《平面直角坐标系》全章复习与巩固(提高)知识讲解

合集下载

平面直角坐标系全章复习与巩固提高知识讲解

平面直角坐标系全章复习与巩固提高知识讲解

《平面直角坐标系》知识讲解【学习目标】理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点1.的位置写出它的坐标;掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;2.逐步理解平面内的点与有序实数对之间的一一对应,3.通过学习平面直角坐标系的基础知识 ,进而培养数形结合的数学思想.关系【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收…,表示,其中前一数表示日期,后一数330),190) (21,,入,可用(13,2000) (17,,(1312),(20,,5)(4表示收入,但更多的人们还是用它来进行空间定位,如:,. 2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:1 / 6要点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形'与‘数'联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x,0)、B(x,0)的距离为AB=|x- x|;2121 y轴上两点C(0,y)、D(0,y)的距离为CD=|y- y|.2211③平行于x轴的直线上两点A(x,y)、B(x,y)的距离为AB=|x- x|;y轴的直线上两点C(x,y)、D(x,y)的距离为CD=|y- y|.2121(5)利用坐2211平行于标系求一些知道关键点坐标的几何图形的面积:切割、拼补要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个2 / 6单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.【典型例题】类型一、有序数对1.(巴中)如图所示,用点A(3,1)表示放置3个胡萝卜、1棵青菜,用点B(2,3)表示放置2个胡萝卜,3棵青菜.(1)请你写出点C、D、E、F所表示的意义;(2)若一只兔子从点A到达点B(顺着方格线走),有以下几条路线可以选择:①A→C→D→B;②A→E→D→B;③A→E→F→B,问走哪条路吃到的胡萝卜最多?走哪条路吃到的青菜最多? 【思路点拨】(1)根据问题的“约定”先写出坐标,再回答其实际意义;(2)通过比较三条线路吃胡萝卜、青菜的多少回答问题.【答案与解读】解:(1)因为点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜,可得:点C的坐标是(2,1),它表示放置2个胡萝卜、1棵青菜;点D的坐标是(2,2),它表示放置2个胡萝卜、2棵青菜;点E的坐标是(3,2),它表示放置3个胡萝卜、2棵青菜;点F的坐标是(3,3),它表示放置3个胡萝卜、3棵青菜.(2)若兔子走路线①A→C→D→B,则可以吃到的胡萝卜共有3+2+2+2=9(个),吃到的青菜共有1+1+2+3=7(棵);走路线②A→E→D→B,则可以吃到的胡萝卜共有3+3+2+2=10(个),吃到的青菜共有1+2+2+3=8(棵);走路线③A→E→F→B,则可以吃到的胡萝卜共有3+3+3+2=11(个),吃到的青菜共有1+2+3+3=9(棵);由此可知,走第③条路线吃到的胡萝卜和青菜都最多.3 / 6)表示的意义及已确定平面直角坐标系,可知坐,3B(2由点A(3,1),点【总结升华】y轴表示青菜的数量.标系中x轴表示胡萝卜的数量,类型二、平面直角坐标系a的值.3)在第一、三象限的角平分线上,求5-a,a-)2.(1若点(的范围.m的值,并确定n,若4)AB∥x轴,求已知两点A(-3,m),B(n,2()点的坐标.4,求Px轴和y轴的距离分别是3和(3)点P到轴平x2)与【思路点拨】 (1)中在一、三象限的角平分线上的点的横坐标与纵坐标相等;(有多个.)中的点P行的直线上的点的纵坐标相等;(3 【答案与解读】.=4a-3,所以a-a,a-3)在第一、三象限的角平分线上,所以5a=解:(1)因为点(5-.-3、B两点不重合,所以n≠因为AB∥x轴,所以m=4,因为A(2),所以4x=±y=±3,3,|x|=4,所以|(3)设P点的坐标为(x,y),由已知条件得|y=).4,-34,-3)或(-(P点的坐标为(4,3)或(-4,3)或【总结升华】抓住平面直角坐标系中点的特征和点的特征的意义是解决此类问题的关键.举一反三:m-1),试根据下列条件:(-m,【变式】已知,点P x P的坐标为.轴平行的直线上,则m=(2,-4),且与,点在过(1)若点PA my的坐标为.=,-4),且与,点轴平行的直线上,则P)若点(2P在过A(2.-3),2)-2,(2【答案】(1)-3,(3,-4)。

(完整版)平面直角坐标系知识点总结

(完整版)平面直角坐标系知识点总结

平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。

我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。

注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。

平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。

在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。

横、纵坐标的位置不能颠倒。

②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。

知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。

《平面直角坐标系》基础知识专题

《平面直角坐标系》基础知识专题

第七章《平面直角坐标系》基础知识专题一.知识点1、有序数对:有顺序的两个数a与b组成的数队,叫做。

2、平面直角坐标系:在平面内画两条、的数轴,组成平面直角坐标系。

水平的数轴称为x轴或,取为正方向。

竖直的数轴称为y轴或 ,取为正方向。

两坐标轴的交点为平面直角坐标系的。

3、已知点求出其坐标的方法:由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是该点的,垂足在y轴上的坐标是该点的。

