【高中数学】2018-2019学年人教B版高中数学-选修4-4教学案-第二章章末小结知识整合与阶段检测
人教B版 高中数学 选修4-4 极坐标与参数方程 知识点归纳、题型归纳(含答案)
选修4—4 极坐标与参数方程一、伸缩变换设),(y x P 是平面直角坐标系中任意一点,在变换⎩⎨⎧='='yy x x μλϕ: )0()0(>>μλ的作用下,点),(y x P 对应),(y x P ''',称ϕ为平面直角坐标系中的伸缩变换。
练习1.将1422=+y x 的横坐标压缩为原来的2,纵坐标伸长为原来的21倍,则曲线的方程变为 。
2.在平面直角坐标系中,方程122=+y x 所对应的图形经过伸缩变换⎩⎨⎧='='yy x x 32,后的图形所对应的方程是 .二、极坐标(一)极坐标系与极坐标1、极坐标系:在平面上取一个定点O ,由O 点出发的一条射线Ox 一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 点称为极点,Ox 称为极轴.2、极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画.这两个数组成的有序数对),(θρ称为点M 的极坐标.ρ称为极径,θ称为极角.注:①在通常情况下,总认为0≥ρ,只在事先说明的情况下,才允许取0<ρ; ①极点O 的坐标为:),0(θ)(R ∈θ①点),(θρ与),(θπρ+关于极点O 对称;点),(θρ与),(θρ-关于极轴对称①点),(θρ,)2,(θπρ+k ,)2.(ππρ+-k (允许ρ小于0时)表示同一点.(二)极坐标与直角坐标的关系设M 为平面上的点,它的直角坐标为),(y x ,极坐标为),(θρ,关系如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+===x y y x y x θρθρθρtan sin cos 222)0(≠x 注:在极坐标系中,αθ=)0(≥ρ表示以极点为起点的一条射线;αθ=)(R ∈ρ表示以极点为起点的一条直线.练习1、点M 的直角坐标为)1,3(--化为极坐标为 .2、极坐标为(1,π)的点M 的直角坐标为 .3、将以下极坐标方程化为对应的直角坐标方程(1)ρ=2cosθ﹣4sinθ (2)ρsin 2θ=4cosθ(3)ρ=4cosθ (4)1)3cos(=-πρx(5)ααρ222cos 3sin 42+=(6)34πθ= )(R ∈ρ(7)2=ρ4、在直角坐标系xOy 中,圆C 的直角坐标方程为1)1(22=+-y x ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是33)3sin(2=+πθρ,射线OM :3πθ=与圆C 的交点为P O ,,与直线l 的交点为Q ,求线段PQ 的长.5、在直角坐标系xOy 中,直线1C :2-=x ,圆2C :1)2()1(22=-+-y x ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 、2C 的极坐标方程;(2)若直线3C 的极坐标方程为4πθ=)(R ∈ρ,设2C 与3C 的交点为N M ,,求MN C 2∆的面积.三、参数方程(一)参数方程:在平面上取定了一个直角坐标系xOy ,把坐标y x ,表示为第三个变量t 的函数⎩⎨⎧==)()(t g y t f x b t a ≤≤,如果对于t 的每一个值(b t a ≤≤),由方程组所确定的点),(y x M 都在一条曲线上;而这条曲线上的任一点),(y x M 都可由t 的某个值通过方程组得到,称方程组就叫做这条曲线的参数方程,其中,变量t 称为参数.(二)直线的参数方程1、直线的标准参数方程:直线l 过点),(00y x M ,倾斜角为α的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x 推导如下:设直线的点斜式方程为:)(00x x k y y -=-,其中αtan =k )2(πα≠代入得)(tan 00x x y y -=-α )(cos sin 00x x y y -=-αα 即ααsin cos 00y y x x -=-,令上式的比值为t ,整理得⎩⎨⎧+=+=ααsin cos 00t y y t x x 2、t 的几何意义:表示直线上任一点A 到定点0M 的距离.①当点A 在0M 的上方时,0>t ;①当点A 在0M 的下方时,0<t ;①当点A 与0M 重合时,0=t ;3、结论:直线l 的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x )(为参数t ,其中),(00y x M ,B A ,为直线l 上的任一 点,且B A ,对应的参数分别为21,t t①A 到0M 的距离为1t ,B 到0M 的距离为2t①B A ,两点之间的距离为:21t t AB -=①点B A ,中点对应的参数为:221t t + ①0M 为B A ,中点时:021=+t t ①⎪⎩⎪⎨⎧+⋅-+=-=+=+21212212121004)(t t t t t t t t t t B M A M )0()0(2121>⋅<⋅t t t t 2100t t B M A M ⋅=⋅4、运用直线l 的标准参数方程求弦长和弦的中点坐标(直线l 与曲线相交于不同的两点时): 将直线l 的标准参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x 代入圆锥曲线方程,得到关于t 的二次方程,得到⎪⎩⎪⎨⎧⋅+>∆21210t t t t ,所以弦长=21221214)(t t t t t t ⋅-+=-,弦的中点对应的参数为221t t +代入直线直线l 的标准参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x 中,得到弦的中点坐标.5、直线l 的一般参数方程: 过点),(00y x M ,斜率a b k =的直线参数方程为:⎩⎨⎧+=+=bt y y at x x 00 )(为参数t。
【2019-2020年度】人教B版高中数学-选修4-1教学案-第一章-圆 幂 定 理 (Word)
【2019-2020年度】人教B版高中数学-选修4-1教学案-第一章-圆幂定理(Word)1.3.1 圆幂定理[对应学生用书P25][读教材·填要点]1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等.2.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.3.圆幂定理已知⊙(O,r),通过一定点P,作⊙O的任一条割线交圆于A,B两点,则PA·PB为定值,设定值为k,则:(1)当点P在圆外时,k=PO2-r2,(2)当点P在圆内时,k=r2-OP2,(3)当点P在⊙O上时,k=0.[小问题·大思维]1.从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积有什么关系?提示:相等.2.从圆外一点引圆的切线,则这一点、两个切点及圆心四点是否共圆?若共圆,圆的直径是什么?提示:四点共圆.且圆心为圆外一点与原圆心连线的中点,直径为圆外一点到原圆心的距离.[对应学生用书P26][例1]弦,它们相交于AB的中点P,PD=a,∠OAP=30°,求CP的长.[思路点拨] 本题考查相交弦定理及垂径定理、勾股定理的综合应用.解决本题需要先在Rt△OAP中,求得AP的长,然后利用相交弦定理求解.[精解详析] ∵P为AB的中点,∴由垂径定理得OP⊥AB.在Rt△OAP中,BP=AP=acos30°=a.由相交弦定理,得BP·AP=CP·DP,即2=CP·a,解之得CP=a.在实际应用中,若圆中有两条相交弦,要想到利用相交弦定理.特别地,如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.1.如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC 的延长线相交于点D.过点C作BD的平行线与圆相交于点E,与AB 相交于点F,AF=3,FB=1,EF=,则线段CD的长为________.解析:因为AF=3,EF=,FB=1,所以CF===2,因为EC∥BD,所以△ACF∽△ADB,所以====,所以BD===,且AD=4CD,又因为BD是圆的切线,所以BD2=CD·AD=4CD2,所以CD=.答案:43[例2] A,M为PA 的中点,过点M引圆的割线交圆于B,C两点,且∠BMP=100°,∠BPC =40°.求∠MPB的大小.[思路点拨] 本题考查切割线定理,由定理得出△BMP∽△PMC 而后转化角相等进行求解.[精解详析] 因为MA为圆O的切线,所以MA2=MB·MC.又M为PA的中点,所以MP2=MB·MC.因为∠BMP=∠PMC,所以△BMP∽△PMC,于是∠MPB=∠MCP.在△MCP中,由∠MPB+∠MCP+∠BPC+∠BMP=180°,得∠MPB =20°.相交弦定理、切割线定理涉及与圆有关的比例线段问题,利用相交弦定理能做到知三求一,利用切割线定理能做到知二求一.2.(北京高考)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D.若PA=3,PD∶DB=9∶16,则PD=________;AB=________.解析:设PD=9t,DB=16t,则PB=25t,根据切割线定理得32=9t×25t,解得t=,所以PD=,PB=5.在直角三角形APB中,根据勾股定理得AB=4.答案:4[例3] PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC.(1)求证:∠P=∠EDF;(2)求证:CE·EB=EF·EP;(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长.[思路点拨] 本题考查切割线定理、相交弦定理.以及相似三角形的判定与性质的综合应用.解答本题需要分清各个定理的适用条件,并会合理利用.[精解详析] (1)证明:∵DE2=EF·EC,∴DE∶CE=EF∶ED.∵∠DEF是公共角,∴△DEF∽△CED.∴∠EDF=∠C.∵CD∥AP,∴∠C=∠P.∴∠P=∠EDF.(2)证明:∵∠P=∠EDF,∠DEF=∠PEA,∴△DEF∽△PEA.∴DE∶PE=EF∶EA.即EF·EP=DE·EA.∵弦AD、BC相交于点E,∴DE·EA=CE·EB.∴CE·EB=EF·EP.(3)∵DE2=EF·EC,DE=6,EF=4,∴EC=9.∵CE∶BE=3∶2,∴BE=6.∵CE·EB=EF·EP,∴9×6=4×EP.解得:EP=.∴PB=PE-BE=,PC=PE+EC=.由切割线定理得:PA2=PB·PC,∴PA2=×.∴PA=.相交弦定理、切割线定理是最重要的定理,在与圆有关的问题中经常用到,这是因为这三个定理可得到的线段的比例或线段的长,而圆周角定理、弦切角定理得到的是角的关系,这两者的结合,往往能综合讨论与圆有关的相似三角形问题.因此,在实际应用中,见到圆的两条相交弦要想到相交弦定理;见到切线和割线要想到切割线定理.3.如图所示,过点P的直线与⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则⊙O的半径等于________.解析:设⊙O的半径为r(r>0),∵PA=1,AB=2,∴PB=PA+AB=3.延长PO交⊙O于点C,则PC=PO+r=3+r.设PO交⊙O于点D,则PD=3-r.由圆的割线定理知,PA·PB=PD·PC,∴1×3=(3-r)(3+r),∴9-r2=3,∴r= .答案: 6[对应学生用书P27]一、选择题1.如右图,⊙O的直径CD与弦AB交于P点,若AP=4,BP=6,CP=3,则⊙O半径为( )A.5.5 B.5C.6 D.6.5解析:由相交弦定理知AP·PB=CP·PD,∵AP=4,BP=6,CP=3,∴PD===8.∴CD=3+8=11,∴⊙O的半径为5.5.答案:A2.如图,P是圆O外一点,过P引圆O的两条割线PB,PD,PA=AB=,CD=3,则PC等于( )A.2或-5 B.2C.3 D.10解析:设PC=x,由割线定理知PA·PB=PC·PD.即×2 =x(x +3),解得x=2或x=-5(舍去).故选B.答案:B3.如图,AD、AE和BC分别切⊙O于D,E,F,如果AD=20,则△ABC的周长为( )A.20 B.30C.40 D.35解析:∵AD,AE,BC分别为圆O的切线.∴AE=AD=20,BF=BD,CF=CE.∴△ABC的周长为AB+AC+BC=AB+AC+BF+CF=(AB+BD)+(AC+CE)=AD+AE=40.答案:C4.如图,△ABC中,∠C=90°,⊙O的直径CE在BC上,且与AB相切于D点,若CO∶OB=1∶3,AD=2,则BE等于( )A. B.22C.2 D.1解析:连接OD,则OD⊥BD,∴Rt△BOD∽Rt△BAC.∴=.设⊙O的半径为a,∵OC∶OB=1∶3,OE=OC,∴BE=EC=2a.由题知AD、AC均为⊙O的切线,AD=2,∴AC=2.∴=,∴BD=2a2.又BD2=BE·BC,∴BD2=2a·4a=8a2.∴4a4=8a2,∴a=.∴BE=2a=2.答案:B二、填空题5.(重庆高考)过圆外一点P作圆的切线PA(A为切点),再作割线PBC分别交圆于B,C.若PA=6,AC=8,BC=9,则AB=________.解析:如图所示,由切割线定理得PA2=PB·PC=PB·(PB+BC),即62=PB·(PB+9),解得PB=3(负值舍去).由弦切角定理知∠PAB=∠PCA,又∠APB=∠CPA,故△APB∽△CPA,则=,即=,解得AB=4.答案:46.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为____________.解析:设BE=x,则FB=2x,AF=4x,由相交弦定理得DF·FC =AF·FB,即2=8x2,解得x=,EA=,再由切割线定理得CE2=EB·EA =×=,所以CE=.答案:727.如图,⊙O的弦ED、CB的延长线交于点A.若BD⊥AE,AB=4,BC=2,AD=3,则DE=________;CE=________.解析:由切割线定理知,AB·AC=AD·AE.即4×6=3×(3+DE),解得DE=5.∵BD⊥AE,且E、D、B、C四点共圆,∴∠C=90°.在直角三角形ACE中,AC=6,AE=8,∴CE==2.答案:5 278.(重庆高考)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为________.解析:由题意得BC=AB·sin 60°=10.由弦切角定理知∠BCD=∠A=60°,所以CD=5,BD=15,由切割线定理知,CD2=DE·BD,则DE=5.答案:5三、解答题9.如图,PT切⊙O于T,PAB,PDC是圆O的两条割线,PA=3,PD=4,PT=6,AD=2,求弦CD的长和弦BC的长.解:由已知可得PT2=PA·PB,且PT=6,PA=3,∴PB=12.同理可得PC=9,∴CD=5.∵PD·PC=PA·PB,∴=,∴△PDA∽△PBC,∴=⇒=,∴BC=6.10.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(1)求证:PM2=PA·PC;(2)若⊙O的半径为2 ,OA= OM,求MN的长.解:(1)证明:连接ON,则ON⊥PN,且△OBN为等腰三角形,则∠OBN=∠ONB,∵∠PMN=∠OMB=90°-∠OBN,∠PNM=90°-∠ONB,∴∠PMN=∠PNM,∴PM=PN.由条件,根据切割线定理,有PN2=PA·PC,所以PM2=PA·PC.(2)依题意得OM=2,在Rt△BOM中,BM==4.延长BO交⊙O于点D,连接DN.由条件易知△BOM∽△BND,于是=,即=,得BN=6.所以MN=BN-BM=6-4=2.11.如下图,已知⊙O1和⊙O2相交于A、B两点,过点A作⊙O1的切线,交⊙O2于点C,过点B作两圆的割线分别交⊙O1,⊙O2于点D、E,DE与AC相交于点P.(1)求证:PA·PE=PC·PD;(2)当AD与⊙O2相切,且PA=6,PC=2,PD=12时,求AD的长.解:(1)证明:连接AB,CE,∵CA切⊙O1于点A,∴∠1=∠D.又∵∠1=∠E,∴∠D=∠E.又∵∠2=∠3,∴△APD∽△CPE.∴=.即PA·PE=PC·PD.(2)∵PA=6,PC=2,PD=12.∴6×PE=2×12,∴PE=4.由相交弦定理,得PE·PB=PA·PC.∴4PB=6×2,∴PB=3.∴BD=PD-PB=12-3=9,DE=PD+PE=16.∵DA切⊙O2于点A,∴DA2=DB·DE,即AD2=9×16,∴AD=12.11 / 11。
人教版高中数学(A版·B版)目录
高中人教版(A)教材目录介绍必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法 1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高考数学二轮复习第2部分专题篇素养提升文理专题7选修部分第1讲选修44坐标系与参数方程课件新人教版
典例3 (2020·南平三模)在平面直角坐标系 xOy 中,以原点
O 为极点,以 x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为
ρ=1-c2os
θ,直线
l1
的参数方程为xy==ttcsions
α α
(t 为参数),π2<α<π,点 A
为直线 l1 与曲线 C 在第二象限的交点,过 O 点的直线 l2 与直线 l1 互相垂 直,点 B 为直线 l2 与曲线 C 在第三象限的交点.
19
1.(2020·中原区校级模拟)在平面直角坐标系 xOy 中,以坐标原点为 极点,x 轴正半轴为极轴建立极坐标系,曲线 C1:ρ=4sin θ,曲线 C2:ρ =4cos θ.
(1)求曲线 C1 与 C2 的直角坐标方程; (2)若直线 C3 的极坐标方程为 θ=π3(ρ∈R),设 C3 与 C1 和 C2 的交点 分别为 M,N,求|MN|.
25
典例2 (2020·河南模拟)在平面直角坐标系 xOy 中,曲线 C
的
参
数
方
程
为
x=2cos α y= 3sin α
(α
为参数),直线
l 的参数方程为
x=1+tcos α y=tsin α
(t 为参数).
