人教版2-3达标练习:章末评估验收(一) 第一章计数原理含解析

2020秋高中数学人教版2-3达标练习:章末评估验收(一) 第一章计数原理含解析

2020秋高中数学人教A版选修2-3达标练习:章末评估验收(一)第一章计数原理含解析章末评估验收(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.若A错误!=6C错误!,则m的值等于()A.9B.8 C.7 D.6解析:由A3m=6C错误!,且m≥4得错误!=m(m-1)(m-2).所以m=7.答案:C2.5名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去",则第二天可能出现的不同情况的种数为()A.C错误!B.25C.52D.A25解析:“去"或“不去",5个人中每个人都有两种选择,所以,出现的可能情况有2×2×2×2×2=25(种).答案:B3.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法种数有()A.120 B.240 C.360 D.720解析:首先确定3个球,有C错误!种方法,要求与其所在盒子的标号不一致有2种放法,故共有2C错误!=240种方法.答案:B4.将A,B,C,D,E排成一列,要求A,B,C在排列中顺序为“A,B,C”或“C,B,A”(可以不相邻),则不同的排列方法有()A.12种B.20种C.40种D.60种解析:五个元素没有限制条件,全排列数为A错误!,若A、B、C的顺序为“A,B,C”或“C,B,A"(可以不相邻),则不同的排列方法为2·错误!=40.答案:C5.在(1-x)11的展开式中,含x的奇次幂的各项系数的和是()A.-210B.210C.-211D.211解析:(1-x)11的展开式中,含x的奇次幂的项即偶数项,由于偶数项的二项式系数和为210,偶数项的系数均为负数,故含x 的奇次幂的各项系数的和为-210。

2019-2020学年高中数学 第1章 计数原理章末达标测试(一) 2-3

2019-2020学年高中数学 第1章 计数原理章末达标测试(一) 2-3

章末达标测试(一)(本卷满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有A.210个B.300个C.464个D.600个解析由于组成无重复数字的六位数,个位数字小于十位的与个位数字大于十位的一样多,所以有错误!=300(个).答案B2.小王有70元钱,现有面值分别为20元和30元的两种IC 电话卡.若他至少买一张,则不同的买法共有A.7种B.8种C.6种D.9种解析要完成的一件事是“至少买一张IC电话卡”,分3类完成:买1张IC卡,买2张IC卡,买3张IC卡.而每一类都能独立完成“至少买一张IC电话卡”这件事.买1张IC卡有2种方法,买2张IC卡有3种方法,买3张IC卡有2种方法,共有2+3+2=7种不同的买法.答案A3.若A错误!=6C错误!,则m等于A.9 B.8 C.7 D.6解析由m(m-1)(m-2)=6·错误!,解得m=7。

答案C4.(1+x)3+(1+x)4+…+(1+x)n+2(x≠-1,n∈N*)的展开式中x2的系数是A.C错误!B.C错误!C.C错误!-1 D.C错误!-1解析先把(1+x)3,(1+x)4,…,(1+x)n+2看作等比数列求和.原式=错误!=错误![(1+x)n+3-(1+x)3],原式展开式中x2的系数就是(1+x)n+3与(1+x)3展开式中x3的系数之差,C错误!-C错误!=C错误!-1,故选D.答案D5.若从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数,则不同的取法共有A.66种B.63种C.61种D.60种解析从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数的取法分为两类:第一类取1个奇数,3个偶数,共有C错误! C错误!=20种取法;第二类是取3个奇数,1个偶数,共有C错误!C错误!=40种取法.故不同的取法共有60种,选D.答案D6.五种不同商品在货架上排成一排,其中A,B两种必须连排,而C,D两种不能连排,则不同排法共有A.12 B.20 C.24 D.48解析先排除C,D外的商品,利用捆绑法,将A,B看成一个整体,有A错误!A错误!种排法,再将C,D插空,共有A错误!A错误!A错误!=24种排法.答案C7.已知错误!错误!展开式中,各项系数的和与其二项式系数的和之比为64,则n等于A.4 B.5 C.6 D.7解析展开式中,各项系数的和为4n,二项式系数的和为2n,由已知得2n=64,所以n=6。

高中数学人教版 选修2-3(理科) 第一章 计数原理1.2.2组合A卷(练习)

高中数学人教版 选修2-3(理科) 第一章 计数原理1.2.2组合A卷(练习)

高中数学人教版选修2-3(理科)第一章计数原理1.2.2组合A卷(练习)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)三层书架,上层有10本不同的语文书,中层有9本不同的数学书,下层有8本不同的英语书,从书架上任取两本不同学科的书,不同取法共有()A . 245种B . 242种C . 54种D . 27种2. (2分)从4种不同的蔬菜品种中选出3种,分别种在3块不同的土质的土地上进行试验,共有种植方法数为()A .B .C .D .3. (2分)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一班,则不同分法的种数为()A . 18B . 24C . 30D . 364. (2分)(2018·朝阳模拟) 某单位安排甲、乙、丙、丁名工作人员从周一到周五值班,每天有且只有人值班每人至少安排一天且甲连续两天值班,则不同的安排方法种数为()A .B .C .D .5. (2分) (2019高二下·阜平月考) 如图所示的五个区域中,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A . 24种B . 48种C . 72种D . 96种6. (2分)设集合A={a1,a2,a3,a4,a5},记n(A)是ai+aj的不同值的个数,其中且,n(A),的最大值为k,n(A)的最小值为m,则()A .B .C .D .7. (2分)如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有()A . 50种B . 51种C . 140种D . 141种8. (2分) (2020高二下·龙江期末) 2020年4月30日,我国的5G信号首次覆盖了海拔8000米的珠穆朗玛峰峰顶和北坡登山路线,为了保证中国登山队珠峰高程测量的顺利直播,现从海拔5300米、5800米和6500米的三个大本营中抽出了4名技术人员,派往北坡登山路线中的3个崎岖路段进行信号检测,每个路段至少安排1名技术人员,则不同的安排方法共有()A . 72B . 36C . 48D . 54二、填空题 (共3题;共3分)9. (1分) (2020高三上·浙江月考) 从0,2,4,6中任取2个数字,从1,3,5中任取2个数字,一共可以组成________个没有重复数字的四位偶数.10. (1分) (2020高三上·青浦期末) 某地开展名优教师支教活动,现有五名名优教师被随机分到、、三个不同的乡镇中学,现要求甲乙两位名优教师同时分到一个中学,可以有乡镇中学不分配到名优教师,则不同的分配方案共有________种11. (1分) (2020高三上·浙江月考) 某地需要安排人员分别在上午、下午、前半夜、后半夜四个时间段值班,要求每班至少含一名民警和一名医务人员,且至少有一名女性,每人值一班.现有民警4人(4男),医务人员6人(5女1男),其中民警甲不排上午,男医生不排上午、下午,则不同的安排方法有________种.三、解答题 (共3题;共30分)12. (5分)设r,s,t为整数,集合{a|a=2r+2s+2t ,0≤t<s<r}中的数由小到大组成数列{an}.(1)写出数列{an}的前三项;(2)求a36 .13. (10分)用这六个数字,完成下面两个小题.(1)若数字不允许重复,可以组成多少个能被整除的且百位数字不是的不同的五位数;(2)若直线方程中的可以从已知的六个数字中任取个不同的数字,则直线方程表示的不同直线共有多少条?14. (15分) (2017高二下·莆田期末) 某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影.(1)求其中的甲乙两人必须相邻的站法有多少种?(2)求其中的甲乙两人不相邻的站法有多少种?(3)求甲不站最左端且乙不站最右端的站法有多少种?参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共3题;共3分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:三、解答题 (共3题;共30分)答案:12-1、考点:解析:答案:13-1、答案:13-2、考点:解析:答案:14-1、答案:14-2、答案:14-3、考点:解析:。

【优化方案】2021-2021学年高中数学 第一章 计数原理章末综合检测 新人教A版选修2-3(1)

【优化方案】2021-2021学年高中数学 第一章 计数原理章末综合检测 新人教A版选修2-3(1)

【优化方案】2021-2021学年高中数学 第一章 计数原理章末综合检测 新人教A 版选修2-3(时刻:100分钟;总分值:120分)一、选择题(本大题共10小题,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.假设A 3m =6C 4m ,那么m 等于( )A .9B .8C .7D .6解析:选C.由m (m -1)(m -2)=6·m m -1m -2m -34×3×2×1,解得m =7.2.(1-x )10展开式中x 3项的系数为( ) A .-720 B .720 C .120D .-120解析:选D.由T r +1=C r 10(-x )r =(-1)r C r 10x r ,r =3,因此系数为(-1)3C 310=-120.3.编号为一、二、3、4、五、六、7的七盏路灯,晚上历时只亮三盏灯,且任意两盏亮灯不相邻,那么不同的开灯方案有( )A .60种B .20种C .10种D .8种解析:选C.四盏熄灭的灯产生的5个空位中放入3盏亮灯,即C 35=10.4.某汽车生产厂家预备推出10款不同的轿车参加车展,但主办方只能为该厂提供6个展位,每一个展位摆放一辆车,而且甲、乙两款车不能摆放在1号展位,那么该厂家参展轿车的不同摆放方案的种类为( )A .C 210A 48B .C 19A 59 C .C 18A 59D .C 18A 58解析:选C.考查分步乘法计数原理和排列数公式,在1号位汽车选择的种数为C 18,其余位置的排列数为A 59,故种数为C 18A 59,应选C.5.(2-x)8展开式中不含x4项的系数的和为( ) A.-1 B.0C.1 D.2解析:选B.(2-x)8展开式的通项为T r+1=C r8·28-r·(-x)r=C r8·28-r·(-1)r·x r2.由r 2=4得r=8.∴展开式中x4项的系数为C88=1.又(2-x)8展开式中各项系数和为(2-1)8=1,∴展开式中不含x4项的系数的和为0.6.把五个标号为1到5的小球全数放入标号为1到4的四个盒子中,不准有空盒且任意一个小球都不能放入标有相同标号的盒子中,那么不同的放法有( )A.36种B.45种C.54种D.96种解析:选A.先把5号球放入任意一个盒子中有4种放法,再把剩下的四个球放入盒子中,依照4的“错位数”是9,得不同的放法有4×9=36种.7.咱们把列位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),那么“六合数”中首位为2的“六合数”共有( )A.18个B.15个C.12个D.9个解析:选B.依题意,那个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数别离为400、040、004;由3、一、0组成6个数别离为310、30一、130、103、013、031;由二、二、0组成3个数别离为220、20二、022;由二、一、1组成3个数别离为21一、12一、112.共计:3+6+3+3=15个.8.已知等差数列{a n}的通项公式为a n=3n-5,那么(1+x)5+(1+x)6+(1+x)7的展开式中含x4项的系数是该数列的( )A.第9项B.第10项C.第19项D.第20项解析:选D.∵(1+x)5+(1+x)6+(1+x)7展开式中含x4项的系数是C45·11+C46·12+C47·13=5+15+35=55,∴由3n-5=55得n=20,应选D.9.记者要为5名志愿者和他们帮忙的2位老人拍照,要求排成一排,2位老人相邻但不排在两头,不同的排法共有( )A.1440种B.960种C.720种D.480种解析:选B.将5名志愿者全排列为A55,因2位老人相邻且不排在两头,故将2位老人看成一个整体插在5名志愿者之间形成的4个空内,为A14,再让2位老人全排列为A22,故不同的排法总数为A55A14A22=960.10.假设(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,那么实数m的值为( )A.1或-3 B.-1或3C.1 D.-3解析:选A.令x=0,取得a0+a1+a2+…+a9=(2+m)9,令x=-2,取得a0-a1+a2-a3+…-a9=m9,因此有(2+m)9m9=39,即m2+2m=3,解得m=1或-3.二、填空题(本大题共5小题,把答案填在题中横线上)11.男、女学生共有8人,从男生当选取2人,从女生当选取1人,共有30种不同的选法,其中女生有________人.解析:设女生有x人,那么C28-x·C1x=30,即8-x7-x2·x=30,解得x=2或3.答案:2或312.假设(3x+1)n(n∈N*) 的展开式中各项系数的和是256,那么展开式中x2项的系数是________.解析:令x=1,得(3+1)n=256,解得n=4,(3x+1)4的展开式中x2项的系数为C24×32=54. 答案:5413.5个人排成一排,要求甲、乙两人之间至少有一人,那么不同的排法有________种.解析:甲、乙两人之间至少有一人,确实是甲、乙两人不相邻,那么有A 33·A 24=72种不同的排法.答案:7214.航空母舰“辽宁舰”将进行一次编队配置科学实验,要求2艘解决型核潜艇一前一后,2艘驱逐舰和2艘护卫舰排列左、右,同侧不能都是同种舰艇,那么舰艇分派方案的方式数是________.解析:先将2艘驱逐舰和2艘护卫舰平均分成两组,再排有C 12C 12A 22A 22种方式,然后排两艘解决型核潜艇有A 22种方式,故舰艇分派方案的方式数为C 12C 12A 22A 22A 22=32.答案:3215.在⎝⎛⎭⎪⎫x 2-13x n 的展开式中,只有第5项的二项式系数最大,那么展开式中常数项为________.解析:由题意知n =8,通项为T r +1=(-1)r ·C r 8·⎝ ⎛⎭⎪⎫128-r ·x 8-43r, 令8-43r =0,得r =6,故常数项为第7项,且T 7=(-1)6·⎝ ⎛⎭⎪⎫122·C 68=7. 答案:7三、解答题(此题共5小题,解许诺写出文字说明、证明进程或演算步骤)16.从编号为1,2,…,9的9个球中任取4个球,使它们的编号之和为奇数,再把这4个球排成一排,共有多少种不同的排法?解:知足条件的4个球的编号有两类取法:①一奇三偶排法数为C 15C 34A 44; ②三奇一偶排法数为C 35C 14A 44.故共有C 15C 34A 44+C 35C 14A 44=1 440种不同的排法.17.已知(1+2x )n 的展开式中,某一项的系数是它前一项系数的2倍,是它后一项的系数的56,求该展开式中二项式系数最大的项.解:第r +1项系数为C r n 2r ,第r 项系数为C r -1n 2r -1, 第r +2项系数为C r +1n 2r +1,依题意得 ⎩⎪⎨⎪⎧C r n 2r =2C r -1n2r -1C r n 2r =56C r+1n 2r +1,整理得⎩⎪⎨⎪⎧C r n =C r -1nC r n =53C r +1n ,即⎩⎪⎨⎪⎧2r =n +15n -r =3r +1,求得:n =7.故二项式系数最大的项是第4项和第5项.T 4=C 37(2x )3=280x32,T 5=C 47(2x )4=560x 2.18.已知(2x i +1x2)n ,i 是虚数单位,x >0,n ∈N *.(1)若是展开式中的倒数第3项的系数是-180,求n 的值; (2)对(1)中的n ,求展开式中系数为正实数的项.解:(1)由已知,得C n -2n (2i)2=-180,即4C 2n=180, 因此n 2-n -90=0,又n ∈N *,解得n =10. (2)(2x i +1x2)10展开式的通项为T k +1=C k 10(2x i)10-k x -2k =C k 10(2i)10-k x 5-52k . 因为系数为正实数,且k ∈{0,1,2,…,10},因此k =2,6,10. 因此所求的项为T 3=11 520,T 7=3 360x -10,T11=x-20.19.已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.(1)从A∪B中掏出3个不同的元素组成三位数,那么能够组成多少个?(2)从集合A中掏出1个元素,从集合B中掏出3个元素,能够组成多少个无重复数字且比4 000大的自然数?解:由1<log 2x <3,得2<x <8,又x ∈N *,因此x 为3,4,5,6,7,即A ={3,4,5,6,7},因此A ∪B ={3,4,5,6,7,8}.(1)从A ∪B 中掏出3个不同的元素,能够组成A 36=120个三位数. (2)假设从集合A 中取元素3,那么3不能作千位上的数字,有C 35·C 13·A 33=180个知足题意的自然数;假设不从集合A 中取元素3,那么有C 14C 34A 44=384个知足题意的自然数.因此,知足题意的自然数共有180+384=564个.20.7名师生站成一排照相留念,其中教师1人,男生4人,女生2人,在以下情形下,各有不同站法多少种?(1)两名女生必需相邻而站; (2)4名男生互不相邻;(3)假设4名男生身高都不等,按从高到低的顺序站; (4)教师不站中间,女生不站两头.解:(1)两名女生站在一路有站法A 22种,视为一种元素与其余5人全排,有A 66种排法.故有不同站法A 22·A 66=1 440种.(2)先站教师和女生,有站法A 33种,再在教师和女生站位的距离(含两头)处插入男生,每空一人,有插入方式A 44种.故共有不同站法A 33·A 44=144种. (3)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右,或从右到左的不同.故共有不同站法2·A 77A 44=420种.(4)中间和两头是特殊位置,可如下分类求解:①教师站两头之一,另一端由男生站,有A 12·A 14·A 55种站法,②两头全由男生站,教师站除两头和正中间的另外4个位置之一,有A 24·A 14·A 44种站法.故共有不同站法2 112种.。

2023-2024学年辽宁省丹东市高二上学期期末数学质量检测模拟试题(含解析)

2023-2024学年辽宁省丹东市高二上学期期末数学质量检测模拟试题(含解析)