4、点的坐标特征:(坐标轴上的点不属于任何象限)第一象限:( +,+)第二象限:( )第三象限:( )第四象限:( )横轴上的点:(x,0) 纵轴上的点:(0,y)5、距离问题:点(x,y)距x轴的距离为距y轴的距离为6、角平分线问题若点(x,y)在第一、三象限角平分线上,则若点(x,y)在第二、四象限角平分线上,则7、对称问题:两点关于x轴对称,则相同相反关于y轴对称,则相同相反8、中点坐标:点A(x1,y1)点B(x2,y2),则AB中点坐标为9、平行于x轴的直线上的点的相等平行于y轴的直线上的点的相等10、平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点( )向左平移a个单位长度,可以得到对应点( )向上平移b个单位长度,可以得到对应点()向下平移b个单位长度,可以得到对应点( )二、练习1. 下列各点中,在第二象限的点是( )A.(2,3)B. (2,-3) C.(-2,-3)D. (-2,3)2. 将点A(-4,2)向上平移3个单位长度得到的点B的坐标是( )A.(-1,2) B. (-1,5) C. (-4,-1) D.(-4,5) 3.如果点M(a-1,a+1)在x轴上,则a的值为()A. a=1 B. a=-1 C. a>0 D.a的值不能确定4. 点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5) D. (-3,-5)5. 若点P(a,b)在第四象限,则点M(b-a,a-b)在( )A.第一象限B.第二象限C. 第三象限D.第四象限6.线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(-4,–1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(–9,– 4)7.一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)8.若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(2,-2)或(-2,2) 9. 点M(a,a-1)不可能在()A.第一象限B. 第二象限 C. 第三象限D.第四象限-)所在象限为( )10.点A(4,3A. 第一象限B. 第二象限C.第三象限 D. 第四象限-)在( )11.点B(0,3A.在x轴的正半轴上 B.在x轴的负半轴上C.在y轴的正半轴上 D.在y轴的负半轴上12.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )A.(3,2) B . (3,2--) C. (2,3-) D.(2,3-)13.某同学的座位号为(4,2),那么该同学的所座位置是( )A. 第2排第4列B. 第4排第2列 C . 第2列第4排 D. 不好确定14. 一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,–1),则第四个顶点的坐标为( )A.(2,2) B.(3,2) C.(3,3) D.(2,3)15.在平面直角坐标系中,点(1,2m +1 )一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 16.过点A (-2,5)作x 轴的垂线L,则直线L 上的点的坐标特点是_________.17. 若P(x,y)是第四象限内的点,且2,3x y ==,则点P 的坐标是18.已知点P (0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.19.已知点M(2m +1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m =20、已知点P(a +1,2a -1)关于x 轴的对称点在第一象限,则a 的取值范围是。

初一数学平面直角坐标系知识梳理与练习巩固

初一数学平面直角坐标系知识梳理与练习巩固

初一数学平面直角坐标系知识梳理与练习巩固第十讲平面直角坐标系知识网络1.正确理解定义平面直角坐标系是由平面内两条互相垂直且有公共原点的数轴组成的。

平面上的点的确定是用有序实数对来表达的,这里的“有序”是不容颠倒的,通常规定横坐标在纵坐标的前面。

2.掌握几个重点1). 各个象限内点的特征已知点P(x,y),若点P在第一象限,则x>0,y>0;在第二象限,则x<0,y>0;在第三象限,则x<0,y<0;在第四象限,则x>0,y<0;在x轴上时y=0;在y轴上时x=0。

2). 点到坐标轴的距离。

点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|。

3). 平行于x轴的直线上的点的特征:纵坐标相等,平行于y轴的直线上的点的特征:横坐标相等。

4). 根据坐标确定平面直角坐标系内的点:先在x轴上找到与横坐标对应的点,然后过该点作x轴的垂线;再在y轴上找到与纵坐标对应的点,然后过该点作y轴的垂线。

两条垂线的交点就是所求的点。

5). 根据点确定坐标:过点分别作x轴和y轴的垂线,对应到坐标轴上的数分别是它们的横坐标和纵坐标。

3.记住一个规律在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)[或(x-a,y)];将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)[或(x,y-b)]。

注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。

4.各个象限内和坐标轴的点的坐标的符号规律⑴x轴将坐标平面分为两部分,x轴上方的点的_____坐标为正数;x轴下方的点的______坐标为负数。

即第_____、_____象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为______数;第_____、______四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为_______数。

平面直角坐标系复习讲义(知识点+典型例题)

平面直角坐标系复习讲义(知识点+典型例题)

D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为

(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )

【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于

平面直角坐标系复习(知识点)

平面直角坐标系复习(知识点)

位置与坐标一、知识要点回顾(一)基础知识知识点1.生活中位置确定的方法① 行列定位法:用,表示位置;② 极坐标定位法(方向定位法):用,表示位置;③ 经纬网定位法:用,表示位置;④ 区域定位法:用,表示位置;知识点2.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b ).注意:(1)a 与b 要用逗号分开,以示它们是两个独立有序的数,又要用括号“包装”起来,表示它们是一个整体;(2)若a≠b 则(a,b)与(b,a)表示两个不同的有序数对;(3)在直角坐标系中,有序数对(a,b )表示点的坐标,a,b 依次表示横坐标、纵坐标.知识点3.平面直角坐标系的意义:在平面内,两条具有公共原点、并且的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,向______方向为正方向,竖直的数轴叫做______或_______,向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限;注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同. 知识点4根据坐标描点(1)在平面直角坐标系内描点的方法:① 先在横轴上找到点的横坐标对应的点,过该点作横轴的;② 再在纵轴上找到点的纵坐标对应的点,过该点作纵轴的;③ 两垂线的交点就是所要描出的点。

(2)在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与之对应;反过来,对于任意一个有序实数对,在平面内都有的一点与它对应。