(1)求曲线 C 和直线 l 的一般方程;
(2)已知点 P(1,0),直线 l 和曲线 C 交于 A,B 两点,若|PA|·|PB|=152,
14
典例1 (2020·沙坪坝区校级模拟)在平面直角坐标系 xOy 中, 以原点 O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线 C1 的极坐标
方程为
ρ=2acosθ,曲线
C2
的极坐标方程为
高中数学人教B版选修4-4教学案第二章 2.3 2.3.1 椭圆曲线的参数方程
圆锥曲线的参数方程.椭圆的参数方程[读教材·填要点]椭圆的参数方程中心在原点,焦点在轴上的椭圆+=的参数方程是(\\(=,=))≤≤π.中心在(,)的椭圆+=的参数方程是(\\(=+=+))≤≤π.[小问题·大思维].中心在原点,焦点在轴上的椭圆+=的参数方程是什么?提示:由(\\(()=φ,,()=φ,))得(\\(=φ,=φ.))即参数方程为(\\(=φ,=φ))(≤φ≤π)..圆的参数方程(\\(=θ,=θ))中参数θ的意义与椭圆的参数方程中参数φ的意义相同吗?提示:圆的参数方程(\\(=θ,=θ))(≤θ≤π)中的参数θ是动点(,)的旋转角,但在椭圆的参数方程(\\(=φ,=φ))(≤φ≤π)中的φ不是动点(,)的旋转角,它是点所对应的圆的半径=(或=)的旋转角,称为离心角,不是的旋转角.[例]已知椭圆+=有一内接矩形,求矩形的最大面积.[思路点拨]本题考查椭圆的参数方程的求法及应用.解答此题需要设出点的坐标,然后借助椭圆的对称性即可知,,的坐标,从而求出矩形的面积的表达式.[精解详析]∵椭圆方程为+=,∴可设点的坐标为( α,α),则=α,=α.∴=·=×α·α=α.矩形∵α≤,∴矩形的最大面积为.利用椭圆的参数方程求函数(或代数式)最值的一般步骤为:()求出椭圆的参数方程;()利用椭圆中的参数表示已知函数(或代数式);()借助三角函数的知识求最值..已知实数,满足+=,求目标函数=-φ的最大值与最小值.解:椭圆+=的参数方程为(\\(=φ,=φ,))≤φ≤π.代入目标函数得=φ-φ=(φ+φ)=(φ+φ)φ=())).所以=-,=.[例]由椭圆+。
高中数学人教B版选修4-4教学案第二章 章末小结 知识整合与阶段检测
[对应阶段质量检测(二)](时间分钟,满分分)一、选择题(本大题共个小题,每小题分,共分).方程(\\(=θ,=θ,))≤θ≤π表示的曲线上的一个点的坐标是( ).(,-) .()解析:选由=θ得=-θ,∴参数方程化为普通方程是=-(-≤≤).当=时,=-×=,故选..若(,-)为圆:(\\(=+θ,=θ))(≤θ≤π)的弦的中点,则该弦所在直线的方程是( ).--=.+=.+-=.--=解析:选∵圆心(),∴=-.∴=.∴直线的方程为--=..曲线(\\(=-+θ,=+θ))(θ为参数)的对称中心( ).在直线=上.在直线=-上.在直线=-上.在直线=+上解析:选将(\\(=-+θ,=+θ))(θ为参数)化为普通方程为(+)+(-)=,其表示以(-)为圆心,为半径的圆,其对称中心即圆心,显然(-)在直线=-上,故选..若圆的参数方程为(\\(=-+θ,=+θ))(≤θ≤π),直线的参数方程为(\\(=-,=-))(为参数),则直线与圆的位置关系是( ).过圆心.相交而不过圆心.相切.相离解析:选直线与圆的普通方程分别为-+=与(+)+(-)=.圆心(-)到直线的距离===.而<且≠,故直线与圆相交而不过圆心..参数方程(\\(=θ,=θ))≤θ≤π所表示的曲线为( ).抛物线的一部分.一条抛物线.双曲线的一部分.一条双曲线解析:选+=θ+θ=,即=-+.又=θ∈[],=θ∈[-],∴为抛物线的一部分..点(,)在椭圆+(-)=上,则+的最大值为( ).+.+..解析:选椭圆的参数方程为(\\(=+θ,=+θ,))≤θ≤π,+=+θ++θ=+(θ+φ),∴(+)=+..过点(,-)且与曲线(\\(=θ,=θ))≤θ≤π有相同焦点的椭圆方程是()+=+=+=+=解析:选曲线化为普通方程是+=.∴焦点坐标为(-,),(,),排除、、..已知过曲线(\\(=θ,=θ))≤θ≤上一点与原点的距离为,则点坐标为()解析:选设( θ,θ),则=θ+θ=+θ=.解得θ=.又≤θ≤,。
2017-2018学年北师大版高中数学选修4-4全册同步配套教学案
2017-2018学年高中数学北师大版选修4-4全册同步配套教学案目录第一章§1 平面直角坐标系第一章§2 2.1、2.2 极坐标系的概念点的极坐标与直角坐标的互化第一章§2 2.3 直线和圆的极坐标方程第一章§2 2.4、2.5曲线的极坐标方程与直角坐标方程的互化圆锥曲线统一的极坐标方程第一章§3 柱坐标系和球坐标系第一章章末复习课第二章§1 参数方程的概念第二章§2 2.1 直线的参数方程第二章§2 2.2、2.3、2.4 圆的参数方程椭圆的参数方程双曲线的参数方程第二章§3 参数方程化成普通方程第二章§4 平摆线和渐开线第二章章末复习课§1平面直角坐标系[对应学生用书P1][自主学习]1.平面直角坐标系与曲线方程(1)平面直角坐标系中点和有序实数对的关系:在平面直角坐标系中,点和有序实数对是一一对应的. (2)平面直角坐标系中曲线与方程的关系:曲线可看作是满足某些条件的点的集合或轨迹,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:①曲线C 上的点的坐标都是方程f (x ,y )=0的解; ②以方程f (x ,y )=0的解为坐标的点都在曲线C 上.那么,方程f (x ,y )=0叫作曲线C 的方程,曲线C 叫作方程f (x ,y )=0的曲线. (3)一些常见曲线的方程: ①直线的方程:ax +by +c =0;②圆的方程:圆心为(a ,b ),半径为r 的圆的方程为(x -a )2+(y -b )2=r 2;③椭圆的方程:中心在原点,焦点在x 轴上,长轴长为2a ,短轴长为2b 的椭圆方程为x 2a 2+y 2b 2=1;④双曲线的方程:中心在原点,焦点在x 轴上,实轴长为2a ,虚轴长为2b 的双曲线方程为x 2a 2-y 2b 2=1;⑤抛物线的方程:顶点在原点,以x 轴为对称轴,开口向右,焦点到顶点距离为p2的抛物线方程为y 2=2px .2.平面直角坐标系中的伸缩变换1.如何根据题设条件建立适当的平面直角坐标系? 提示:①如果图形有对称中心,选对称中心为坐标原点; ②如果图形有对称轴,选对称轴为坐标轴; ③使图形上的特殊点尽可能多的在坐标轴上;④如果是圆锥曲线,所建立的平面直角坐标系应使曲线方程为标准方程. 2.平面直角坐标系中的伸缩变换可以改变图形的形状,那平移变换呢? 提示:平移变换仅改变图形的位置,不改变它的形状、大小.[对应学生用书P1]的距离之和为12,求椭圆G 的方程.(2)在边长为2的正△ABC 中,若P 为△ABC 内一点,且|P A |2=|PB |2+|PC |2,求点P 的轨迹方程,并画出方程所表示的曲线.[思路点拨] 本题是曲线方程的确定与应用问题,考查建立平面直角坐标系、数形结合思想、曲线方程的求法及分析推理、计算化简技能、技巧等.解答此题中(1)需要根据已知条件用待定系数法求解;(2)需要先建立平面直角坐标系,写出各点的坐标,用直接法求解,再根据方程判定曲线类型画出其表示的曲线.[精解详析] (1)由已知设椭圆方程为 x 2a 2+y 2b 2=1(a >b >0), 则2a =12,知a =6.又离心率e =c a =32,故c =3 3.∴b 2=a 2-c 2=36-27=9. ∴椭圆的标准方程为x 236+y 29=1.(2)以BC 所在直线为x 轴,BC 的中点为原点,BC 的中垂线为y 轴建立平面直角坐标系,设P (x ,y )是轨迹上任意一点,又|BC |=2,∴B (-1,0),C (1,0),则A (0,3);∵|P A |2=|PB |2+|PC |2,∴x 2+(y -3)2=(x +1)2+y 2+(x -1)2+y 2. 化简得x 2+(y +3)2=4. 又∵P 在△ABC 内,∴y >0.∴P 点的轨迹方程为x 2+(y +3)2=4(y >0).其曲线如上图所示为以(0,-3)为圆心,半径为2的圆在x 轴上半部分圆孤.1.求曲线方程的方法:(1)已知曲线类型求方程一般用待定系数法; (2)求动点轨迹方程常用的方法有:①直接法:如果题目中的条件有明显的等量关系或者可以推出某个等量关系,即可直接求曲线的方程,步骤如下:a .建立适当的平面直角坐标系,并用(x ,y )表示曲线上任意一点M 的坐标;b .写出适合条件P 的点M 的集合P ={M |P (M )};c .用坐标表示条件P (M ),写出方程f (x ,y )=0;d .化简方程f (x ,y )=0;e .检验或证明d 中以方程的解为坐标的点都在曲线上,若方程的变形过程是等价的,则e 可以省略. ②定义法:如果动点的轨迹满足某种已知曲线的定义,则可依定义写出轨迹方程.③代入法(相关点法):如果动点P (x ,y )依赖于另一动点Q (x 1,y 1),而Q (x 1,y 1)又在某已知曲线上,则可先列出关于x ,y ,x 1,y 1的方程组,利用x ,y 表示x 1,y 1,把x 1,y 1代入已知曲线方程即为所求.④参数法:动点P (x ,y )的横坐标、纵坐标用一个或几个参数来表示,消去参数即得其轨迹方程. 2.根据曲线的方程画曲线时,关键根据方程判定曲线的类型,是我们熟知的哪种曲线,但要注意是曲线的全部还是局部.1.在△ABC 中,底边BC =12,其他两边AB 和AC 上中线CE 和BD 的和为30,建立适当的坐标系,求此三角形重心G 的轨迹方程.解:以BC 所在直线为x 轴,BC 边中点为原点,过原点且与BC 垂直的直线为y 轴建立平面直角坐标系,则B (6,0),C (-6,0),|BD |+|CE |=30, 可知|GB |+|GC |=23(|BD |+|CE |)=20,∴重心G 的轨迹是以(-6,0),(6,0)为焦点,2a =20的椭圆,且y ≠0,其轨迹方程为:x 2100+y 264=1(x ≠±10).[例2] 如图,以Rt △ABC 的两条直角边AB ,和正方形BCFG ,连接EC ,AF ,且EC ,AF 交于点M ,连接BM .求证:BM ⊥AC .[思路点拨] 本题考查坐标法在解决平面几何中垂直、平行、线段相等、平分等问题中的应用,解答此题需要先建立适当的平面直角坐标系,设出相关点的坐标,求出相关线的方程,求出k BM ,k AC ,证明k BM ·k AC =-1,即可.形BCFG 的边长分别为a ,b ,则A (0,a ),B (0,0),C (b,0),E (-a ,a ),F (b ,-b ).直线AF :y +b a +b =x -b0-b ,即(a +b )x +by -ab =0; 直线EC :y -0a -0=x -b-a -b ,即ax +(a +b )y -ab =0.解方程组⎩⎪⎨⎪⎧(a +b )x +by -ab =0,ax +(a +b )y -ab =0,得⎩⎨⎧x =a 2ba 2+ab +b 2,y =ab2a 2+ab +b 2.即M 点的坐标为⎝⎛⎭⎫a 2b a 2+ab +b 2,ab2a 2+ab +b 2.故k BM =b a .又k AC =0-a b -0=-ab ,∴k BM ·k AC =-1, ∴BM ⊥AC .坐标法解决几何问题的“三部曲”:第一步,建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步,通过代数运算解决代数问题;第三步,把代数运算结果翻译成几何结论.2.已知正△ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值. 解:以BC 所在直线为x 轴,BC 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,则A ⎝⎛⎭⎫0,32a ,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a 2,0. 设P (x ,y ), 则|P A |2+|PB |2+|PC |2 =x 2+⎝⎛⎭⎫y -32a 2+⎝⎛⎭⎫x +a 22+y 2+⎝⎛⎭⎫x -a 22+y 2=3x 2+3y 2-3ay +5a 24=3x 2+3⎝⎛⎭⎫y -36a 2+a 2≥a 2, 当且仅当x =0,y =36a 时,等号成立, ∴所求最小值为a 2,此时P 点坐标为P ⎝⎛⎭⎫0,36a ,它是正△ABC 的中心.[例3] 在下列平面直角坐标系中,分别作出x 25+y 9=1的图形.(1)x 轴与y 轴具有相同的单位长度;(2)x 轴上的单位长度为y 轴上单位长度的2倍; (3)x 轴上的单位长度为y 轴上单位长度的12倍.[思路点拨] 本题考查平面直角坐标系中的伸缩变换对图形的影响及数形结合思想,解决此题只需根据坐标轴的伸缩变换找出变换后x 轴、y 轴单位长度的变化情况,再作出图形即可.[精解详析] (1)建立平面直角坐标系使x 轴与y 轴具有相同的单位长度,则x 225+y 29=1的图形如图①.(2)如果x 轴上的单位长度保持不变,y 轴上的单位长度缩小为原来的12,则x 225+y 29=1的图形如图②.(3)如果y 轴上的单位长度不变,x 轴上的单位长度缩小为原来的12,则x 225+y 29=1的图形如图③.一般地,在平面直角坐标系xOy 中:(1)使x 轴上的单位长度为y 轴上单位长度的k 倍(k >0),则当k =1时,x 轴与y 轴具有相同的单位长度;即为⎩⎪⎨⎪⎧x ′=x ,y ′=y 的伸缩变换,当k >1时,相当于x 轴上的单位长度保持不变,y 轴上的单位长度缩小为原来的1k ,即为⎩⎪⎨⎪⎧x ′=x ,y ′=1k y 的伸缩变换,当0<k <1时,相当于y 轴上的单位长度保持不变,x 轴上的单位长度缩小为原来的k 倍,即为⎩⎪⎨⎪⎧x ′=kx ,y ′=y 的伸缩变换.(2)在平面经过伸缩变换,直线伸缩后仍为直线;圆伸缩后可能是圆或椭圆;椭圆伸缩后可能是椭圆或圆;双曲线伸缩后仍为双曲线;抛物线伸缩后仍为抛物线.本例中若x 轴的单位长度为y 轴上单位长度的35,则椭圆x 225+y 29=1的图形如何?解:如果y 轴上的单位长度不变,x 轴的单位长度缩小为原来的35,即⎩⎪⎨⎪⎧x ′=35x ,y ′=y ,则x 225+y 29=1的图形变为圆.本课时主要考查平面直角坐标系中曲线的求解,常与平面几何知识结合.[考题印证]满足BQ=设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q λQA ,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM =λMP ,求点P 的轨迹方程.[命题立意] 本题考查直线和抛物线的方程、平面向量的概念、性质与运算、动点的轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力,全面考核综合数学素养.[自主尝试] 由QM =λMP知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2), 则x 2-y 0=λ(y -x 2),即 y 0=(1+λ)x 2-λy .①再设B (x 1,y 1),由BQ =λQA, 即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.②将①式代入②式,消去y 0,得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③ 又点B 在抛物线y =x 2上,所以y 1=x 21, 再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2, (1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2, 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0.因λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1.[对应学生用书P4]一、选择题1.方程x 2+xy =0的曲线是( ) A .一个点 B .一条直线C .两条直线D .一个点和一条直线解析:选C 方程变形为x (x +y )=0,∴x =0或x +y =0,而方程x =0,x +y =0表示的是直线,∴C 正确.2.已知△ABC 的底边BC 长为12,且底边固定,顶点A 是动点,且sin B -sin C =12sin A ,若以底边BC 为x 轴、底边BC 的中点为原点建立平面直角坐标系,则点A 的轨迹方程是( )A.x 29-y 227=1 B.x 29-y 227=1(x <-3) C.x 227-y 29=1 D.x 227-y 29=1(x <-3) 解析:选B 由题意知,B (-6,0),C (6,0) 由sin B -sin C =12sin A 得b -c =12a =6,即|AC |-|AB |=6.所以点A 的轨迹是以B (-6,0),C (6,0)为焦点,2a =6的双曲线的左支且y ≠0.其方程为 x 29-y 227=1(x <-3). 3.已知一椭圆的方程为x 216+y 24=1,如果x 轴上的单位长度为y 轴上单位长度的12,则该椭圆的形状为( )解析:选B 如果y 轴上的单位长度保持不变,x 轴上的单位长度缩小为原来的12,则该椭圆的形状为选项B 中所示.4.平面内有一条固定线段AB ,|AB |=4,动点P 满足|P A |-|PB |=3,O 为AB 的中点,则|OP |的最小值是( )A.32B.12 C .2D .3解析:选A 以AB 的中点O 为原点,AB 所在直线为x 轴建立平面直角坐标系,∴a =32.如图,则点P 的轨迹是以A ,B 为焦点的双曲线的一部分.2c =4,c =2,2a =3,∴b 2=c 2-a 2=4-94=74.∴点P 的轨迹方程为x 294-y 274=1(x ≥32).由图可知,点P 为双曲线与x 轴的右交点时,|OP |最小,|OP |的最小值是32.二、填空题5.已知点A (-2,0),B (-3,0),动点P (x ,y )满足PA ·PB=x 2+1,则点P 的轨迹方程是________. 解析:由题意得PA =(-2-x ,-y ),PB=(-3-x ,-y ). ∴PA ·PB=(-2-x )(-3-x )+(-y )2=x 2+1. 即y 2+5x +5=0. 答案:y 2+5x +5=06.在平面直角坐标系中,O 为原点,已知两点A (4,1),B (-1,3),若点C 满足OC =m OA +n OB,其中m ,n ∈[0,1],且m +n =1,则点C 的轨迹方程为________.解析:由题意知,A ,B ,C 三点共线且C 在线段AB 上,点A ,B 所在的直线方程为2x +5y -13=0,且点C 的轨迹为线段AB ,所以,点C 的轨迹方程为2x +5y -13=0,x ∈[-1,4].答案:2x +5y -13=0(-1≤x ≤4)7.在平面直角坐标系中,设点P (x ,y ),定义|OP |=|x |+|y |,其中O 为坐标原点,对以下结论: ①符合|OP |=1的点P 的轨迹围成图形面积为2;②设P 为直线5x +2y -2=0上任意一点,则|OP |的最小值为1;③设P 为直线y =kx +b (k ,b ∈R )上任意一点,则“使|OP |最小的点P 有无数个”的必要不充分条件是“k =±1”.其中正确的结论有________.(填序号) 解析:在①中,由于|OP |=1 ⇔⎩⎪⎨⎪⎧y =-x +1,0≤x ≤1,y =-x -1,-1≤x ≤0,y =x +1,-1≤x ≤0,y =x -1,0≤x ≤1,其图像如图故其面积为2×⎝⎛⎭⎫12×2×1=2. 