2023-2024学年辽宁省丹东市高二上册期末数学模拟试题一、单选题1.抛物线28x y =的准线方程为()A .1y =-B .=2y -C .=1x -D .2x =-【正确答案】B【分析】由抛物线定义即可求.【详解】由定义可知,抛物线28x y =的准线方程为422y =-=-.故选:B.2.学校组织社团活动,要求每名同学必须且只能参加一个社团,现仅剩的3个社团供4名同学选择,则不同的选择方法有()A .34A 种B .34C 种C .34种D .43种【正确答案】D【分析】由分步计数乘法原理即可求解【详解】由题意可得,每名同学共有3种选择,故不同的选择方法有43种故选:D3.已知椭圆过点()0,2,焦点分别为()10,1-F ,()20,1F ,则椭圆的离心率为()A .12BC.2D【正确答案】A【分析】由题可得椭圆方程,后可得椭圆离心率.【详解】设椭圆方程为22221y x a b +=,右焦点为(),0c ,由题有.2222411aa b c ⎧=⎪⎨⎪-==⎩则2a =,故离心率为12c e a ==.故选:A4.已知空间向量()2,1,4a =-- ,()1,1,2b =- ,()7,5,c m =-- 若,a ,b,c 共面,则实数m 的值为()A .14-B .6C .10-D .12【正确答案】A【分析】根据向量共面,建立方程组,解得答案.【详解】由a ,b ,c 共面,可设a xb yc =+ ,则271542x yx yx my -=-⎧⎪=--⎨⎪-=+⎩,由2715x y x y -=-⎧⎨=--⎩,解得1712112x y ⎧=-⎪⎪⎨⎪=⎪⎩,代入第三个方程可得:174612m -=-+,解得14m =-.故选:A.5.在正方体1111ABCD A B C D -中,点E 是1DD 的中点,则二面角11E B C C --的平面角的正切值为()A .1B .5C .2D.【正确答案】C【分析】由题可得1EC C ∠为二面角11E B C C --的平面角,后结合题目条件可得答案.【详解】如图,因几何体为正方体,则11B C ⊥面11C CDD ,1C C ⊂面11C CDD ,则111B C C C ⊥,又1C E ⊂平面11C CDD ,则111B C C E ⊥,故1EC C ∠即为二面角11E B C C --的平面角.过E 做直线1C C 垂线,交1C C 于F ,则F 为1C C 中点.故112tan EFEC F C F∠==.故选:C6.双曲线2222:1(0,0)x y C a b a b -=>>的焦点到渐近线的距离等于a ,则双曲线C 的渐近线方程为()A0y ±=B.0x =C .0x y ±=Dy ±=【正确答案】C【分析】由点到直线距离公式可得a b ,间关系,据此可得答案.【详解】由题,双曲线的一条渐近线的方程为by x a =,右焦点为(),0c ,a b a =⇒=,故渐近线方程为0x y ±=.故选:C7.如图所示为某公园景观的一隅,是由ABCDE 五处区域构成,现为了美观要将五处区域用鲜花装饰,要求相邻区域种植不同色的鲜花,有4种颜色鲜花可供选用,则不同的装饰方案数为()A .216B .144C .128D .96【正确答案】B【分析】依次确定区域B 、A 、D 、C 、E 的选法种数,结合分步乘法计数原理可得结果.【详解】区域B 有4种颜色鲜花可供选择,区域A 有3种颜色鲜花可供选择,区域D 有3种颜色鲜花可供选择,区域C 、E 各有2种颜色鲜花可供选择,由分步乘法计数原理可知,不同的装饰方案数为43322144⨯⨯⨯⨯=种.故选:B.8.已知圆22:16O x y +=与圆22:86160C x y x y ++++=交于A ,B 两点,则四边形OACB 的面积为()A .12B .6C .24D .245【正确答案】A【分析】由两圆标准方程得圆心坐标和半径,由()4,0A -和()4,3C --可知OA AC ⊥,则四边形OACB 的面积1222OAC S S OA AC ==⨯⋅⋅ ,计算即可.【详解】圆22:16O x y +=,圆心坐标为()0,0O ,半径14r =,圆22:86160C x y x y ++++=化成标准方程为()()22439x y +++=,圆心坐标为()4,3C --,半径23r =,圆O 与圆C 都过点()4,0-,则()4,0A -,如图所示,又()4,3C --,∴OA AC ⊥,由对称性可知,OB BC ⊥,4OA OB ==,3AC BC ==,则四边形OACB 的面积12243122OAC S S OA AC ==⨯⋅⋅=⨯= .故选:A 二、多选题9.20件产品中有18件合格品,2件次品,从这20件产品中任意抽取3件,则抽出的3件产品中至少有1件次品的抽法表述正确的是()A .12219C C ⋅B .1221218218C C C C ⋅+⋅C .332018C C -D .1221219218C C C C ⋅-⋅【正确答案】BCD【分析】直接法:抽出的3件产品中至少有1件次品有两种可能:恰有1件次品和恰有2件次品,运即可算求解;间接法:法一:20件产品中任意抽取3件的抽法减去没有次品(全为合格品)的抽法;法二:先抽取1件次品,再从剩余的19件中任取2件,减去重复一次的情况(2个次品).【详解】直接法:抽出的3件产品中至少有1件次品有如下可能:抽出的3件产品中恰有1件次品的抽法12219C C ⋅;抽出的3件产品中恰有2件次品的抽法21218C C ⋅;故抽出的3件产品中至少有1件次品的抽法为1221218218C C C C ⋅+⋅,A 错误,B 正确;间接法:法一:这20件产品中任意抽取3件的抽法为320C ,抽出的3件产品中没有次品(全为合格品)的抽法为318C ,故抽出的3件产品中至少有1件次品的抽法为332018C C -,C 正确;法二:先抽取1件次品,再从剩余的19件中任取2件,抽法为12219C C ⋅,但2个次品的情况重复一次,抽出2个次品的抽法为21218C C ⋅,故抽出的3件产品中至少有1件次品的抽法为1221219218C C C C ⋅-⋅,D 正确;故选:BCD.10.若2022220220122022(1)x a a x a x a x -=++++ ,则()A .01a =B .12022a =C .1220221a a a +++=- D .012320221a a a a a -+-++= 【正确答案】AC【分析】对ACD ,由赋值法可判断;对B ,由二项式展开项通项公式可求.【详解】对A ,令0x =得01a =,A 对;对B ,由二项式展开项通项公式可得第2项为()1120212202211C 120222022T x x a x a =-=-=⇒=-,B 错对C ,令1x =得0122022122022001a a a a a a a a +++=++=-+⇒=-+,C 对;对D ,令=1x -得0123220222022a a a a a -+-++=,D 错.故选:AC.11.已知直线:2410l kx y k --+=,则下列表述正确的是()A .当2k =时,直线的倾斜角为45B .当实数k 变化时,直线l 恒过点14,2⎛⎫⎪⎝⎭C .当直线l 与直线240x y +-=平行时,则两条直线的距离为1D .直线l 与两坐标轴正半轴围成的三角形面积的最小值为4【正确答案】ABD【分析】A 选项,可求出直线斜率,即可判断选项正误;B 选项,将直线方程整理为()4120k x y -+-=,由此可得直线所过定点;C 选项,由题可得1k =-,后由平行直线距离公式可判断选项;D 选项,分别令0x y =,,可得直线与y 轴,x 轴交点为1402,k ⎛⎫- ⎪⎝⎭,140,k ⎛⎫- ⎪⎝⎭.则围成三角形面积为1141422k k ⎛⎫-⋅⋅- ⎪⎝⎭,后由基本不等式可判断选项.【详解】A 选项,当2k =时,直线方程为2270x y --=,可得直线斜率为1,则倾斜角为45 ,故A 正确;B 选项,由题可得()4120k x y -+-=,则直线过定点14,2⎛⎫⎪⎝⎭,故B 正确;C 选项,因直线l 与直线240x y +-=平行,则221828k k k =-⎧⇒=-⎨-+≠⎩,则直线方程为:250x y --+=,即250x y +-=.则l 与直线240x y +-=之间的距离为5=,故C 错误;D 选项,分别令0x y =,,可得直线与y 轴,x 轴交点为1402,k ⎛⎫- ⎪⎝⎭,140,k ⎛⎫- ⎪⎝⎭.又交点在两坐标轴正半轴,则14020140kk k-⎧>⎪⎪⇒<⎨⎪->⎪⎩.故围成三角形面积为()1141142424224k k k k ⎛⎫-⋅⋅-=+-+≥+= ⎪-⎝⎭,当且仅当144k k-=-,即14k =-时取等号.即面积最小值为4,故D 正确.故选:ABD.12.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别是AB ,BC 边上的动点,且满足BE BA λ=,[]0,1λ∈,BF BC μ=,[]0,1μ∈.则()A .当1λμ==时,正方体各棱与平面1D EF 夹角相等B .当12λ=时,存在μ使得直线1B D 与平面1D EF 垂直C .当12μ=时,满足12ED EF =的点E 有且只有两个D .当12λμ==时,异面直线EF 与1B D 的距离为2【正确答案】AD【分析】建立空间直角坐标系,利用向量解决夹角、距离、平行等问题.【详解】以D 为原点,1,,DA DC DD的方向为x 轴,y 轴,z 轴正方向建立如图所示的空间直角坐标系,则有()0,0,0D ,()10,0,2D ,()12,2,2B ,()2,0,0A ,()0,2,0C ,当1λμ==时,()2,0,0E ,()0,2,0F ,()12,0,2D E =- ,()10,2,2D F =-,设平面1D EF 的一个法向量为(),,n x y z =r ,则11220220n D E x z n D F y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩,令1z =,则()1,1,1n = ,()10,0,2DD = ,()2,0,0DA = ,()0,2,0DC = ,故1113cos ,23DD n DD n DD n ⋅==⨯⋅,同理3cos ,cos ,3DA n DC n == 由此可得正方体各棱与平面1D EF 夹角相等,A 正确;当12λ=时,()2,1,0E ,()12,1,2D E =- ,()12,2,2B D =--- ,则114240B D D E ⋅=--+≠ ,即1D E 与1B D不垂直,所以直线1B D 与平面1D EF 不垂直,B 错误;当12μ=时,()1,2,0F ,设()()2,,002E b b ≤≤,由12ED EF =()2222222212b b ++=+-,化简得2316120b b -+=,21643120∆=-⨯⨯>,121643b b +=>,所以这样点E 不可能有两个,C 错误;当12λμ==时,()2,1,0E ,()1,2,0F ,EF 的中点为33,,022G ⎛⎫⎪⎝⎭,1DB 的中点为()1,1,1H ,11,,122HG ⎛⎫=- ⎪⎝⎭,()1,1,0EF =-,()12,2,2DB = ,则11022HG EF ⋅=-+= ,11120HG DB ⋅=+-= ,所以HG 是异面直线EF 与1B D 的公垂线段,且()2221161222HG ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭所以异面直线EF 与1B D 的距离为62,D 正确.故选:AD三、填空题13.已知异面直线AB 和CD 的方向向量分别为()1,1,1AB = ,()2,0,4CD =-则异面直线AB 和CD 所成角的余弦值为______.【正确答案】15【分析】根据异面直线夹角求余弦值的坐标公式,可得答案.【详解】设异面直线AB 和CD 所成角为θ,则cos 15AB CD AB CD θ⋅===⋅ .故答案为.1514.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在1261年中国南宋数学家杨辉所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晩近四百年.如图所示的杨辉三角中,从第2行开始,每一行除1外,其他每一个数字都是其上一行的左右两个数字之和,若在杨辉三角中存在某一行,满足该行中有三个相邻的数字之比为3:5:5,则这一行是第______行.【正确答案】7【分析】设这一行为第()21n n *+∈N 行,且这三个数分别为121C n n -+、21C nn +、121C n n ++,利用组合数公式可得出关于n 的等式,解出n 的值,即可得解.【详解】由题意可知,这一行为第()21n n *+∈N 行,且这三个数分别为121C n n -+、21C nn +、121C n n ++,由题意可得()()()()()1212121!!1!C 3C 1!2!21!25n n n n n n n n n n n n -+++⋅+=⋅==-⋅+++,解得3n =,因此,这一行是第2317⨯+=行.故答案为.715.平行六面体1111ABCD A B C D -的底面是菱形,2AB =,14AA =,1160A AB A AD ∠=∠=︒,线段1AC的长度为cos DAB ∠=______.【正确答案】12##0.5【分析】利用空间向量基本定理得到11AC AB AD AA =++,平方后,利用数量积公式列出方程,求出cos DAB ∠.【详解】因为11AC AB AD AA =++,所以()2222211111222AC AB AD AA AB AD AA AB AD AB AA AD AA =++=+++⋅+⋅+⋅因为2AB AD ==,14AA =,1160A AB A AD ∠=∠=︒,1211AC =,所以444168cos 16cos 16co 0s 6064BAD +++∠++︒︒=,解得.1cos 2BAD ∠=故12四、双空题16.已知椭圆2222:1(0)x y C a b a b+=>>,直线l 与C 在第一象限交于A ,B 两点,直线l 与x 轴和y 轴分别交于M ,N 两点,且MA NB =,点E 为AB 的中点,直线OE 倾斜角的正切值为22,3OE =,则直线l 的方程为______;椭圆C 的离心率为______.【正确答案】2232y =+22【分析】利用几何知识求出直线l 的斜率,利用中点E 坐标求出点M 坐标,即可得出直线l 的方程.设出点,A B 坐标,利用点差法,即可得出椭圆C 的离心率.【详解】由题意,在2222:1(0)x y C a b a b+=>>中,MA NB =,BA BE =,由几何知识得,直线l 与直线OE 关于点E 所在x 轴对称,∵直线OE 22,3OE =∴直线l 的斜率为22-,设(),E E E x y ,则32E E Ey y x ⎧=⎪⎪⎨⎪=⎪⎩E E x y ⎧=⎪⎨=⎪⎩∴E,(0,M∴:2l y =-+设()11,A x y ,()22,B x y ,则2211221x y a b +=,2222221x y a b+=,122E x x x +==,122E y y y +==∴22221212220x x y y a b --+=,∴()()()()2121221212y y y y b x x x x a +-=-+-,∴22122b a ⎛⎫-=-=- ⎪ ⎪⎝⎭,∴222a b =,即a =,∴c b ===,∴离心率.2c e a ==故2y =-+2.五、解答题17.已知圆C 的圆心在直线260x y +-=上,且与直线y x =相切于原点.(1)求原点()0,0关于直线260x y +-=对称点的坐标;(2)求圆C 的方程.【正确答案】(1)2412 ,55⎛⎫⎪⎝⎭(2)22(6)(6)72x y -++=【分析】(1)若两点关于直线对称,则两点连线中点在直线上,且两点连线与直线垂直,据此可得答案;(2)因圆C 与直线y x =相切于原点,则圆C 过原点,且圆心在直线y x =-上,又圆心在直线260x y +-=上,可求得圆心坐标与圆的半径.【详解】(1)设原点()0,0关于直线260x y +-=对称点坐标为()00,x y ,则两个点的中点坐标为00,22x y ⎛⎫ ⎪⎝⎭.∵中点在直线260x y +-=上,得到:002120x y +-=①.又过两个对称点的直线与已知直线垂直,∴021y x -⨯=-,得002y x =②.联立①②解得对称点坐标为2412,55⎛⎫⎪⎝⎭;(2)过原点且与直线y x =垂直的直线方程为y x =-,由题圆心在y x =-上.又圆心在直线260x y +-=上,联立直线:62606y x y x y x =-=-⎧⎧⇒⎨⎨+-==⎩⎩,即圆心为()6,6-.由题原点在圆C上,则半径r =.22(6)(6)72x y -++=18.如图,在直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC CC ===.(1)求点1B 到平面1ABC 的距离;(2)若点M 是棱BC 的中点,求直线1B M 与平面1ABC 所成角的正弦值.【正确答案】(2)5【分析】如图,建立以C 为原点的空间直角坐标系.(1)求出平面1ABC 的法向量n,设点1B 到面1ABC 的距离为d ,则1n BB d n ⋅= ;(2)设直线1B M 与平面1ABC 成角正弦值为sin θ,则111sin cos ,n B M n B M n B M θ⋅==∣.【详解】(1)因为直三棱柱111ABC A B C -底面三角形ABC 满足:AC BC ⊥,且12AC BC CC ===,则以C 为坐标原点,CA的方向为x 轴正方向,建立如图所示的空间直角坐标系C xyz -.则B (0,2,0),A (2,0,0),C (0,0,2),1B (0,2,2),()0,1,0M ,()2,2,0AB =- ,()12,0,2C A =- .设面1ABC 的法向量为(),,n x y z =r,则1220220n AB x y n C A x z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ ,取()1,1,1n = .又()10,0,2BB = ,设点1B 到面1ABC 的距离为d,则13n BB d n ⋅==.(2)由题可得()10,1,2B M =--,设1B M 与面1ABC 的夹角为θ,则111sin cos ,∣n B M n B M n B M ⋅==θ19.双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为y =,且经过点(A .(1)求C 的方程;(2)O 为坐标原点,过双曲线C 上一动点M (M 在第一象限)分别作C 的两条渐近线的平行线为1l ,2l 且1l ,2l 与x 轴分别交于P ,Q ,求证:OP OQ ⋅为定值.【正确答案】(1)22139x y -=(2)证明见解析【分析】(1)根据双曲线渐近线方程以及已知点,联立方程,可得答案;(2)由题意,设出动点,利用点斜式方程,结合直线位置关系,写出直线12,l l 的直线方程,求出,Q P 的坐标,整理OP OQ ⋅的表达式,利用整体思想,可得答案.【详解】(1)∵渐近线为y =,则b a =b =,∴222213x y a a-=,A 在双曲线C 上,得224313a a -=解得23a =,∴曲线C 的标准方程为22139x y -=.(2)设点M 坐标为()00,x y则)100:l y y x x -=-,得P ⎛⎫⎪⎪⎭,则OP =同理:)200:l y y x x -=-,得Q ⎫⎪⎪⎭,则OQ =则220033x y OP OQ -⋅=又∵点M 在曲线C 上,∴2200 139x y -=,∴220039x y -=则2200333x y OP OQ -⋅==,∴得证OP OQ ⋅为定值3.20.已知抛物线2:4C y x =的焦点为F ,过F 的动直线与C 交于A ,B 两点.(1)若直线AB 的倾斜角为45 ,求弦AB 的长度;(2)设A ,B 两点到x 轴的距离分别为1d ,2d ,求12d d +的最小值.【正确答案】(1)8(2)4【分析】(1)先利用点斜式得到直线方程,接着与抛物线进行联立可得121244y y y y +=⎧⎨=-⎩,然后用弦长公式即可求解;(2)设直线AB 的方程为1x my =+,与抛物线联立可得343444y y my y +=⎧⎨=-⎩,所以12344d d y y ⋅==,然后用基本不等式进行求解即可【详解】(1)由抛物线2:4C y x =可得焦点()1,0F ,当直线倾斜角为45 时,直线AB 的方程为1y x =-,联立214y x y x =-⎧⎨=⎩化简得:2440y y --=,经验证Δ0>成立,设()11,A x y ,()22,B x y ,此时121244y y y y +=⎧⎨=-⎩,∴128AB y y =-=(2)由题可知,直线AB 的斜率不为0,又焦点()1,0F ,所以设直线AB 的方程为1x my =+,联立214x my y x =+⎧⎨=⎩化简得:2440y my --=,经验证Δ0>成立,设()33,A x y ,()44,B x y ,此时343444y y my y +=⎧⎨=-⎩,由题可得:13d y =,24d y =,则12344d d y y ⋅==,又12d d +≥124d d +≥,当且仅当122d d ==,直线AB 与x 轴垂直,即弦AB 为通径时等号成立,所以12d d +的最小值是4.21.如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC⊥,E 是PB 上的动点.(1)若OE ∥平面PAC ,请确定点E 的位置,并说明理由;(2)若30ABO CBO ∠∠== ,4BO =,当E 是PB 中点,且二面角P AB C --的正切值为32时.求二面角C AE B --的正弦值.【正确答案】(1)E 是BP 中点,理由见解析(2)1113【分析】(1)通过证明POA POB ≅△△,得到OA OB =,再通过线面平行的性质,即可确定点E 的位置.(2)建立空间直角坐标系,求出各点坐标,求出平面AEB 和面AEC 的法向量,即可求出二面角C AE B --的正弦值.【详解】(1)由题意,E 是BP 中点,理由如下:延长BO 交AC 于点D ,连接PD 、OA ,取AB 中点M ,连接OM .∵PO ⊥面ABC ,∴90∠=∠= POA POB .又∵PA PB =,∴POA POB ≅△△,∴OA OB =.∵M 是AB 中点,∴OM AB ⊥.∵AC AB ⊥,∴OM AC ∥,∴O 是BD 中点.又∵OE ⊂面BPD ,面BPD 面PAC PD =,若OE ∥面PAC ,则由线面平行性质定理得OE PD ∥.∵O 是BD 中点,∴E 是BP 中点.(2)由题意,以A 为坐标原点,AB的方向为x 轴正方向,建立如图所示的空间直角坐标系A xyz -,由(1),可知z 轴在平面AOP 内.∵4BO =,30OBA OBC ∠∠== ,∴28BD OA ==,∴4=AD ,AB =12AC =,∴()2,0O ,()B ,()0,12,0C ,由(1),可得PO ⊥平面ABC ,OM AB ⊥,∴PM AB ⊥,∴PMO ∠为二面角P AB C --的平面角,∴3tan 2PO PMO OM ∠==.又2OM =,∴3PO =,∴()2,3P .∵E 是PB中点,∴32E ⎛⎫ ⎪⎝⎭,∴32AE ⎛⎫= ⎪⎝⎭,()0,0AB =,()0,12,0AC = .设平面AEB 的法向量为(),,n x y z =r,则3020n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,取()0,3,2n =- .设平面AEC 的法向量为(),,m a b c=,则302120m AE b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,取)6m =- .设二面角C AE B --的平面角为θ,则sin θ==1113=.22.已知动点P 到点()1,0F 的距离与到直线:4l x =的距离之比为12,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)曲线E 与x 轴正半轴交于点M ,过F 的直线交曲线E 于A ,B 两点(异于点M ),连接AM ,BM 并延长分别交l 于D ,C ,试问:以CD 为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【正确答案】(1)22:143x y E +=(2)圆恒过定点()1,0和()7,0【分析】(1)设动点(),P x y12=,化简后可得E 方程;(2)由(1)设:1AB l x my =+,()11,A x y ,()22,B x y ,可得1124,2y D x ⎛⎫⎪-⎝⎭,2224,2y C x ⎛⎫ ⎪-⎝⎭,后设以CD 为直径的圆上一点为Q ,由0QC QD ⋅= 可得圆方程,即可得圆所过定点.【详解】(1)设动点(),P x y12=,化简得22:143x y E +=;(2)设:1AB l x my =+,与22143x y +=联立可得:()2234690m y my ++-=,由题Δ0>.设()11,A x y ,()22,B x y ,则122634m y y m +=-+,122934y y m =-+.又由(1)可得()2,0M ,则()11:22AM y l y x x =--,令4x =,得1124,2y D x ⎛⎫⎪-⎝⎭.同理可得2224,2y C x ⎛⎫ ⎪-⎝⎭.令以CD 为直径的圆上动点为(),Q x y ,则0QC QD ⋅=.又2121224422,,,y y QC x y QB x y x x ⎛⎫⎛⎫=--=-- ⎪ ⎪--⎝⎭⎝⎭ ,则()()2212121212224(4)02222y y y y x y y x x x x ⎛⎫-+-++= ⎪----⎝⎭.注意到()()()()()212121212242211134xx my my m y y m y y m --=--=-++=+,()()()1221121222422224234my x y x my y y y m --+-=-+=+.则可得()()2222243640469044m x y y x y my ---+-+=⇒-++-=.因所过定点与参数m 无关,则0y =,则()24901x x --=⇒=或7x =.故圆恒过定点()1,0和()7,0.关键点点睛:本题涉及求轨迹方程,及探究圆是否过定点.对于直线或圆过定点问题,都是先求得直线或圆的表达式,后令含参数的项为0,即可求得所过定点.。