完整版)平面直角坐标系知识点总结

完整版)平面直角坐标系知识点总结

完整版)平面直角坐标系知识点总结二、知识要点梳理知识点一:有序数对有序数对是由有顺序的两个数a与b组成的,记作(a,b)。

它通常用来表示物体的位置,其中,a与b的顺序不能随意交换,因为(a,b)与(b,a)的顺序不同,含义也不同。

知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

其中,水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法。

要想表示一个点的具体位置,需要用它的坐标来表示。

点的坐标由横坐标和纵坐标组成,记作A(a,b),其中横坐标a 表示点到y轴的距离,纵坐标b表示点到x轴的距离。

知识点三:点坐标的特征1.四个象限内点坐标的特征平面直角坐标系将平面分成四个象限,分别为第一、二、三、四象限,按逆时针顺序排列。

这四个象限的点的坐标符号分别为(+,+)、(-,+)、(-,-)、(+,-)。

2.数轴上点坐标的特征x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b)。

3.象限的角平分线上点坐标的特征象限的角平分线上的点的坐标通常是两个相同的数,如(1,1)、(-2,-2)等。

点的平移指的是在平面内将一个点沿着某个方向移动一定的距离后得到的新点。

设原点为O,点P的坐标为(x,y),平移向量为(a,b),则点P'的坐标为(x+a,y+b)。

其中,向量(a,b)表示从原点O到点P'的位移向量。

2)图形的平移:图形的平移指的是将整个图形沿着某个方向移动一定的距离后得到的新图形。

设原图形的每个顶点的坐标为(x,y),平移向量为(a,b),则新图形的每个顶点的坐标为(x+a,y+b)。

可以看出,图形的平移实际上就是将图形中的每个点都进行相同的平移操作。

要点诠释:在平移操作中,向量的概念是非常重要的。

《平面直角坐标系》全章复习与巩固(提高)知识讲解

《平面直角坐标系》全章复习与巩固(提高)知识讲解

《平面直角坐标系》知识讲解【学习目标】1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3.通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化. (3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1- x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1- y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1- x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1- y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.【典型例题】类型一、有序数对1.(巴中)如图所示,用点A(3,1)表示放置3个胡萝卜、1棵青菜,用点B(2,3)表示放置2个胡萝卜,3棵青菜.(1)请你写出点C、D、E、F所表示的意义;(2)若一只兔子从点A到达点B(顺着方格线走),有以下几条路线可以选择:①A→C→D →B;②A→E→D→B;③A→E→F→B,问走哪条路吃到的胡萝卜最多?走哪条路吃到的青菜最多?【思路点拨】(1)根据问题的“约定”先写出坐标,再回答其实际意义;(2)通过比较三条线路吃胡萝卜、青菜的多少回答问题.【答案与解读】解:(1)因为点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜,可得:点C的坐标是(2,1),它表示放置2个胡萝卜、1棵青菜;点D的坐标是(2,2),它表示放置2个胡萝卜、2棵青菜;点E的坐标是(3,2),它表示放置3个胡萝卜、2棵青菜;点F的坐标是(3,3),它表示放置3个胡萝卜、3棵青菜.(2)若兔子走路线①A→C→D→B,则可以吃到的胡萝卜共有3+2+2+2=9(个),吃到的青菜共有1+1+2+3=7(棵);走路线②A→E→D→B,则可以吃到的胡萝卜共有3+3+2+2=10(个),吃到的青菜共有1+2+2+3=8(棵);走路线③A→E→F→B,则可以吃到的胡萝卜共有3+3+3+2=11(个),吃到的青菜共有1+2+3+3=9(棵);由此可知,走第③条路线吃到的胡萝卜和青菜都最多.【总结升华】由点A (3,1),点B (2,3)表示的意义及已确定平面直角坐标系,可知坐标系中x 轴表示胡萝卜的数量,y 轴表示青菜的数量.类型二、平面直角坐标系2.(1)若点(5-a ,a -3)在第一、三象限的角平分线上,求a 的值.(2)已知两点A (-3,m ),B (n ,4),若AB ∥x 轴,求m 的值,并确定n 的范围.(3)点P 到x 轴和y 轴的距离分别是3和4,求P 点的坐标.【思路点拨】 (1)中在一、三象限的角平分线上的点的横坐标与纵坐标相等;(2)与x 轴平行的直线上的点的纵坐标相等;(3)中的点P 有多个.【答案与解读】解:(1)因为点(5-a ,a -3)在第一、三象限的角平分线上,所以5-a =a -3,所以a =4.(2)因为AB ∥x 轴,所以m =4,因为A 、B 两点不重合,所以n ≠-3.(3)设P 点的坐标为(x ,y ),由已知条件得|y |=3,|x |=4,所以y =±3,x =±4,所以P 点的坐标为(4,3)或(-4,3)或(4,-3)或(-4,-3).【总结升华】抓住平面直角坐标系中点的特征和点的特征的意义是解决此类问题的关键. 举一反三:【变式】已知,点P (-m ,m-1),试根据下列条件:(1)若点P 在过A (2,-4),且与x 轴平行的直线上,则m=,点P 的坐标为.(2)若点P 在过A (2,-4),且与y 轴平行的直线上,则m =,点P 的坐标为.【答案】(1)-3,(3,-4)。