故①正确. 在②中,当P ⎝⎛⎭⎫255,0时,|OP |=|x |+|y |=255<1, ∴|OP |的最小值不为1,故②错误. 在③中,∵|x |+|y |≥|x +y |=|(k +1)x +b |, 当k =-1时,|x |+|y |≥|b |满足题意, 即|x |+|y |≥|x -y |=|(k -1)x -b |,当k =1时,|x |+|y |≥|b |满足题意,故③正确. 答案:①③8.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论:①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________.解析:因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,而a >1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以|PF 1||PF 2|=a 2对应的轨迹关于原点对称,即②正确;因为S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2≤12|PF 1||PF 2|=12a2,即面积不大于12a 2,所以③正确.答案:②③ 三、解答题9.如图所示,△ABC 中,角A ,B ,C 所对三边分别为a ,b ,c ,且B (-1,0),C (1,0).(1)求满足b >a >c ,b ,a ,c 成等差数列时,顶点A 的轨迹方程. (2)在x 轴上的单位长度为y 轴上单位长度的12倍的平面直角坐标系中作出(1)中轨迹.解:(1)∵b ,a ,c 成等差数列, ∴b +c =2a =2×2=4.即|AB |+|AC |=4>|BC |=2符合椭圆定义条件. 动点A (x ,y )的轨迹是椭圆,且⎩⎪⎨⎪⎧ 2a =4,2c =2,∴⎩⎪⎨⎪⎧a =2,c =1,∴A 点的轨迹方程是x 24+y 23=1.由于b >c ,即|AC |>|AB |,可知A 点轨迹是椭圆左半部分,还必须除去点(0,-3),(0,3). ∵A ,B ,C 构成三角形,∴必须除去点(-2,0). ∴所求轨迹方程为x 24+y 23=1 (-2<x <0).(2)如果y 轴上的单位长度不变,x 轴上的单位长度缩小为原来的12,x 24+y 23=1(-2<x <0)的图形为图示.10.我海军某部发现,一艘敌舰从离小岛O 正东方向80 n mile 的B 处,沿东西方向向O 岛驶来,指挥部立即命令在岛屿O 正北方向40 n mile 的A 处的我军舰沿直线前往拦截,以东西方向为x 轴,南北方向为y 轴,岛屿O 为原点,建立平面直角坐标系并标出A ,B 两点,若敌我两舰行驶的速度相同,在上述坐标系中标出我军舰最快拦住敌舰的位置,并求出该点的坐标.解:A ,B 两点如图所示,A (0,40),B (80,0),∴OA =40(n mile),OB =80(n mile). 我军舰直行到点C 与敌舰相遇, 设C (x,0),∴OC =x ,BC =OB -OC =80-x . ∵敌我两舰速度相同, ∴AC =BC =80-x .在Rt △AOC 中,OA 2+OC 2=AC 2, 即402+x 2=(80-x )2,解得x =30. ∴点C 的坐标为(30,0).11.如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左、右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.解:(1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a (x +a ),①直线A 2B 的方程为y =-y 1x 1-a (x -a ).②由①②得y 2=-y 21x 21-a2(x 2-a 2).③ 由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝⎛⎭⎫1-x 21a 2,代入③得x 2a 2-y 2b2=1(x <-a ,y <0).(2)设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以 b 2x 21⎝⎛⎭⎫1-x 21a 2=b 2x 22⎝⎛⎭⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2.从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.§2极_坐_标_系2.1&2.2 极坐标系的概念 点的极坐标与直角坐标的互化[对应学生用书P5][自主学习]1.极坐标系的概念 (1)极坐标系:在平面内取一个定点O ,叫作极点,自极点O 引一条射线Ox ,叫作极轴;选定一个单位长度和角的正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)点的极坐标:对于平面上任意一点M ,用ρ表示线段OM 的长,用θ表示以Ox 为始边,OM 为终边的角度,ρ叫作点M 的极径,θ叫作点M 的极角,有序实数对(ρ,θ)就叫作点M 的极坐标,记作M (ρ,θ).①特别地,当点M 在极点时,它的极径ρ=0,极角θ可以取任意值;②点与极坐标的关系:平面内一点的极坐标可以有无数对,当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点,如果规定ρ>0,0≤θ<2π或者-π<θ≤π,那么除极点外,平面内的点和极坐标就一一对应了.2.点的极坐标与直角坐标的互化 (1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合; ③两种坐标系取相同的长度单位. (2)极坐标与直角坐标的互化:①将点M 的极坐标(ρ,θ)化为直角坐标(x ,y )的关系式为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ.②将点的直角坐标(x [合作探究],y )化为极坐标(ρ,θ)的关系式为⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).1.极坐标系与平面直角坐标系有什么区别和联系?提示:区别:平面直角坐标系以互相垂直的两条数轴为几何背景,而极坐标以角和距离为背景. 联系:二者都是平面坐标系,用来研究平面内点与距离等有关问题.2.点M (ρ,θ)关于极轴、极点以及过极点且垂直于极轴的直线的对称点的坐标各为什么? 提示:(ρ,2π-θ),(ρ,π+θ),(ρ,π-θ).3.把直角坐标转化为极坐标时,表示方法唯一吗? 提示:通常有不同的表示法.(极角相差2π的整数倍)[对应学生用书P6][例1] 在极坐标系中,画出点A ⎝⎭⎫1,π4,B ⎝⎭⎫2,3π2,C ⎝⎭⎫3,-π4,D ⎝⎭⎫4,9π4. [思路点拨] 本题考查极坐标系以及极坐标的概念,同时考查数形结合思想,解答此题需要先建立极坐标系,再作出极角的终边,然后以极点O 为圆心,极径为半径分别画弧,从而得到点的位置.[精解详析] 在极坐标系中先作出π4线,再在π4线上截取|OA |=1,这样可得到点A ⎝⎛⎭⎫1,π4.同样可作出点B ⎝⎛⎭⎫2,3π2,C ⎝⎛⎭⎫3,-π4,D ⎝⎛⎭⎫4,9π4,如图所示.由极坐标确定点的位置的步骤 (1)取定极点O ;(2)作方向为水平向右的射线Ox 为极轴;(3)以极点O 为顶点,以极轴Ox 为始边,通常按逆时针方向旋转极轴Ox 确定出极角的终边; (4)以极点O 为圆心,以极径为半径画弧,弧与极角终边的交点即是所求点的位置.1.在极坐标系中,作出以下各点:A (4,0),B ⎝⎛⎭⎫3,π4,C ⎝⎛⎭⎫2,π2,D ⎝⎛⎭⎫3,7π4;结合图形判断点B ,D 的位置是否具有对称性;并求出B ,D 关于极点的对称点的极坐标.(限定ρ≥0,θ∈[0,2π))解:如图,A ,B ,C ,D 四个点分别是唯一确定的.由图形知B ,D 两点关于极轴对称,且B ,D 关于极点的对称点的极坐标分别为⎝⎛⎭⎫3,5π4,⎝⎛⎭⎫3,3π4.[例2] 已知A ⎝⎭⎫3,-π3,B ⎝⎭⎫1,2π3,将A ,B 坐标化为直角坐标,并求A ,B 两点间的距离. [思路点拨] 本题考查如何将极坐标化为直角坐标,解答此题需要利用互化公式先将极坐标化为直角坐标,再由两点间的距离公式得结果.[精解详析] 将A ⎝⎛⎭⎫3,-π3,B ⎝⎛⎭⎫1,2π3由极坐标化为直角坐标, 对于点A ,有x =3cos ⎝⎛⎭⎫-π3=32, y =3sin ⎝⎛⎭⎫-π3=-332,∴A ⎝⎛⎭⎫32,-332. 对于点B ,有x =1×cos 2π3=-12,y =1×sin 2π3=32,∴B (-12,32).∴|AB |=⎝⎛⎭⎫32+122+⎝⎛⎭⎫-332-322 =4+12=4.1.将极坐标M (ρ,θ)化为直角坐标(x ,y ),只需根据公式:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ即可得到;2.利用两种坐标的互化,可以把不熟悉的极坐标问题转化为熟悉的直角坐标问题求解.本例中如何由极坐标直接求A ,B 两点间的距离? 解:根据M (ρ1,θ1),N (ρ2,θ2),则由余弦定理得:|MN |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2),所以|AB |=32+12-2×3×1×cos ⎣⎡⎦⎤2π3-⎝⎛⎭⎫-π3=4.[例3] 分别将下列点的直角坐标化为极坐标(ρ>0,(1)(-1,1),(2)(-3,-1).[思路点拨] 本题考查如何将直角坐标化为极坐标,同时考查三角函数中由值求角问题,解答此题利用互化公式即可,但要注意点所在象限.[精解详析] (1)∵ρ=(-1)2+12=2,tan θ=-1,θ∈[0,2π), 又点(-1,1)在第二象限,∴θ=3π4.∴直角坐标(-1,1)化为极坐标为⎝⎛⎭⎫2,3π4. (2)ρ=(-3)2+(-1)2=2, tan θ=-1-3=33,θ∈[0,2π),∵点(-3,-1)在第三象限, ∴θ=76π.∴直角坐标(-3,-1)化为极坐标为⎝⎛⎭⎫2,7π6.将点的直角坐标(x ,y )化为极坐标(ρ,θ)时,运用公式⎩⎪⎨⎪⎧ρ=x 2+y 2,tan θ=yx (x ≠0)即可,在[0,2π)范围内,由tan θ=yx (x ≠0)求θ时,要根据直角坐标的符号特征,判断出点所在象限,如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π,k ∈Z 即可.2.将下列各点由直角坐标化为极径ρ是正值,极角在0到2π之间的极坐标. (1)(3,3);(2)(-2,-23).解:(1)ρ=32+(3)2=23,tan θ=y x =33,又点(3,3)在第一象限,所以θ=π6.所以点(3,3)的极坐标为23,π6.(2)ρ=(-2)2+(-23)2=4, tan θ=y x =-23-2=3,又点(-2,-23)在第三象限,所以θ=4π3.所以点(-2,-23)的极坐标为⎝⎛⎭⎫4,4π3.本课时常考查极坐标的确定及点的直角坐标与极坐标的互化,特别是直角坐标化为极坐标常与三角知识交汇命题,更成为命题专家的新宠.点P 的直角坐标为(1,-3),则点P 的极坐标为( ) A.⎝⎛⎭⎫2,π3 B.⎝⎛⎭⎫2,4π3 C.⎝⎛⎭⎫2,-π3 D.⎝⎛⎭⎫2,-4π3 [命题立意] 本题主要考查点的极坐标与直角坐标 的互化,同时还考查了三角知识及运算解题能力. [自主尝试]ρ=12+(-3)2=2,tan θ=-31=-3,又点(1,-3)在第四象限,所以OP 与x 轴所成的角为5π3,故点P 的一个极坐标为⎝⎛⎭⎫2,5π3,排除A ,B 选项.又-43π+2π=23π,所以极坐标⎝⎛⎭⎫2,-4π3所表示的点在第二象限,故D 不正确,而-π3+2π=53π. [答案] C[对应学生用书P8]一、选择题1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( ) A.⎝⎛⎭⎫2,π4 B.⎝⎛⎭⎫2,3π4 C.⎝⎛⎭⎫2,5π4 D.⎝⎛⎭⎫2,7π4 解析:选B ρ=(-2)2+(2)2=2, tan θ=2-2=-1,∵点P 在第二象限, ∴最小正角θ=3π4.2.在极坐标系中与点A ⎝⎛⎭⎫3,-π3关于极轴所在的直线对称的点的极坐标是( ) A.⎝⎛⎭⎫3,2π3 B.⎝⎛⎭⎫3,π3 C.⎝⎛⎭⎫3,4π3 D.⎝⎛⎭⎫3,5π6 解析:选B 与点A ⎝⎛⎭⎫3,-π3关于极轴所在直线的对称的点的极坐标可以表示为⎝⎛⎭⎫3,2k π+π3(k ∈Z ),这时只有选项B 满足条件.3.在极坐标系中,若等边△ABC 的两个顶点是A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,5π4,那么可能是顶点C 的坐标的是( )A.⎝⎛⎭⎫4,3π4B.⎝⎛⎭⎫23,3π4 C.()23,πD.()3,π解析:选B 如图,由题设,可知A ,B 两点关于极点O 对称,即O 是AB 的中点.又|AB |=4,△ABC 为正三角形,∴|OC |=23,∠AOC =π2,点C 的极角θ=π4+π2=3π4或5π4+π2=7π4,即点C 的极坐标为⎝⎛⎭⎫23,3π4或⎝⎛⎭⎫23,7π4. 4.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点(ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称.二、填空题5.将极轴Ox 绕极点顺时针方向旋转π6得到射线OP ,在OP 上取点M ,使|OM |=2,则ρ>0,θ∈[0,2π)时点M 的极坐标为________,它关于极轴的对称点的极坐标为________(ρ>0,θ∈[0,2π)).解析:ρ=|OM |=2,与OP 终边相同的角为-π6+2k π(k ∈Z ).∵θ∈[0,2π),∴k =1,θ=11π6.∴M ⎝⎛⎭⎫2,11π6. ∴M 关于极轴的对称点为(2,π6).答案:⎝⎛⎭⎫2,11π6 ⎝⎛⎭⎫2,π6 6.点A ⎝⎛⎭⎫5,π3在条件: (1)ρ>0,θ∈(-2π,0)下的极坐标是________; (2)ρ<0,θ∈(2π,4π)下的极坐标是________.解析:(1)当ρ>0时,点A 的极坐标形式为⎝⎛⎭⎫5,2k π+π3(k ∈Z ), ∵θ∈(-2π,0).令k =-1,点A 的极坐标为⎝⎛⎭⎫5,-5π3,符合题意. (2)当ρ<0时,⎝⎛⎭⎫5,π3的极坐标的一般形式是⎝⎛⎭⎫-5,(2k +1)π+π3(k ∈Z ).∵θ∈(2π,4π),当k =1时,点A 的极坐标为⎝⎛⎭⎫-5,10π3,符合题意. 答案:⎝⎛⎭⎫5,-5π3 (2)⎝⎛⎭⎫-5,10π3 7.直线l 过点A ⎝⎛⎭⎫7,π3,B ⎝⎛⎭⎫7,π6,则直线l 与极轴所在直线的夹角等于________. 解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=7,∠AOB =π3-π6=π6,所以∠OAB =π-π62=5π12.所以∠ACO =π-π3-5π12=π4.答案:π48.已知两点的极坐标是A ⎝⎛⎭⎫3,π12,B ⎝⎛⎭⎫-8,π12,则AB 中点的一个极坐标是________. 解析:画出示意图,A ,B 与极点O 共线,∴ρ=12(3-8)=-52,θ=π12. 故AB 中点的一个极坐标为⎝⎛⎭⎫-52,π12. 答案:⎝⎛⎭⎫-52,π12 三、解答题9.设有一颗彗星,围绕地球沿一抛物线轨道运行,地球恰好位于该抛物线的焦点处,当此彗星离地球30万千米时,经过地球和彗星的直线与抛物线对称轴的夹角为30°,试建立适当的极坐标系,写出彗星此时的极坐标.解:如图所示,建立极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列4种情形:①当θ=30°时,ρ=30(万千米); ②当θ=150°时,ρ=30(万千米); ③当θ=210°时,ρ=30(万千米); ④当θ=330°时,ρ=30(万千米).∴彗星此时的极坐标有4种情形:(30,30°),(30,150°),(30,210°),(30,330°). 10.在极坐标系中,点A 和点B 的极坐标分别为⎝⎛⎭⎫2,π3和(3,0),O 为极点. (1)求|AB |;(2)求S △AOB .解:|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)=22+32-2×2×3×cos ⎝⎛⎭⎫π3-0=4+9-6=7.S △AOB =12|OA |·|OB |·sin ∠AOB=12×2×3×sin ⎝⎛⎭⎫π3-0 =332. 11.在极坐标系中,如果A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标. 解:法一:对于A ⎝⎛⎭⎫2,π4有ρ=2,θ=π4, ∴x =ρcos θ=2cos π4=2,y =ρsin θ=2sin π4= 2.∴A (2,2).对于B ⎝⎛⎭⎫2,5π4有ρ=2,θ=54π. ∴x =2cos 5π4=-2,y =2sin 5π4=- 2.∴B (-2,-2).设C 点的坐标为(x ,y ),由于△ABC 为等边三角形,故有|AB |=|BC |=|AC |. ∴有(x +2)2+(y +2)2=(x -2)2+(y -2)2 =(2+2)2+(2+2)2.∴有⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解之得⎩⎨⎧ x =6,y =-6,或⎩⎨⎧x =-6,y = 6.∴C 点的坐标为(6,-6)或(-6,6).∴θ=7π4或θ=3π4.∴点C 的极坐标为⎝⎛⎭⎫23,7π4或⎝⎛⎭⎫23,3π4. 法二:设C 点的极坐标为(ρ,θ)(0≤θ<2π,ρ>0). 则有|AB |=|BC |=|AC |.∴⎩⎨⎧ρ2+22-2×2ρcos ⎝⎛⎭⎫θ-π4=22+22-2×2×2cos π,ρ2+22-2×2ρ cos ⎝⎛⎭⎫θ-5π4=22+22-2×22cos π.解之得⎩⎪⎨⎪⎧ ρ=23,θ=3π4或⎩⎪⎨⎪⎧ρ=23,θ=7π4.∴点C 的极坐标为⎝⎛⎭⎫23,3π4,⎝⎛⎭⎫23,7π4.2.3直线和圆的极坐标方程[对应学生用书P9][自主学习]1.曲线的极坐标方程(1)意义:在极坐标系中,如果曲线C上的点与一个二元方程φ(ρ,θ)=0建立了如下的关系:①曲线C上的每个点的极坐标中至少有一组(ρ,θ)满足方程φ(ρ,θ)=0;②极坐标满足方程φ(ρ,θ)=0的点都在曲线C上.那么方程φ(ρ,θ)=0叫作曲线C的极坐标方程,曲线C叫作极坐标方程φ(ρ,θ)=0的曲线.(2)求极坐标方程的步骤:求曲线的极坐标方程通常有以下五个步骤:①建立适当的极坐标系;②在曲线上任取一点M(ρ,θ);③根据曲线上的点所满足的条件写出等式;④用极坐标ρ,θ表示上述等式,并化简得曲线的极坐标方程;⑤证明所得的方程是曲线的极坐标方程.通常第⑤步不必写出,只要对特殊点的坐标加以检验即可.2.常见直线和圆的极坐标方程[合作探究]1.曲线的极坐标方程与直角坐标方程有何异同?提示:由于平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程与直角坐标方程也有不同之处.一条曲线上点的极坐标有多组表示形式,这里要求至少有一组满足极坐标方程.有些表示形式可能不满足方程.