新教材高中数学第5章计数原理检测题北师大版选择性

新教材高中数学第5章计数原理检测题北师大版选择性

第五章检测题考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.小王有70元钱,现有面值分别为20元和30元的两种IC 卡.若他至少买1张,则不同的买法共有( A )A .7种B .8种C .6种D .9种[解析] 要完成的“一件事”是“至少买1张IC 卡”,分三类完成:买1张IC 卡、买2张IC 卡、买3张IC 卡.而每一类都能独立完成“至少买1张IC 卡”这件事.买1张IC 卡有2种方法,买2张IC 卡有3种方法,买3张IC 卡有2种方法,所以不同的买法共有2+3+2=7(种).2.(x 3+x 2+x +1)(y 2+y +1)(z +1)展开后的不同项数为( D ) A .9 B .12 C .18D .24[解析] 分三步:第一步,从(x 3+x 2+x +1)中任取一项,有4种方法;第二步,从(y2+y +1)中任取一项,有3种方法;第三步,从(z +1)中任取一项有2种方法.根据分步乘法计数原理,得共有4×3×2=24(项).故选D .3.已知⎝⎛⎭⎪⎪⎫x +33x n 的展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( C )A .4B .5C .6D .7[解析] 二项式⎝ ⎛⎭⎪⎪⎫x +33x n 的各项系数的和为(1+3)n =4n ,二项式⎝⎛⎭⎪⎪⎫x +33x n 的各项二项式系数的和为2n,因为各项系数的和与其各项二项式系数的和之比为64,所以4n2n =2n=64,n =6.故选C .4.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的情况有( B )A .1种B .2种C .3种D .4种[解析] 由题意,现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,其中乙、丙两人恰好参加同一项活动的情况有C 22C 22A 22=2(种).5.由数字0,1,2,3,4,5可以组成能被5整除,且无重复数字的不同的五位数有( A ) A .(2A 45-A 34)个 B .(2A 45-A 35)个 C .2A 45个D .5A 45个[解析] 能被5整除,则个位须为5或0,有2A 45个,但其中个位是5的含有0在首位的排法有A 34个,故共有(2A 45-A 34)个.6.将多项式a 6x 6+a 5x 5+…+a 1x +a 0分解因式得(x -2)(x +2)5,则a 5=( A ) A .8 B .10 C .12D .1[解析] (x -2)(x +2)5=(x 2-4)(x +2)4,所以(x +2)4的展开式中的三次项系数为C 14·21=8,所以a 5=8.7.如图所示,若从五种不同属性的物质中任取两种,则取出的两种物质恰好是相克关系的情况有( B )A .3种B .5种C .7种D .9种[解析] 从五种不同属性的物质中任取两种,则取出的两种物质恰好是相克关系的情况有C 15=5(种).8.如图是由6个正方形拼成的矩形,从图中的12个顶点中任取3个顶点作为一组.其中可以构成三角形的组数为( C )A .208 C .200D .196[解析] 任取的3个顶点不能构成三角形的情形有三种:一是3条横线上的4个顶点,其组数为3C 34;二是4条竖线上的3个顶点,其组数为4C 33;三是4条田字的对角线上的3个顶点,其组数为4C 33.所以可以构成三角形的组数为C 312-3C 34-8C 33=200.故选C .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)9.已知A m 3-C 23+0!=4,则m 可能的取值是( CD ) A .0 B .1 C .2D .3[解析] ∵A m3-C 23+0!=4,∴A m3=6,∴m =2或m =3,故选CD .10.对于⎝⎛⎭⎪⎫1x+x 3n(n ∈N +),以下判断正确的有( AD )A .存在n ∈N +,展开式中有常数项B .对任意n ∈N +,展开式中没有常数项C .对任意n ∈N +,展开式中没有x 的一次项D .存在n ∈N +,展开式中有x 的一次项[解析] 设⎝ ⎛⎭⎪⎫1x+x 3n (n ∈N +)展开式的通项为T k +1=C k n ⎝ ⎛⎭⎪⎫1x n -k (x 3)k =C k n x 4k -n(k =0,1,2,…,n ),不妨令n =4,则当k =1时,展开式中有常数项,故选项A 正确,选项B 错误;令n =3,则当k =1时,展开式中有x 的一次项,故选项C 错误,选项D 正确,故选AD .11.关于(x -1)2 020及其展开式,下列说法正确的是( AD )A .该二项展开式中非常数项的系数和是-1B .该二项展开式中第六项为C 62 020x 1 007C .该二项展开式中不含有理项D .当x =100时,(x -1)2 020除以100的余数是1[解析] (x -1)2 020的展开式的第k +1项为T k +1=C k 2 020x2000-k 2 (-1)k (k =0,1,2,…,2 020).对于A ,当k =2 020时,得到常数项为T 2 021=1.又(x -1)2 020的展开式的各项系数和为(1-1)2 020=0,所以该二项展开式中非常数项的系数和是-1,故A 正确.对于B ,该二项展开式中第六项为T 6=C 52 020x 2000-52 (-1)5=-C 52 020x 2 0152,故B 错误.对于C ,当2 020-k =2n (n ∈Z )时,对应的各项均为有理项,故C 错误. 对于D ,当x =100时,(x -1)2 020=(10-1)2 020=C 02 020102 020(-1)0+C 12 020102 019×(-1)1+…+C 2 0182 020102(-1)2 018+C 2 0192 020101×(-1)2 019+C 2 0202 020100(-1)2 020,因为C 02 020×102 020(-1)0+C 12 020102 019(-1)1+…+C 2 0172 020×103(-1)2 017显然是100的倍数,即能被100整除,而C 2 0182 020102(-1)2018+C 20192 020101×(-1)2 019+C 2 0202 020100(-1)2 020=1 010×2 019×100-20 200+1=1 010×2 018×100+101 000-20 200+1 =1 010×2 018×100+80 801=m ·100+1,m ∈N ,所以当x =100时,(x -1)2 020除以100的余数是1,故D 正确.故选AD .12.高一学生王超想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,则下列说法正确的有( AC )A .若任意选择三门课程,选法总数为C 37种B .若物理和化学至少选一门,选法总数为C 12C 26 C .若物理和历史不能同时选,选法总数为C 37-C 15种D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为C 12C 25-C 15种 [解析] A 显然正确;对于B 应为C 12C 25+C 22C 15种;对于C ,用间接法,显然正确;对于D 应分三种情况:①只选物理,则有C 24种选法; ②只选化学,则有C 25种选法; ③若物理与化学都选,则有C 14种选法. 即共有C 24+C 25+C 14=20种选法. 综上可知AC 正确,BD 错误.三、填空题(本大题共4小题,每小题5分,共20分)13.已知(1+x )n 的展开式中,唯有x 3的系数最大,则(1+x )n的系数和为_64__.[解析] 由题意知,⎩⎪⎨⎪⎧C 3n >C 2n ,C 3n >C 4n ,则⎩⎪⎨⎪⎧nn -1n -26>n n -12,n n -1n -26>n n -1n -2n -324,解得5<n <7,又n ∈N ,因此n =6.设(1+x )6=a 0x 6+a 1x 5+a 2x 4+…+a 5x +a 6,令x =1,则(1+x )6的系数和为a 0+a 1+a 2+…+a 6=26=64.14.若存在x ∈N *,使得(ax +1)2n和(x +a )2n +1(其中a ≠0)的展开式中x n项的系数相等,则a 的最大值为_23__.[解析] 由(x +a )2n +1的展开式中第k +1项为T k +1=C k 2n +1·x2n +1-k a k,令2n +1-k =n ,得k =n +1,所以含x n 项的系数为C n +12n +1a n +1.由C n +12n +1an +1=C n 2n a n,得a =n +12n +1,是关于n 的减函数,∵n ∈N *,∴12<a ≤23,故a 的最大值为23.15.(2020·浙江)如图,有7个白色正方形方块排成一列,现将其中4块涂上黑色,规定从左往右数,无论数到第几块,黑色方块总不少于白色方块的涂法有_14__种.[解析] 由题意可判断第1格涂黑色,且第2格和第3格至少有一个是黑色,因此分以下三种情况讨论:①若第2格涂黑色,第3格涂白色,则后面4格的情况有(黑,黑,白,白),(黑,白,黑,白),(黑,白,白,黑),(白,黑,黑,白),(白,黑,白,黑),共5种;②若第2格涂白色,第3格涂黑色,则后面4格的情况与①相同,共5种; ③若第2,3格都涂黑色,则还有1个黑色,从后面4格任选1格均可,共4种. 综上,总的涂法有5+5+4=14(种).16.已知m ,n ∈N *,f (x )=(1+x )m +(1+x )n展开式中,含x 项的系数为19,则当含x 2项的系数最小时,展开式中含x 7项的系数为_156__.[解析] ∵m ,n ∈N *,f (x )=(1+x )m +(1+x )n展开式中,含x 项的系数为19,∴m +n =19.则当m =1或n =1时,含x 2项的系数为C 218=153;当m ≠1,且n ≠1时,含x 2项的系数为C 2m +C 2n =m m -1+n n -12=19-n18-n +n n -12=n 2-19n +171=⎝ ⎛⎭⎪⎫n -1922+3234. ∴当n =10或9时,x 2的系数最小,为81.∴f (x )=(1+x )9+(1+x )10,展开式中含x 7项的系数为C 79+C 710=156.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同的数字作为二次函数y =ax 2+bx +c 的系数a ,b ,c ,问:(1)共能组成多少个不同的二次函数?(2)在这些二次函数中,图象关于y 轴对称的有多少个? [解析] (1)方法1(直接法——优先考虑特殊位置):∵a ≠0,∴确定二次项系数有7种,确定一次项和常数项有A 27种,所以共有7A 27=294个不同的二次函数.方法2(直接法——优先考虑特殊元素):当a ,b ,c 中不含0时,有A 37个;当a ,b ,c 中含有0时,有2A 27个,故共有A 37+2A 27=294(个)不同的二次函数.方法3:(间接法)共可构成A 38个函数,其中当a =0时,有A 27个均不符合要求,从而共有A 38-A 27=294(个) 不同的二次函数.(2)依题意b =0,所以共有A 27=42(个)符合条件的二次函数.18.(本小题满分12分)用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?(1)被4整除;(2)比21 034大的偶数;(3)左起第二、四位是奇数的偶数.[解析] (1)被4整除的数,其特征应是末两位数是4的倍数,可分为两类:当末两位数是20,40,04时,其排列数为3A 33=18,当末两位数是12,24,32时,其排列数为3A 12·A 22=12.故满足条件的五位数共有18+12=30(个).(2)①当末位数字是0时,首位数字可以为2或3或4,满足条件的数共有3×A33=18个.②当末位数字是2时,首位数字可以为3或4,满足条件的数共有2×A33=12个.③当末位数字是4时,首位数字是3的有A33=6个,首位数字是2时,有3个,共有9个.综上知,比21034大的偶数共有18+12+9=39个.(3)方法1:可分为两类:末位数是0,有A22·A22=4(个);末位数是2或4,有A22·A12=4(个);故共有A22·A22+A22·A12=8(个).方法2:第二、四位从奇数1,3中取,有A22个;首位从2,4中取,有A12个;余下的排在剩下的两位,有A22个,故共有A22A12A22=8(个).19.(本小题满分12分)已知(1+m x)n(m是正实数)的展开式的二项式系数之和为256,展开式中含x项的系数为112.(1)求m,n的值;(2)求展开式中奇数项的二项式系数之和;(3)求(1+m x)n(1-x)的展开式中含x2项的系数.[解析] (1)由题意可得2n=256,解得n=8.∴通项T k+1=C k8m k x k 2,∴含x项的系数为C28m2=112,解得m=2,或m=-2(舍去).故m,n的值分别为2,8.(2)展开式中奇数项的二项式系数之和为C18+C38+C58+C78=28-1=128.(3)(1+2x)8(1-x)=(1+2x)8-x(1+2x)8,所以含x2项的系数为C4824-C2822=1 008.20.(本小题满分12分)某班要从5名男生3名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数.(1)所安排的女生人数必须少于男生人数;(2)其中的男生甲必须是课代表,但又不能担任数学课代表;(3)女生乙必须担任语文课代表,且男生甲必须担任课代表,但又不能担任数学课代表.[解析] (1)所安排的女生人数少于男生人数包括三种情况,一是2个女生,二是1个女生,三是没有女生,依题意得(C55+C13C45+C23C35)A55=5 520种.(2)先选出4人,有C 47种方法,连同甲在内,5人担任5门不同学科的课代表,甲不担任数学课代表,有A 14·A 44种方法,∴方法数为C 47·A 14·A 44=3 360种.(3)由题意知甲和乙两人确定担任课代表,需要从余下的6人中选出3个人,有C 36=20种结果,女生乙必须担任语文课代表,则女生乙就不需要考虑,其余的4个人,甲不担任数学课代表,∴甲有3种选择,余下的3个人全排列共有3A 33=18;综上可知共有20×18=360种.21.(本小题满分12分)已知⎝ ⎛⎭⎪⎫3a -3a n(n ∈N *)的展开式的各项系数之和等于⎝ ⎛⎭⎪⎫43b -15b 5的展开式中的常数项,求⎝ ⎛⎭⎪⎫3a-3a n的展开式中a -1项的二项式系数. [解析] 对于⎝⎛⎭⎪⎫43b -15b 5:T k +1=C k 5(43b )5-k ⎝ ⎛⎭⎪⎫-15b k =C k 5·(-1)k ·45-k ·5-k 2b 105k6 .若T k +1为常数项,则10-5k =0,所以k =2,此时得常数项为T 3=C 25·(-1)2·43·5-1=27.令a =1,得⎝⎛⎭⎪⎫3a -3a n展开式的各项系数之和为2n .由题意知2n =27,所以n =7. 对于⎝ ⎛⎭⎪⎫3a -3a 7:T k +1=C k 7⎝ ⎛⎭⎪⎫3a 7-k ·(-3a )k =C k 7·(-1)k ·37-ka 5k 216 .若T k +1为a -1项,则5k -216=-1,所以k =3.所以⎝ ⎛⎭⎪⎫3a -3a n的展开式中a -1项的二项式系数为C 37=35.22.(本小题满分12分)0,1,2,3,4这五个数字组成无重复数字的自然数. (1)在组成的三位数中,求所有偶数的个数;(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;(3)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数. [解析] (1)将所有的三位偶数分为两类:①若个位数为0,则共有A 24=12(种);②若个位数为2或4,则共有2×3×3=18(种).所以共有30个符合题意的三位偶数.(2)将这些“凹数”分为三类:①若十位数字为0,则共有A 24=12(种);②若十位数字为1,则共有A 23=6(种);③若十位数字为2,则共有A 22=2(种).所以共有20个符合题意的“凹数”.(3)将符合题意的五位数分为三类:①若两个奇数数字在一、三位置,则共有A22·A33=12(种);②若两个奇数数字在二、四位置,则共有A22·C12·A22=8(种);③若两个奇数数字在三、五位置,则共有A22·C12·A22=8(种).所以共有28个符合题意的五位数.。

高中数学选修2-3 第一章 计数原理 章末检测题 附答案解析

高中数学选修2-3 第一章 计数原理 章末检测题 附答案解析

高中数学选修2-3第一章计数原理章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从n 个人中选出2个,分别从事两项不同的工作,若选派方案的种数为72,则n 的值为()A .6B .8C .9D .122.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A .3×3!B .3×(3!)3C .(3!)4D .9!3.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A .85B .56C .49D .284.从集合{0,1,2}到集合{1,2,3,4}的不同映射的个数是()A .81B .64C .24D .125.(2012·重庆卷)82x x 的展开式中常数项为()A.3516B.358C.354D .1056.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()A .2B .-1C .0D .17.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:序号123456节目如果A 、B 两个节目相邻且都不排在3号位置,那么节目单上不同的排序方式有()A .144种B .192种C .96种D .72种8.(x +1)4(x -1)5的展开式中x 4的系数为()A .-40B .10C .40D .459.已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A .33B .34C .35D .3610.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为()A .320B .160C .96D .6011.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A .240种B .360种C .480种D .720种12.绍兴臭豆腐闻名全国,一外地学者来绍兴旅游,买了两串臭豆腐,每串3颗(如图).规定:每串臭豆腐只能自左向右一颗一颗地吃,且两串可以自由交替吃.请问:该学者将这两串臭豆腐吃完,不同的吃法有()A .6种B .12种C .20种D .40种二、填空题(本大题共4个小题,每小题4分,共16分.请把正确的答案填写在题中的横线上)13.84x x 展开式中含x 的整数次幂的项的系数之和为___________________.(用数字作答)14.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.15.已知(1+x )6(1-2x )5=a 0+a 1x +a 2x 2+…+a 11x 11,那么a 1+a 2+a 3+…+a 11=________.16.如图是由12个小正方形组成的3×4矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有________条.三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)有0,1,2,3,4,5共六个数字.(1)能组成多少个没有重复数字的四位偶数;(2)能组成多少个没有重复数字且为5的倍数的五位数.18.(本小题满分12分)已知3241nx x 展开式中的倒数第三项的系数为45,求:(1)含x 3的项;(2)系数最大的项.19.(本小题满分12分)(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法?20.(本小题满分12分)设a >0,若(1+ax 12)n 的展开式中含x 2项的系数等于含x 项的系数的9倍,且展开式中第3项等于135x ,那么a 等于多少?21.(本小题满分13分)带有编号1、2、3、4、5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?22.(本小题满分13分)杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)若第n行中从左到右第14与第15个数的比为23,求n的值;(3)求n阶(包括0阶)杨辉三角的所有数的和.参考答案一、选择题1.【解析】∵A2n=72,∴n=9.【答案】C2.【解析】把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.【答案】C3.【解析】分两类计算,C22C17+C12C27=49,故选C.【答案】C4.【解析】利用可重复的排列求幂法可得答案为43=64(个).【答案】B5.【解析】T r+1=C r8(x)8-r2rx=12rC r8x4-r2-r2=12rC r8x4-r,令4-r=0,则r=4,∴常数项为T5=124C48=116×70=358.【答案】B6.【解析】(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.【答案】D7.【解析】第一步,将C、D、E、F全排,共有A44种排法,产生5个空,第二步,将A、B捆绑有2种方法,第三步,将A、B插入除2号空位和3号空位之外的空位,有C13种,所以一共有144种方法.【答案】A8.【解析】(x+1)4(x-1)5=(x-1)5(x2+4x x+6x+4x+1),则x4的系数为C35×(-1)3+C25×6+C15×(-1)=45.【答案】D9.【解析】①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33,故选A.【答案】A10.【解析】不同的涂色方法种数为5×4×4×4=320种.【答案】A11.【解析】利用分步计数原理求解.第一步先排甲,共有A 14种不同的排法;第二步再排其他人,共有A 55种不同的排法,因此不同的演讲次序共有A 14·A 55=480(种).【答案】C12.【解析】方法一(树形图):如图所示,先吃A 的情况,共有10种,如果先吃D ,情况相同,所以不同的吃法有20种.方法二:依题意,本题属定序问题,所以有A 66A 33·A 33=20种.【答案】C 二、填空题13.【解析】∵384418841rrr r r r T Cx C xx --+==,当r =0,4,8时为含x 的整数次幂的项,所以展开式中含x 的整数次幂的项的系数之和为C 08+C 48+C 88=72.【答案】7214.【解析】满足题设的取法分三类:①四个奇数相加,其和为偶数,在5个奇数中任取4个,有C 45=5(种);②两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数中任取2个,有C 25·C 24=60(种);③四个偶数相加,其和为偶数,4个偶数的取法有1种.所以满足条件的取法共有5+60+1=66(种).【答案】6615.【解析】令x =0,得a 0=1;令x =1,得a 0+a 1+a 2+…+a 11=-64;∴a 1+a 2+…+a 11=-65.【答案】-6516.【解析】把质点沿网格线从点A 到点B 的最短路径分为七步,其中四步向右,三步向下,不同走法的区别在于哪三步向下,因此,本题的结论是:C 37=35.【答案】35三、解答题17.【解析】(1)符合要求的四位偶数可分为三类:第一类,0在个位时有A 35个;第二类,2在个位时有A 14A 24个;第三类,4在个位时有A 14A 24个.由分类加法计数原理知,共有四位偶数A 35+A 14A 24+A 14A 24=156个.(2)五位数中5的倍数可分为两类:第一类,个位上的数字是0的五位数有A 45个,第二类,个位上的数字是5的五位数有A 14A 34个.故满足条件的五位数有A 45+A 14A 34=216(个).18.【解析】(1)由题设知C n -2n =45,即C 2n =45,∴n =10.则21011130341211010r r r r r r T C x x C x ---+⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭,令11r -3012=3,得r =6,含x 3的项为T 7=C 610x 3=C 410x 3=210x 3.(2)系数最大的项为中间项,即T 6=C 510x55-3012=252x 2512.19.【解析】(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C 24种插法;二是2张同时插入,有C 14种插法,再考虑3人可交换有A 33种方法.所以,共有A 33(C 24+C 14)=60(种).(2)可先让4人坐在4个位置上,有A 44种排法,再让2个“元素”(一个是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空当”之间,有A 25种插法,所以所求的坐法为A 44·A 25=480(种).20.【解析】T r +1=C r n (ax 12)r =C r n a r x r 2,∴4422229135nnn C a C a C a x x⎧=⎪⎨=⎪⎩,∴()()()()()22123914!211352n n n n n n a n n a ⎧----=⎪⎪⎨-⎪=⎪⎩,即()()()22231081270n n a n n a ⎧--=⎪⎨-=⎪⎩,∴(n -2)(n -3)n (n -1)=25.∴3n 2-23n +30=0.解得n =53(舍去)或n =6,a2=27030=9,又a>0,∴a=3.21.【解析】(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A45种放法.(3)将其中的4个球投入一个盒子里共有C45C14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C25A44种不同的放法.22.【解析】(1)C320=1140.(2)C13nC14n=23⇒14n-13=23,解得n=34.(3)1+2+22+…+2n=2n+1-1.。