七年级数学平面直角坐标系重点考点知识点讲解

七年级数学平面直角坐标系重点考点知识点讲解

平面直角坐标系是数学中的一种坐标系,它由两个相互垂直的直线形成,构成了一个平面。

通过这两条直线的交点,我们可以确定平面上任意一点的位置。

平面直角坐标系的建立通常需要选择一个基准点O(原点)和两个相互垂直的直线(称为坐标轴)。

其中一条直线叫做x轴,另一条直线叫做y轴。

坐标轴将平面分成四个区域,称为象限。

在平面直角坐标系中,我们可以使用一对有序的数(x,y)来表示平面上的一个点P。

其中x是点P在x轴上的投影长度,y是点P在y轴上的投影长度。

通常我们将横坐标x称之为点的横坐标,纵坐标y称之为点的纵坐标。

下面是几个关键知识点的讲解:1.坐标轴和象限:x轴是水平的,正方向向右,负方向向左。

y轴是垂直的,正方向向上,负方向向下。

因此,第一象限的点具有正的横纵坐标;第二、三象限的点具有一个正的,一个负的横纵坐标;第四象限的点具有负的横纵坐标。

2.相关术语:原点O是坐标轴交点的位置,它的坐标是(0,0)。

横坐标轴上的点,其纵坐标为0,称之为x轴上的一点。

纵坐标轴上的点,其横坐标为0,称之为y轴上的一点。

3.距离公式:对于平面上的两个点P(x1,y1)和Q(x2,y2),我们可以使用距离公式来计算它们之间的距离,即d=√((x2-x1)²+(y2-y1)²)。

4.点在线上的判定:若给定一点P(x0, y0)和一直线y = kx + b,则点P在直线上的充要条件是P满足方程y = kx + b。

另外,如果一个点P(x,y)在坐标轴上,则有特殊的性质:当点在x轴上时,纵坐标y等于0;当点在y轴上时,横坐标x等于0。

5.点的对称性:若点P(x,y)关于x轴对称的点为P',那么P'的坐标为(x,-y)。

若点P(x,y)关于y轴对称的点为P'',那么P''的坐标为(-x,y)。

若点P(x,y)关于原点对称的点为P''',那么P'''的坐标为(-x,-y)。

(完整word版)平面直角坐标系知识点总结

(完整word版)平面直角坐标系知识点总结

平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。

我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。

注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。

平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。

在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。

横、纵坐标的位置不能颠倒。

②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。

知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。

初一数学全章复习 平面直角坐标系(提高)知识讲解

初一数学全章复习 平面直角坐标系(提高)知识讲解

平面直角坐标系(提高)知识讲解【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标特征.3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.要点二、平面直角坐标系及点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【典型例题】类型一、有序数对表示位置1.如图是小刚的一张笑脸,他对妹妹说:如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成().A.(1,0) B.(-1,0) C.(-1,1) D.(1,-1)【思路点拨】由(0,2)表示左眼,用(2,2)表示右眼,可以确定平面直角坐标系中x 轴与y轴的位置,从而可以确定嘴的位置.【答案】A.【解析】解:根据(0,2)表示左眼,用(2,2)表示右眼,可得嘴的坐标是(1,0),故答案为A.【总结升华】此题考查了坐标确定位置,由已知条件正确确定坐标轴的位置是解决本题的关键.举一反三:【变式】下列数据不能表示物体位置的是().A.5楼6号 B.北偏东30° C.希望路20号 D.东经118°,北纬36°【答案】B (提示A. 5楼6号,是有序数对,能确定物体的位置;B.北偏东30°,不是有序数对,不能确定物体的位置;C.希望路20号,“希望路”相当于一个数据,是有序数对,能确定物体的位置;D.东经118°北纬36°,是有序数对,能确定物体的位置.)类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A,B,C,D各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法.解法一:以点A为坐标原点,边AB所在的直线为x轴,边AD所在直线为y轴,建立平面直角坐标系,如图(1):A(0,0),B(5,0),C(5,3), D (0,3).解法二:以边AB的中点为坐标原点,边AB所在的直线为x轴,AB的中点和CD的中点所在的直线为y轴,建立平面直角坐标系,如图(2):A(﹣2.5,0),B(2.5,0),C(2.5,3), D (-2.5,3).解法三:以两组对边中点所在直线为x轴、y轴,建立平面直角坐标系,如图(3):A(﹣2.5,-1.5),B(2.5,-1.5),C(2.5,1.5), D (-2.5,1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x轴和y轴确定,每一个点的位置也确定,而一旦原点或x轴、y轴改变,每一个点的位置也相对应地改变.举一反三:【变式】点A(m,n)到x轴的距离为3,到y轴的距离为2,则点A的坐标为________.【答案】(2,3)或(-2,3)或(-2,-3)或(2,-3).3.平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】解:如图所示,过点A、C分别作平行于y轴的直线与过B点平行于x轴的直线交于点D、E,则四边形ACED为梯形,根据点A(-3,-1)、B(1,3)、C(2,-3)可求得AD=4,CE=6,DB=4,BE=1,DE=5,所以△ABC的面积为:111()222ABC S AD CE DE AD DB CE BE =+--g g g △ 111(46)5446114222=+⨯-⨯⨯-⨯⨯=. 【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.举一反三:【变式】如图所示,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),……,则点A 2008的坐标为________.【答案】(-502,-502).类型三、坐标平面及点的特征4.平面直角坐标系内,点A (n ,1-n )一定不在 .【思路点拨】确定横纵坐标的符号.【答案】第三象限和原点.【解析】解:由题意可得: 010n n >⎧⎨->⎩、010n n <⎧⎨->⎩、010n n <⎧⎨-<⎩、010n n >⎧⎨-<⎩可得:010n n <⎧⎨-<⎩无解,因而点A 的横坐标是负数,纵坐标也是负数,不能同时成立,即点A 一定不在第三象限. 又n 和1-n 不能同时为0,故也一定不在原点.故答案为:第三象限和原点.【总结升华】本题主要考查平面直角坐标系中各象限内点的坐标的符号,把符号问题转化为不等式的问题.举一反三:【高清课堂:第一讲 平面直角坐标系1 369934 练习4(4)】【变式1】点P(-m,n)在第三象限,则m ,n 的取值范围是________.【答案】0,0m n ><.【变式2】在平面直角坐标系中,横、纵坐标满足下面条件的点,分别在第几象限或哪条坐标轴上.(1)点P (x ,y )的坐标满足xy >0.(2)点P (x ,y )的坐标满足xy <0.(3)点P (x ,y )的坐标满足xy=0.【答案】(1)点P 在第一、三象限;(2)点P 在第二、四象限;(3)x 轴或y 轴.【高清课堂:第一讲 平面直角坐标系1 369934练习4(1)】【变式3】若点C(x,y)满足x+y <0,xy >0,则点C 在第_____象限.【答案】三.5.一个正方形的一边上的两个顶点O 、A 的坐标为O (0,0),A (4,0),则另外两个顶点的坐标是什么.【思路点拨】有点的坐标说明已有确定的平面直角坐标系,但正方形的另两个顶点位置不确定,所以应按不同位置分类去求.【答案与解析】解:不妨设另外两个顶点为B 、C ,因为OABC 是正方形,所以OC =BA =BC =OA =4.且OC ∥AB ,OA ∥BC ,则:(1)当顶点B在第一象限时,如图所示,显然B点坐标为(4,4),C点坐标为(0,4).(2)当顶点B在第四象限时,如图所示,显然B点坐标为(4,-4),C点坐标为(0,-4).【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:【变式】(成宁)在平面直角坐标系中,如果m·n>0,那么(m,|n|)一定在().A.第一象限或第二象限B.第一象限或第三象限C.第二象限或第四象限D.第三象限或第四象限【答案】A.。