例如,对极坐标方程ρ=θ,点M ⎝⎛⎭⎫π4,π4可以表示为⎝⎛⎭⎫π4,π4+2π或⎝⎛⎭⎫π4,π4-2π等多种形式,其中只有⎝⎛⎭⎫π4,π4的形式满足方程,而其他表示形式都不满足方程.2.在极坐标系中,θ=-π4与tan θ=-1表示同一条直线吗?提示:表示同一条直线.3.在极坐标系中,ρ=1或ρ=-1表示同一个圆吗? 提示:表示同一个圆.[对应学生用书P9][例1] 求:(1)过点A ⎝⎭⎫2,π4平行于极轴的直线的极坐标方程. (2)过点A ⎝⎛⎭⎫3,π3且和极轴成3π4角的直线的极坐标方程. [思路点拨] 本例主要考查直线的极坐标方程以及正弦定理等三角、平面几何知识,同时亦考查了数形结合思想,解答此题需要先设待求直线上任一点M (ρ,θ),寻找到ρ,θ满足的几何等式,建立关于ρ,θ的方程,再化简即可.[精解详析] (1)法一:如图在直线l 上任取一点M (ρ,θ),在△OAM 中|OA |=2,|OM |=ρ, ∠OAM =π-π4⎝⎛⎭⎫或π4, ∠OMA =θ(或π-θ). 在△OAM 中,由正弦定理得2sin θ=ρsin π4, ∴ρsin θ= 2.点A ⎝⎛⎭⎫2,π4也满足上述方程. 因此过点A ⎝⎛⎭⎫2,π4平行于极轴的直线的极坐标方程为ρsin θ= 2. 法二:如图,在直线l 上任取一点M (ρ,θ),过M 作MH ⊥极轴于H 点.∵A 点坐标为⎝⎛⎭⎫2,π4, ∴|MH |=2·sin π4= 2.在直角三角形MHO 中,点A ⎝⎛⎭⎫2,π4也满足此方程. ∴过点A ⎝⎛⎭⎫2,π4平行于极轴的直线的极坐标方程为ρsin θ= 2. (2)如图,设M (ρ,θ)为直线l 上一点.已知A ⎝⎛⎭⎫3,π3,故|OA |=3. ∠AOB =π3,又已知∠MBx =3π4,∴∠OAB =3π4-π3=5π12.又∠OMA =π-⎝⎛⎭⎫3π4-θ=π4+θ,在△MOA 中,根据正弦定理得3sin ⎝⎛⎭⎫π4+θ=ρsin 5π12,又sin 5π12=sin 7π12=sin ⎝⎛⎭⎫π4+π3=6+24, 将sin ⎝⎛⎭⎫π4+θ展开化简代入可得 ρ(sin θ+cos θ)=332+32,又点A ⎝⎛⎭⎫3,π3也满足上述方程, 所以过点A ⎝⎛⎭⎫3,π3且和极轴成3π4角的直线的极坐标方程为:ρ(sin θ+cos θ)=332+32.在极坐标系中,求直线的极坐标方程的一般思路:在直线上设M (ρ,θ)为任意一点,连接OM ;构造出含OM 的三角形,再利用正弦定理求OM ,即把OM 用θ表示,即为直线的极坐标方程.若将本例(2)中点A 变为(2,0),3π4变为π6,则直线的极坐标方程如何?解:设M (ρ,θ)为直线上除A 点以外的任意一点, 连接OM ,则在△AOM 中,∠AOM =θ,∠AMO =π6-θ,∠OAM =π-π6,OM =ρ,由正弦定理可得|OA |sin ⎝⎛⎭⎫π6-θ=|OM |sin ⎝⎛⎭⎫π-π6.∴ρsin ⎝⎛⎭⎫π-π6=2sin ⎝⎛⎭⎫π6-θ. ∴ρ=1sin ⎝⎛⎭⎫π6-θ.∴ρsin π6cos θ-ρcos π6sin θ=1.化简得:ρcos θ-3ρsin θ=2. 经检验点(2,0)的坐标适合上述方程, 所以满足条件的直线的极坐标方程为 ρ(cos θ-3sin θ)=2,其中,0≤θ<π6(ρ≥0)和7π6≤θ<2π(ρ≥0).[例2] 求圆心在A ⎝⎛⎭⎫2,3π2处并且过极点的圆的极坐标方程,并判断点⎝⎭⎫-2,sin 5π6是否在这个圆上. [思路点拨] 本题考查圆的极坐标方程及解三角形的知识,解答此题需要先设圆上任意一点M (ρ,θ),建立等式转化为ρ,θ的方程,化简即可.[精解详析] 由题意知,圆经过极点O ,OA 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连接AM ,则OM ⊥MA ,在Rt △OAM中,|OM |=|OA |cos ∠AOM ,即ρ=2r cos ⎝⎛⎭⎫3π2-θ,∴ρ=-4sin θ.经验证,点O (0,0),A ⎝⎛⎭⎫4,3π2的坐标满足上式.所以满足条件的圆的极坐标方程为ρ=-4sin θ. ∵sin5π6=12,∴ρ=-4sin θ=-4sin 5π6=-2, ∴点⎝⎛⎭⎫-2,sin 5π6在此圆上.在极坐标系中,求圆的极坐标方程的一般思路:在圆上设M (ρ,θ)为任意一点,连接OM ,构造出含OM 的三角形,再利用解直角三角形或解斜三角形的正弦、余弦定理求OM ,即把OM 用θ表示,从而得到圆的极坐标方程.1.求半径为1,圆心在点C ⎝⎛⎭⎫3,π4的圆的极坐标方程. 解:设圆C 上的任意一点为M (ρ,θ),且O ,C ,M 三点不共线,不妨设如图所示情况,在△OCM 中,由余弦定理得:。
高中数学选修四教案
高中数学选修四教案
一、教案标题:向量的数量积及其应用
二、教学目标:
1. 掌握向量的数量积的定义和性质;
2. 能够运用向量的数量积求向量夹角和向量的投影;
3. 能够应用向量的数量积解决实际问题。
三、教学内容:
1. 向量的数量积的定义和性质;
2. 向量夹角的余弦定理;
3. 向量的投影及其应用。
四、教学过程:
1. 导入:通过引入实际问题,引出向量的数量积的概念和应用。
2. 讲解向量的数量积的定义和性质,引导学生理解向量的数量积的意义。
3. 演示向量夹角的余弦定理的推导过程,并进行例题讲解。
4. 练习:让学生进行练习,巩固向量的数量积和夹角的概念。
5. 讲解向量的投影的概念及其应用,举例说明。
6. 练习:让学生进行解决实际问题的练习,提高应用能力。
7. 总结:归纳本节课的重点内容,强化学生对向量的数量积和应用的理解。
五、教学辅助手段:
1. 教学PPT;
2. 黑板;
3. 教材;
4. 实物或图片展示。
六、教学反馈:
1. 布置作业,让学生巩固所学知识;
2. 听取学生对本节课的反馈和建议;
3. 综合评价学生的学习情况,及时调整教学策略。
高中选修4数学教案
高中选修4数学教案
教师:XXX
第一课时:立体几何的基本概念
目标:了解立体几何的基本概念,掌握立体几何的相关术语。
教学重点:球、柱、锥的表面积和体积的计算。
教学难点:利用给定条件计算球、柱、锥的体积。
教学准备:教科书、教学PPT、黑板、粉笔。
教学过程:
1. 导入:通过图片展示不同的立体几何图形,让学生猜测它们的名称。
2. 引入:介绍球、柱、锥的定义和特点,让学生看视频了解它们的表面积和体积计算方法。
3. 实例讲解:以一个具体的例子说明如何计算球、柱、锥的体积。
4. 练习:让学生自行计算几个给定图形的体积,并进行讲解和讨论。
5. 拓展:引导学生思考如何计算其他立体几何图形的体积,并鼓励他们尝试解决问题。
6. 总结:回顾本节课的内容,强调立体几何的重要性,并对下节课的内容做简单预告。
板书设计:
立体几何的基本概念
- 球的表面积和体积的计算
- 柱的表面积和体积的计算
- 锥的表面积和体积的计算
作业布置:布置一些练习题,巩固本节课所学知识。
教学反思:本节课主要介绍了立体几何的基本概念和相关计算方法,通过实例讲解和练习,学生对立体几何的理解有了一定的提高。
在接下来的教学中,需要继续引导学生理解和应
用这些知识,提高他们的数学解题能力。
人民教育出版社B版高中数学目录(全)
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结。
【2019-2020年度】人教B版高中数学-选修4-4教学案-第一章球坐标系(Word)
【2019-2020年度】人教B 版高中数学-选修4-4教学案-第一章球坐标系(Word )[读教材·填要点]1.球坐标系设空间中一点M 的直角坐标为(x ,y ,z),点M 在xOy 坐标面上的投影点为M0,连接OM 和OM0,设z 轴的正向与向量的夹角为φ,x 轴的正向与0的夹角为θ,M 点到原点O 的距离为r ,则由三个数r ,θ,φ构成的有序数组(r ,θ,φ)称为空间中点M 的球坐标.在球坐标中限定r≥0,0≤θ<2π,0≤φ≤π.OM OM2.直角坐标与球坐标的转化空间点M 的直角坐标(x ,y ,z)与球坐标(r ,φ,θ)之间的变换关系为⎩⎨⎧x =rsin φ·cos θ,y =rsin φ·sin θ,z =rcos φ. [小问题·大思维]球坐标与平面上的极坐标之间有什么关系?提示:空间某点的球坐标中的第二个坐标θ就是该点在xOy 平面上投影点的极坐标中的第二个坐标θ.[例1][思路点拨] 本题考查球坐标与直角坐标的变换关系.解答本题需要先搞清球坐标中各个坐标的意义,然后代入相应的公式求解即可.[精解详析] ∵M 的球坐标为,∴r =5,φ=,θ=.由变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =5sin 5π6cos 4π3=-54,y =5sin 5π6sin 4π3=-534,z =5cos 5π6=-532.故它的直角坐标为. 已知球坐标求直角坐标,可根据变换公式直接求解,但要分清哪个角是φ,哪个角是θ.1.已知点P 的球坐标为,求它的直角坐标.解:由变换公式得x =rsin φcos θ=4sin cos =2,y =rsin φsin θ=4sin sin =2,z =rcos φ=4cos =-2.∴它的直角坐标为(2,2,-2).[例[思路点拨] 本题考查直角坐标与球坐标的变换关系.解答本题只需将已知条件代入变换公式求解即可,但应注意θ与φ的取值范围.[精解详析] 由坐标变换公式,可得r ===2.由rcos φ=z =,得cos φ==,φ=.又tan θ==1,θ=(x>0,y>0),所以知M点的球坐标为.由直角坐标化为球坐标时,我们可以先设点M的球坐标为(r,θ,φ),再利用变换公式求出r,θ,φ代入点的球坐标即可;也可以利用r2=x2+y2+z2,tan θ=,cos φ=求解.特别注意由直角坐标求球坐标时,θ和φ的取值应首先看清点所在的象限,准确取值,才能无误.2.设点M的直角坐标为,求它的球坐标.解:由变换公式得r===1.由rcos φ=z=-得cos φ=-,φ=.又tan θ==(r>0,y>0),得θ=,∴M的球坐标为.[例3] O为端点且与零子午线相交的射线Ox为极轴,建立坐标系.有A,B两个城市,它们的球坐标分别为AR,,,BR,,.飞机沿球的大圆圆弧飞行时,航线最短,求最短的路程.[思路点拨] 本题考查球坐标系的应用以及球面上的最短距离.解答本题需要搞清球的大圆的圆心角及求法.[精解详析] 如图所示,因为A,B,可知∠AOO1=∠O1OB=,∴∠O1AO=∠O1BO=.又∠EOC=,∠EOD=,∴∠COD=-=.∴∠AO1B=∠COD=.在Rt△OO1B中,∠O1BO=,OB=R,∴O1B=O1A=R.∵∠AO1B=,∴AB=R.在△AOB中,AB=OB=OA=R,∴∠AOB=.故飞机沿经过A,B两地的大圆飞行,航线最短,其路程为R.我们根据A,B两地的球坐标找到纬度和经度,当飞机沿着过A,B两地的大圆飞行时,飞行最快.求所飞行的路程实际上是要求我们求出过A,B两地的球面距离.3.用两平行面去截球,如图,在两个截面圆上有两个点,它们的球坐标分别为A,B8,θB,,求出这两个截面间的距离.解:由已知,OA=OB=8,∠AOO1=,∠BOO1=.∴在△AOO1中,OO1=4.在△BOO2中,∠BOO2=,OB=8,∴OO2=4,则O1O2=OO1+OO2=8.即两个截面间的距离O1O2为8.一、选择题1.已知一个点P的球坐标为,点P在xOy平面上的投影点为P0,则与的夹角为( )OPA.- B.3π4C.D.π3解析:选A ∵φ=,∴OP 与OP0之间的夹角为=. 2.点M 的球坐标为(r ,φ,θ)(φ,θ∈(0,π)),则其关于点(0,0,0)的对称点的坐标为( )A .(-r ,-φ,-θ)B .(r ,π-φ,π-θ)C .(r ,π+φ,θ)D .(r ,π-φ,π+θ)解析:选D 设点M 的直角坐标为(x ,y ,z),则点M 关于(0,0,0)的对称点M′的直角坐标为(-x ,-y ,-z),设M′的球坐标为(r′,φ′,θ′),因为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,所以⎩⎨⎧ r′sin φ′cos θ′=-rsin φcos θ,r′sin φ′sin θ′=-rsin φsin θ,r′cos φ′=-rcos φ,可得⎩⎨⎧ r′=r ,φ′=π-φ,θ′=π+θ,即M′的球坐标为(r ,π-φ,π+θ).3.点P 的球坐标为,则它的直角坐标为( )A .(1,0,0)B .(-1,-1,0)C .(0,-1,0)D .(-1,0,0)解析:选D x =rsin φcos θ=1·sin ·cos π=-1, y =rsin φsin θ=1·sinsin π=0,z =rcos φ=1·cos=0,∴它的直角坐标为(-1,0,0).4.已知点P 的柱坐标为,点B 的球坐标为,则这两个点在空间直角坐标系中的点的坐标为( )A .P(5,1,1),B ⎝⎛⎭⎪⎫364,324,62 B .P(1,1,5),B ⎝⎛⎭⎪⎫364,324,62 C .P ,B(1,1,5)D .P(1,1,5),B ⎝ ⎛⎭⎪⎫62,364,324 解析:选B 球坐标与直角坐标的互化公式为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,柱坐标与直角坐标的互化公式为⎩⎨⎧ x =ρcos θ,y =ρsin θ,z =z.设P 点的直角坐标为(x ,y ,z),则x =cos =×=1, y =sin =1,z =5.设B 点的直角坐标为(x′,y′,z′),则x′=sin cos =××=,y′=sin sin =××=,z′=cos =×=.所以点P 的直角坐标为(1,1,5),点B 的直角坐标为.二、填空题5.以地球中心为坐标原点,地球赤道平面为xOy 坐标面,由原点指向北极点的连线方向为z 轴正向,本初子午线所在平面为zOx坐标面,如图所示.若某地在西经60°,南纬45°,地球的半径为R ,则该地的球坐标可表示为________.解析:由球坐标的定义可知,该地的球坐标为R ,,.答案:⎝ ⎛⎭⎪⎫R ,5π3,3π4 6.已知点M 的球坐标为,则它的直角坐标为________,它的柱坐标是________.解析:由坐标变换公式直接得直角坐标和柱坐标.答案:(-2,2,2) ⎝ ⎛⎭⎪⎫22,3π4,22 7.设点M 的直角坐标为(-1,-1,),则它的球坐标为________. 解析:由坐标变换公式,得r ===2,cos φ==,∴φ=.∵tan θ===1,又∵x<0,y<0,∴θ=.∴M 的球坐标为.答案:⎝ ⎛⎭⎪⎫2,5π4,π4 8.在球坐标系中,方程r =1表示________,方程φ=表示空间的________.解析:数形结合,根据球坐标的定义判断形状.答案:球心在原点,半径为1的球面 顶点在原点,轴截面顶角为的圆锥面三、解答题9.如图,请你说出点M 的球坐标.解:由球坐标的定义,记|OM|=R ,OM 与z 轴正向所夹的角为φ.设M 在xOy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点M 的位置就可以用有序数组(R ,θ,φ)表示.∴M 点的球坐标为M(R ,θ,φ).10.已知点P 的球坐标为,求它的直角坐标.解:根据坐标变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =2sin 3π4cos 7π6=2·22·⎝ ⎛⎭⎪⎫-32=-62,y =2sin 3π4sin 7π6=2·22·⎝ ⎛⎭⎪⎫-12=-22,z =2·cos 3π4=2·⎝ ⎛⎭⎪⎫-22=-2,∴点P 的直角坐标为. 11.如图,建立球坐标系,正四面体ABCD 的棱长为1,求A ,B ,C ,D 的球坐标.(其中O 是△BCD 的中心)解:O 是△BCD 的中心,则OC =OD =OB =,AO =.∴C ,D ,B,A.[对应学生用书P19][对应学生用书P19]1的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x 轴,y 轴(坐标原点).2.坐标系的建立,要尽量使我们研究的曲线的方程简单.[例1] 线段AB 与CD 互相垂直且平分于点O ,|AB|=2a ,|CD|=2b ,动点P 满足|PA|·|PB|=|PC|·|PD|,求动点P 的轨迹方程.[解] 以AB 的中点O 为原点,直线AB 为x 轴建立直角坐标系,如图所示.设P(x ,y),则A(-a,0),B(a,0),C(0,-b),D(0,b),由题设,知|PA|·|PB|=|PC|·|PD|.∴ ·错误!= ·.化简得x2-y2=,∴动点P 的轨迹方程为x2-y2=.设点点P(X ,Y)对应点P′(x′,y′),称这种变换为平面直角坐标系中的坐标伸缩变换.[例2] 在同一平面直角坐标系中,经过伸缩变换后,曲线C 变为曲线(X -5)2+(Y +6)2=1,求曲线C 的方程,并判断其形状.[解] 将代入(X -5)2+(Y +6)2=1中,得(2x -5)2+(2y +6)2=1.化简,得⎝⎛⎭⎪⎫x -522+(y +3)2=. 该曲线是以为圆心,为半径的圆.1F(ρ,θ)=0.如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程.2.平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处.一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.3.求轨迹方程的方法有直接法、定义法、相关点代入法,其在极坐标中仍然适用.注意求谁设谁,找出所设点的坐标ρ,θ的关系.[例3] △ABC的底边BC=10,∠A=∠B,以B为极点,BC为极轴,求顶点A的轨迹的极坐标方程.[解] 如图,令A(ρ,θ).△ABC内,设∠B=θ,∠A=,又|BC|=10,|AB|=ρ,所以由正弦定理,得=.化简,得A点轨迹的极坐标方程为ρ=10+20cos θ.1x轴的正半轴作为极轴并在两种坐标系下取相同的单位.2.互化公式为x=ρcos θ,y=ρsin θ3.直角坐标方程化极坐标方程可直接将x=ρcos θ,y=ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x,y代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.[例4] 把下列极坐标方程化为直角坐标方程,并指出它们分别表示什么曲线.(1)ρ=2acos θ(a>0);(2)ρ=9(sin θ+cos θ);(3)ρ=4;(4)2ρcos θ-3ρsin θ=5.[解] (1)ρ=2acos θ,两边同时乘以ρ,得ρ2=2aρcos θ,即x2+y2=2ax.整理得x2+y2-2ax=0,即(x-a)2+y2=a2.它是以(a,0)为圆心,以a为半径的圆.(2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ),即x2+y2=9x+9y,又可化为2+2=.它是以为圆心,以为半径的圆.(3)将ρ=4两边平方得ρ2=16,即x2+y2=16.它是以原点为圆心,以4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x-3y=5.它是一条直线.1M0,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点M0在平面xOy上的极坐标.这时点M的位置可由有序数组(ρ,θ,z)表示,叫做点M的柱坐标.2.球坐标:建立空间直角坐标系O xyz,设M是空间任意一点,连接OM,记|OM|=r,OM与Oz轴正向所夹的角为φ,设M在xOy平面上的射影为M0.Ox轴按逆时针方向旋转到OM0时,所转过的最小正角为θ,则M(r,θ,φ)为M点的球坐标.