2020版高中数学 第一章 计数原理章末检测试卷 新人教A版选修2-3

2020版高中数学 第一章 计数原理章末检测试卷 新人教A版选修2-3

第一章 计数原理章末检测试卷(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若A 5m =2A 3m ,则m 的值为( ) A .5 B .3 C .6D .7考点 排列数公式 题点 利用排列数公式计算 答案 A解析 依题意得m !(m -5)!=2×m !(m -3)!,化简得(m -3)·(m -4)=2, 解得m =2或m =5, 又m ≥5,∴m =5,故选A.2.一次考试中,要求考生从试卷上的9个题目中选6个进行解答,其中至少包含前5个题目中的3个,则考生答题的不同选法的种数是( ) A .40 B .74 C .84D .200考点 组合的应用题点 有限制条件的组合问题 答案 B解析 分三类:第一类,从前5个题目中选3个,后4个题目中选3个;第二类,从前5个题目中选4个,后4个题目中选2个;第三类,从前5个题目中选5个,后4个题目中选1个,由分类加法计数原理得C 35C 34+C 45C 24+C 55C 14=74.3.若实数a =2-2,则a 10-2C 110a 9+22C 210a 8-…+210等于( ) A .32 B .-32 C .1 024 D .512考点 二项式定理题点 逆用二项式定理求和、化简 答案 A解析 由二项式定理,得a 10-2C 110a 9+22C 210a 8-…+210=C 010(-2)0a 10+C 110(-2)1a 9+C 210(-2)2a 8+…+C 1010(-2)10=(a -2)10=(-2)10=25=32.4.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A .A 34种 B .A 33A 13种 C .C 24A 33种D .C 14C 13A 33种考点 排列组合综合问题 题点 分组分配问题 答案 C解析 先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 24A 33种. 5.(x +2)2(1-x )5中x 7的系数与常数项之差的绝对值为( ) A .5 B .3 C .2D .0考点 二项展开式中的特定项问题 题点 求多项展开式中特定项的系数 答案 A解析 常数项为C 22·22·C 05=4,x 7系数为C 02·C 55·(-1)5=-1,因此x 7系数与常数项之差的绝对值为5. 6.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的排列方式的种数为( ) A .A 44A 55 B .A 23A 44A 35 C .C 13A 44A 55 D .A 22A 44A 55考点 排列的应用题点 元素“相邻”与“不相邻”问题 答案 D解析 先把每个品种的画看成一个整体,而水彩画只能放在中间,则油画与国画放在两端有A 22种放法,再考虑4幅油画本身排放有A 44种方法,5幅国画本身排放有A 55种方法,故不同的陈列法有A 22A 44A 55种. 7.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,那么a 0+a 2+a 4a 1+a 3的值为( )A .-122121B .-6160C .-244241D .-1考点 展开式中系数的和问题 题点 二项展开式中系数的和问题 答案 B解析 令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=1,再令x =-1可得a 0-a 1+a 2-a 3+a 4-a 5=35.两式相加除以2求得a 0+a 2+a 4=122,两式相减除以2可得a 1+a 3+a 5=-121.又由条件可知a 5=-1,故a 0+a 2+a 4a 1+a 3=-6160.8.圆周上有8个等分圆周的点,以这些等分点为顶点的锐角三角形或钝角三角形的个数是( )A .16B .24C .32D .48考点 组合的应用题点 与几何有关的组合问题 答案 C解析 圆周上8个等分点共可构成4条直径,而直径所对的圆周角是直角,又每条直径对应着6个直角三角形,共有C 14C 16=24(个)直角三角形,斜三角形的个数为C 38-C 14C 16=32(个).9.将18个参加青少年科技创新大赛的名额分配给3所学校,要求每所学校至少有1个名额且各校分配的名额互不相等,则不同的分配方法种数为( ) A .96 B .114 C .128D .136考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意可得每所学校至少有1个名额的分配方法种数为C 217=136,分配名额相等有22种(可以逐个数),则满足题意的方法有136-22=114(种).10.已知二项式⎝⎛⎭⎪⎪⎫x +13x n 的展开式中第4项为常数项,则1+(1-x )2+(1-x )3+…+(1-x )n 中x 2项的系数为( ) A .-19 B .19 C .-20D .20考点 二项式定理的应用 题点 二项式定理的简单应用 答案 D解析 ⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式T k +1=C k n (x )n -k ⎝ ⎛⎭⎪⎪⎫13x k =C k n 526n k x -,由题意知n 2-5×36=0,得n =5,则所求式子中x 2项的系数为C 22+C 23+C 24+C 25=1+3+6+10=20.故选D.11.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是( ) A .C 28C 23 B .C 28A 66 C .C 28A 26D .C 28A 25考点 排列组合综合问题 题点 排列与组合的综合应用 答案 C解析 先从后排中抽出2人有C 28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,即为A 26,共有C 28A 26种调整方法.12.已知等差数列{a n }的通项公式为a n =3n -5,则(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是该数列的( ) A .第9项 B .第10项 C .第19项D .第20项考点 二项式定理的应用题点 二项式定理与其他知识点的综合应用 答案 D解析 ∵(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是C 45+C 46+C 47=5+15+35=55,∴由3n -5=55得n =20.故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.考点 组合数公式 题点 组合数公式的应用 答案 2或3解析 设女生有x 人,则C 28-x C 1x =30, 即(8-x )(7-x )2·x =30,解得x =2或3.14.学校公园计划在小路的一侧种植丹桂、金桂、银桂、四季桂4棵桂花树,垂乳银杏、金带银杏2棵银杏树,要求2棵银杏树必须相邻,则不同的种植方法共有________种. 考点 排列的应用题点 元素“相邻”与“不相邻”问题 答案 240解析 分两步完成:第一步,将2棵银杏树看成一个元素,考虑其顺序,有A 22种种植方法; 第二步,将银杏树与4棵桂花树全排列,有A 55种种植方法. 由分步乘法计数原理得,不同的种植方法共有A 22·A 55=240(种).15.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为____.考点 二项式定理的应用题点 二项式定理与其他知识点的综合应用 答案π6或5π6解析 由题意,得T 4=C 36sin 3x =20sin 3x =52,∴sin x =12.∵x ∈[0,2π],∴x =π6或x =5π6.16.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有________种. 考点 两个计数原理的应用 题点 两个原理的综合应用 答案 30解析 先把A ,B 放入不同盒中,有3×2=6(种)放法,再放C ,D , 若C ,D 在同一盒中,只能是第3个盒,1种放法;若C ,D 在不同盒中,则必有一球在第3个盒中,另一球在A 或B 的盒中,有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法. 三、解答题(本大题共6小题,共70分)17.(10分)已知A ={x |1<log 2x <3,x ∈N *},B ={x ||x -6|<3,x ∈N *}.试问:(1)从集合A 和B 中各取一个元素作直角坐标系中点的坐标,共可得到多少个不同的点?(2)从A ∪B 中取出三个不同的元素组成三位数,从左到右的数字要逐渐增大,这样的三位数有多少个? 考点 两个计数原理的应用 题点 两个原理的综合应用解 A ={3,4,5,6,7},B ={4,5,6,7,8}.(1)从A 中取一个数作为横坐标,从B 中取一个数作为纵坐标,有5×5=25(个),而8作为横坐标的情况有5种,3作为纵坐标的情况有4种,故共有5×5+5+4=34(个)不同的点. (2)A ∪B ={3,4,5,6,7,8},则这样的三位数共有C 36=20(个).18.(12分)已知(1+2x )n的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的56倍,试求展开式中二项式系数最大的项. 考点 二项式定理的应用 题点 二项式定理的简单应用 解 二项式的通项为T k +1=C kn(2k)2k x ,由题意知展开式中第k +1项系数是第k 项系数的2倍,是第k +2项系数的56倍,∴⎩⎪⎨⎪⎧C k n 2k=2C k -1n ·2k -1,C k n 2k =56C k +1n ·2k +1,解得n =7.∴展开式中二项式系数最大两项是T 4=C 37(2x )3=28032x 与T 5=C 47(2x )4=560x 2. 19.(12分)10件不同厂生产的同类产品:(1)在商品评选会上,有2件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法? 考点 排列组合综合问题 题点 排列与组合的综合应用解 (1)10件商品,除去不能参加评选的2件商品,剩下8件,从中选出4件进行排列,有A 48=1 680(或C 48·A 44)(种). (2)分步完成,先将获金质奖章的两件商品布置在6个位置中的两个位置上,有A 26种方法,再从剩下的8件商品中选出4件,布置在剩下的4个位置上,有A 48种方法,共有A 26·A 48=50 400(或C 48·A 66)(种).20.(12分)设⎝ ⎛⎭⎪⎫1+12x m =a 0+a 1x +a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列.(1)求⎝ ⎛⎭⎪⎫1+12x m展开式的中间项;(2)求⎝ ⎛⎭⎪⎫1+12x m展开式中所有含x 的奇次幂的系数和.考点 二项式定理的应用 题点 二项式定理的简单应用解 (1)依题意a 0=1,a 1=m 2,a 2=C 2m ⎝ ⎛⎭⎪⎫122.由2a 1=a 0+a 2,求得m =8或m =1(应舍去),所以⎝ ⎛⎭⎪⎫1+12x m展开式的中间项是第五项,T 5=C 48⎝ ⎛⎭⎪⎫12x 4=358x 4. (2)因为⎝ ⎛⎭⎪⎫1+12x m =a 0+a 1x +a 2x 2+…+a m x m,即⎝⎛⎭⎪⎫1+12x 8=a 0+a 1x +a 2x 2+…+a 8x 8. 令x =1,则a 0+a 1+a 2+a 3+…+a 8=⎝ ⎛⎭⎪⎫328,令x =-1,则a 0-a 1+a 2-a 3+…+a 8=⎝ ⎛⎭⎪⎫128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数. 考点 排列的应用 题点 数字的排列问题解 (1)1,2,3,4的再生数的个数为A 44=24,其中最大再生数为4 321,最小再生数为1 234. (2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个); 若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求b a. 考点 二项式定理的应用 题点 二项式定理的简单应用 解 (1)根据题意得C 1m +C 1n =7, 即m +n =7,①f (x )中的x 2的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n =7-m 代入上式得x 2的系数为m 2-7m +21=⎝ ⎛⎭⎪⎫m -722+354, 故当m =3或m =4时,x 2的系数的最小值为9. 当m =3,n =4时,x 3的系数为C 33+C 34=5;当m =4,n =3时,x 3的系数为C 34+C 33=5. (2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 04+C 14×0.003+C 03+C 13×0.003≈2.02. (3)由题意可得a =C 48=70,再根据⎩⎪⎨⎪⎧C k8·2k≥C k +18·2k +1,C k8·2k ≥C k -18·2k -1,即⎩⎪⎨⎪⎧k ≥5,k ≤6,求得k =5或6,此时,b =7×28,∴b a =1285.。

数学选修2-3期末复习

数学选修2-3期末复习

排列与组合●本章知识网络一、根本计数原理●1. 分类计数原理(加法原理)分类计数原理的定义:做一件事,完成它有n类方法。

在第一类方法中有m1种不同的方法;在第二类方法中,有m2种不同的方法;……;在第n类方法中,有m n中不同的方法,则完成这件事共有N=_______________种不同的方法。

.●2. 分步计数原理(乘法原理)分步计数原理的定义:做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法,……,做第n个步骤有m n中不同的方法,则完成这件事共有N=______________种不同的方法.二、排列●1. 排列的定义从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列●2. 排列数1〕排列数的定义:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用______表示2〕排列数公式mnA=_____________________________=___________________________特别的,nnA=_____________________= n!规定0!=______三、组合●1. 组合的定义从n个不同的元素中,任意取出m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合●2. 组合数1〕组合数的定义:从n个不同的元素中,任取m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中任意取出m个元素的组合数,用______表示2〕组合数公式mnC=___________=_______________________=______________________特别的,0nC=_______=______3)组合数的性质mnC=___________ mnC1+=______+______解决排列组合问题的根本规律:分类相加,分步相乘,有序排列,无序组合,正难则反,先选后排●前测1.*Nn∈且55n<,则乘积(55)(56)(69)n n n---等于( )A.5569nnA--B.1569nA-C.1555nA-D.1469nA-2.710695847CCCC+++=_______3.*八层大楼一楼电梯上来3名乘客,他们到各自的一层下电梯,下电梯的不同方法有____种4.4人排成一排,其中甲和乙都站在边上的不同站法有_________种5.用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有_______种.6.从3台甲型和4台乙型电脑中任意取出3台,其中至少要甲型和乙型电脑各一台,则不同的取法有________种.7.*停车场有8个连在一起的车位,有4辆不同的车要停进去,且恰有3辆车连在一起,则不同的停放方法有_______种.●典型例题1.有4封不同的信和3个信筒.(1)把4封信都寄出,有__________种寄信方法;(2) 把4封信都寄出,且每个信筒不空,有________种寄信方法.2.对*种产品的6件不同正品和4件不同次品,(1) 一件一件的不放回抽取,连续取3次,至少取到1件次品的不同取法有______种.(2)一一进展测试,到区分出所有次品为止,假设所有次品恰好在第五次测试被全部发现,则这样的测试方法有_______种.3.*台小型晚会由6个节目组成,演出顺序有如下要求:(1) 节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有_____种.(2) 原有的节目单保持顺序不变,但删去第一个节目和最后一个节目,添加两个新节目,该台晚会排列应用题根本计数原理排列组合排列数公式组合数公式与性质组合应用题组合数公式与性质节目演出顺序的编排方案共有_____种.〔3〕节目甲、乙、丙必须连排〔顺序不固定〕,且和节目丁不相邻,该台晚会节目演出顺序的编排方案共有___种.4.9个篮球队中有3个强队,平均分三组.(1) 假设3个强队分别作为三个小组的种子队,不同的分组方法有_______种.(2) 假设恰有2个强队分在一组,不同的分组方法有_______种.5.用5种不同的颜色涂色,要求每小格涂一种颜色,有公共边的两格不同颜色,颜色可重复使用(1) 涂在"目〞字形的方格有________种不同的涂法(2) 涂在"田〞字形的方格有________种不同的涂法6.(1) 编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有_______种(2)*仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,假设每次显示其中三个孔,但相邻的两孔不能同时显示,则这个显示屏可以显示_______种不同的信号.7. 学校文艺队有10名会表演唱歌或跳舞的队员,其中会唱歌的有5人,会跳舞的有7人。

高中数学选择性必修三 精讲精炼 第六章 计原理 章末测试(提升)(含答案)

高中数学选择性必修三 精讲精炼 第六章 计原理 章末测试(提升)(含答案)