平面直角坐标系(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练

平面直角坐标系(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练

专题3.3平面直角坐标系(知识梳理与考点分类讲解)【知识点1】平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).特别解读:平面直角坐标系三要素:两条数轴、有公共原点、互相垂直.【知识点2】点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P 的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.特别解读:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3)对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.【知识点3】坐标平面1.象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.特别解读:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限.这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.【知识点4】点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律特别解读:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【知识点5】建立平面直角坐标系1.建立平面直角坐标系的基本思路(1)分析条件,选择适当的点作为原点;(2)过原点在两个互相垂直的方向上分别作出x 轴和y 轴;(3)确定正方向、单位长度。

北师大版八年级上册数学[《平面直角坐标系》全章复习与巩固(提高版)知识点整理及重点题型梳理]

北师大版八年级上册数学[《平面直角坐标系》全章复习与巩固(提高版)知识点整理及重点题型梳理]

北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习《平面直角坐标系》全章复习与巩固(提高)知识讲解【学习目标】1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3. 通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化. (3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.【典型例题】类型一、有序数对1.(巴中)如图所示,用点A(3,1)表示放置3个胡萝卜、1棵青菜,用点B(2,3)表示放置2个胡萝卜,3棵青菜.(1)请你写出点C、D、E、F所表示的意义;(2)若一只兔子从点A到达点B(顺着方格线走),有以下几条路线可以选择:①A→C→D→B;②A→E→D→B;③A→E→F→B,问走哪条路吃到的胡萝卜最多?走哪条路吃到的青菜最多? 【思路点拨】(1)根据问题的“约定”先写出坐标,再回答其实际意义;(2)通过比较三条线路吃胡萝卜、青菜的多少回答问题.【答案与解析】解:(1)因为点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜,可得:点C的坐标是(2,1),它表示放置2个胡萝卜、1棵青菜;点D的坐标是(2,2),它表示放置2个胡萝卜、2棵青菜;点E的坐标是(3,2),它表示放置3个胡萝卜、2棵青菜;点F的坐标是(3,3),它表示放置3个胡萝卜、3棵青菜.(2)若兔子走路线①A→C→D→B,则可以吃到的胡萝卜共有3+2+2+2=9(个),吃到的青菜共有1+1+2+3=7(棵);走路线②A→E→D→B,则可以吃到的胡萝卜共有3+3+2+2=10(个),吃到的青菜共有1+2+2+3=8(棵);走路线③A→E→F→B,则可以吃到的胡萝卜共有3+3+3+2=11(个),吃到的青菜共有1+2+3+3=9(棵);由此可知,走第③条路线吃到的胡萝卜和青菜都最多.【总结升华】由点A(3,1),点B(2,3)表示的意义及已确定平面直角坐标系,可知坐标系中x轴表示胡萝卜的数量,y轴表示青菜的数量.类型二、平面直角坐标系2. (1)若点(5-a,a-3)在第一、三象限的角平分线上,求a的值.(2)已知两点A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围.(3)点P到x轴和y轴的距离分别是3和4,求P点的坐标.【思路点拨】 (1)中在一、三象限的角平分线上的点的横坐标与纵坐标相等;(2)与x轴平行的直线上的点的纵坐标相等;(3)中的点P有多个.【答案与解析】解:(1)因为点(5-a,a-3)在第一、三象限的角平分线上,所以5-a=a-3,所以a=4.(2)因为AB∥x轴,所以m=4,因为A、B两点不重合,所以n≠-3.(3)设P点的坐标为(x,y),由已知条件得|y|=3,|x|=4,所以y=±3,x=±4,所以P点的坐标为(4,3)或(-4,3)或(4,-3)或(-4,-3).【总结升华】抓住平面直角坐标系中点的特征和点的特征的意义是解决此类问题的关键.举一反三:【变式】已知,点P(-m,m-1),试根据下列条件:(1)若点P在过A(2,-4),且与x轴平行的直线上,则m= ,点P的坐标为.(2)若点P在过A(2,-4),且与y轴平行的直线上,则m= ,点P的坐标为.【答案】(1)-3,(3,-4); (2)-2,(2,-3).3.