[例5] 在柱坐标系中,求满足的动点M(ρ,θ,z)围成的几何体的体积.[解] 根据柱坐标系与点的柱坐标的意义可知,满足ρ=1,0≤θ<2π,0≤z≤2的动点M(ρ,θ,z)的轨迹是以直线Oz 为轴,轴截面为正方形的圆柱,如图所示,圆柱的底面半径r =1,h =2,∴V=Sh =πr2h =2π.[例6] 如图,长方体OABC —D′A′B′C′中,OA =OC =a ,BB′=OA ,对角线OB′与BD′相交于点P ,顶点O 为坐标原点,OA ,OC 分别在x 轴,y 轴的正半轴上.试写出点P 的球坐标.[解] r =|OP|,φ=∠D′OP,θ=∠AOB,而|OP|=a ,∠D′OP=∠OB′B,tan ∠OB′B==1,∴∠OB′B=,θ=∠AOB=.∴点P 的球坐标为.[对应学生用书P21]一、选择题1.点M 的直角坐标是(-1,),则点M 的极坐标为( )A.B.⎝ ⎛⎭⎪⎫2,-π3C.D.,k∈Z解析:选C ρ2=(-1)2+()2=4,∴ρ=2.又∴⎩⎪⎨⎪⎧ cos θ=-12,sin θ=32.∴θ=π+2k π,k ∈Z.即点M 的极坐标为,k∈Z.2.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( )A.x2+y2=0或y=1 B.x=1C.x2+y2=0或x=1 D.y=1解析:选 C ρ(ρcos θ-1)=0,ρ==0,或ρcos θ=x =1.3.极坐标方程ρcos θ=2sin 2θ表示的曲线为( )A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆解析:选C ρcos θ=4sin θcos θ,cos θ=0,或ρ=4sin θ(ρ2=4ρsin θ),则x=0,或x2+y2=4y.4.极坐标系内曲线ρ=2cos θ上的动点P与定点Q的最近距离等于( )A.-1B.-1C.1 D.2解析:选A 将曲线ρ=2cos θ化成直角坐标方程为(x-1)2+y2=1,点Q的直角坐标为(0,1),则P到Q的最短距离为点Q与圆心的距离减去半径,即-1.二、填空题5.极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线焦点的极坐标为________________.解析:原方程化为直角坐标方程为-=1,∴c==,双曲线在直角坐标系下的焦点坐标为(,0),(-,0),故在极坐标系下,曲线的焦点坐标为(,0),(,π).答案:(,0),(,π)6.点M的球坐标为,则它的直角坐标为________.解析:x=6·sin·cos =3,y=6sinsin=3,z=6cos=0,∴它的直角坐标为(3,3,0).答案:(3,3,0)7.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A,B两点,则|AB|=________.解析:过点(3,0)且与极轴垂直的直线的直角坐标方程为x=3,曲线ρ=4cos θ化为直角坐标方程为x2+y2-4x=0,把x=3代入上式,得9+y2-12=0,解得,y1=,y2=-,所以|AB|=|y1-y2|=2.答案:238.在极坐标系中,过点A(6,π)作圆ρ=-4cos θ的切线,则切线长为________.解析:圆ρ=-4cos θ化为(x+2)2+y2=4,点(6,π)化为(-6,0),故切线长为==2.答案:23三、解答题9.求由曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换.解:设变换为将其代入方程X2+Y2=1,得a2x2+b2y2=1.又∵4x2+9y2=36,即+=1,∴又∵a>0,b>0,∴a=,b=.∴将曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换为⎩⎪⎨⎪⎧ X =13x ,Y =12y.10.已知A ,B 两点的极坐标分别是,,求A ,B 两点间的距离和△AOB 的面积.解:求两点间的距离可用如下公式:|AB|===2.S△AOB=|ρ1ρ2sin(θ1-θ2)|=2×4×sin=×2×4=4.11.在极坐标系中,已知圆C 的圆心C ,半径为1.Q 点在圆周上运动,O 为极点.(1)求圆C 的极坐标方程;(2)若P 在直线OQ 上运动,且满足=,求动点P 的轨迹方程.解:(1)如图所示,设M(ρ,θ)为圆C 上任意一点.在△OCM 中,可知|OC|=3,|OM|=ρ,|CM|=1,∠COM =.根据余弦定理,得1=ρ2+9-2·ρ·3·cos .化简整理,得ρ2-6·ρcos +8=0为圆C 的轨迹方程.(2)设Q(ρ1,θ1),则有ρ-6·ρ1cos +8=0.①设P(ρ,θ),则OQ∶QP=ρ1∶(ρ-ρ1)=2∶3⇒ρ1=ρ, 又θ1=θ,所以⎩⎨⎧ ρ1=25ρ,θ1=θ.代入①得ρ2-6·ρcos +8=0,整理得ρ2-15ρcos +50=0为P 点的轨迹方程.。
2018-2019学年人教版选修4 第2章第3节 化学平衡——等效平衡 教案
第3节化学平衡——等效平衡教学目标1.构建等效平衡的模型,掌握等效平衡在解题中的应用2.通过对化学反应进行方向及其应用的学习,提高运用比较、归纳的能力,培养学生学习化学思维能力,以及应用理论解决实际问题能力3.建立化学平衡的观点,并通过分析化学平衡的建立,增强学生的归纳和形象思维能力教学重点等效平衡教学难点等效平衡教学过程一、导入水往低处流,而不会自发的向上流;一般在室温下,冰块会融化,铁器在潮湿空气中会生锈,甲烷与氧气的混合气体遇明火就燃烧,这些过程都是自发的。
这些不用借助于外力就可以自动进行的自发过程的共同特点是,体系会对外部做功或释放热量,即体系趋向于从高能状态转变为低能状态。
那是否就意味着放热反应自发进行,吸热反应就是非自发进行呢?二、知识讲解等效平衡对于一些学生理解起来不是特别容易,希望老师在讲解此内容的时候多一些耐心,重点讲典型例题和习题。
考点1 等效平衡含义及原理1.含义在一定条件下(等温等容或等温等压),对同一可逆反应体系,起始时加入物质的物质的量不同,而达到化学平衡时,同种物质的百分含量相同。
2.原理同一可逆反应,当外界条件一定时,反应无论从正反应开始,还是从逆反应开始,最后都能达到平衡状态。
其中平衡混合物中各物质的含量相同。
由于化学平衡状态与条件有关,而与建立平衡的途径无关。
因而同一可逆反应,从不同的状态开始,只要达到平衡时条件(温度、浓度、压强等)完全相同,则可形成等效平衡。
考点2 等效平衡规律对于可逆反应aA(g)+bB(g)cC(g)+dD(g)三、例题精析使用建议说明:此处内容主要用于教师课堂的精讲,每个题目结合试题本身、答案和解析部分,教师有的放矢的进行讲授或与学生互动练习。
例题1 一定温度下,在3个体积均为1.0 L 的恒容密闭容器中反应2H 2(g)+CO(g)CH 3OH(g) 达到平衡。
下列说法正确的是A .该反应的正反应放热B .达到平衡时,容器Ⅰ中反应物转化率比容器Ⅱ中的大C .达到平衡时,容器Ⅱ中c(H 2)大于容器Ⅲ中c(H 2)的两倍D .达到平衡时,容器Ⅲ中的正反应速率比容器Ⅰ中的大【答案】AD【解析】A 项,根据Ⅰ、Ⅲ中数据可知反应开始时Ⅰ中加入的H 2、CO 与Ⅲ中加入甲醇的物质的量相当,平衡时甲醇的浓度:Ⅰ>Ⅲ,温度:Ⅰ<Ⅲ,即升高温度平衡逆向移动,该反应正向为放热反应,所以A 项正确。
2017-2018学年高中数学人教B版选修4-1教学案:第二章
[对应学生用书P43][对应学生用书P43]平行投影关键在于注意角度的变换及运动变化和发展的观点的应用,并由此来处理有关图形的投影问题.如一个圆在平面上的平行投影可能是一个圆,一个椭圆或者是一条线段,但是由于缺乏具体的量的关系,我们对所成的椭圆不能做出具体的量的关系.将圆与平面立体化就形成了平面与圆柱的截面问题.[例1] 已知△ABC 的边BC 在平面α内,A 在平面α上的正投影为A ′(A ′不在边BC 上).当∠BAC =60°时、AB 、AC 与平面α所成的角分别是30°和45°时,求cos ∠BA ′C .[解] 由题意,∠ABA ′=30°,∠ACA ′=45°.设AA ′=1,则A ′B =3,A ′C =1,AC =2,AB =2, ∴BC =4+2-2·2·2·12=6-22,cos ∠BA ′C =3+1-6+2223·1=6-33.(1)由两个等圆的内公切线与两条外公切线的交点,切点之间的量的关系具体化,就可以得到相应的数量关系,将其进一步拓广到空间之中就得到了平面与圆柱的截面问题.(2)在平面中:由与等腰三角形的两条腰的交点问题进一步推广到空间中的平面与圆锥面的交线问题所采用的方法与以前的平行投影和平面与圆柱面的截面问题相同.从不同的方向不同的位置用平面去截圆锥面,其截面的形状不同,由此我们可以得到定理,并可以利用Dandelin双球对定理的结论进行证明和研究其特点.[例2]如图所示,用一个平面分别与球O、O2切于F1、F2,截圆柱面于G1、G2点,1求证所得的截面为椭圆.[证明]如图所示由平面图形的性质可知,当点P与G1或G2重合时,G2F1+G2F2=AD,G1F1+G1F2=AD.当P不与G1、G2重合时,连接PF1、PF2,则PF1、PF2分别是两个球面的切线,切点分别为F1、F2.过P作圆柱面的母线,与两个球分别相交于K1、K2二点,则PK1、PK2分别为两个球的切线,切点为K1、K2.由切线长定理可知:PF1=PK1,PF2=PK2.所以有PF1+PF2=PK1+PK2=AD=G1G2.由于AD为定值且AD>F1F2,故点P的轨迹为椭圆.[对应学生用书P43]一、选择题1.若一直线与平面的一条斜线在此平面上的正投影垂直,则这条直线与这条斜线的位置关系是()A.垂直B.异面C.相交D.不能确定解析:当这条直线在平面内时,则A成立,当这条直线是平面的垂线,则B或C成立,故选D.答案:D2.在空间,给出下列命题:(1)一个平面的两条斜线段相等,那么它们在平面内的正投影相等.(2)一条直线和平面的一条斜线垂直,必和这条斜线在这个平面内的正投影垂直.(3)一条斜线和它在平面内的正投影所成的锐角是这条斜线和平面内过斜足的所有直线所成的一切角中最小的角.(4)若点P 到△ABC 三边所在的直线的距离相等,则点P 在平面ABC 内的正投影是△ABC 的内心.其中,正确的命题是( ) A .(3) B .(3)(4) C .(1)(3)D .(2)(4)解析:由平行投影的性质知,当两条线段与平面所成的角相等时,才有(1)正确,在(2)中这条直线在平面外时不正确,(3)显然正确;(4)中P 点有可能是△ABC 的旁心.答案:A3.一平面截圆锥面的截线为椭圆,椭圆的长轴为8,长轴的两端点到圆锥顶点的距离分别是6和10,则椭圆的离心率为( )A.35 B .45C.12D .22解析:如图为圆锥面的轴截面,则AB =8,SA =6,SB =10, ∴∠SAB =90°, ∴cos ∠ASB =35,∴cos ∠ASP =cos ∠ASB2=1+cos ∠ASB2=1+352=2 55. ∴cos ∠BPH =sin ∠ASP = 1-cos 2∠ASP =1-⎝⎛⎭⎫2 552=55.∴椭圆离心率e =cos ∠BPH cos ∠ASP =552 55=12.答案:C4.边长为2的等边三角形所在平面与平面α所成的角为30°,BC ⊂α,A 在α内的正投影为O ,则△BOC 的面积为( )A.32 B .32C.34D . 3解析:取BC 的中点D ,连接AD ,OD ,则∠ADO 为二面角的平面角,∠ADO =30°,S △BOC S △ABC =OD AD =cos30°=32,又S △ABC =3,∴S △BOC =32.答案:B 二、填空题5.P 为△ABC 所在平面外一点,P A 、PB 、PC 与平面ABC 所成角均相等,又P A 与BC 垂直,那么△ABC 的形状可能是________.①正三角形 ②等腰三角形 ③非等腰三角形 ④等腰直角三角形(将你认为正确的序号全填上)解析:设点P 在底面ABC 上的正投影为O ,由P A 、PB 、PC 与平面ABC 所成角均相等,得OA =OB =OC ,即点O 为△ABC 的外心,又由P A ⊥BC ,得OA ⊥BC ,得AO 为△ABC 中BC 边上的高线,所以AB =AC ,即△ABC 必为等腰三角形,故应填①②④.答案:①②④6.两个大小不等的球相交,交线为________. 答案:圆7.在三棱锥P -ABC 中,P A =PB =PC =BC ,且∠BAC =π2.则P A 与底面ABC 所成角为________.解析:P 在底面ABC 的正投影为BC 中点D ,设P A =PB =PC =2,则PD =3,AP =2,∴∠P AD =π3.答案:π38.一圆柱面底半径为2,一截面与轴成60°,从割平面上、下放入圆柱面的两个内切球,使它们都与截面相切,则这两个切点的距离等为________.解析:由已知可知截线为一个椭圆,并且其长轴长为 2a =4cos30°=432=833,短轴长为2b =2×2=4,所以2c =(2a )2-(2b )2=(833)2-42=433.答案:433三、解答题9.设圆锥的顶角(圆锥轴截面上两条母线的夹角)为120°,当圆锥的一截面与轴成45°角时,求截得二次曲线的形状及离心率.解:由题意知α=60°,β=45°,满足β<α,这时截面截圆锥得的交线是双曲线,其离心率为e =cos45°cos60°= 2.10.如图所示,已知DA ⊥平面ABC ,△ABC 是斜三角形,A ′是A 在平面BCD 上的正投影.求证:A ′不可能是△BCD 的垂心. 证明:假设A ′为△BCD 的垂心, 则A ′B ⊥CD .又因为AA ′⊥平面BCD 于A ′,则AB ⊥CD . 又因为DA ⊥平面ABC ,则AD ⊥AB ,所以AB ⊥AC , 这与△ABC 是斜三角形的已知条件相矛盾, 故A ′不可能是△BCD 的垂心.11.已知圆锥面S ,其母线与轴线的夹角为30°,又有一平面α与圆锥面的轴线成45°角并相交于点C ,且SC =6,一球与圆锥面相切并在平面α的上方与平面α相切.求此内切球的半径,并画出它的直观图.解:设内切球的球心为O ,半径为R ,且设球O 与锥面一个切点为P ,球O 与平面α切于M .在Rt △SPO 中 ,OP =R ,∠PSO =30°,所以SO =2R . 在Rt △OMC 中,∠OCM =45°, 所以OC =R sin45°=R 22=2R .又SC =6=SO +OC =2R +2R , 所以R =3(2-2),其直观图为如图:[对应学生用书P47](时间90分钟,总分120分)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.线段AB、CD在同一平面内的正投影相等,则线段AB、CD的长度关系为() A.AB>CD B.AB<CDC.AB=CD D.无法确定解析:由线段AB、CD与平面所成的角来定,虽然投影相等,但线段AB、CD的长度无法确定,故它们长度关系也无法确定.答案:D2.正四面体在一个面上的平行投影是()A.一个三角形B.两个三角形C.三个三角形D.以上都有可能解析:根据几何体的三视图可知,D正确.答案:D3.直线和直线外一点在同一面上的正投影是()A.一条直线B.一点一直线C.一点一直线或一直线D.无法确定答案:C4.如果一个三角形的平行投影仍是一个三角形,则下列结论中正确的是()A.内心的平行投影仍为内心B.重心的平行投影仍为重心C.垂心的平行投影仍为垂心D.外心的平行投影仍为外心解析:只有线段的比例相等时,投影线段的比例才不变,重心为三条中线的交点,三角形的平行投影中线仍为中线.答案:B5.圆锥的顶角为60°,截面与母线所成的角为60°,则截面所截得的截线是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:由题意知截面与圆锥的轴线成90°角,即是圆锥的正截面,故截线为圆. 答案:A6.圆锥的顶角为50°,圆锥的截面与轴线所成的角为30°,则截线是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:由α=50°2=25°,φ=30°,φ>α故截线是椭圆.答案:B7.一个平面去截一个球面,其截线是( ) A .圆 B .椭圆 C .点D .圆或点解析:当截面与球相切,其截线是切点,相交时截线是圆. 答案:D8.对于半径为4的圆在平面上的平行投影的说法错误的是( ) A .投影为线段时,线段的长为8 B .投影为椭圆时,椭圆的短轴可能为8 C .投影为椭圆时,椭圆的长轴可能为8 D .投影为圆时,圆的直径可能为4 解析:由平行投影的性质易知D 说法错误. 答案:D9.如图,圆柱的轴截面是边长为5 cm 的正方形ABCD ,则圆柱侧面上从A 到C 的最短距离为( )A .10 cm B.52 π2+4 cm C .5 2 cmD .5π2+1 cm解析:如图是圆柱的侧面展开图,则AC 长为圆柱面上从A 到C 的最短距离. 设圆柱的底面半径为r ,则r =52.∴底面圆周长l =2πr =5π,∴AB =52π.AD =BC =5, ∴AC =AB 2+BC 2= ⎝⎛⎭⎫5π22+52 =52π2+4(cm).答案:B10.如右图,一个圆柱被一个平面所截,截面椭圆的长轴长为5,短轴长为4,被截后的几何体的最短母线长为2,则这个几何体的体积为( )A .20πB .16πC .14πD .8π解析:由已知圆柱底面半径r =2.即直径为4. 设截面与圆柱母线成α角,则sin α=45,∴cos α=35.∴几何体的最长母线长为2+2a cos α=2+5×35=5.用一个同样的几何体补在上面,可得一个底半径r =2,高为7的圆柱,其体积为V =π×22×7=28π.∴所求几何体的体积为12V =14π.答案:C二、填空题(本大题共4个小题,每小题5分,共20分.把答案填写在题中的横线上) 11.用一个平面去截一个正圆锥面,而且这个平面不通过圆锥的顶点,则会出现四种情况:____________,________,________,________. 解析:如图答案:圆 抛物线 椭圆 双曲线12.在正方体ABCD -A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F .则①四边形BFD ′E 一定是平行四边形. ②四边形BFD ′E 有可能是正方形.③四边形BFD ′E 在底面ABCD 的正投影一定是正方形. ④平面BFD ′E 有可能垂直于平面BB ′D ′D .以上结论正确的为________.(写出所有正确的结论编号)解析:由面面平行的性质定理知①正确;当E 、F 分别为中点时,所得的四边形为菱形,但不是正方形,且此时平面BFD ′E ⊥平面BB ′D ′D .故②不正确,④正确;D ′、E 、F 在底面上的正投影分别为D 、A 、C ,故③正确.答案:①③④13.若圆柱的一正截面(垂直于轴的截面)的截线为半径r =3的⊙O ,该圆柱的斜截面与轴线成60°角,则截线椭圆的离心率e =________.解析:依题意,在椭圆中,a =r sin 60°=332=2 3,b =r =3,∴c =a 2-b 2=(2 3)2-32= 3,∴e =c a =12.答案:1214.如图,直角坐标系xOy 所在的平面为α,直角坐标系x ′Oy ′(其中y ′轴与y 轴重合)所在的平面为β,∠xOx ′=45°.(1)已知平面β内有一点P ′(22,2),则点P ′在平面α内的射影P 的坐标为________;(2)已知平面β内的曲线C ′的方程是(x ′-2)2+2y 2-2=0,则曲线C ′在平面α内的射影C 的方程是________.解析:(1)可知二面角α-y -β为45°,点P ′到y 轴的距离为22,所以点P 到y 轴的距离为22×cos45°=2,点P 的y 轴坐标与点P ′的y ′轴坐标相同,故点P 的坐标为(2,2).