第六章 计数原理 章末测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·全国·高二课时练习)某平台设有“人物”“视听学习”等多个栏目.假设在这些栏目中,某时段“人物”更新了2篇文章,“视听学习”更新了4个视频.一位学习者准备从更新的这6项内容中随机选取2个视频和2篇文章进行学习,则这2篇文章学习顺序相邻的学法有( ) A .36种 B .48种 C .72种 D .144种【答案】C【解析】根据题意,从4个视频中选2个有24C 种方法, 2篇文章全选有22C 种方法,2篇文章要相邻则可以先捆绑看成1个元素,三个学习内容全排列有33A 种方法, 最后需要对捆绑元素进行松绑全排列有22A 种方法,故满足题意的学法有22324232C C A A 72=(种).故选:C2.(2021·全国·高二课时练习)一个66⨯的表格内,放有3辆完全相同的红车和3辆完全相同的黑车,每辆车占1格,每行每列只有1辆车,放法种数为( ) A .720 B .20 C .518400 D .14400【答案】D【解析】先假设3辆红车不同,3辆黑车也不相同, 第一辆车显然可占36个方格中任意一个,有36种放法,第二辆车由于不能与第一辆车同行,也不能与第一辆车同列,有25种放法, 同理,第三、四、五、六辆车分别有16,9,4,1种放法. 再注意到3辆红车相同,3辆黑车也相同,故不同的放法共有()22654321362516941720144003!3!6636⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯===⨯⨯(种).故选:D3.(2022·全国·高三专题练习)在关于[]()sin 0,x x π∈的二项式()1sin nx +的展开式中,末尾两项的二项式系数之和为7,且二项式系数最大的项的值为52,则x =( )A .3π B .3π或23πC .6πD .6π或56π 【答案】D【解析】由题意知:117n nn n C C n -+=+=,解得:6n =,∴展开式的第4项的二项式系数最大,3365sin 2C x ∴=,即3520sin 2x =,1sin 2x ∴=,又[]0,x π∈,6x π∴=或56π.故选:D .4.(2022·全国· 专题练习)已知()63212x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3,则该展开式中常数项为( ) A .80 B .160 C .240 D .320【答案】D【解析】令1x =得6(1)(21)3a +-=,解得2a =,则6212x x ⎛⎫- ⎪⎝⎭展开式的通项为666316621C (2)(1)2C rr r r r r rr T x x x ---+⎛⎫=-=- ⎪⎝⎭,则()632122x x x ⎛⎫+- ⎪⎝⎭展开式中常数项为26223633662(1)2C (1)2C 320--⨯-+-=.故选:D5.(2021·全国·高二课时练习)已知2×1010+a (0≤a <11)能被11整除,则实数a 的值为( ) A .7 B .8 C .9 D .10【答案】C【解析】()10102102111a a ⨯+=⨯-+10921111111a ⎡⎤=-+-++⎣⎦()()()10921111112a ⎡⎤=-+-+⋯+-++⎣⎦, ∵()()()1092111111⎡⎤-+-+⋯+-⎣⎦能被11整除, ∴要使()10210011a a ⨯+≤<能被11整除,则2a +能被11整除,∵011a ≤<,∴2213a ≤+<,则211a +=,解得9a =, 故选:C.6.(2021·重庆市实验中学 )若()28210012101(41)(21)(21)(21)x x a a x a x a x ++=+++++++,则1210a a a +++等于( )A .2B .1C .54D .14-【答案】D【解析】令0x =,则 801210(01)(0+1)1a a a a =+⨯++++=,令12x =-,则8015(1)(2+1)44a =+⨯-=,121051144a a a ∴+=-+=-+故选:D7.(2021·全国·高二单元测试)如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为a ,b ,c .例如,图中上档的数字和a =9.若a ,b ,c 成等差数列,则不同的分珠计数法有( )种.A .12B .24C .16D .32【答案】D【解析】根据题意,a ,b ,c 的取值范围都是从7~14共8个数字,故公差d 范围是3-到3,①当公差0d =时,有188C =种,②当公差1d =±时,b 不取7和14,有16212C ⨯=种, ③当公差2d =±时,b 不取7,8,13,14,有1428C ⨯=种, ④当公差3d =±时,b 只能取10或11,有1224C ⨯=种,综上共有8128432+++=种, 故选:D .8.(2021·全国·高二单元测试)设a >0,b >0,且52b ax x ⎛⎫+ ⎪⎝⎭展开式中各项的系数和为32,则14a b +的最小值为( )A .4BC .D .92【答案】D【解析】设0a >,0b >,且52()b ax x+展开式中各项的系数和为5()32a b +=, 2a b ∴+=,则141412529()22222222a b b a b a aba b a b a b ++=+=++++=, 当且仅当24,33a b ==时,等号成立.则14a b +的最小值为92, 故选:D .二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·山东无棣·高二期中)已知102(0)ax a⎛> ⎝,展开式的各项系数和为1024,下列说法正确的是( )A .展开式中偶数项的二项式系数和为256B .展开式中第6项的系数最大C .展开式中存在常数项D .展开式中含10x 项的系数为45 【答案】BC【解析】解:∵展开式的各项系数之和为1024, ∴10(1)1024a +=, ∵a >0,∴a =1.原二项式为102x⎛ ⎝,其展开式的通项公式为:()520102211010rr r r r r T C x C x--+=⋅⋅= 展开式中偶数项的二项式系数和为12×1024=512,故A 错;因为本题中二项式系数和项的系数一样,且展开式有11项,故展开式中第6项的系数最大,B 对;令520082r r -=⇒=,即展开式中存在常数项,C 对;令410520104,2102r r C -=⇒==,D 错.故选:BC .10.(2021·山东·高二期中)为了做好社区新疫情防控工作,需要将5名志愿者分配到甲、乙、丙、丁4个小区开展工作,则下列选项正确的是( ) A .共有625种分配方法 B .共有1024种分配方法C .每个小区至少分配一名志愿者,则有240种分配方法D .每个小区至少分配一名志愿者,则有480种分配方法 【答案】BC【解析】对于选项AB:若需要将5名志愿者分配到甲、乙、丙、丁4个小区开展工作,则每个志愿者都有4种可能,根据计数原理之乘法原理,则有45=1024种不同的方法,故A 错误,B 正确,对于选项CD :若每个小区至少分配一名志愿者,则有一个小区有两名志愿者,其余小区均有1名志愿者,由部分均匀分组消序和全排列可知,把5名志愿者分成4组,有211145321433240C C C C A A =种不同的分配方法, 故C 正确,D 错误. 故选:BC.11.(2021·山东·高二期中)已知5()(1a x ++展开式的所有项系数之和为96,则下列说法正确的是( ) A .1a = B .2a =C .5()(1a x ++展开式中2x 项的系数为10D .5()(1a x ++展开式中2x 项的系数为20 【答案】BD【解析】由已知,令1x =可得,()51296a +⨯=,解得2a =,故A 错误,B 正确,因为二项式5(1+的展开式的通项公式为2155rr r r r T C C x +==,所以5(2)(1x +的展开式中含2x 的项为4222255220C x C x x +=,所以含2x 项的系数为20,故C 错误,D 正确, 故选:BD.12.(2021·福建·福清龙西中学高二期中)关于32212x x ⎛⎫+- ⎪⎝⎭的展开式,下列结论正确的是( )A .所有项的二项式系数和为32B .所有项的系数和为0C .常数项为20-D .二项式系数最大的项为第3项【答案】BC【解析】因为3223261112x x x x x x ⎡⎤=-=-⎢⎭⎛⎫⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎢⎝⎝⎣⎦⎭⎥⎥,A.二项式系数和为6264=,错误;B.令1x =可得600=,所有项的系数为0,正确;C.展开式的通项为()66216611rr rrrr r T C xC x x --+⎛⎫=⋅⋅-=-⋅⋅ ⎪⎝⎭,令3r =,可得常数项为3620C -=-,正确; D.展开式中一共有7项,所以二项式系数最大的项为第4项,错误; 故选:BC.三、填空题(每题5分,4题共20分)13.(2022·浙江· )将2个2021,3个2019,4个2020填入如图的九宫格中,使得每行数字之和、每列数字之和都为奇数,不同的填法有___________种.(用数字回答)【答案】90【解析】某行(列)的数字和为奇数,则该行(列)的奇数个数为1个或3个,题中有5个奇数,4个偶数,则分布到3行,必有一行有3个奇数,另两行只有1个奇数,列同理,则奇数的位置分布有339⨯=种,对于每种位置,从5个位置中选择2个位置放2021,有2510C =种,由分步乘法计数原理可知,不同的填法种数为91090⨯=种. 故答案为:90.14.(2021·山东· )已知()()()()72801282111x x a a x a x a x -=+-+-+⋅⋅⋅+-,则56a a +=________.【答案】0【解析】由题知,7280128(2)(1)(1)(1)x x a a x a x a x -=+-+-+⋯⋯+-,且()()77(2)1111x x x x -=-+--⎡⎤⎡⎤⎣⎦⎣⎦,则()()23545771114a C C =⋅-+⋅-=-, ()()12656771114a C C =⋅-+⋅-=,所以5614140a a +=-+=. 故答案为:015.(2021·广东珠海 )4(12)(12)x x -+的展开式中含3x 的项的系数为________. 【答案】-16【解析】因为4(12)(12)x x -+44(12)2(12)x x x =+-+,所以4(12)(12)x x -+的展开式中3x 的系数为332244222324816C C -=-=-.故答案为:16-16.(2022·全国· 专题练习)设复数1i 1iz +=-,则0122334455668888888C C C C C C C z z z z z z +⋅+⋅+⋅+⋅+⋅+⋅ 778C z +⋅=______. 【答案】15【解析】()()()21i 1i 2i ==i 1i 1i 1i 2z ++==--+, 所以0122334455667788888888C C C C C C C C z z z z z z z +⋅+⋅+⋅+⋅+⋅+⋅+⋅=884(1i)i (2i)115+-=-=.故答案为:15.四、解答题(17题10分,其余每题12分,共70分)17.(2021·全国·高二课时练习)若251098109810(321)()x x a x a x a x a x a x C -+=+++++∈,求:(1)22024*********()()a a a a a a a a a a a +++++-++++;(2)246810a a a a a -+-+-. 【答案】(1)512;(2)127.【解析】(1)令x =1,得a 0+a 1+…+a 10=25;令x =-1,得(a 0+a 2+a 4+a 6+a 8+a 10)-(a 1+a 3+a 5+a 7+a 9)=65.两式相乘,得(a 0+a 2+a 4+a 6+a 8+a 10)2-(a 1+a 3+a 5+a 7+a 9)2=25×65=125.(2)令x =i ,得-a 10+a 9·i +a 8-a 7·i -a 6+a 5·i +a 4-a 3·i -a 2+a 1·i +a 0=(-2-2i)5=-25(1+i)5=-25[(1+i)2]2(1+i)=128+128i.整理得,(-a 10+a 8-a 6+a 4-a 2+a 0)+(a 9-a 7+a 5-a 3+a 1)·i =128+128i , 故-a 10+a 8-a 6+a 4-a 2+a 0=128. 因为a 0=1,所以-a 10+a 8-a 6+a 4-a 2=127.18.(2021·全国·高二课时练习)在①第5项的系数与第3项的系数之比是14:3,②第2项与倒数第3项的二项式系数之和为55,③221C C 10n n n-+-=这三个条件中任选一个,补充在下面问题的横线上,并解答.问题:已知在n的展开式中,______.(1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.【答案】(1)答案见解析;(2)答案见解析. 【解析】方案一:选条件①.(1)n展开式的通项为()3561C 1C kn kn kk kk k nn T x--+⎛==- ⎝,0k =,1,2,…,n . 因为()()44221C 1431C nn-=-,即423C 14C n n =,所以()()!!3144!4!2!2!n n n n ⨯=⨯--, 整理得1050n n ,解得10n =或5n =-(舍去),所以10的展开式共有11项,所以展开式中二项式系数最大的项是第6项,为()302555566651101C 252T T xx -+==-=-.(2)令30556k-=,得0k =, 所以展开式中含5x 的项为展开式的第1项,即5x . 方案二:选条件②.(1)n展开式的通项为()3561C 1C kn kn kk kk k nn T x--+⎛==- ⎝,0k =,1,2,…,n . 因为12C C 55n n n -+=,所以2C 55n n +=,即()1552n n n -+=,即21100n n +-=, 解得10n =或11n =-(舍去),所以10的展开式共有11项,所以展开式中二项式系数最大的项是第6项,为()302555566651101C 252T T xx -+==-=-.(2)令30556k-=,得0k =, 所以展开式中含5x 的项为展开式的第1项,即5x . 方案三:选条件③.(1)n展开式的通项为()3561C 1C kn kn kk kk k nn T x--+⎛==- ⎝,0k =,1,2,…,n . 因为221C C 10n n n -+-=,所以221C C 10n n +-=,所以()()111022n n n n +--=,解得10n =,所以10的展开式共有11项,所以展开式中二项式系数最大的项是第6项,为()302555566651101C 252T T x x -+==-=-.(2)令30556k-=,得0k =, 所以展开式中含5x 的项为展开式的第1项,即5x .19.(2021·广东·深圳实验学校高中部高二月考)现有5本书和3位同学,将书全部分给这三位同学(要求用数字作答).(1)若5本书完全相同,共有多少种分法;(2)若5本书都不相同,每个同学至少有一本书,共有多少种分法;(3)若5本书仅有两本相同,按一人3本另两人各1本分配,共有多少种分法. 【答案】(1)21;(2)150;(3)39.【解析】(1)先借三本相同的书一人给一本,保证每人至少分得一本,再将这5本书和2个挡板排成一排,利用挡板将5本书分为3组,对应3位同学即可,有2721C =种情况,即有21种不同的分法; (2)分2步进行: ①将5本书分成3组,若分成1、1、3的三组,有31522210C CA =种分组方法,若分成1、2、2的三组,有1225422215C C C A =种分组方法, 从而分组方法有101525+=种;②将分好的三组全排列,对应3名学生,有336A =种情况,根据分步计数原理,故共有256150⨯=种分法;(3)记这5本书分别为A 、A 、B 、C 、D , 5本书取其三本分配时, ①不含A 时仅有一种分组,再分配给3人,有3种方法,②仅含一个A 时,分组的方法有23C 种,再分配给3人,共有233318C A ⨯=种方法,③含两个A 时,分组的方法有13C 种,再分配给3人,共有133318C A ⨯=种方法,从而共有18+18+3=39种分法.20.(2021·江苏江都·高二期中)生命在于运动。

高中数学第一章计数原理章末检测新人教A版选修2-3(2021年整理)

高中数学第一章计数原理章末检测新人教A版选修2-3(2021年整理)

2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3的全部内容。

第一章计数原理章末检测时间:120分钟满分: 150分一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种B.18种C.12种D.6种解析:因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种进行排列,共有C2,3A错误!=18种.故选B。

答案:B2.若A3,n=12C错误!,则n等于()A.8 B.5或6C.3或4 D.4解析:A3n=n(n-1)(n-2),C错误!=错误!n(n-1),∴n(n-1)(n-2)=6n(n-1),又n∈N*,且n≥3,解得n=8.答案:A3.关于(a-b)10的说法,错误的是( )A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小解析:由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.答案:C4.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是()A.8 B.122017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3C.16 D.24解析:∵A错误!=n(n-1)=132,∴n=12(n=-11舍去).故选B。

2020_2021学年新教材高中数学第六章计数原理章末质量检测含解析新人教a版选择性必修第三册

2020_2021学年新教材高中数学第六章计数原理章末质量检测含解析新人教a版选择性必修第三册

章末质量检测(一) 计数原理一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={1,-2,3},N ={-4,5,6,-7},若从这两个集合中各取一个元素作为点的横坐标或纵坐标,则可得平面直角坐标系中第一、二象限内不同点的个数是( )A .18B .16C .14D .102.有4个不同书写形式的“迎”字和3个不同书写形式的“新”字,如果一个“迎”字和一个“新”字能配成一套,则不同的配套方法共有( )A .7种B .12种C .64种D .81种3.⎝⎛⎭⎫1x +2x 6的展开式中的常数项为( ) A .120B .160C .200D .2404.4位男生和2位女生排成一排,男生有且只有2位相邻,则不同排法的种数是( ) A .72B .96 C .144D .2405.自2020年起,山东夏季高考成绩由“3+3”组成,其中第一个“3”指语文、数学、英语3科,第二个“3”指学生从物理、化学、生物、政治、历史、地理6科中任选3科作为选考科目.某同学计划从物理、化学、生物3科中任选两科,从政治、历史、地理3科中任选1科作为选考科目,则该同学3科选考科目的不同选法的种数为( )A .6B .7C .8D .96.若⎝⎛⎭⎫x -a x 6的展开式中含x 32项的系数为160,则实数a 的值为( )A .2B .-2C .22D .-2 27.(x +y )(2x -y )5的展开式中x 2y 4的系数为( ) A .-40B .40 C .30D .-308.“中国梦”的英文翻译为“Chinese Dream”,其中Chinese 又可以简写为CN ,从“CN Dream”中取6个不同的字母排成一排,含有“ea”字母组合(顺序不变)的不同排列共有( )A .360种B .480种C .600种D .720种二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.给出下列四个关系式,其中正确的为( )A .n !=(n +1)!n +1B .A m n =n A m -1n -1 C .A m n =n !(n -m )!D .A m -1n -1 =(n -1)!(m -n )! 10.下列有关排列数、组合数计算正确的是( )A .C mn =A m n n !B .(n +2)(n +1)A m n =A m +2n +2C .C 23 +C 24 +C 25 +…+C 2100 =C 3101D .C n -22n -1 +C 2n -1n +1 是一个常数11.二项式⎝⎛⎭⎫x 2+1x 11的展开式中,系数最大的项为( )A .第五项B .第六项C .第七项D .第八项12.关于(a -b )11的说法,正确的是( ) A .展开式中的二项式系数之和为2048 B .展开式中只有第6项的二项式系数最大 C .展开式中第6项和第7项的二项式系数最大 D .展开式中第6项的系数最大三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.(1-2x )n 的展开式中奇数项的二项式系数之和为32,则展开式中的第4项为________. 14.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有________种不同的选法.15.在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.16.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我校学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中选出四位同学组成校“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同的组队方式有________种.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)某校高一年级有6个班,高二年级有7个班,高三年级有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)三个年级各选1个班的学生参加社会实践活动,有多少种不同的选法?(2)选2个班的学生参加社会实践活动,要求这2个班不同年级,有多少种不同的选法?18.(本小题满分12分)已知⎝⎛⎭⎫x -2x 10的展开式. (1)求展开式中含x 4项的系数;(2)如果第3r 项和第r +2项的二项式系数相等,求r 的值.19.(本小题满分12分)从7名男生和5名女生中选出5人,分别求符合下列条件的选法数. (1)A ,B 必须被选出;(2)至少有2名女生被选出;(3)让选出的5人分别担任体育委员、文娱委员等5种不同职务,但体育委员由男生担任,文娱委员由女生担任.20.(本小题满分12分)已知在⎝⎛⎭⎫12x 2-1x n 的展开式中,第9项为常数项,求:(1)n 的值;(2)展开式中x 5的系数;(3)含x的整数次幂的项的个数.21.(本小题满分12分)一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个,其中红球的个数不比白球少的取法有多少种?(2)如取1个红球记2分,1个白球记1分,从口袋中取5个球,总分不小于7的取法有多少种?22.(本小题满分12分)已知函数f (x )=(1+x )n ,n ∈N *.(1)当n =8时,求展开式中系数的最大项.(2)化简C 0n 2n -1+C 1n 2n -2+C 2n 2n -3+…+C n n 2-1. (3)定义:∑i =1na i =a 1+a 2+…+a n ,化简:i =1n (i +1)C i n .章末质量检测(一)1.解析:分两类:第一类,M 中取横坐标,N 中取纵坐标,共有3×2=6个第一、二象限内的点;第二类,M 中取纵坐标,N 中取横坐标,共有2×4=8个第一、二象限内的点.由分类加法计数原理,知共有6+8=14个不同的第一、二象限内的点.故选C.答案:C2.解析:要完成配套,分两步:第一步,取“迎”字,有4种不同取法;第二步,取“新”字,有3种不同取法,故有4×3=12种不同的配套方法.故选B.答案:B3.解析:⎝⎛⎭⎫1x +2x 6的展开式的通项为T k +1=C k 6 ·⎝⎛⎭⎫1x 6-k (2x )k =2k C k 6 x 2k -6,令2k -6=0,解得k =3,所以展开式中的常数项为23×C 36 =160.故选B.答案:B4.解析:从4位男生中选2位捆绑在一起,和剩余的2位男生插入到2位女生所形成的3个空隙中,所以共有A 24 A 22 A 33 =144种不同的排法.故选C.答案:C5.解析:某同学计划从物理、化学、生物3科中任选两科,从政治、历史、地理3科中任选1科作为选考科目,则该同学3科选考科目的不同选法的种数为C 23 C 13 =9种.故选D.答案:D6.解析:由二项式定理得展开式的通项T k +1=C k 6x6-k⎝⎛⎭⎫-a x k=C k 6 (-a )k x 6-32k ,令6-32k =32,得k =3,由C 36 (-a )3=-20a 3=160,得a =-2.故选B. 答案:B7.解析:(2x -y )5的展开式的通项为C k 5 (2x )5-k (-y )k =25-k (-1)k C k 5x 5-k y k .令5-k =1,得k =4,则x ·2·C 45 xy 4=10x 2y 4;令5-k =2,得k =3,则y ·22·(-1)·C 35 x 2y 3=-40x 2y 4.所以(x +y )(2x -y )5的展开式中x 2y 4的系数为10-40=-30.故选D. 答案:D8.解析:从其他5个字母中任取4个,然后与“ea ”进行全排列,共有C 45 A 55 =600种,故选C.答案:C9.解析:由A m n =n !(n -m )!可知:A m -1n -1=(n -1)!(n -m )!,故D 不正确.A 、B 、C 均正确.故选ABC.答案:ABC10.解析:A 错,A m n =C mn ·m !;B 正确;C 错,应为C 3101 -1;D 正确,由组合数定义可得⎩⎪⎨⎪⎧0≤n -2≤2n -1 (ⅰ)0≤2n -1≤n +1 (ⅱ)由(ⅰ)得n ≥2,由(ⅱ)得12≤n ≤2,所以n =2.所以C n -22n -1 +C 2n -1n +1 =C 03 +C 33 =2.所以B 、D 正确.答案:BD11.解析:二项式⎝⎛⎭⎫x 2+1x 11的展开式中,每项的系数与二项式系数相等,共有12项,所以系数最大的项为第六项和第七项.故选BC.答案:BC12.解析:(a -b )11的展开式中的二项式系数之和为211=2 048,所以A 正确;因为n =11为奇数,所以展开式中有12项,中间两项(第6项和第7项)的二项式系数相等且最大,所以B 不正确,C 正确;展开式中第6项的系数为负数,不是最大值,所以D 不正确.故选AC.答案:AC13.解析:∵(1-2x )n 的展开式中奇数项的二项式系数之和为32,∴2n -1=32,即n =6,∴(1-2x )6展开式中的第4项为T 4=C 36 13(-2x )3=-160x 3. 答案:-160x 314.解析:可以分为三类,第一类,让两项工作都能胜任的青年从事英语翻译工作,有C 24 C 23 种选法;第二类,让两项工作都能胜任的青年从事德语翻译工作,有C 34 C 13 种选法;第三类,两项工作都能胜任的青年不从事任何工作,有C 34 C 23 种选法.根据分类加法计数原理知,一共有C 24 C 23 +C 34 C 13 +C 34 C 23 =42种不同的选法.答案:4215.解析:该二项展开式的第k +1项为T k +1=C k 9 (2)9-k x k ,当k =0时,第1项为常数项,所以常数项为(2)9=162;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.答案:162 516.解析:从五人中选四人有C 45 =5种选择方法,分类讨论:若所选四人为甲、乙、丙、丁,则有A 22 ×A 22 =4种组队方式;若所选四人为甲、乙、丙、戊,则有C 12 ×C 12 ×A 22 =8种组队方式;若所选四人为甲、乙、丁、戊,则有C 12 ×C 12 ×A 22 =8种组队方式; 若所选四人为甲、丙、丁、戊,则有A 22 =2种组队方式; 若所选四人为乙、丙、丁、戊,则有A 22 =2种组队方式.由分类加法计数原理得,不同的组队方式有4+8+8+2+2=24种. 答案:2417.解析:(1)分三步:第1步,从高一年级选1个班,有6种不同的选法;第2步,从高二年级选1个班,有7种不同的选法;第3步,从高三年级选1个班,有8种不同的选法,由分步乘法计数原理可得,不同的选法种数为6×7×8=336.(2)分三类,每类又分两步:第1类,从高一、高二两个年级各选1个班,有6×7种不同的选法;第2类,从高一、高三两个年级各选1个班,有6×8种不同的选法;第3类,从高二、高三两个年级各选1个班,有7×8种不同的选法,故不同的选法种数为6×7+6×8+7×8=146.18.解析:(1)展开式的通项为T k +1=C k 10 (-2)k x 10-32k,令10-32k =4,解得k =4,故展开式中含x 4项的系数为C 410 (-2)4=3 360.(2)第3r 项的二项式系数为C 3r -110 ,第r +2项的二项式系数为C r +110 ,∵C 3r -110 =C r +110 ,∴3r -1=r +1或3r -1+r +1=10, 解得r =1或r =2.5(不合题意,舍去),∴r =1.19.解析:(1)除选出A ,B 外,从其他10个人中再选3人,选法数为C 310 =120.(2)按女生的选取情况分为四类:选2名女生、3名男生,选3名女生、2名男生,选4名女生、1名男生,选5名女生,所有选法数为C 25 C 37 +C 35 C 27 +C 45 C 17 +C 55 =596.(3)选出1名男生担任体育委员,再选出1名女生担任文娱委员,从剩下的10人中任选3人担任其他3种职务.根据分步乘法计数原理知,所有选法数为C 17 ·C 15 ·A 310 =25 200.20.解析:二项展开式的通项为T k +1=C k n⎝⎛⎭⎫12x 2n -k⎝⎛⎭⎫-1x k=(-1)k ⎝⎛⎭⎫12n -k C k n x 2n -5k2.(1)因为第9项为常数项,所以当k =8时,2n -52k =0,解得n =10.(2)令2n -52k =5,得k =25(2n -5)=6,所以x 5的系数为(-1)6⎝⎛⎭⎫124C 610 =1058.(3)要使2n -52k ,即4n -5k 2为整数,只需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.21.解析:(1)满足条件的取法情况分为以下三类: 第一类,红球取4个,白球不取,取法有C 44 种;第二类,红球取3个,白球取1个,取法有C 34 C 16 种;第三类,红球取2个,白球取2个,取法有C 24 C 26 种.所以共有取法C 44 +C 34 C 16 +C 24 C 26 =115(种).(2)设取红球x 个,白球y 个,则有⎩⎪⎨⎪⎧x +y =5,2x +y ≥7,0≤x ≤4,0≤y ≤6,其正整数解为⎩⎪⎨⎪⎧x =2,y =3或⎩⎪⎨⎪⎧x =3,y =2或⎩⎪⎨⎪⎧x =4,y =1.因此总分不小于7的取法可分为三类,不同的取法种数为C 24 C 36 +C 34 C 26 +C 44 C 16 =186.22.解析:(1)f (x )=(1+x )8,所以系数最大的项即为二项式系数最大的项T 5=C 48 x 4=70x 4.(2)f (x )=(1+x )n =C 0n +C 1n x +C 2n x 2+…+C n -1n x n -1+C n n x n ,所以原式=12(C 0n 2n +C 1n 2n -1+C 2n 2n -2+…+C n n 20) =12(1+2)n =3n2. (3)∑i =1n(i +1)C i n =2C 1n +3C 2n +…+n C n -1n +(n +1)C n n , ① ∑i =1n(i +1)C i n =(n +1)C n n +n C n -1n +…+3C 2n +2C 1n , ② 在①,②添加C 0n ,则得1+∑i =1n(i +1)C i n =C 0n +2C 1n +3C 2n +…+n C n -1n +(n +1)C n n , ③ 1+∑i =1n(i +1)C i n =(n +1)C n n +n C n -1n +…+3C 2n +2C 1n +1C 0n , ④ ③+④得:2(1+∑i =1n(i +1)C i n )=(n +2)(C 0n +C 1n +C 2n +…+C n -1n +C n n )=(n +2)2n ,所以∑i =1n(i +1)C i n =(n +2)2n -1-1.。