(2015春•鄂州校级期中)如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,依此类推,已知A(1,3),A1(2,3),A2(4,3),A3(8,3)…B(2,0),B1(4,0),B2(8,0),B3(16,0)…①观察每次变化后的三角形,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为,B4的坐标为.②若按上述规律,将三角OAB进行n次变换,得三角形△OA n B n,比较每次变换三角形顶点的变化规律,探索顶点A n的坐标为,顶点B n的坐标为.【答案】①(16,3)(32,0);②(2n,3)(2n+1,0).【解析】解:∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变,为3,横坐标都和2有关,为2n,∴A n(2n,3);∵B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,横坐标都和2有关为2n+1,∴B的坐标为B n(2n+1,0).故答案为:①(16,3)(32,0)②(2n,3)(2n+1,0).【总结升华】此题考查点的坐标问题,依次观察各点的横纵坐标,得到规律是解决本题的关键.举一反三:【变式】(杭州)某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在(,)k k k P x y 处,其中x 1=1,y 1=1,当k ≥2时,111215,5512,55k k k k k k x x k k y y --⎧⎛--⎫⎡⎤⎡⎤=+--⎪ ⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎝⎭⎨--⎡⎤⎡⎤⎪=+-⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩[a]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点的坐标为( ).A .(5,2009)B .(6,2010)C .(3,401)D .(4,402)【答案】D.类型三、坐标方法的简单应用4. (2016春•江西期末)如图,在下面直角坐标系中,已知A (0,a ),B (b ,0),C(b ,c )三点,其中a 、b 、c 满足关系式|a ﹣2|+(b ﹣3)2=0,(c ﹣4)2≤0(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,),请用含m 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.【思路点拨】(1)用非负数的性质求解;(2)把四边形ABOP 的面积看成两个三角形面积和,用m 来表示;(3)△ABC 可求,是已知量,根据题意,方程即可.【答案与解析】解:(1)由已知|a ﹣2|+(b ﹣3)2=0,(c ﹣4)2≤0及(c ﹣4)2≥0可得:a=2,b=3,c=4;(2)∵×2×3=3,×2×(﹣m )=﹣m ,∴S 四边形ABOP =S △ABO +S △APO =3+(﹣m )=3﹣m(3)因为×4×3=6,∵S 四边形ABOP =S △ABC∴3﹣m=6,则m=﹣3,所以存在点P(﹣3,)使S四边形ABOP=S△ABC.【总结升华】本题考查了非负数的性质,三角形及四边形面积的求法,根据题意容易解答.举一反三:【变式】(2015春•凉山州期末)如图,已知火车站的坐标为(2,1),文化宫的坐标为(﹣1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O,宾馆C和文化宫B,看作三点用线段连起来,将得△OBC,然后将此三角形向下平移3个单位长度,画出平移后的△O1B1C1,并求出其面积.【答案】解:(1)建立平面直角坐标系如图所示;(2)体育场(﹣2,4),市场(6,4),超市(4,﹣2),宾馆(4,3).(3)如图1,连接BB1交x轴于点A,连接CC1,=﹣S△BAO﹣=(2+3)×5﹣×1×2﹣×4×3=.=S5. (上海)如图所示,在直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB=2,如果将线段AB 沿y 轴翻折,点A 落在C 处,那么C 的横坐标是_______.【答案】-2.【解析】将线段AB 沿y 轴翻折以后,点A 与点C 关于y 轴对称,则两点的横坐标互为相反数,点A 的横坐标为2,则点C 的横坐标为-2.【总结升华】考查平面直角坐标系内图形与坐标的关系以及轴对称的性质. 类型四、综合应用6.(北京)(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.【思路点拨】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解:点A′:-3×13+1=-1+1=0. 设点B 表示的数为a ,则13a+1=2,解得a=3. 设点E 表示的数为b ,则13b+1=b ,解得b=32. (2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.【答案与解析】【总结升华】根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解.举一反三:【变式】 把点P 1(m ,n)向右平移3个单位长度再向下平移2个单位长度到一个位置P 2后坐标为P 2 (a ,b),则m ,n ,a ,b 之间存在的关系是________________.【答案】3a m =+,2b n =-.。

2023年九年级中考数学复习讲义 平面直角坐标系

2023年九年级中考数学复习讲义 平面直角坐标系

2023年中考数学复习讲义 平面直角坐标系第一部分:知识点精准记忆知识点一 平面直角坐标系的基础有序数对概念:有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a ,b )。