(2)曲线C ′的方程可化为(x ′-2)22+y 2=1,是一个椭圆.设O ′(2,0),因为2×22=1,故中心O ′在面α内的射影O ″的坐标为(1,0).令曲线C ′长轴的一个端点A ′(22,0),由上问可知其对应的射影为A (2,0),曲线C ′短轴的一个端点B ′(2,1),对应的射影为B (1,1),由O ″,B ,A 三点坐标可知曲线C 是一个以(1,0)为圆心,1为半径的圆,方程为(x -1)2+y 2=1.答案:(2,2) (x -1)2+y 2=1三、解答题(本大题共4个小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)求证:三角形的中位线平行射影具有不变性.证明:已知:△ABC ,DE 是其中位线,它们的平行射影分别是△A ′B ′C ′和D ′E ′,如下图,求证:D ′E ′仍然是△A ′B ′C ′的中位线. 证明:连接AA ′、EE ′、CC ′, 则AA ′∥EE ′∥CC ′. ∵AE =EC ,∴A ′E ′=E ′C ′. 同理,A ′D ′=D ′B ′.∴D ′E ′是△A ′B ′C ′的中位线.16.(本小题满分12分)平面β与圆锥面的轴l 垂直,则交线是什么曲线?设圆锥底面半径为R ,高为h ,顶点S 到截面β的距离为h 1(R ,h ,h 1均为正常数).解:因为l ⊥β(垂足为O 1), 所以平面β∥⊙O 所在的平面. 设P 为交线上的任意一点, 过点P 作圆锥的母线SQ , 连接PO 1,QO ,则PO 1为平面SQO 与平面β的交线, QO 为平面SQO 与⊙O 所在的平面的交线. 所以PO 1∥QO . 于是PO 1QO =SO 1SO .即PO 1R =h 1h. 因此PO 1=Rh 1h=r (常数).所以点P 到定点O 1的距离为常数r ,故交线为一个圆.17.(本小题满分12分)圆锥面S 的母线与轴线的夹角为30°,圆锥面内有两个相切的内切球,半径分别为r 1、r 2(r 1<r 2)求r 1与r 2的比.解:设球心分别为O1,O2,如图则SO1=2r1SO2=2r2,O1O2=2r2-2r1,又O1O2=r1+r2∴2r2-2r1=r1+r2.r2=3r1∴r1∶r2=1∶3.18.(本小题满分14分)在空间中,取直线l为轴,直线l′与l相交于O点,夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面.任取平面δ,若它与轴l的交角为β(当δ与l平行时,记β=0),求证β<α时,平面δ与圆锥的交线为双曲线.证明:当β<α时,平面δ与圆锥面的两部分相交.在圆锥的两部分分别嵌入Dandelin球,与平面δ的两个切点分别是F1、F2,与圆锥两部分截的圆分别是S1、S2.在截口上任取一点P,连接PF1、PF2,过P作母线分别和两球切于Q1、Q2,则PF1=PQ1,PF2=PQ2.∴|PF1-PF2|=|PQ1-PQ2|=Q1Q2,∵Q1Q2是两圆S1、S2所在平行平面间的母线段长,为定值,∴由双曲线的定义知,点P的轨迹为双曲线.模块综合检测[对应学生用书P49](时间:90分钟,总分120分)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示,在△ABC 中,M 是BC 的中点,AN 平分∠BAC ,BN ⊥AN ,若AB =14,AC =19,则MN 的长为( )A .2B .2.5C .3D .3.5解析:延长BN 交AC 于D ,则△ABD 为等腰三角形,AD =AB =14.故CD =5.又∵M ,N 分别是BC ,BD 的中点, ∴MN =12CD =2.5.答案:B2.在▱ABCD 中,E 是AD 的中点,AC 、BD 交于O ,则与△ABE面积相等的三角形有( )A .5个B .6个C .7个D .8个解析:利用三角形面积公式,等底等高的两个三角形面积相等,再利用平行四边形的面积为中介,建立面积相等关系.答案:C3.在正方形ABCD 中,点E 在AB 边上,且AE ∶EB =2∶1,AF ⊥DE 于G ,交BC 于F ,则△AEG 的面积与四边形BEGF 的面积比为( )A .1∶2B .1∶4C .4∶9D .2∶3解析:易证△ABF ≌△DAE . 故知BF =AE .因为AE ∶EB =2∶1,故可设AE =2x ,EB =x , 则AB =3x ,BF =2x .由勾股定理得AF =(3x )2+(2x )2=13x . 易证△AEG ∽△ABF .可得S △AEG ∶S △ABF =AE 2∶AF 2=(2x )2∶(13x )2 =4∶13.可得S △AEG ∶S 四边形BEGF =4∶9. 答案:C4.圆锥面S 的母线与轴线的夹角为30°,其内切球的半径为1,则切点圆的面积为( ) A.14π B .12πC.38π D .34π解析:设球心为O ,切点圆的圆心为O 1,如图, 由∠ASO =30°,OA =1,OA ⊥SA 得O 1A =32. ∴S =π·O 1A 2=34π.答案:D5.如图,在梯形ABCD 中,AD ∥BC ,∠BAD =135°,以A 为圆心,AB 为半径,作⊙A 交AD 、BC 于E 、F 两点,并交BA 延长线于G ,则BF 的度数是( )A .45°B .60°C .90°D .135°解析:BF 的度数等于圆心角∠BAF 的度数. 由题意知∠B =45°,所以∠BAF =180°-2∠B . 答案:C6.在△ABC 中,点D 、E 分别在AB 、AC 上,下列条件中,不能判定DE ∥BC 的是( ) A .AD =5,AB =8,AE =10,AC =16B .BD =1,AD =3,CE =2,AE =6C .AB =7,BD =4,AE =4,EC =3 D .AB =AC =9,AD =AE =8解析:对应线段必须成比例,才能断定DE 和BC 是平行关系,显然C 中的条件不成比例.答案:C7.如图所示,P A 切圆于A ,P A =8,直线PCB 交圆于C ,B ,连接AB ,AC ,且PC =4,AD ⊥BC 于D ,∠ABC =α,∠ACB =β,则sin αsin β的值等于( )A.14 B .12C .2D .4解析:要求sin αsin β,注意到sin α=AD AB ,sin β=AD AC ,即AC AB =sin αsin β,又△P AC ∽△PBA ,得ACAB =PC P A =48=12. 答案:B8.已知:如图,▱ABCD 中,EF ∥AC 交AD 、DC 于E 、F ,AD ,BF 交于M ,则下列等式成立的是( )A .AD 2=AE ·AMB .AD 2=CF ·DC C .AD 2=BC ·AB D .AD 2=AE ·ED解析:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥DC . ∵DF ∥AB ,∴AD AM =BF BM .∵DM ∥BC ,∴BF BM =CFDC. ∵EF ∥AC ,∴AE AD =CFDC .∴AD AM =AEAD,∴AD 2=AE ·AM . 答案:A9.若D 是△ABC 的边AB 上的一点,△ADC ∽△ACB ,AD =5,AC =6,△ABC 的面积是S ,则△BCD 的面积是( )A.35S B .45SC.59S D .1136S解析:∵△ADC ∽△ACB ,∴S △ADC ∶S △ACB =(AD ∶AC )2=25∶36. ∵S △ABC =S ,∴S △ACD =2536S .∴S △BCD =S -2536S =1136S .答案:D10.如图,四边形ABCD 内接于⊙O ,BC 是直径,AD =DC ,∠ADB=20°,则∠ACB ,∠DBC 分别为( )A .15°与30°B .20°与35°C .20°与40°D .30°与35°解析:∵∠ADB =20°, ∴∠ACB =∠ADB =20°. 又∵BC 为⊙O 的直径,∴ADC 的度数为180°-40°=140°. ∵D 为AC 的中点,∴CD 的度数为70°. ∴∠DBC =70°2=35°.答案:B二、填空题(本大题共4个小题,每小题5分,共20分.把答案填写在题中的横线上) 11.如图,AB 是圆O 的直径,直线CE 和圆O 相切于点C ,AD ⊥CE 于D ,若AD =1,∠ABC =30°,则圆O 的面积是________.解析:∵在⊙O 中,∠ACD =∠ABC =30°,且在Rt △ACD 中,AD =1,∴AC =2,AB =4,又∵AB 是⊙O 的直径,∴⊙O 的半径为2, ∴圆O 的面积为4π. 答案:4π12.如图,在Rt △ABC 中,∠C =90°,以BC 为直径作半圆交AB 于D ,过D 作半圆的切线交AC 于E ,若AD =2,DB =4,则DE =________.解析:由切割线定理得: AC 2=AD ·AB =2×6=12. 所以AC =2 3.连接CD ,可证:EC =ED ,∠A =∠EDA .所以AE =ED ,所以ED =AE =EC =12AC = 3.答案: 313.如图,AB ,CD 是圆O 内的两条平行弦,BF ∥AC ,BF 交CD 于点E ,交圆O 于点F ,过A 点的切线交DC 的延长线于点P ,若PC =ED =1,P A =2,则AC 的长为________.解析:∵P A 是⊙O 的切线, ∴由切割线定理得P A 2=PC ·PD . ∵P A =2,PC =1,∴PD =4. 又∵PC =ED =1,∴CE =2,由题意知四边形ABEC 为平行四边形, ∴AB =CE =2. 连接BC ,如图,∵P A 是⊙O 的切线, ∴∠P AC =∠CBA .∵AB ,CD 是圆的两条平行弦, ∴∠PCA =∠CAB , ∴△P AC ∽△CBA , ∴PC CA =CAAB,∴AC 2=PC ·AB =2, ∴AC = 2. 答案: 214.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AB 相切于E ,与AC 相切于C .又⊙O 与BC 的另一个交点为D ,则线段BD 的长为________.解析:在Rt △ABC 中,AB = AC 2+BC 2=5.连接OE ,则△OBE ∽△ABC ,∴OE AC =OB AB =BC -OEAB ,即OE 4=3-OE 5,∴OE =43,∴BD =BC -2OE =3-83=13.答案:13三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,△ABC 中,∠BAC =90°,AD ⊥BC 交BC 于点D ,若E 是AC 的中点,ED 的延长线交AB 的延长线于F ,求证:AB AC =DFAF.证明:∵E 是Rt △ADC 斜边AC 的中点, ∴AE =EC =DE .∴∠EDC =∠ECD ,又∠EDC =∠BDF , ∴∠EDC =∠ECD =∠BDF . 又AD ⊥BC 且∠BAC =90°, ∴∠BAD =∠ECD , ∴∠BAD =∠BDF , 又∵∠AFD =∠DFB , ∴△DBF ∽△ADF . ∴DB AD =DFAF. 又Rt △ABD ∽Rt △CBA ,因此AB AC =DBAD .∴AB AC =DF AF. 16.(本小题满分12分)(新课标全国卷Ⅰ)如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE .(1)证明:∠D =∠E;(2)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形. 证明:(1)由题设知A ,B ,C ,D 四点共圆, 所以∠D =∠CBE .由已知CB =CE 得∠CBE =∠E ,故∠D =∠E .(2)设BC 的中点为N ,连接MN ,则由MB =MC 知MN ⊥BC ,故O 在直线MN 上. 又AD 不是⊙O 的直径,M 为AD 的中点, 故OM ⊥AD ,即MN ⊥AD . 所以AD ∥BC ,故∠A =∠CBE . 又∠CBE =∠E ,故∠A =∠E .由(1)知,∠D =∠E ,所以△ADE 为等边三角形.17.(本小题满分12分)如图所示,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线交⊙O 2于点C ,过点B 作两圆的割线,分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P .(1)求证:AD ∥EC ;(2)若AD 是⊙O 2的切线,且P A =6,PC =2,BD =9,求AD 的长. 解:(1)证明:如图,连接AB ,∵AC 是⊙O 1的切线,∴∠BAC =∠D . 又∵∠BAC =∠E ,∴∠D =∠E , ∴AD ∥EC .(2)设BP =x ,PE =y ,∵P A =6,PC =2, ∴xy =12.①∵AD ∥EC ,∴DP PE =AP PC ⇒9+x y =62,②由①②可得,⎩⎪⎨⎪⎧ x =3,y =4或⎩⎪⎨⎪⎧x =-12,y =-1.(舍去) ∴DE =9+x +y =16. ∵AD 是⊙O 2的切线,∴AD 2=DB ·DE =9×16,∴AD =12.18.(本小题满分14分)(新课标全国卷Ⅱ)如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:(1)BE =EC ; (2)AD ·DE =2PB 2.证明:(1)连接AB ,AC .由题设知P A =PD , 故∠P AD =∠PDA .因为∠PDA =∠DAC +∠DCA ,∠P AD =∠BAD +∠P AB ,∠DCA =∠P AB , 所以∠DAC =∠BAD ,从而BE =EC . 因此BE =EC .(2)由切割线定理得P A 2=PB ·PC .因为P A =PD =DC ,所以DC =2PB ,BD =PB . 由相交弦定理得AD ·DE =BD ·DC , 所以AD ·DE =2PB 2.。
2017-2018学年高中数学北师大版选修4-5教学案:第二章
§2排序不等式[对应学生用书P39][自主学习]1.顺序和、乱序和、逆序和的概念设有两个有序实数组a1≥a2≥…≥a n及b1≥b2≥…≥b n,bj1,bj2,…,bj n(其中j1,j2,…,j n是1,2,…,n的任一排列方式),为b1,b2,…,b n的任一排列方式.则s1=a1b1+a2b2+…+a n b n称为顺序和;s2=a1bj1+a2bj2+…+a n bj n称为乱序和;s3=a1b n+a2b n-1+…+a n b1称为逆序(倒序)和.2.排序不等式(1)定理1:设a,b和c,d都是实数,如果a≥b,c≥d,那么ac+bd≥ad+bc.此式当且仅当a=b(或c=d)时取“=”号.(2)定理2:(排序不等式)设有两个有序实数组a1≥a2≥…≥a n及b1≥b2≥…≥b n.则(顺序和)a1b1+a2b2+…+a n b n≥(乱序和)a1bj1+a2bj2+…+a n bj n≥(逆序和)a1b n+a2b n-1+…+a n b1.其中j1,j2,…,j n是1,2,…,n的任一排列方式,上式当且仅当a1=a2=…=a n(或b1=b2=…=b n)时取“=”号.[合作探究]1.定理2中哪个和最大?哪个和最小?提示:顺序和最大,逆序和最小.2.设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组数,c1,c2,…,c n是b1,b2,…,b n的任一排列,那么,它们的顺序和、乱序和、逆序和大小关系如何?提示:a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n.[对应学生用书P39][例1]已知a,b,c为正数,a≥b≥c,求证:(1)1bc ≥1ca ≥1ab; (2)a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥1a +1b +1c. [思路点拨] 本题考查排序不等式及不等式的性质、证明不等式等基本知识,考查推理论证能力.解答此题只需根据a ≥b ≥c ,直接构造两个数组,利用排序不等式证明即可.[精解详析] (1)∵a ≥b >0,于是1a ≤1b ,又c >0,∴1c >0,从而1bc ≥1ca. 同理,∵b ≥c >0,于是1b ≤1c,∵a >0,∴1a >0,于是得1ca ≥1ab .从而1bc ≥1ca ≥1ab .(2)由(1)1bc ≥1ca ≥1ab ,于是由“顺序和≥乱序和”得,a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥b 5b 3c 3+c 5c 3a 3+a 5a 3b 3=b 2c 3+c 2a 3+a 2b 3(∵a 2≥b 2≥c 2,1c 3≥1b 3≥1a 3)≥ c 2c 3+a 2a 3+b 2b 3=1c +1a +1b =1a +1b +1c.利用排序不等式证明所证不等式中所给字母的大小顺序已确定的情况,关键是根据所给字母的大小顺序构造出不等式中所需要的带大小顺序的两个数组.1.设0<a 1≤a 2≤…≤a n,0≤b 1≤b 2≤…≤b n ,c 1,c 2,…,c n 为b 1,b 2,…,b n 的一组排列,证明:a 1b 1a 2b 2…a n b n ≥a 1c 1a 2c 2…a n c n ≥a 1b n a 2b n -1…a n b 1. 证明:因为0<a 1≤a 2≤…≤a n , 所以ln a 1≤ln a 2≤…≤ln a n .又因为0≤b 1≤b 2≤…≤b n ;故由排序不等式得:b 1ln a 1+b 2ln a 2+…+b n ln a n ≥c 1ln a 1+c 2ln a 2+…+c n ln a n ≥b n ln a 1+b n -1ln a 2+…+b 1ln a n 于是得:ln(a 1b 1a 2b 2…a n b n )≥ln(a 1c 1a 2c 2…a n c n )≥ln(a 1b n a 2b n -1…a n b 1). 又f (x )=ln x 在(0,+∞)为单调增函数,于是a 1b 1a 2b 2…a n b n ≥a 1c 1a 2c 2…a n c n ≥a 1b n a 2b n -1…a n b 1.[例2] 已知a ,b ,c ∈R +.求证: a +b +c ≤a 2+b 22c +b 2+c 22a +c 2+a 22b ≤a 3bc +b 3ca +c 3ab.[思路点拨] 解答此题需要假设a ≥b ≥c 推出a 2≥b 2≥c 2,1c ≥1b ≥1a ,再利用排序不等式进行论证.[精解详析] 不妨设a ≥b ≥c , 则a 2≥b 2≥c 2,1c ≥1b ≥1a .故由排序不等式,得a 2·1c +b 2·1a +c 2·1b ≥a 2·1a +b 2·1b +c 2·1c ,① a 2·1b +b 2·1c +c 2·1a ≥a 2·1a +b 2·1b +c 2·1c,② (①+②)÷2可得a 2+b 22c +b 2+c 22a +c 2+a 22b ≥a +b +c .又∵a 3≥b 3≥c 3且1bc ≥1ac ≥1ab ,由排序不等式,得a 3·1bc +b 3·1ca +c 3·1ab ≥a 3·1ac +b 3·1ab +c 3·1bc ,③ a 3·1bc +b 3·1ca +c 3·1ab ≥a 3·1ab +b 3·1bc +c 3·1ca ,④ (③+④)÷2可得a 3bc +b 3ca +c 3ab ≥a 2+b 22c +b 2+c 22a +c 2+a 22b. 综上可知,a +b +c ≤a 2+b 22c +b 2+c 22a +c 2+a 22b ≤a 3bc +b 3ca +c 3ab.