第六章计数原理章末检测教师用卷

第六章计数原理章末检测教师用卷

第六章(计数原理)章末检测一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取2本不同学科的书,则不同的取法种数为()A. 72B. 80C. 90D. 242【答案】D【解析】【分析】本题考查两个计数原理的综合应用,属于基础题.根据题意先分类,再分步,利用计数原理求解.【解答】解:可分为三类.第一类,取出的2本书中,1本数学书,1本语文书,根据分步乘法计数原理,有10×9=90种不同的取法;第二类,取出的2本书中,1本语文书,1本英语书,有9×8=72种不同的取法;第三类,取出的2本书中,1本数学书,1本英语书,有10×8=80种不同的取法.利用分类加法计数原理,知共有90+72+80=242种不同的取法.故选D.2.对图中的A,B,C,D四个区域染色,每块区域染一种颜色,有公共边的区域不同色,现有红、黄、蓝三种不同颜色可以选择,则不同的染色方法共有()A. 12种B. 18种C. 20种D. 22种【答案】B【解析】【分析】分AD 相同和AD 不同,由分类计数原理可得其他个区域的染色方法的数目. 本题考查分步计数原理与分类计数原理的综合运用,注意4个区域的位置关系即可. 【解答】解:若AD 相同,先染A 处,有3种方法,在染B 处2种方法,第三步染C 有2种方法,共有3×2×2=12种,若AD 不同,先染A 处,有3种方法,再染D 处2种方法,第三步染B 有1种方法,第四步染C 有1种方法,共有3×2×1×1=6种, 根据分类计数原理可得共有12+6=18种. 故选B .3. 将甲,乙等5位同学分别保送到北京大学,上海交通大学,浙江大学三所大学就读,则每所大学至少保送一人的不同保送的方法有( ) A. 240种 B. 180种 C. 150种 D. 540种【答案】C 【解析】 【分析】根据题意,分2步进行分析:①、先将甲、乙等5位同学分成3组:需要分2种情况讨论,②、将分好的三组对应三所大学,分别求出每一步的情况数目,由分步计数原理计算可得答案.本题考查排列、组合的综合应用,注意先分组,再进行排列. 【解答】解:根据题意,分2步进行分析: ①、先将甲、乙等5位同学分成3组: 若分成1−2−2的三组,有C 51C 42C 22A 22=15种分组方法, 若分成1−1−3的三组,有C 51C 41C 33A 22=10种分组方法,则将5人分成3组,有15+10=25种分组方法; ②、将分好的三组对应三所大学,有A 33=6种情况, 则每所大学至少保送一人的不同保送方法25×6=150种; 故选:C .4. 考生甲填报某高校专业意向,打算从5个专业中挑选3个,分别作为第一、第二、A. 10种B. 60种C. 125种D. 243种【答案】B【解析】【分析】本题考查了简单的排列组合问题,关键是分清是排列还是组合,属于基础题.从5个专业中选3个并分配到3个志愿中,问题得以解决.【解答】解:从5个专业中选3个并分配到3个志愿中,故有A53=60种,故选:B.5.编号为1、2、3、4、5、6、7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有()A. 60种B. 20种C. 10种D. 8种【答案】C【解析】【分析】本题考查组合的应用,关键是将原问题转化为在不亮路灯的空位中插入亮的路灯的问题.根据题意,分析可得将原问题转化为在不亮路灯的空位中插入亮的路灯的问题,先排4盏不亮的路灯,再在其空位中任选3个,插入3盏亮的路灯,由组合数公式,计算可得答案.【解答】解:根据题意,先安排4盏不亮的路灯,有1种情况,排好后,有5个空位,在5个空位中任选3个,插入3盏亮的路灯,有C53=10种情况,则不同的开灯方案有1×10=10种.故选C.6.下列等式错误的是()A. B.n!n(n−1)=(n−2)!C. A n m=n!(n−m)!D. 1n−mA n m+1=A n m【答案】A【分析】本题考查了排列数与组合数公式的应用问题,属于基础题.根据排列数与组合数公式逐项对选项中的等式分析判断即可.【解答】解:对于A,因为C n m=A n mm!≠A n mn!,所以选项A错误;对于B,因为n!n(n−1)=n×(n−1)×(n−2)…3×2×1n(n−1)=(n−2)!,所以选项B正确;对于C,因为A n m=n!(n−m)!,所以选项C正确;对于D,因为1n−m A n m+1=1n−m⋅n!(n−m−1)!=n!(n−m)!=A n m,所以选项D正确.故答案选A.7.若二项式(2+x)10按(2+x)10=a0+a1(1−x)+a2(1−x)2+⋯+a10(1−x)10的方式展开,则展开式中a8的值为()A. 90B. 180C. 360D. 405【答案】D【解析】【分析】本题考查二项式定理的应用及二项展开式特定项的系数,属于基础题.由题意可将原式写为(2+x)10=[3−(1−x)]10,展开即可得答案.【解答】解:(2+x)10=[3−(1−x)]10=a+a1(1−x)+a2(1−x)2+⋯+a10(1−x)10,T r+1=C10r310−r(−1)r(1−x)r,所以a8=C108×32×(−1)8=405,所以a8=405.故选D.8.式子(x−y2x)(x+y)5的展开式中,x3y3的系数为()A. 3B. 5C. 15D. 20【答案】B【解析】本题主要考查二项式定理的应用,二项式展开式的通项公式,属基础题.先把条件整理转化为求(x 2−y 2)(x +y)5展开式中x 4y 3的系数,再结合二项式的展开式的通项即可求解. 【解答】 解:因为(x − y 2x)(x +y)5=(x 2−y 2)(x+y)5x,所以要求展开式中x 3y 3的系数即为求(x 2−y 2)(x +y)5展开式中x 4y 3的系数,展开式含x 4y 3的项为:x 2·C 53x 2·y 3−y 2·C 51x 4·y =5x 4y 3,故(x − y 2x)(x +y)5的展开式中x 3y 3的系数为5.故选B .二、多项选择题:本大题共4小题,每小题5分,共20分.在每个小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9. 甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是( )A. 如果甲,乙必须相邻且乙在甲的右边,那么不同的排法有24种B. 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C. 甲乙不相邻的排法种数为72种D. 甲乙丙按从左到右的顺序排列的排法有20种 【答案】ABCD 【解析】 【分析】本题考查排列组合中的排序问题,常见类型有:(1)相邻问题捆绑法;(2)不相邻问题插空排;(3)定序问题缩倍法(插空法);(4)定位问题优先法,属于基础题.A . 甲,乙必须相邻且乙在甲的右边,就是将甲乙捆绑看成一个元素;B .第一种情况最左端排甲,第二种情况最左端排乙;C .甲乙不相邻,可用甲乙去插丙丁戊的空(甲乙可交换);D .先考虑五人全排列A 55种;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了A 33种,故有A 55A 33=20种.【解答】A . 甲,乙必须相邻且乙在甲的右边,可将甲乙捆绑看成一个元素,则不同的排法有A 44=B .最左端排甲,有A 44种;最左端排乙,有A 31A 33种, 则不同的排法共有A 44+A 31A 33=42种,故B 正确; C .甲乙不相邻的排法种数为A 33A 42=72种,故C 正确;D .甲乙丙按从左到右的顺序排列的排法有A 55A 33=20种,故D 正确.故选:ABCD .10. 满足方程C 16x 2−x =C 165x−5的x 的值可能为( )A. 1B. 3C. 5D. −7【答案】AB 【解析】 【分析】本题主要考查的是组合与组合数公式,属于基础题.根据C 16x 2−x =C 165x−5 可以得到x 2−x =5x −5或x 2−x =16−(5x −5),注意检验,求解即可. 【解答】解:∵C 16x 2−x =C 165x−5 ,∴x 2−x =5x −5或x 2−x =16−(5x −5) 解得:x =1或x =5或x =3或x =−7. 当x =5时,5x −5=20>16,故舍去, 当x =−7时,5x −5=−40<0,故舍去, 故x =1或x =3, 故选AB .11. 若3男3女排成一排,则下列说法错误的是( )A. 共计有720种不同的排法B. 男生甲排在两端的共有120种排法C. 男生甲、乙相邻的排法总数为120种D. 男女生相间排法总数为72种 【答案】BC 【解析】 【分析】本题考查了排列组合的应用,属于中档题.排列问题的常见方法:相邻问题用捆绑法,定位问题优先法,相离问题插空法,由排列组合知识逐项排除,可得正确选项. 【解答】解:3男3女排成一排共计有A 66=720种,A 正确; 男生甲排在两端的共有2A 55=240种,B 错误;男生甲、乙相邻的排法总数A 22A 55=240种,C 错误; 男女生相间排法总数2A 33A 33=72种,D 正确;故选BC .12. 已知(x −√x 3)n 的展开式中,有且只有第5项的二项式系数最大,则( )A. n =8B. 二项展开式的各项系数和为1C. 二项展开式的二项式系数和为512D. 二项展开式中的常数项是第7项 【答案】ABD 【解析】 【分析】本题主要考查的是二项式定理的运用,属于基础题. 根据二项式定理逐一判断选项即可. 【解答】解:因为(x √x 3)n 的展开式中有且只有第5项的二项式系数最大,所以n =8,故A 正确;展开式的二项式系数和为28=256,故C 错误;令x =1,得二项展开式的各项系数和为(1−2)8=1,故B 正确; 二项展开式的通项为T r+1=C 8r x 8−r√x3)r =(−2)r C 8r x8−4r3, 令8−4r 3=0,解得r =6, 所以第7项为常数项,故D 正确.故选ABD .13. 某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选一名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有______种. 【答案】36 【解析】 【分析】本题主要考查了分步乘法计数原理的运算,属于基础题.根据题意得出复活选手中挑选1名选手为攻擂者有几种选法,再得出守擂选手中挑选1名选手为守擂者有几种选法即可得解. 【解答】由从复活选手中挑选1名选手为攻擂者可知有C 61=6种选法, 由从守擂选手中挑选1名选手为守擂者可知有C 61=6种选法, 故6×6=36,故攻擂者、守擂者的不同构成方式共有36种. 故答案为36.14. 已知A 2n 3=10A n 3,则C n 3+C n 4+C n+15+C n+26= .【答案】462 【解析】 【分析】本题考查了排列数公式和组合数性质的综合应用,属于基础题. 根据排列数计算公式可求得n ,结合组合数的性质即可化简求值. 【解答】解:根据排列数计算公式可得A 2n 3=2n(2n −1)(2n −2),A n 3=n(n −1)(n −2),所以2n(2n −1)(2n −2)=10n(n −1)(n −2)(n ⩾3), 化简可解得n =8,则由组合数性质可得C 83+C 84+C 95+C 106=C 94+C 95+C 106=C 105+C 106=C 116=11!6!(11−6)!=462. 故答案为462.15.五一放假期间,某社区安排甲、乙、丙、丁、戊这5位工作人员值班,每人值班一天,若甲排在第一天值班,且丙与丁不排在相邻的两天值班,则可能的值班方式有种.【答案】12【解析】【分析】本题主要考查排列的应用,属于基础题。

高中数学同步教学课件 第六章 章末复习课

高中数学同步教学课件 第六章 章末复习课

反思感悟
解决排列、组合综合问题要注意以下几点 (1)首先要分清该问题是排列问题还是组合问题. (2)对于含有多个限制条件的复杂问题,应认真分析每个限制条件,再考 虑是分类还是分步,分类时要不重不漏,分步时要步步相接. (3)对于含有“至多”“至少”的问题,常采用间接法,此时要考虑全面, 排除干净.
(2)若(3x2-2x+1)5=a10x10+a9x9+a8x8+…+a1x+a0,求(a0+a2+a4+ a6+a8+a10)2-(a1+a3+a5+a7+a9)2.
令x=1,得a0+a1+…+a10=25; 令x=-1,得(a0+a2+a4+a6+a8+a10)-(a1+a3+a5+a7+a9)=65. 两式相乘,得(a0+a2+a4+a6+a8+a10)2-(a1+a3+a5+a7+a9)2=25× 65=125.
跟踪训练2 6个女生(其中有1个领唱)和2个男生分成两排表演. (1)若每排4人,共有多少种不同的排法?
要完成这件事分三步. 第一步,从 8 人中选 4 人站在前排,另 4 人站在后排,共有 C48C44种不 同的排法; 第二步,前排 4 人进行全排列,有 A44种不同的排法; 第三步,后排 4 人进行全排列,有 A44种不同的排法. 由分步乘法计数原理知,有 C48C44A44A44=40 320(种)不同的排法.
反思感悟
(4)确定二项展开式中的系数最大或最小项:求展开式中系数最大项与 求二项式系数最大项是不同的,需根据各项系数的正、负变化情况, 一般采用列不等式(组),解不等式(组)的方法求解.
跟踪训练 4 已知( x-3 x)n 的展开式中所有项的二项式系数之和为 1 024. (1)求展开式中的所有有理项;
跟踪训练1 (1)用红、黄、蓝、绿、橙五种不同颜色给如图所示的5块区

2022届高中数学新教材同步选择性必修第三册 章末检测试卷一(第6章)

2022届高中数学新教材同步选择性必修第三册 章末检测试卷一(第6章)