【注意】a 、b 的先后顺序对位置有影响。

平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。

两轴的定义:水平的数轴叫做x 轴或横轴,通常取 向右 方向为正方向;竖直的数轴叫做y 轴或纵轴,通常取 向上 方向为正方向。

原点:两坐标轴交点叫做坐标系原点。

坐标平面:坐标系所在的平面叫坐标平面。

象限:x 轴和y 轴把平面直角坐标系分成四部分,每个部分称为象限。

按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。

【注意】坐标轴上的点不属于任何象限。

点的坐标:对于坐标轴内任意一点A ,过点A 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上的对应的数a 、b 分别叫做点A 的横坐标和纵坐标,有序数对A(a ,b)叫做点A 的坐标,记作A(a ,b)。

知识点二 点的坐标的有关性质1. 各象限内的点的坐标特征1)点P(x ,y)在第一象限 x >0,y >0; 2)点P(x ,y)在第二象限 x <0,y >0;3)点P(x ,y)在第三象限 x <0,y <0; 4)点P(x ,y)在第四象限 x >0,y<⇔⇔⇔⇔0。

2. 坐标轴上的点的坐标特征1)点 P(x ,y)在x 轴上 y=0,x 为任意实数;2)点P(x ,y)在y 轴上 x=0,y 为任意实数;3)点P(x ,y)既在x 轴上,又在y 轴上 x=y=0,即点P 坐标为(0,0);3. 象限角的平分线上的点的坐标1)点P(x ,y)在第一、三象限角平分线上 x 与y 相等;2)点P(x ,y)在第二、四象限角平分线上 x 与y 互为相反数(x+y=0);4.与坐标轴平行的直线上的点的坐标特征1)平行于x 轴的直线上的各点:纵坐标相同;2)平行于y 轴的直线上的各点:横坐标相同;5. 点到坐标轴距离在平面直角坐标系中,已知点P ,则点P 到轴的距离为; 点P 到轴的距离为;点P 到原点O 的距离为P =6. 平面直角坐标系内平移变化平移规律:上加下减,右加左减7. 关于x 轴、y 轴、原点对称点的坐标1) 点P 关于轴的对称点为,即横坐标不变,纵坐标互为相反数;2) 点P 关于轴的对称点为, 即纵坐标不变,横坐标互为相反数;3)点P 关于原点的对称点为,即横、纵坐标都互为相反数;4)点(x ,y )关于(a ,b )的对称点为(2a-x ,2b-y )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面直角坐标系》知识讲解【学习目标】1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3. 通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13 , 2000) , (17 ,190) , (21 , 330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4 , 5) , (20 , 12) , (13 , 2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:(1}建立商角坐标系(2熾迢比例尺(3)按軀意确宦各地位祥⑷耳出各地的坐林(1) 点(2〕片移4个单位(厂时)(2) 点(文护用穩门个单忖仪乜$} ⑶点(和)匕移a个单儆心切)点(耳同下移口于单位1 11 3第二尊限21 j -L fi y 匸1-3 -2 -10 111i 1 3 Z[V第网線駅要点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点•(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对( x,y)之间建立了一一对应关系,这样就将’形’与’数’联系起来,从而实现了代数问题与几何问题的转化•(3 )要熟记坐标系中一些特殊点的坐标及特征:①x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x, y)到x轴的距离为|y|,到y轴的距离为|x| .②x轴上两点A(x i, 0)、B(X2, 0)的距离为AB=|x i - x 2| ;y 轴上两点C(0 , y i)、D(0, y2)的距离为CD=|y i - y 2| .③平行于x轴的直线上两点A(x i, y)、B(X2, y)的距离为AB=|x i - x 2| ;平行于y轴的直线上两点C(x, y i)、D(x, y2)的距离为CD=|y i - y 2| .(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补要点三、坐标方法的简单应用i•用坐标表示地理位置(1) 建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2) 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3) 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:⑴我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2. 用坐标表示平移(i)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x , y)向右(或左)平移a个单位长度,可以得到对应点(x+a , y)(或(x-a , y));将点(x , y)向上(或下)平移b个单位长度,可以得到对应点(x , y+b)(或(x , y-b))要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”【典型例题】类型一、有序数对1.(巴中)如图所示,用点A(3, 1)表示放置3个胡萝卜、1棵青菜,用点B(2, 3)表示放置2个胡萝卜,3棵青菜.□ ■-****■*■*.O\12~34~567>(1) 请你写出点C、D、E、F所表示的意义;(2) 若一只兔子从点A到达点B(顺着方格线走),有以下几条路线可以选择:① A T C T D T B :②A T E T D TB :③A T E T F T B,问走哪条路吃到的胡萝卜最多?走哪条路吃到的青菜最多?【思路点拨】(1)根据问题的“约定”先写出坐标,再回答其实际意义;(2)通过比较三条线路吃胡萝卜、青菜的多少回答问题.