在利用排序不等式证明所证不等式中所给字母没有限定大小顺序时,要使用排序不等式,先要根据所给字母在不等式中地位的对称性,限定一种大小关系,方可应用排序不等式求证.2.已知a ,b ,c ∈R +.求证:2⎝⎛⎭⎫a 2b +c +b 2a +c +c 2a +b ≥b 2+c 2b +c +a 2+c 2a +c +a 2+b2a +b . 证明:由对称性,不妨设a ≥b ≥c >0, ∴a +b ≥a +c ≥b +c .∴a 2≥b 2≥c 2,1b +c ≥1a +c ≥1a +b .由排序不等式得:a 2b +c +b 2a +c +c 2a +b ≥c 2b +c +a 2a +c +b 2a +b , a 2b +c +b 2a +c +c 2a +b ≥b 2b +c +c 2a +c +a 2a +b . 两式相加得:2⎝⎛⎭⎫a 2b +c +b 2a +c +c 2a +b ≥b 2+c 2b +c +a 2+c 2a +c +a 2+b 2a +b . 3.设a 1,a 2,…,a n 是1,2,…,n 的一个排列, 求证:12+23+…+n -1n ≤a 1a 2+a 2a 3+…+a n -1a n.证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1, 则1c 1>1c 2>…>1c n -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a 1a 2+a 2a 3+…+a n -1a n ≥b 1c 1+b 2c 2+…+b n -1c n -1≥12+23+…+n -1n .∴原不等式成立.本课时考点常以解答题的形式考查排序不等式在证明不等式中的应用.[考题印证]设a 1,a 2,…,a n 为正数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1≥a 1+a 2+…+a n . [命题立意]本题考查排序不等式及不等式的性质,证明不等式等基础知识,考查推理论证及求解能力. [自主尝试]由所证不等式的对称性,不妨设0<a 1≤a 2≤…≤a n , ∴a 21≤a 22≤…≤a 2n ,1a 1≥1a 2≥…≥1a n. 1a 2,1a 3,…,1a n ,1a 1为1a 1,1a 2,…,1a n的一个排序, 由“乱序和≥逆序和”得a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n, 即a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n .[对应学生用书P41]一、选择题1.设a 1,a 2,…,a n 都是正数,b 1,b 2,…,b n 是a 1,a 2,…,a n 的任一排列,P =a 21b -11+a 22b -12+…+a 2n b -1n ,Q =a 1+a 2+…+a n ,则P 与Q 的大小关系是( )A .P =QB .P >QC .P <QD .P ≥Q解析:设a 1≥a 2≥…≥a n >0,可知a 21≥a 22≥…≥a 2n ,a -1n ≥a -1n -1≥…≥a -11.由排序不等式,得a 21b -11+a 22b -12+…+a 2n b -1n ≥a 21a -11+a 22a -12+a 2n a -1n ,即a 21b -11+a 22b -12+…+a 2n b -1n ≥a 1+a 2+…+a n .∴P ≥Q ,当且仅当a 1=a 2=…=a n >0时等号成立. 答案:D2.设a ,b ,c 都是正数,M =bc a +ca b +abc ,N =a +b +c ,则M ,N 的大小关系是( )A .M ≥NB .M <NC .M =ND .M ≤N解析:由题意不妨设a ≥b ≥c >0, 则ab ≥ac ≥bc ,1c ≥1b ≥1a .由排序不等式,知ab ·1c +ac ·1b +bc ·1a ≥ab ·1b +ac ·1a +bc ·1c ,即M ≥N .当且仅当a =b =c 时等号成立. 答案:A3.已知a ,b ,c 都是正数,则a 3+b 3+c 3与a 2b +b 2c +c 2a 的大小关系是( ) A .a 3+b 3+c 3>a 2b +b 2c +c 2a B .a 3+b 3+c 3≥a 2b +b 2c +c 2a C .a 3+b 3+c 3<a 2b +b 2c +c 2a D .a 3+b 3+c 3≤a 2b +b 2c +c 2a解析:根据排序不等式,取两组数a ,b ,c 和a 2,b 2,c 2.不妨设a ≥b ≥c ,所以a 2≥b 2≥c 2.所以a 2·a +b 2·b +c 2·c ≥a 2b +b 2c +c 2a .当且仅当a =b =c 时取“=”号.答案:B4.锐角三角形中,设P =a +b +c 2,Q =a cos C +b cos B +c cos A ,则P ,Q 的关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定解析:不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C ,则由排序不等式有 Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A =R (2sin A cos B +2sin B cos C +2sin C cos A ) ≥R [sin(A +B )+sin(B +C )+sin(A +C )] =R (sin C +sin A +sin B )=a +b +c2=P .答案:C 二、填空题5.设c 1,c 2,…,c n 为正数a 1,a 2,…,a n 的某一排列,则a 1c 1+a 2c 2+…+a nc n与n 的大小关系是________.解析:不妨设0<a 1≤a 2≤…≤a n ,则1a 1≥1a 2≥…≥1a n,因为c 1,c 2,…,c n 是a 1,a 2…,a n的一个排列,所以1c 1,1c 2,…,1c n 是1a 1,1a 2,…,1a n 的一个排列,故由排序不等式:逆序和≤乱序和,得a 1·1a 1+a 2·1a 2+…+a n ·1a n ≤a 1·1c 1+a 2·1c 2+…+a n ·1c n ,即a 1c 1+a 2c 2+…+a nc n ≥n ,当且仅当a 1=a 2=…=a n >0时等号成立.答案:a 1c 1+a 2c 2+…+a nc n≥n6.已知a ,b ,c 都是正数,则a b +c +b c +a +ca +b ≥________.解析:设a ≥b ≥c ≥0, 所以a +b ≥a +c ≥b +c , 所以1b +c ≥1c +a ≥1a +b .由排序原理,知a b +c +b c +a +c a +b ≥b b +c +c c +a +a b +a ,① a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b ,② ①+②,得a b +c +b c +a +c a +b ≥32. 答案:327.设a ,b ,c 为正数,则a 12bc +b 12ca +c 12ab ________a 10+b 10+c 10(填≥,>,≤,<).解析:由对称性,不妨设a ≥b ≥c ,于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab, 故由排序不等式“顺序和≥乱序和”,得 a 12bc +b 12ca +c 12ab ≥a 12ab +b 12bc +c 12ca =a 11b +b 11c +c 11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c.再次由排序不等式“逆序和≤乱序和”,得 a 11a +b 11b +c 11c ≤a 11b +b 11c +c 11a .② 由①②得a 12bc +b 12ca +c 12ab ≥a 10+b 10+c 10. 答案:≥8.设a ,b ,c ∈R +,则1a 3+b 3+abc +1b 3+c 3+abc +1c 3+a 3+abc __________1abc .解析:不妨设a ≥b ≥c >0,则a 2≥b 2, ∴a 3+b 3=a 2·a +b 2·b ≥a 2·b +b 2·a =ab (a +b ). 同理b 3+c 3≥bc (b +c ),c 3+a 3≥ac (c +a ), ∴1a 3+b 3+abc +1b 3+c 3+abc +1c 3+a 3+abc≤ 1ab (a +b )+abc +1bc (b +c )+abc +1ca (c +a )+abc=1a +b +c ·(1ab +1bc +1ca )=1abc.答案:≤ 三、解答题9.在△ABC 中,试证:π3≤aA +bB +cC a +b +c <π2.证明:不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC =aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC . 以上三式相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=π(a +b +c ). 得aA +bB +cC a +b +c≥π3,① 又由0<b +c -a,0<a +b -c,0<a +c -b ,有0<A (b +c -a )+C (a +b -c )+B (a +c -b ) =a (B +C -A )+b (A +C -B )+c (A +B -C ) =a (π-2A )+b (π-2B )+c (π-2C ) =(a +b +c )π-2(aA +bB +cC ). 得aA +bB +cC a +b +c<π2.② 由①②得原不等式成立.10.设a ,b ,c 是正实数,用排序不等式证明a a b b c c≥(abc )3a b c++.证明:由所证不等式的对称性,不妨设a ≥b ≥c >0, 则lg a ≥lg b ≥lg c ,据排序不等式有: a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg c , a lg a +b lg b +c lg c ≥c lg a +a lg b +b lg c ,以上两式相加,再两边同加a lg a +b lg b +c lg c ,整理得 3(a lg a +b lg b +c lg c )≥(a +b +c )(lg a +lg b +lg c ) 即lg(a a b b c c )≥a +b +c3·lg(abc ),故a a b b c c≥(abc )3a b c++.11.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γcos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在(0,π2)为增函数,y =cos x 在(0,π2)为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0. 根据排序不等式“乱序和>逆序和”得sin αcos β+sin βcos γ+sin γcos α>12(sin 2α+sin 2β+sin 2γ).。
2017-2018学年人教B版高中数学选修4-5全册同步教学案
2017-2018学年高中数学人教B版选修4-5全册同步配套教学案目录第一章1.1 1.1.1不等式的基本性质第一章1.1 1.1.2一元一次不等式和一元二次不等式的解法第一章1.2 基本不等式第一章1.3绝对值不等式的解法第一章1.4绝对值的三角不等式第一章1.51.5.1比较法第一章1.51.5.2综合法和分析法第一章1.51.5.3反证法和放缩法第一章章末小结知识整合与阶段检测第二章2.1 柯西不等式第二章2.2 排序不等式第二章2.3~2.4 平均值不等式(选学)最大值与最小值问题优化的数学模型第二章章末小结知识整合与阶段检测第三章3.1 数学归纳法原理第三章3.2 用数学归纳法证明不等式贝努利不等式第三章章末小结知识整合与阶段检测1.1不等式的基本性质和一元二次不等式的解法 1.1.1 不等式的基本性质[对应学生用书P1][读教材·填要点]1.实数的大小的几何意义和代数意义之间的联系 设a ,b ∈R ,则 ①a >b ⇔a -b >0; ②a =b ⇔a -b =0; ③a <b ⇔a -b <0. 2.不等式的基本性质[小问题·大思维]1.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个不等式中,恒成立的不等式有哪些? 提示:令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,则∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推出②④恒成立. 即恒成立的不等式有②④. 2.若a <b ,一定有1a >1b吗?提示:不一定.如a =-1,b =2.事实上, 当ab >0时,若a <b ,则有1a >1b ;当ab <0时,若a <b ,则有1a <1b;当ab =0时,若a <b ,则1a 与1b 中有一个式子无意义.[对应学生用书P2][例1] x ∈R ,比较x 3-1与2x 2-2x 的大小.[思路点拨] 本题考查利用作差法比较两个代数式的大小.解答本题需要将作差后的代数式分解因式,然后根据各因式的符号判断x 3-1与2x 2-2x 的大小.[精解详析] (x 3-1)-(2x 2-2x ) =(x 3-x 2)-(x 2-2x +1) =x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34>0, ∴当x >1时,(x -1)(x 2-x +1)>0. 即x 3-1>2x 2-2x ;当x =1时,(x -1)(x 2-x +1)=0, 即x 3-1=2x 2-2x .当x <1时,(x -1)(x 2-x +1)<0, 即x 3-1<2x 2-2x .(1)用作差法比较两个数(式)的大小时,要按照“三步一结论”的程序进行,即:作差→变形→定号→结论,其中变形是关键,定号是目的.(2)在变形中,一般是变形得越彻底越有利于下一步的判断.变形的常用技巧有:因式分解、配方、通分、分母有理化等.(3)在定号中,若为几个因式的积,需每个因式均先定号,当符号不确定时,需进行分类讨论.1.当a ≠0时,比较(a 2+2a +1)(a 2-2a +1)与(a 2+a +1)(a 2-a +1)的大小. 解:两式作差得(a 2+2a +1)(a 2-2a +1)-(a 2+a +1)(a 2-a +1) =[(a 2+1)2-(2a )2]-[(a 2+1)2-a 2]=-a 2. ∵a ≠0,∴-a 2<0.∴(a 2+2a +1)(a 2-2a +1)<(a 2+a +1)(a 2-a +1).[例2] 下列命题中正确的是( ) (1)若a >b ,c >b ,则a >c ; (2)若a >b ,则lg ab >0;(3)若a >b ,c >d ,则ac >bd ; (4)若a >b >0,则1a <1b ;(5)若a c >bd,则ad >bc ;(6)若a >b ,c >d ,则a -d >b -c . A .(1)(2) B .(4)(6) C .(3)(6)D .(3)(4)(5)[思路点拨] 本题考查对不等式的性质的理解,解答本题需要利用不等式的性质或利用特殊值逐项判断.[精解详析] (1)错误.因为当取a =4,b =2,c =6时,有a >b ,c >b 成立,但a >c 不成立.(2)错误.因为a 、b 符号不确定,所以无法确定a b >1是否成立,从而无法确定lg ab >0是否成立.(3)错误.此命题当a 、b 、c 、d 均为正数时才正确.(4)正确.因为a >b ,且a 、b 同号,所以ab >0,两边同乘以1ab ,得1a <1b .(5)错误.只有当cd >0时,结论才成立.(6)正确.因为c >d ,所以-d >-c ,又a >b , 所以a -d >b -c . 综上可知(4)(6)正确. [答案] B运用不等式的性质时要注意条件,如倒数法则要求两数同号;两边同乘一个数,不等号方向是否改变要视此数的正负而定;同向不等式可以相加,异向不等式可以相减.2.若m ,n ∈R ,则1m >1n 成立的一个充要条件是( )A .m >0>nB .n >m >0C .m <n <0D .mn (m -n )<0解析:1m >1n ⇔1m -1n >0⇔n -m mn >0⇔mn (n -m )>0⇔mn (m -n )<0.答案:D[例3] 已知π<α+β<4π3,-π<α-β<-π3,求2α-β的取值范围.[思路点拨] 解答本题时,将α+β,α-β看作整体,再求出2α-β的取值范围. [精解详析] 设2α-β=A (α+β)+B (α-β), 则2α-β=(A +B )α+(A -B )β.比较两边系数得⎩⎪⎨⎪⎧A +B =2,A -B =-1⇒⎩⎨⎧A =12,B =32.∴2α-β=12(α+β)+32(α-β).∵π2<12(α+β)<23π, -3π2<32(α-β)<-π2, ∴-π<2α-β<π6.故2α-β∈⎝⎛⎭⎫-π,π6.(1)若已知某两个代数式的取值范围,求另一个代数式的取值范围时,应利用待定系数法把所求代数式用已知的两代数式表示,进而利用同向不等式的可加性求其范围,否则可能导致所求代数式范围变大.(2)同一问题中应用同向不等式相加性质时,不能多次使用,否则可能导致范围扩大.3.若已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4.求f (-2)的范围. 解:法一:∵f (x )过原点,∴可设f (x )=ax 2+bx .∴⎩⎪⎨⎪⎧f (1)=a +b ,f (-1)=a -b . ∴⎩⎨⎧a =12[f (1)+f (-1)],b =12[f (1)-f (-1)].∴f (-2)=4a -2b =3f (-1)+f (1). ∵1≤f (-1)≤2,3≤f (1)≤4. ∴6≤f (-2)≤10. 法二:设f (x )=ax 2+bx , 则f (1)=a +b ,f (-1)=a -b .令m (a +b )+n (a -b )=f (-2)=4a -2b ,∴⎩⎪⎨⎪⎧ m +n =4,m -n =-2.∴⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,3≤f (1)≤4, ∴6≤f (-2)≤10.[对应学生用书P3]一、选择题1.已知a ,b ,c ,d 为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:由⎩⎪⎨⎪⎧ a -c >b -d ,c >d ⇒a >b ;而当a =c =2,b =d =1时,满足⎩⎪⎨⎪⎧a >b ,c >d ,但a -c >b -d 不成立,所以“a >b ”是“a -c >b -d ”的必要而不充分条件.答案:B2.已知a ,b ,c ∈R ,且ab >0,则下面推理中正确的是( ) A .a >b ⇒am 2>bm 2 B .a c >bc ⇒a >bC .a 3>b 3⇒1a <1bD .a 2>b 2⇒a >b解析:对于A ,若m =0,则不成立;对于B ,若c <0,则不成立;对于C ,a 3-b 3>0⇒(a -b )(a 2+ab +b 2)>0,∵a 2+ab +b 2=(a +b 2)2+34b 2>0恒成立,∴a -b >0.∴a >b .又∵ab >0,∴1a <1b .∴C 成立.