章末检测试卷一(第六章)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分) 1.(x -y )n 的二项展开式中,第m 项的系数是( ) A .C m nB .C m +1nC .C m -1nD .(-1)m -1C m -1n答案 D解析 (x -y )n 的二项展开式中第m 项为T m =C m -1n (-y )m -1x n -m +1, 所以系数为C m -1n(-1)m -1. 2.若A 4m =18C 3m ,则m 等于( )A .9B .8C .7D .6 答案 D解析 由A 4m=m (m -1)(m -2)(m -3)=18·m (m -1)(m -2)3×2×1,得m -3=3,m =6. 3.设4名学生报名参加同一时间安排的3项课外活动方案有a 种,这4名学生在运动会上共同争夺100米、跳远、铅球3项比赛的冠军的可能结果有b 种,则(a ,b )为( ) A .(34,34) B .(43,34)C .(34,43)D .(A 34,A 34)答案 C解析 由题意知本题是一个分步计数问题,每名学生报名都有3种选择,根据分步乘法计数原理知,4名学生共有34种选择;每项冠军都有4种可能结果,根据分步乘法计数原理知,3项冠军共有43种可能结果.故选C.4.5名大人带2个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法有( )A .A 55·A 24种B .A 55·A 25种C .A 55·A 26种D .(A 77-4A 66)种答案 A解析 先排大人,有A 55种排法,去掉头尾后,有4个空位,再分析小孩,用插空法,将2个小孩插在4个空位中,有A 24种排法,由分步乘法计数原理可知,有A 55·A 24种不同的排法,故选A.5.(2-x )8的展开式中不含x 4项的系数的和为( ) A .-1 B .0 C .1 D .2 答案 B解析 (2-x )8的展开式的通项公式为T k +1=C k 828-k ·(-x )k=(-1)k 28-k C k 82kx ,∴x 4项的系数为(-1)820C 88=1,又(2-x )8的展开式的系数和为(2-1)8=1. ∴不含x 4项的系数和为1-1=0.6.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A .10B .11C .12D .15 答案 B解析 分类讨论:有两个对应位置、有一个对应位置及没有对应位置上的数字相同,可得N=C 24+C 14+1=11.7.某学校要求错峰有序吃饭,高三年级一层楼有甲、乙、丙、丁、戊、己六个班排队吃饭,甲班不能排在第一位,且丙班、丁班必须排在一起,则这六个班排队吃饭的不同安排方案共有( ) A .120种 B .156种 C .192种 D .240种答案 C解析 丙丁捆绑在一起看作一个班,变成5个班进行排列,然后在后面4个位置中选1个排甲,这样可得排法为A 22A 14A 44=192(种).8.如图为我国古代数学家赵爽在为《周髀算经》作注时验证勾股定理的示意图.现在提供5种颜色给5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案种数为( )A .120B .26C .340D .420解析如图所示,设5个区域依次为A,B,C,D,E,分4步进行分析:①区域A有5种颜色可选;②区域B与区域A相邻,有4种颜色可选;③区域C与区域A,B相邻,有3种颜色可选;④对于区域D,E,若D与B颜色相同,则区域E有3种颜色可选,若D与B颜色不相同,则区域D有2种颜色可选,区域E有2种颜色可选,故区域D,E有3+2×2=7(种)选择.综上可知,不同的涂色方案共有5×4×3×7=420(种).二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得2分,有选错的得0分)9.下列问题属于排列问题的是()A.从10个人中选2人分别去种树和扫地B.从10个人中选2人去扫地C.从班上30名男生中选出5人组成一个篮球队D.从数字5,6,7,8中任取两个不同的数作幂运算答案AD解析根据题意,依次分析选项:对于A,从10个人中选2人分别去种树和扫地,选出的2人有分工的不同,是排列问题;对于B,从10个人中选2人去扫地,与顺序无关,是组合问题;对于C,从班上30名男生中选出5人组成一个篮球队,与顺序无关,是组合问题;对于D,从数字5,6,7,8中任取两个不同的数作幂运算,顺序不一样,计算结果也不一样,是排列问题.10.某城市街道如图,某人要走最短路程从A地前往B地,则不同走法有()A.C25种B.C35种C.C26种D.C46种解析因为从A地到B地路程最短,我们可以在地面画出模型,实地实验探究一下走法可得出:①要走的路程最短必须走5步,且不能重复;②向东的走法定出后,向南的走法随之确定,所以我们只要确定出向东的三步或向南的两步走法有多少种即可,故不同走法的种数有C35=C25.11.下列关于(a-b)10的说法,正确的是()A.展开式中的二项式系数之和是1 024B.展开式的第6项的二项式系数最大C.展开式的第5项或第7项的二项式系数最大D.展开式中第6项的系数最小答案ABD解析由二项式系数的性质知,C010+C110+C210+…+C1010=210=1 024,故A正确;二项式系数最大为C510,是展开式的第6项的二项式系数,故B正确;由展开式的通项T k+1=C k10a10-k(-b)k=(-1)k C k10a10-k b k知,第6项的系数-C510最小,故D正确.12.将4个不同的小球放入3个分别标有1,2,3号的盒子中,不允许有空盒子的放法,关于放法的种数,下列结论正确的有()A.C13C12C11C13B.C24A33C.C13C24A22D.18答案BC解析根据题意,4个不同的小球放入3个分别标有1,2,3号的盒子中,且没有空盒子,则三个盒子中有1个盒子中放2个球,剩下的2个盒子中各放1个,有2种解法:方法一分2步进行分析:①先将4个不同的小球分成3组,有C24种分组方法;②将分好的3组全排列,对应放到3个盒子中,有A33种放法.则没有空盒的放法有C24A33种.方法二分2步进行分析:①在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,有C13C24种情况;②将剩下的2个小球全排列,放入剩下的2个小盒中,有A22种放法.则没有空盒的放法有C 13C 24A 22种,故选BC.三、填空题(本大题共4小题,每小题5分,共20分)13.若C 2n +620=C n +220(n ∈N *),则n =________.答案 4解析 由题意可知2n +6=20-(n +2),解得n =4.14.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有________种.(用数字作答) 答案 54解析 当甲、乙带不同兴趣小组时有A 23A 33=36(种),当甲、乙带同一个兴趣小组时,有C 23A 33=18(种),根据分类加法计数原理可得共有36+18=54(种).15.若⎝⎛⎭⎫2x +ax n 的展开式的系数和为1,二项式系数和为128,则a =________,展开式中x 2的系数为________. 答案 -1 -448解析 由题意得⎩⎪⎨⎪⎧()2+a n =1,2n =128,所以n =7,a =-1,所以⎝⎛⎭⎫2x -1x 7的展开式的通项为 T k +1=C k 7(2x )7-k⎝ ⎛⎭⎪⎫-1x k =C k 727-k(-1)k 732k x - ,令7-3k 2=2,解得k =1.所以x 2的系数为C 1726(-1)1=-448.16.甲、乙、丙、丁、戊五名同学参加某种技术竞赛,得出了第一名到第五名的五个名次,甲、乙去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从组织者的回答分析,这五个人的名次排列的不同情况共有________种. 答案 54解析 根据题意知,甲、乙都没有得到冠军,且乙不是最后一名,分2种情况讨论: ①甲是最后一名,则乙可以是第二名、第三名或第四名,即乙有3种名次排列情况,剩下的三人有A 33=6(种)名次排列情况,此时有3×6=18(种)名次排列情况;②甲不是最后一名,则甲、乙需要排在第二、三、四名,有A 23=6(种)名次排列情况,剩下的三人有A 33=6(种)名次排列情况,此时有6×6=36(种)名次排列情况. 综上可知,一共有36+18=54(种)不同的名次排列情况. 四、解答题(本大题共6小题,共70分)17.(10分)已知A ={x |1<log 2 x <3,x ∈N *},B ={x ||x -6|<3,x ∈N *}.试问:(1)从集合A 和B 中各取一个元素作为直角坐标系中点的坐标,共可得到多少个不同的点? (2)从A ∪B 中取出三个不同的元素组成三位数,从左到右的数字要逐渐增大,这样的三位数有多少个?解 A ={3,4,5,6,7},B ={4,5,6,7,8}.(1)A 中元素作为横坐标,B 中元素作为纵坐标,有5×5=25(个);B 中元素作为横坐标,A 中元素作为纵坐标,有5×5=25(个).又两集合中有4个相同元素,故有4×4=16(个)重复了两次,所以共有25+25-16=34(个)不同的点. (2)A ∪B ={3,4,5,6,7,8},则这样的三位数共有C 36=20(个).18.(12分)已知(1+2x )n 的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的56,试求展开式中二项式系数最大的项.解 二项展开式的通项为T k +1=C k n ·2k·2kx ,由题意知展开式中第k +1项系数是第k 项系数的2倍,是第k +2项系数的56,∴⎩⎪⎨⎪⎧C k n 2k =2C k -1n ·2k -1,C k n 2k=56C k +1n ·2k +1, 解得n =7.∴展开式中二项式系数最大的项是 T 4=C 37(2x )3=28032x 或T 5=C 47(2x )4=560x 2. 19.(12分)某医院有内科医生12名,外科医生8名,现选派5名参加研讨会. (1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法? (2)甲、乙均不能参加,有多少种选法? (3)甲、乙2人至少有1人参加,有多少种选法?(4)医疗队中至少有1名内科医生和1名外科医生,有多少种选法? 解 (1)只需从其他18人中选3人即可,共有C 318=816(种)选法.(2)只需从其他18人中选5人即可,共有C 518=8 568(种)选法.(3)分两类:甲、乙中有1人参加;甲、乙都参加.则共有C 12C 418+C 318=6 936(种)选法.(4)方法一 (直接法)至少有1名内科医生和1名外科医生的选法可分4类: 1内4外;2内3外;3内2外;4内1外.所以共有C 112C 48+C 212C 38+C 312C 28+C 412C 18=14 656(种)选法.方法二 (间接法)从无限制条件的选法总数中减去5名都是内科医生和5名都是外科医生的选法种数所得的结果即为所求,即共有C 520-(C 512+C 58)=14 656(种)选法.20.(12分)已知⎝⎛⎭⎫x +12x n 的展开式中的第2项和第3项的系数相等.(1)求n 的值;(2)求展开式中所有二项式系数的和; (3)求展开式中所有的有理项.解 二项式⎝⎛⎭⎫x +12x n 的展开式的通项为T k +1=C k n x n -k ·⎝⎛⎭⎫12x k=C k n⎝⎛⎭⎫12k 32n k x - (k =0,1,2,…,n ).(1)根据展开式中的第2项和第3项的系数相等,得 C 1n ·12=C 2n⎝⎛⎭⎫122,即12·n =⎝⎛⎭⎫122·n (n -1)2, 解得n =5.(2)展开式中所有二项式系数的和为C 05+C 15+C 25+…+C 55=25=32. (3)二项展开式的通项为T k +1=C k 5⎝⎛⎭⎫12k 352k x - (k =0,1,2,…,5). 当k =0,2,4时,对应项是有理项, 所以展开式中所有的有理项为 T 1=C 05⎝⎛⎭⎫120x 5=x 5,T 3=C 25⎝⎛⎭⎫122x 2=52x 2,T 5=C 45⎝⎛⎭⎫124x -1=516x. 21.(12分)用0,1,2,3,4这五个数字组成无重复数字的自然数. (1)在组成的三位数中,求所有偶数的个数;(2)在组成的三位数中,若十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;(3)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数. 解 (1)将组成的三位数中所有偶数分为两类,①若个位数为0,则共有A 24=12(个)符合题意的三位数;②若个位数为2或4,则共有2×3×3=18(个)符合题意的三位数. 故共有12+18=30(个)符合题意的三位数. (2)将这些“凹数”分为三类:①若十位上的数字为0,则共有A 24=12(个)符合题意的“凹数”; ②若十位上的数字为1,则共有A 23=6(个)符合题意的“凹数”; ③若十位上的数字为2,则共有A 22=2(个)符合题意的“凹数”. 故共有12+6+2=20(个)符合题意的“凹数”. (3)将符合题意的五位数分为三类:①若两个奇数数字在万位和百位上,则共有A 22A 33=12(个)符合题意的五位数; ②若两个奇数数字在千位和十位上,则共有A 22A 12A 22=8(个)符合题意的五位数; ③若两个奇数数字在百位和个位上,则共有A 22A 12A 22=8(个)符合题意的五位数.故共有12+8+8=28(个)符合题意的五位数.22.(12分)已知⎝⎛⎭⎫x +mx n 的展开式的二项式系数之和为256. (1)求n 的值;(2)若展开式中常数项为358,求m 的值;(3)若(x +m )n 的展开式中系数最大项只有第6项和第7项,求m 的取值情况. 解 (1)由二项式系数之和为2n =256,可得n =8. (2)设常数项为第k +1项,则T k +1=C k 8x 8-k ⎝⎛⎭⎫m x k=C k 8m k x 8-2k , 令8-2k =0,即k =4, 则C 48m 4=358,解得m =±12. (3)易知m >0,设第k +1项系数最大,则⎩⎪⎨⎪⎧C k 8m k ≥C k -18m k -1,C k 8m k ≥C k +18m k +1,化简可得8m -1m +1≤k ≤9m m +1.由于只有第6项和第7项系数最大, 所以⎩⎪⎨⎪⎧4<8m -1m +1≤5,6≤9m m +1<7,即⎩⎨⎧54<m ≤2,2≤m <72.所以m 只能等于2.。

高中数学选修2-3 第一章 计数原理 章末检测题

高中数学选修2-3 第一章 计数原理 章末检测题

高中数学选修2-3第一章计数原理章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从n 个人中选出2个,分别从事两项不同的工作,若选派方案的种数为72,则n 的值为()A .6B .8C .9D .12【解析】∵A 2n =72,∴n =9.【答案】C2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A .3×3!B .3×(3!)3C .(3!)4D .9!【解析】把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.【答案】C3.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A .85B .56C .49D .28【解析】分两类计算,C 22C 17+C 12C 27=49,故选C.【答案】C4.从集合{0,1,2}到集合{1,2,3,4}的不同映射的个数是()A .81B .64C .24D .12【解析】利用可重复的排列求幂法可得答案为43=64(个).【答案】B5.(2012·重庆卷)82x x 的展开式中常数项为()A.3516B.358 C.354D .105【解析】T r +1=C r 8(x )8-r 2r x =12r C r 8x 4-r 2-r 2=12r r 8x 4-r,令4-r =0,则r =4,∴常数项为T 5=124C 48=116×70=358.【答案】B6.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()A .2B .-1C .0D .1【解析】(a 0+a 2+a 4)2-(a 1+a 3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.【答案】D7.某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:序号123456节目如果A、B两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有()A.144种B.192种C.96种D.72种【解析】第一步,将C、D、E、F全排,共有A44种排法,产生5个空,第二步,将A、B捆绑有2种方法,第三步,将A、B插入除2号空位和3号空位之外的空位,有C13种,所以一共有144种方法.【答案】A8.(x+1)4(x-1)5的展开式中x4的系数为()A.-40B.10C.40D.45【解析】(x+1)4(x-1)5=(x-1)5(x2+4x x+6x+4x+1),则x4的系数为C35×(-1)3+C25×6+C15×(-1)=45.【答案】D9.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36【解析】①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33,故选A.【答案】A10.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为()A.320B.160C.96D.60【解析】不同的涂色方法种数为5×4×4×4=320种.【答案】A11.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A .240种B .360种C .480种D .720种【解析】利用分步计数原理求解.第一步先排甲,共有A 14种不同的排法;第二步再排其他人,共有A 55种不同的排法,因此不同的演讲次序共有A 14·A 55=480(种).【答案】C12.绍兴臭豆腐闻名全国,一外地学者来绍兴旅游,买了两串臭豆腐,每串3颗(如图).规定:每串臭豆腐只能自左向右一颗一颗地吃,且两串可以自由交替吃.请问:该学者将这两串臭豆腐吃完,不同的吃法有()A .6种B .12种C .20种D .40种【解析】方法一(树形图):如图所示,先吃A 的情况,共有10种,如果先吃D ,情况相同,所以不同的吃法有20种.方法二:依题意,本题属定序问题,所以有A 66A 33·A 33=20种.【答案】C二、填空题(本大题共4个小题,每小题4分,共16分.请把正确的答案填写在题中的横线上)13.84x x 展开式中含x 的整数次幂的项的系数之和为___________________.(用数字作答)【解析】∵38441884rrr rr r T Cx C xx --+==,当r =0,4,8时为含x 的整数次幂的项,所以展开式中含x 的整数次幂的项的系数之和为C 08+C 48+C 88=72.【答案】7214.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.【解析】满足题设的取法分三类:①四个奇数相加,其和为偶数,在5个奇数中任取4个,有C45=5(种);②两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数中任取2个,有C25·C24=60(种);③四个偶数相加,其和为偶数,4个偶数的取法有1种.所以满足条件的取法共有5+60+1=66(种).【答案】6615.已知(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11,那么a1+a2+a3+…+a11=________.【解析】令x=0,得a0=1;令x=1,得a0+a1+a2+…+a11=-64;∴a1+a2+…+a11=-65.【答案】-6516.如图是由12个小正方形组成的3×4矩形网格,一质点沿网格线从点A到点B的不同路径之中,最短路径有________条.【解析】把质点沿网格线从点A到点B的最短路径分为七步,其中四步向右,三步向下,不同走法的区别在于哪三步向下,因此,本题的结论是:C37=35.【答案】35三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)有0,1,2,3,4,5共六个数字.(1)能组成多少个没有重复数字的四位偶数;(2)能组成多少个没有重复数字且为5的倍数的五位数.【解析】(1)符合要求的四位偶数可分为三类:第一类,0在个位时有A35个;第二类,2在个位时有A14A24个;第三类,4在个位时有A14A24个.由分类加法计数原理知,共有四位偶数A35+A14A24+A14A24=156个.(2)五位数中5的倍数可分为两类:第一类,个位上的数字是0的五位数有A45个,第二类,个位上的数字是5的五位数有A14A34个.故满足条件的五位数有A45+A14A34=216(个).18.(本小题满分12分)已知3241nx x 展开式中的倒数第三项的系数为45,求:(1)含x 3的项;(2)系数最大的项.【解析】(1)由题设知C n -2n =45,即C 2n =45,∴n =10.则21011130341211010r r r r r r T C x x C x ---+⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭,令11r -3012=3,得r =6,含x 3的项为T 7=C 610x 3=C 410x 3=210x 3.(2)系数最大的项为中间项,即T 6=C 510x55-3012=252x 2512.19.(本小题满分12分)(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法?【解析】(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C 24种插法;二是2张同时插入,有C 14种插法,再考虑3人可交换有A 33种方法.所以,共有A 33(C 24+C 14)=60(种).(2)可先让4人坐在4个位置上,有A 44种排法,再让2个“元素”(一个是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空当”之间,有A 25种插法,所以所求的坐法为A 44·A 25=480(种).20.(本小题满分12分)设a >0,若(1+ax 12)n 的展开式中含x 2项的系数等于含x 项的系数的9倍,且展开式中第3项等于135x ,那么a 等于多少?【解析】T r +1=C r n (ax 12)r =C r n a r x r 2,∴4422229135nnn C a C a C a x x⎧=⎪⎨=⎪⎩,∴()()()()()22123914!211352n n n n n n a n n a ⎧----=⎪⎪⎨-⎪=⎪⎩,即()()()22231081270n n a n n a ⎧--=⎪⎨-=⎪⎩,∴(n -2)(n -3)n (n -1)=25.∴3n 2-23n +30=0.解得n =53(舍去)或n =6,a 2=27030=9,又a >0,∴a =3.21.(本小题满分13分)带有编号1、2、3、4、5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?【解析】(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A 45种放法.(3)将其中的4个球投入一个盒子里共有C 45C 14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C 25A 44种不同的放法.22.(本小题满分13分)杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)若第n 行中从左到右第14与第15个数的比为23,求n 的值;(3)求n 阶(包括0阶)杨辉三角的所有数的和.【解析】(1)C 320=1140.(2)C 13nC 14n =23⇒14n -13=23,解得n =34.(3)1+2+22+…+2n =2n +1-1.。

高中数学选修2-3所有试卷含答案

高中数学选修2-3所有试卷含答案

特别说明:"新课程高中数学训练题组"是由传牛教师根据最新课程标准,参考独家部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经历精心编辑而成;本套资料分必修系列和选修系列及局部选修4系列。

欢送使用本资料!本套资料所诉求的数学理念是:〔1〕解题活动是高中数学教与学的核心环节,〔2〕精选的优秀试题兼有稳固所学知识和检测知识点缺漏的两项重大功能。

本套资料按照必修系列和选修系列及局部选修4系列的章节编写,每章分三个等级:[根底训练A组],[综合训练B组],[提高训练C组]建议分别适用于同步练习,单元自我检查和高考综合复习。

本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。

本套资料对于根底较好的同学是一套非常好的自我测试题组:可以在90分钟做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错.计算错误.还是方法上的错误.对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。

本套资料对于根底不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。

本套资料酌收复印工本费。

传牛教师保存本作品的著作权,未经许可不得翻印!联络方式:〔移动〕,69626930 教师。

〔电子〕l111sohu.目录:数学选修2-3数学选修2-3第一章:计数原理 [根底训练A 组]数学选修2-3第一章:计数原理 [综合训练B 组]数学选修2-3第一章:计数原理 [提高训练C 组]数学选修2-3第二章:离散型随机变量解答题精选〔本份资料工本费:4.00元〕 新课程高中数学训练题组 根据最新课程标准,参考独家部资料,精心编辑而成;本套资料分必修系列和选修系列及局部选修4系列。