【答案与解析】解:(1)因为点A(3, 1)表示放置3个胡萝卜、1棵青菜,点B(2, 3)表示放置2个胡萝卜、3棵青菜,可得:点C的坐标是(2, 1),它表示放置2个胡萝卜、1棵青菜;点D的坐标是(2, 2),它表示放置2个胡萝卜、2棵青菜;点E的坐标是(3, 2),它表示放置3个胡萝卜、2棵青菜;点F的坐标是(3, 3),它表示放置3个胡萝卜、3棵青菜.(2)若兔子走路线①A T C T D T B,则可以吃到的胡萝卜共有3+2+2+2 = 9(个),吃到的青菜共有1+1+2+3 = 7(棵);走路线②A T E T D T B,则可以吃到的胡萝卜共有3+3+2+2 = 10(个),吃到的青菜共有1+2+2+3 = 8(棵);走路线③A T E T F T B,则可以吃到的胡萝卜共有3+3+3+2 = 11(个),吃到的青菜共有1+2+3+3 = 9(棵);由此可知,走第③条路线吃到的胡萝卜和青菜都最多.【总结升华】由点A (3, 1),点B(2, 3)表示的意义及已确定平面直角坐标系,可知坐标系中x轴表示胡萝卜的数量,y轴表示青菜的数量.类型二、平面直角坐标系C2. (1)若点(5-a, a-3)在第一、三象限的角平分线上,求a的值.(2) 已知两点A(- 3, m) , B(n, 4),若AB // x轴,求m的值,并确定n的范围.(3) 点P到x轴和y轴的距离分别是3和4,求P点的坐标.【思路点拨】(1)中在一、三象限的角平分线上的点的横坐标与纵坐标相等;(2)与x轴平行的直线上的点的纵坐标相等;(3)中的点P有多个.【答案与解析】解:(1)因为点(5-a, a-3)在第一、三象限的角平分线上,所以5-a= a-3,所以a= 4.(2) 因为AB // x轴,所以m= 4,因为A、B两点不重合,所以n丰-3.(3) 设P点的坐标为(x, y),由已知条件得|y| = 3, | x| = 4,所以y =± 3, x=± 4,所以P点的坐标为(4, 3)或(-4, 3)或(4, -3)或(-4, -3).【总结升华】抓住平面直角坐标系中点的特征和点的特征的意义是解决此类问题的关键.举一反三:【变式】已知,点P (-m, m-1),试根据下列条件:(1)_______________________________________________________________ 若点P在过A( 2, -4 ),且与x轴平行的直线上,则m _______________________________________ ,点P的坐标为___________ .(2)_________________________________________________________________________ 若点P在过A (2, -4 ),且与y轴平行的直线上,则m= _____________________________________ ,点P的坐标为______________ .【答案】(1) -3 , ( 3,-4 ) ; (2) -2 , ( 2, -3 ).3. __________________ (德阳市)如图所示,在平面直角坐标系中,有若干个整数点其顺序按图中“T”方向排列,女口(1, 0) , (2, 0) , (2, 1) , (3, 2) , (3, 1) , (3 , 0)…,根据这个规律探索可得,第100个点的坐标为_______________________ .【答案】(14, 8)【解析】从特殊情形出发:横坐标为1的整数点有1个,横坐标为2的整数点有2个,横坐标为3的整数点有3个,依次类似,横坐标为n的整数总共有n个.故共有1+2+3+4+…1+n= n • (n +1)个,由题意分析推测:2一1 当横坐标为14即n = 14时,共有一X 14X (14+1) = 105;2一1 当横坐标为13即n = 13时,共有一X 13X (13+1) = 91;2故第100个点的横坐标为14,而横坐标为14的点共有14个,按"T”向上方向,故纵坐标13- 5= 8.【总结升华】当我们面临的数学问题比较抽象而无法下手时,可以从个别的、特殊的情形入手,通过对特例的分析、思考寻找解题的途径,这种思考问题的方法值得学习和借鉴.举一反三:【变式】(杭州)某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在P k(x k,y k)处,其中x i= 1, y i = 1,类型三、4. 如图所示,三角形ABC三个顶点的坐标分别是A(2, -2) , B(1, 2), C(- 2, -1).求三角形ABC的面积.【思路点拨】观察三角形ABC的三边都不与坐标轴平行,此时可构造一个过三角形三个顶点的正方形ADEF .用正方形ADEF的面积,减去三角形ABD,三角形BCE,三角形ACF 的面积即得三角形ABC的面积.【答案与解析】解:过点A , C分别作平行于y轴的直线,过点A , B分别作平行于x轴的直线,它们的交点为D , E, F,得到正方形ADEF,则该正方形的面积为4 X 4 = 16.1 1三角形ABD、三角形BCE、三角形ACF的面积分别是:一1 4 2 , - 3 3 4.5 ,2 21— 14 2 .2所以三角形ABC的面积为16-2-4.5-2 = 7.5.【总结升华】本例通过图形的转化,点的坐标与线段长度的转化解决了求图形面积的问题. 点的坐标能体现它到坐标轴的距离,于是将点的坐标转化为点到坐标轴的距离,这种应用十分广泛.举一反三:【变式】如果点A 1,0 , B 3,0,点C在y轴上,且△ ABC的面积是4,求C点坐标.【答案】亠4 2则咼为:2,即点C的纵坐标为土2,4又点C在y轴上,所以点C的坐标为(0,- 2)或(0,2 ).X k X k 1当k>2时, [a]表示非负实数a的整数部分,例如y k y k[2. 6] = 2, [0.2](5, 2009)D.【答案】=0. 按此方案,B. (6, 2010)2009棵树种植点的坐标为().C. (3, 401) D . (4, 402)坐标方法的简单应用解:△ ABC的底AB的长为:3(1) 4 ,5. _________________________________________________________ (上海)如图所示,在直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB = 2, 如果将线段AB沿y轴翻折,点A落在C处,那么C的横坐标是___________________________________________________________________ .R r—X---------- ------- »O X【答案】-2.【解析】将线段AB沿y轴翻折以后,点A与点C关于y轴对称,则两点的横坐标互为相反数,点A的横坐标为2,则点C的横坐标为-2.【总结升华】考查平面直角坐标系内图形与坐标的关系以及轴对称的性质.。

相关文档
最新文档