高中数学第六章计数原理章末检测新人教A版选择性必修第三册

高中数学第六章计数原理章末检测新人教A版选择性必修第三册

第六章章末检测(时间:120分钟,满分150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算C 58+2A 24的值是( ) A .64 B .80 C .13 464D .40【答案】B 【解析】C 58+2A 24=C 38+2A 24=8×7×63×2×1+2×4×3=80.2.将A,B,C,D,E 排成一列,要求A,B,C 在排列中顺序为“A,B,C ”或“C,B,A ”(可以不相邻),则不同的排列方法有( )A .12种B .20种C .40种D .60种【答案】C 【解析】5个元素没有限制,全排列数为A 55,由于要求A,B,C 的次序一定(按A,B,C 或C,B,A),故所求排列数为A 55A 33×2=40.3.(1-x )10展开式中x 3项的系数为( ) A .-720 B .720 C .120D .-120【答案】D 【解析】由T r +1=C r10(-x )r=(-1)r C r10x r,因为r =3,所以系数为(-1)3C 310=-120.4.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A .8种B .10种C .12种D .32种【答案】B 【解析】此人从A 到B,路程最短的走法应走两纵3横,将纵用0表示,横用1表示,则一种走法就是2个0和3个1的一个排列,只需从5个位置中选2个排0,其余位置排1即可,故共有C 25=10(种).5.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8等于( ) A .-5 B .5 C .90D .180【答案】D 【解析】∵(1+x )10=[2-(1-x )]10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,∴a 8=C 810·22=180.6.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23 B .C 26A 66 C .C 28A 25D .C 28A 26【答案】D 【解析】第一步可先从后排8人中选2人共有C 28种;第二步可认为前排放6个座位,先选出2个座位让后排的2人坐,由于其他人的顺序不变,所以有A 26种坐法.综上知不同调整方法的种数为C 28A 26.7.在(1-x )11的展开式中,含x 的奇次幂的各项系数的和是( ) A .-210B .210C .-211D .211【答案】A 【解析】 (1-x )11的展开式中,含x 的奇次幂的项即偶数项,由于偶数项的二项式系数和为210,偶数项的系数均为负数,故含x 的奇次幂的各项系数的和为-210.8.为参加校园文化节,某班推荐2名男生3名女生参加文艺技能培训,培训项目及人数分别为:乐器1人,舞蹈2人,演唱2人.若每人只参加1个项目,并且舞蹈和演唱项目必须有女生参加,则不同推荐方案的种数为( )A .12B .36C .48D .24【答案】D 【解析】方法一(直接法) 3名女生各参加1项,2名男生在舞蹈、演唱中各参加1项,有A 33A 22=12(种)方案;有2名女生同时参加舞蹈或演唱,有C 23A 12A 22=12(种)方案.所以共有12+12=24(种)方案.方法二(间接法) 2名男生同时参加舞蹈或演唱,有C 23A 12=6(种)方案,而所有不同的推荐方案共有C 15C 24C 22=30(种),故满足条件的推荐方案种数为30-6=24.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.二项式(2x -1)7的展开式的各项中,二项式系数最大的项是( ) A .第2项 B .第3项 C .第4项D .第5项【答案】CD 【解析】因为二项式(2x -1)7展开式的各项的二项式系数为C k7(k =0,1,2,3,4,5,6,7),易知当k =3或k =4时,C k7最大,即二项展开式中,二项式系数最大的为第4项和第5项.10.设m 为大于1且小于15的正整数,若⎝⎛⎭⎪⎫x 3-1x2m 的展开式中有不含x 的项,满足这样条件的m 可以是( )A .3B .5C .10D .12【答案】BC 【解析】⎝ ⎛⎭⎪⎫x 3-1x 2m 的展开式的通项为T r +1=C r m (x 3)m -r ⎝ ⎛⎭⎪⎫-1x2r =(-1)r C r m x 3m -5r.因为展开式中有不含x 的项,所以有3m -5r =0,即3m =5r .又1<m <15(0≤r ≤m )且m ∈N *,r ∈N ,所以满足条件的m 有m =5,m =10两个数.11.对于二项式⎝ ⎛⎭⎪⎫1x+x 35,以下判断正确的有( )A .展开式中没有常数项B .展开式中的第一项为x -5C .展开式中第二项的系数力15D .展开式的二项式系数的和为32【答案】ABD 【解析】该二项展开式的通项为T k +1=C k 5⎝ ⎛⎭⎪⎫1x 5-k (x 3)k =C k 5x 4k -5,令4k -5=0,得k =54,不合题意,故展开式中没有常数项,A 正确;令k =0,得T 1=C 05x -5=x -5,故B 正确;令k =1,得T 2=C 15x-1=5x -1.第二项的系数为5,故C 错误;二项式展开式系数的和为25=32,故D 正确.12.将四个不同的小球放入三个分别标有1,2,3号的盒子中,不允许有空盒子,下列结果正确的有( )A .C 13C 12C 11C 13 B .C 24A 33 C .C 13C 24A 22D .18【答案】BC 【解析】根据题意,四个不同的小球放入三个分别标有1,2,3号的盒子中,且没有空盒,则三个盒子中有1个放2个球,剩下的2个盒子各放1个,有两种解法:(1)分两步进行分析:①先将四个不同的小球分成3组,有C 24种分组方法;②将分好的3组全排列,对应放到3个盒子中,有A 33种放法,则没有空盒的放法有C 24A 33种.(2)分2步进行分析:①在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,有C 13C 24种情况;②将剩下的2个小球全排列,放入剩下的2个小盒中,有A 22种放法,则没有空盒的放法有C 13C 24A 22种.故选BC .三、填空题:本大题共4小题,每小题5分,共20分.13.将5名志愿者分成4组,其中一组有2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方法有________种(用数字作答).【答案】240 【解析】分配方法数为C 25C 13C 12C 11A 33·A 44=240. 14.设(2x -1)6=a 6x 6+a 5x 5+…+a 1x +a 0,则|a 0|+|a 1|+|a 2|+…+|a 6|=________. 【答案】729 【解析】因为(2x -1)6=a 6x 6+a 5x 5+…+a 1x +a 0,由二项式定理可知a 0,a 2,a 4,a 6均为正数,a 1,a 3,a 5均为负数,令x =-1可得|a 0|+|a 1|+|a 2|+…+|a 6|=a 0-a 1+a 2-a 3+a 4-a 5+a 6=(2+1)6=729.15.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答) .【答案】14 【解析】因为四位数的每个数位上都有两种可能性,其中四个数字全是2或3的情况不合题意,所以适合题意的四位数有24-2=14(个).16.已知⎝ ⎛⎭⎪⎫ax +1x (2x +1)5(a ≠0),若其展开式中各项的系数和为81,则a =________,展开式中常数项为________.【答案】-23 10 【解析】在⎝ ⎛⎭⎪⎫ax +1x (2x +1)5中,令x =1,得(a +1)·35=81,解得a =-23,所以⎝ ⎛⎭⎪⎫-23x +1x (2x +1)5的展开式中的常数项为1x ·C 45·2x =10. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.如图有4个编号为A,B,C,D 的小三角形,要在每一个小三角形中涂上红、黄、蓝、白、黑五种颜色中的一种,并且相邻的小三角形颜色不同,共有多少种不同的涂色方法?解:分为两类:第一类:若A,C 同色,则A 有5种涂法,B 有4种涂法,C 有1种涂法(与A 相同),D 有4种涂法.故N 1=5×4×1×4=80(种).第二类:若A,C 不同色,则A 有5种涂法,B 有4种涂法,C 有3种涂法,D 有3种涂法.故N 2=5×4×3×3=180(种).综上可知不同的涂法共有N =N 1+N 2=80+180=260(种).18.已知在(1-2log 2x )n的展开式中,所有奇数项的二项式系数的和为64. (1)求n 的值;(2)求展开式中所有项的系数之和.解:(1)由题意知C 0n +C 1n +C 2n +…+C n n =2×64,即2n=128,则n =7.(2)设(1-2log 2x )7=a 0+a 1log 2x +a 2(log 2x )2+…+a 7(log 2x )7,令x =2,得a 0+a 1+a 2+…+a 7=(1-2log 22)7=-1,即展开式中所有项的系数之和为-1.19.已知有10件不同厂生产的同类产品.(1)在商品评选会上,若有2件商品因瑕疵不能参加评选,从剩下的商品中要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的2件商品放上,有多少种不同的布置方法?解:(1)10件商品,除去不能参加评选的2件商品,剩下8件,从中选出4件进行排列,有A 48=1 680(或C 48·A 44)(种).(2)分步完成.先将获金质奖章的2件商品布置在6个位置中的2个位置上,有A 26种方法,再从剩下的8件商品中选出4件,布置在剩下的4个位置上,有A 48种方法,共有A 26·A 48=50 400(或C 48·A 66)(种).20.已知⎝ ⎛⎭⎪⎫x +12x n的展开式中的第二项和第三项的系数相等.(1)求n 的值;(2)求展开式中所有二项式系数的和;(3)求展开式中所有的有理项.解:二项式⎝ ⎛⎭⎪⎫x +12x n 展开式的通项公式为T r +1=C r n x n -r ⎝ ⎛⎭⎪⎫12x r =C r n ⎝ ⎛⎭⎪⎫12rxn -32r (r =0,1,2,…,n ).(1)根据展开式中的第二项和第三项的系数相等, 得C 1n ·12=C 2n ⎝ ⎛⎭⎪⎫122,即12·n =14·n n -12,解得n =5.(2)展开式中所有二项式系数的和为C 05+C 15+C 25+…+C 55=25=32.(3)二项展开式的通项公式为T r +1=C r 5⎝ ⎛⎭⎪⎫12rx 5-32r (r =0,1,2,…,5).当r =0,2,4时,对应项是有理项,所以展开式中所有的有理项为T 1=C 05⎝ ⎛⎭⎪⎫120x 5=x 5,T 3=C 25⎝ ⎛⎭⎪⎫122x 2=52x 2,T 5=C 45⎝ ⎛⎭⎪⎫124x -1=516x. 21.从集合{1,2,3,…,20}中任选出3个不同的数,使这3个数成等差数列,这样的等差数列可以有多少个?解:设a ,b ,c ∈N *,且a ,b ,c 成等差数列,则a +c =2b ,所以a +c 应是偶数.因此,若从1,2,…,20这20个数字中任选出3个不同的数成等差数列,则第一个与第三个数必同为偶数或同为奇数.而1到20这20个数字中有10个偶数10个奇数,当第一个数和第三个数选定后,中间数唯一确定,因此,选法只有两类:①第一、三个数都是偶数,有A 210种选法;②第一、三个数都是奇数,有A 210种选法.于是,满足题意的等差数列共有A 210+A 210=180(个).22.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队. (1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法? (2)甲、乙均不能参加,有多少种选法? (3)甲、乙2人至少有1人参加,有多少种选法?(4)医疗队中至少有1名内科医生和1名外科医生,有多少种选法? 解:(1)只需从其他18人中选3人即可,共有C 318=816(种)选法. (2)只需从其他18人中选5人即可,共有C 518=8 568(种)选法.(3)分两类:甲、乙中有1人参加;甲、乙都参加.则共有C 12C 418+C 318=6 936(种)选法. (4)方法一(直接法) 至少有1名内科医生和1名外科医生的选法可分4类:1内4外;2内3外;3内2外;4内1外.所以共有C 112C 48+C 212C 38+C 312C 28+C 412C 18=14 656(种)选法.方法二(间接法) 从无限制条件的选法总数中减去5名都是内科医生和5名都是外科医生的选法种数所得的结果即为所求,即共有C 520-(C 512+C 58)=14 656(种)选法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1*某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测*若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A *4 B *5 C *6 D *7 2*(·威海模拟)下图为甲、乙两名篮球运动员每场比赛得分情况的茎叶图,则甲和乙得分的中位数的和是( )A *56分 B *57分 C *58分 D *59分 3*(·广州一模)商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2*5万元,则11时至12时的销售额为( )A *6万元 B *8万元 C *10万元 D *12万元 4*(·烟台模拟)从2 010名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从人中剔除10人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 010人中,每人入选的概率( )A *不全相等 B *均不相等C *都相等,且为5201 D *都相等,且为1405*某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒*右图是按上述分组方法得到的频率分布直方图*设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A *0*9,35 B *0*9,45 C *0*1,35 D *0*1,45 6*(·广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A *12 B *35 C *23 D *34 7*如图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图*图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字*从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( )A *304*6 B *303*6 C *302*6 D *301*6 8*(·广州联考)为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图),已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在(80,100)之间的学生人数是( )A *32 B *27 C *24 D *339*某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9*已知这组数据的平均数为10,方差为2,则|x -y |的值为( )A *1 B *2 C *3 D *410*袋中有红、黄、绿色球各一个,每次任取一个,有放回的抽取三次,球的颜色全相同的概率是( )A *227 B *19 C *29 D *12711*掷一枚硬币,若出现正面记1分,出现反面记2分,则恰好得3分的概率为( ) A *58 B *18 C *14 D *12 12*(·安徽)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A *318 B *418 C *518 D *618二、填空题(本大题共4小题,每小题5分,共20分) 13*(·北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)*由图中数据可知a =________*若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________*14*如图所示,墙上挂有一长为2π,宽为2的矩形木板ABCD ,它的阴影部分是由函数y =cos x ,x ∈[0,2π]的图象和直线y =1围成的图形*某人向此木板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是________*15*(·广东五校联考)某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2≈3*918,经查对临界值表知P (K 2≥3*841)≈0*05*对此,四名同学作出了以下的判断:p :有95%的把握认为“这种血清能起到预防感冒的作用”;q :若某人未使用该血清,那么他在一年中有95%的可能性得感冒; r :这种血清预防感冒的有效率为95%; s :这种血清预防感冒的有效率为5%*则下列结论中,正确结论的序号是________*(把你认为正确的命题序号都填上) ①p ∧綈q ②綈p ∧q ③(綈p ∧綈q )∧(r ∨s ) ④(p ∨綈r )∧(綈q ∨s ) 16*(·江苏通州调研)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为________*三、解答题(本大题共6小题,共70分) 17*(10分)(·福建龙岩一中模拟)将一颗骰子先后抛掷2次,观察向上的点数,求: (1)两数之和为5的概率;(2)两数中至少有一个为奇数的概率;(3)以第一次向上的点数为横坐标x ,第二次向上的点数为纵坐标y 的点(x ,y )在圆x 2+y 2=15的内部的概率*18*(12分)为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛*为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计*请你根据尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),解答下列问题:~(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)若成绩在80*5~90*5分的学生可以获得二等奖,问获得二等奖的学生约为多少人?19*(12分)(·安庆模拟)对某班学生是爱好体育还是爱好文娱进行调查,根据调查得到的数据,所绘制的二维条形图如下图*(1)根据图中数据,制作2×2列联表;(2)若要从更爱好文娱和从更爱好体育的学生中各选一人分别做文体活动协调人,求选出的两人恰好是一男一女的概率;(3)是否可以认为性别与是否爱好体育有关系?参考数据:20*(12分)(·天津)有编号为A 1,A 2,…,A 10的10个零件,测量其直径(单位:cm),得到****(1)从上述10个零件中,随机抽取1个,求这个零件为一等品的概率*(2)从一等品零件中,随机抽取2个:①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率*[来源:学科网ZXXK]21*(12分)(·苍山期末)已知关于x 的一元二次函数,f (x )=ax 2-4bx +1*(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;[来源:Zxxk *Com](2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率*22*(12分)从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195],上图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列*(1)估计这所学校高三年级全体男生身高180 cm 以上(含180 cm)的人数; (2)求第六组、第七组的频率并补充完整频率分布直方图;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x 、y ,求满足|x -y |≤5的事件概率*第十章 章末检测1*C [抽样比k =2040+10+30+20=20100=15,∴抽取植物油类与果蔬类食品种数之和是10×15+20×15=2+4=6*]2*B [由图可知甲的中位数为32,乙的中位数为25,故和为57*]3*C [由0.40.1=x2.5,得x =10(万元)*]4*C [从2 010名学生中选取50名学生,不论采用何种抽样方法,每名学生被抽到的可能性均相同,谁被剔除或被选中都是机会均等的*所以每人入选的概率都相等,且为502 010=5201*]5*A [x =0*02+0*18+0*34+0*36=0*9; y =(0*36+0*34)×50=35*]6*D [甲队若要获得冠军,有两种情况,可以直接胜一局,获得冠军,概率为12,也可以乙队先胜一局,甲队再胜一局,概率为12×12=14*故甲队获得冠军的概率为14+12=34*]7*B [x =291×2+295+298+302+306+310+312+314+31710=303*6*]8*D [80~100间两个长方形高占总体的比例:5+62+3+5+6+3+1=1120即为频数之比*∴x 60=1120*∴x =33*] 9*D [∵x +y +10+11+95=10,∴x +y =20*∵(x -10)2+(y -10)2+0+1+15=2,∴(x -10)2+(y -10)2=8,∴x 2+y 2-20(x +y)+200=8,[来源:学|科|网Z|X|X|K] ∴x 2+y 2-200=8,∴x 2+y 2=208*由x +y =20知(x +y)2=x 2+y 2+2xy =400, ∴2xy =192,∴|x -y|2=x 2+y 2-2xy =208-192=16,∴|x -y|=4*]10*B [有放回地取球三次,假设第一次取红球共有如下所示9种取法*同理,第一次取黄球、绿球分别也有9种情况,共计27种*而三次颜色全相同,共有3种情况,故颜色全相同的概率为327=19*]11*A [有三种可能的情况:①连续3次都掷得正面,其概率为⎝⎛⎭⎫123;②第1次掷得正面,第2次掷得反面,其概率为⎝⎛⎭⎫122;③第1次掷得反面,第2次掷得正面,其概率为⎝⎛⎭⎫122, 因此恰好得3分的概率为 ⎝⎛⎭⎫123+⎝⎛⎭⎫122+⎝⎛⎭⎫122=58*] 12*C [甲共得6条,乙共得6条,共有6×6=36(对),其中垂直的有10对,∴P =1036=518*] 13*0*030 3解析 ∵小矩形的面积等于频率,∴除[120,130)外的频率和为0*700,∴a =1-0.70010=0*030*由题意知,身高在[120,130),[130,140),[140,150]的学生分别为30人,20人,10人,∴由分层抽样可知抽样比为1860=310,∴在[140,150]中选取的学生应为3人*14*12解析 方法一 由余弦函数图象的对称性知,阴影部分的面积为矩形ABCD 的面积的一半,故所求概率为12*方法二 也可用积分求阴影部分的面积: ∫2π0(1-cos x)d x =(x -sin x)|2π0=2π*∴P =2π4π=12*15*①④解析 本题考查了独立性检验的基本思想及常用逻辑用语*由题意,得K 2≈3*918,P(K 2≥3*841)≈0*05,所以,只有第一位同学的判断正确,即有95%的把握认为“这种血清能起到预防感冒的作用”*由真值表知①④为真命题*16*112解析 基本事件有6×6×6=216(个),点数依次成等差数列的有: (1)当公差d =0时,1,1,1及2,2,2,…,共6个*(2)当公差d =±1时,1,2,3及2,3,4;3,4,5;4,5,6,共4×2个*(3)当公差d =±2时,1,3,5;2,4,6,共2×2个*∴P =6+4×2+2×26×6×6=112*17*解 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件*(1)记“两数之和为5”为事件A ,则事件A 中含有4个基本事件,所以P(A)=436=19*答 两数之和为5的概率为19*(3分)(2)记“两数中至少有一个为奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件,所以P(B)=1-936=34*答 两数中至少有一个为奇数的概率为34*(6分)(3)基本事件总数为36,点(x ,y)在圆x 2+y 2=15的内部记为事件C ,则C 包含8个事件,所以P(C)=836=29*答 点(x ,y)在圆x 2+y 2=15的内部的概率为29*(10分) 18*解 (1)(4分)(2)频率分布直方图如图所示:(8分)(3)因为成绩在80*5~90*5分的学生的频率为0*32且有900名学生参加了这次竞赛,所以该校获得二等奖的学生约为0*32×900=288(人)*(12分)19*解 (1)(3分)(2)恰好是一男一女的概率是: 15×10+5×1020×20=12*(6分) (3)K 2=n (ac -bd )2(a +b )(c +d )(a +c )(b +d )=40×(15×10-5×10)220×20×25×15=83≈2*666 7 (2)706,(9分) ∴我们没有足够的把握认为性别与是否更喜欢体育有关系*(12分)20*解 (1)由所给数据可知,一等品零件共有6个*设“从10个零件中,随机抽取1个为一等品”为事件A ,则P(A)=610=35*(4分)(2)①一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6*从这6个一等品零件中随机抽取2个,所有可能的结果有:(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6),共有15种*(8分)②“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:(A 1,A 4),(A 1,A 6),(A 4,A 6),(A 2,A 3),(A 2,A 5),(A 3,A 5),共有6种,所以P(B)=615=25*(12分) 21*解 (1)∵函数f(x)=ax 2-4bx +1的图象的对称轴为x =2ba,∴要使f(x)=ax 2-4bx +1在区间[1,+∞)上为增函数,则a>0且2ba≤1,即2b ≤a *(3分)若a =1,则b =-1;若a =2,则b =-1,1; 若a =3,则b =-1,1*∴事件包含基本事件的个数是1+2+2=5*(5分) 又∵总事件数为15,∴所求事件的概率为515=13*(6分)(2)由(1)知当且仅当2b ≤a 且a>0时,函数f(x)=ax 2-4bx +1在区间[1,+∞)上为增函数, 依条件可知试验的全部结果所构成的区域为⎩⎨⎧⎭⎬⎫(a ,b )|⎩⎪⎨⎪⎧a +b -8≤0a>0b>0*如图所示*构成所求事件的区域为阴影部分*(8分) 由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为⎝⎛⎭⎫163,83*(10分) ∴所求事件的概率为P =12×8×8312×8×8=13*(12分)22*解 (1)由频率分布直方图知,前五组频率为 (0*008+0*016+0*04+0*04+0*06)×5=0*82, 后三组频率为1-0*82=0*18, 人数为0*18×50=9(人),(2分)这所学校高三男生身高在180 cm 以上(含180 cm )的人数为800×0*18=144(人)*(4分)[来源:Z_xx_k *Com](2)由频率分布直方图得第八组频率为0*008×5=0*04,人数为0*04×50=2(人),设第六组人数为m ,则第七组人数为9-2-m =7-m ,又m +2=2(7-m),所以m =4, 即第六组人数为4人,第七组人数为3人,频率分别为0*08,0*06*(6分) 频率除以组距分别等于0*016,0*012,见图*(9分)(3)由(2)知身高在[180,185)内的人数为4人,设为a ,b ,c ,d *身高在[190,195]的人数为2人,设为A ,B *若x ,y ∈[180,185)时,有ab ,ac ,ad ,bc ,bd ,cd 共6种情况*若x ,y ∈[190,195]时,有AB 共1种情况*若x ,y 分别在[180,185),[190,195]内时,有aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB 共8种情况*所以基本事件的总数为6+8+1=15(种)*(11分) 事件|x -y|≤5所包含的基本事件个数有6+1=7(种),故P(|x -y|≤5)=715*(12分)。

相关文档
最新文档