对于D ,a 2>b 2⇒(a -b )(a +b )>0,不能说a >b . 答案:C3.设a ,b ∈R ,若a -|b |>0,则下列不等式正确的是( ) A .b -a >0 B .a 3+b 3<0 C .a 2-b 2<0D .b +a >0解析:∵a -|b |>0,∴a >|b |>0.∴不论b 取任何实数不等式a +b >0都成立. 答案:D4.如果a ∈R ,且a 2+a <0,那么a ,a 2,-a ,-a 2的大小关系是( ) A .a 2>a >-a 2>-a B .-a >a 2>-a 2>a C .-a >a 2>a >-a 2D .a 2>-a >a >-a 2解析:∵a 2+a <0,即a (a +1)<0,可得,-1<a <0, ∴-a >a 2>0,∴0>-a 2>a . 综上有-a >a 2>-a 2>a . 答案:B 二、填空题5.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是f (x )________g (x ). 解析:f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f (x )>g (x ). 答案:>6.已知12<a <60,15<b <36,则a -b 的取值范围分别是________. 解析:∵12<a <60,-36<-b <-15,∴-24<a -b <45. 答案:(-24,45)7.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b .其中能推出log b 1b <log a1b <log a b 成立的条件的序号是________.(填所有可能的条件的序号)解析:∵log b 1b =-1,若1<a <b ,则1b <1a<1<b ,∴log a 1b <log a 1a =-1,故条件①不可以;若0<a <b <1,则b <1<1b <1a .∴log a b >log a 1b >log a 1a =-1=log b 1b ,故条件②可以;若0<a <1<b ,则0<1b <1,∴log a 1b>0,log a b <0,条件③不可以.故应填②. 答案:②8.设x =a 2b 2+5,y =2ab -a 2-4a ,若x >y ,则实数a ,b 满足的条件是________________. 解析:∵x >y ,∴a 2b 2+5-2ab +a 2+4a =a 2+4a +4+a 2b 2-2ab +1 =(a +2)2+(ab -1)2>0. ∴ab ≠1或a ≠-2. 答案:ab ≠1或a ≠-2. 三、解答题9.已知-π2≤α<β≤π2,求α+β2,α-β2的范围.解:∵-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4. 因而两式相加得-π2<α+β2<π2.又∵-π4<β2≤π4,∴-π4≤-β2<π4.∴-π2≤α-β2<π2.又∵α<β,∴α-β2<0.∴-π2≤α-β2<0.即α+β2∈⎝⎛⎭⎫-π2,π2,α-β2∈⎣⎡⎭⎫-π2,0. 10.已知a ,b ∈{正实数}且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:∵⎝⎛⎭⎫a 2b +b 2a -(a +b )=a 2b -b +b2a -a =a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝⎛⎭⎫1b -1a =(a 2-b 2)(a -b )ab ,=(a -b )2(a +b )ab ,又∵a >0,b >0,且a ≠b , ∴(a -b )2>0,a +b >0,ab >0, ∴a 2b +b 2a>a +b . 11.已知α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=λ(α+β)+u (α+2β) =(λ+u )α+(λ+2u )β.比较α,β的系数,得⎩⎪⎨⎪⎧ λ+u =1,λ+2u =3,⇒⎩⎪⎨⎪⎧λ=-1,u =2.由题意得-1≤-α-β≤1,2≤2α+4β≤6, 两式相加,得1≤α+3β≤7. 故α+3β的取值范围是[1,7].1.1.2一元一次不等式和一元二次不等式的解法[对应学生用书P4][读教材·填要点]1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.二次函数、二次方程、二次不等式之间的关系[小问题·大思维]1.“若ax2+bx+c<0(a≠0)的解集是空集,则a、b、c满足的关系是b2-4ac<0且a>0”是否正确?提示:当Δ=0时,易知ax2+bx+c<0(a>0)的解集也是∅,从而满足的条件应为“a>0且b2-4ac≤0”.2.当a<0时,若方程ax2+bx+c=0有两个不等实根α,β且α<β,则不等式ax2+bx+c>0的解集是什么?提示:借助函数f(x)=ax2+bx+c的图象可知,不等式的解集为{x|α<x<β}.3.一元二次不等式与二次函数有什么关系?提示:一元二次不等式ax2+bx+c>0(a>0)的解集,就是二次函数y=ax2+bx+c(a>0)的图象在x轴上方的点的横坐标x的集合,ax2+bx+c<0(a>0)的解集,就是二次函数y=ax2+bx+c(a>0)的图象在x轴下方的点的横坐标x的集合.[对应学生用书P5][例1] 不等式x -2x 2-1<0的解集为( )A .{x |1<x <2}B .{x |x <2且x ≠1}C .{x |-1<x <2且x ≠1}D .{x |x <-1或1<x <2}[思路点拨] 根据不等式性质把ba <0转化为ab <0,再求解.[精解详析] 因为不等式x -2x 2-1<0,等价于(x +1)(x -1)(x -2)<0,所以该不等式的解集是{x |x <-1或1<x <2}. [答案] D解分式不等式总的原则是利用不等式的同解原理将其转化为整式不等式(组)求解.即f (x )g (x )≥0⇒⎩⎪⎨⎪⎧f (x )·g (x )≥0g (x )≠0⇒f (x )·g (x )>0或f (x )=0.f (x )g (x )>0⇒⎩⎪⎨⎪⎧f (x )>0g (x )>0或⎩⎪⎨⎪⎧f (x )<0g (x )<0⇒f (x )·g (x )>0.1.解不等式:x +1x -2≤2.解:∵x +1x -2≤2,∴x +1x -2-2≤0.即-x +5x -2≤0.∴x -5x -2≥0.∴⎩⎪⎨⎪⎧(x -5)(x -2)≥0,x -2≠0,∴x <2或x ≥5. 即原不等式的解集为{x |x <2或x ≥5}.[例2] 解关于x 的不等式:ax 2-(a +1)x +1<0. [思路点拨] 由于a ∈R ,故分a =0,a >0,a <0讨论. [精解详析] 若a =0,原不等式可化为-x +1<0,即x >1.若a <0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, 即x <1a或x >1.若a >0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)<0 (*)其解的情况应由1a 与1的大小关系决定,故(1)当a =1时,由(*)式可得x ∈∅; (2)当a >1时,由(*)式可得1a <x <1;(3)当0<a <1时,由(*)式可得1<x <1a.综上所述:当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1.解含参数的一元二次不等式时要注意对参数分类讨论.讨论一般分为三个层次,第一层次是二次项系数为零和不为零;第二层次是有没有实数根的讨论,即判别式Δ>0,Δ=0,Δ<0;第三层次是根的大小的讨论.2.若k ∈R ,求解关于x 的不等式:x 22-x <(k +1)x -k2-x.解:不等式x 22-x <(k +1)x -k2-x 可化为x 2-(k +1)x +k 2-x <0,即(x -2)(x -1)(x -k )>0.当k <1时,x ∈(k,1)∪(2,+∞); 当k =1时,x ∈(2,+∞);当1<k <2时,x ∈(1,k )∪(2,+∞); 当k ≥2时,x ∈(1,2)∪(k ,+∞).[例3] 国家为了加强对烟酒生产的宏观调控,实行征收附加税政策,现知某种酒每瓶70元,不加收附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税R 元(叫做税率R %),则每年的销售将减少10R 万瓶,要使每年在此项经营中所收附加税金不少于112万元,问R 应怎样确定?[思路点拨] 由题意求出在此项经营中所收附加税金,建立不等关系转化为不等式问题求解.[精解详析] 设产销量为每年x 万瓶,则销售收入为每年70x 万元, 从中征收的税金为70x ·R %万元,其中x =100-10R , 由题意得70(100-10R )R %≥112, 整理,得R 2-10R +16≤0.∵Δ=36>0,方程R 2-10R +16=0的两个实数根为x 1=2,x 2=8.然后画出二次函数y =R 2-10R +16的图象,由图象得不等式的解集为{R |2≤R ≤8}. 答:当2≤R ≤8时,每年在此项经营中所收附加税金不少于112万元.解一元二次不等式应用题的关键在于构造一元二次不等式模型,即分析题目中有哪些未知量,然后选择其中起关键作用的未知量,设此未知量为x ,用x 来表示其他未知量,再根据题目中的不等关系列不等式.3.据调查,湖南某地区有100万从事传统农业的农民,人均年收入3 000元.为了增加农民的收入,当地政府积极引资建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作.据估计,如果有x (x >0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x %,而进入企业工作的农民人均年收入为3 000a 元(a >0为常数).(1)在建立加工企业后,要使该地区从事传统农业的农民的年总收入不低于加工企业建立前的年总收入,求x 的取值范围;(2)在(1)的条件下,当地政府应安排多少万农民进入加工企业工作,才能使这100万农民的人均年收入达到最大?解:(1)根据题意,得(100-x )·3 000·(1+2x %)≥100×3 000, 即x 2-50x ≤0,解得0≤x ≤50. 又x >0,故x 的取值范围是(0,50]. (2)设这100万农民的人均年收入为y 元,则 y =(100-x )×3 000×(1+2x %)+3 000ax 100=-60x 2+3 000(a +1)x +300 000100=-35[x -25(a +1)]2+3 000+375(a +1)2(0<x ≤50).①若0<25(a +1)≤50,即0<a ≤1, 则当x =25(a +1)时,y 取最大值; ②若25(a +1)>50,即a >1, 则当x =50时,y 取最大值.答:当0<a ≤1时,安排25(a +1)万人进入加工企业工作,当a >1时,安排50万人进入加工企业工作,才能使这100万人的人均年收入最大.[对应学生用书P6]一、选择题1.已知全集U =R ,集合M ={x |x 2-2x -3≤0},则∁U M =( ) A .{x |-1≤x ≤3} B .{x |-3≤x ≤1} C .{x |x <-3或x >1}D .{x |x <-1或x >3}解析:因为M ={x |-1≤x ≤3},全集U =R , 所以∁U M ={x |x <-1或x >3}. 答案:D2.关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,则a 的最大值与最小值的和是( )A .2B .1C .0D .-1解析:方程x 2-ax -20a 2=0的两根是x 1=-4a ,x 2=5a ,由关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,得|x 1-x 2|=|9a |≤9,即-1≤a ≤1. 答案:C3.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解析:由题意得⎩⎪⎨⎪⎧a <0,-2+1=1a ,-2×1=-c a,解得a =-1,c =-2, 则函数y =f (-x )=-x 2+x +2. 答案:C4.已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞)D .(1,3)解析:把不等式的左端看成关于a 的一次函数, 记f (a )=(x -2)a +(x 2-4x +4), 则f (a )>0对于任意的a ∈[-1,1]恒成立, 有f (-1)=x 2-5x +6>0,① 且f (1)=x 2-3x +2>0,② 联立①②解得x <1或x >3.故选C. 答案:C 二、填空题5.若不等式-x 2+2x -m >0在x ∈[-1,0]上恒成立,则m 的取值范围是________. 解析:由m <-x 2+2x 知m 只需小于u =-x 2+2x ,x ∈[-1,0]的最小值即可. 又∵u 在[-1,0]上递增, ∴u min =-1-2=-3. ∴m <-3.答案:(-∞,-3)6.已知x =1是不等式k 2x 2-6kx +8≥0(k ≠0)的解,则k 的取值范围是______________. 解析:由题意知,k 2-6k +8≥0, 即(k -2)(k -4)≥0,∴k ≥4或k ≤2,又∵k ≠0,∴k 的取值范围是(-∞,0)∪(0,2]∪[4,+∞). 答案:(-∞,0)∪(0,2]∪[4,+∞)7.若不等式2x -1>m (x 2-1)对满足-2≤m ≤2的所有m 都成立,则x 的取值范围为________________.解析:(等价转化法)将原不等式化为: m (x 2-1)-(2x -1)<0. 令f (m )=m (x 2-1)-(2x -1),则原问题转化为当-2≤m ≤2时,f (m )<0恒成立,只需⎩⎪⎨⎪⎧ f (-2)<0,f (2)<0即可,即⎩⎪⎨⎪⎧-2(x 2-1)-(2x -1)<0,2(x 2-1)-(2x -1)<0,解得-1+72<x <1+32.答案:⎝⎛⎭⎪⎫-1+72,1+328.已知方程x 2+(2m -3)x +m 2-15=0的两个根一个大于-2,一个小于-2,则实数m 的取值范围为________.解析:设函数f (x )=x 2+(2m -3)x +m 2-15, 则由题意:⎩⎪⎨⎪⎧Δ=(2m -3)2-4(m 2-15)>0,f (-2)<0, 即⎩⎪⎨⎪⎧-12m +69>0,m 2-4m -5<0. ∴-1<m <5. 答案:(-1,5) 三、解答题9.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R? 解:(1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎨⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0, 即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x | x <-1或x >32.(2)ax 2+bx +3≥0,即为3x 2+bx +3≥0. 若此不等式解集为R ,则b 2-4×3×3≤0, ∴-6≤b ≤6.10.一个服装厂生产风衣,日销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂日产量多大时,日利润不少于1 300元?(2)当日产量为多少时,可获得最大利润,最大利润是多少? 解:(1)由题意知,日利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500, 由日利润不少于1 300元, 得-2x 2+130x -500≥1 300, 即x 2-65x +900≤0,解得20≤x ≤45.故当该厂日产量在20~45件时,日利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500 =-2⎝⎛⎭⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当日产量为32或33件时,可获得最大利润,最大利润为1 612元. 11.已知二次函数f (x )=ax 2+x ,若对任意x 1,x 2∈R ,恒有2f ⎝⎛⎭⎫x 1+x 22≤f (x 1)+f (x 2)成立,不等式f (x )<0的解集为A .(1)求集合A ;(2)设集合B ={x ||x +4|<a },若集合B 是集合A 的子集,求a 的取值范围.解:(1)对任意的x 1,x 2∈R , f (x 1)+f (x 2)-2f ⎝⎛⎭⎫x 1+x 22=12a (x 1-x 2)2≥0,要使上式恒成立,所以a ≥0.由f (x )=ax 2+x 是二次函数知a ≠0,故a >0. 由f (x )=ax 2+x =ax ⎝⎛⎭⎫x +1a <0, 解得A =⎝⎛⎭⎫-1a ,0. (2)解得B =(-a -4,a -4),因为集合B 是集合A 的子集,所以a -4≤0,且-a -4≥-1a. 解得0<a ≤-2+ 5.即a 的取值范围是(0,-2+5].1.2基本不等式[对应学生用书P7][读教材·填要点]1.定理1设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.定理2(基本不等式或平均值不等式)如果a ,b a =b 时,等号成立.即:两个正数的算术平均不小于(即大于或等于)它们的几何平均.3.定理3(三个正数的算术—几何平均值不等式)如果a ,b ,c 为正数,则a +b +c 3≥a =b =c 时,等号成立.4.定理4(一般形式的算术—几何平均值不等式) 如果a 1,a 2,…,a n 为n 个正数,则 a 1+a 2+…+a nn≥ 并且当且仅当a 1=a 2=…=a n 时,等号成立.[小问题·大思维]1.在基本不等式a +b2≥ab 中,为什么要求a ,b ∈(0,+∞)?提示:对于不等式a +b2≥ab ,如果a ,b 中有两个或一个为0,虽然不等式仍成立,但是研究的意义不大,而且a ,b 至少有一个为0时,不能称ab 为几何平均(或等比中项),因此规定a ,b ∈(0,+∞).2.满足不等式a +b +c 3≥3abc 成立的a ,b ,c 的范围是什么?提示:a ,b ,c 的范围为a ≥0,b ≥0,c ≥0.[对应学生用书P8][例1] 已知a ,b ,c 为正实数,且abc =1 求证:(a +b )(b +c )(c +a )≥8.[思路点拨] 本题考查基本不等式在证明不等式中的应用,解答本题需要分析不等式的特点,先对a +b ,b +c ,c +a 分别使用基本不等式,再把它们相乘.[精解详析] ∵a ,b ,c 为正实数, ∴a +b ≥2ab >0, b +c ≥2bc >0, c +a ≥2ca >0, 由上面三式相乘可得 (a +b )(b +c )(c +a ) ≥8ab ·bc ·ca =8abc . 即(a +b )(b +c )(c +a )≥8.(1)用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式或其变形形式进行证明.(2)本题证明过程中多次用到基本不等式,然后利用同向不等式的可加性得出所证的不等式.1.已知a ,b ∈(0,+∞),求证:(a +b )⎝⎛⎭⎫1a +1b ≥4. 证明:∵a >0,b >0,∴a +b ≥2ab >0,① 当且仅当a =b 时取等号. 1a +1b≥21ab>0,② 当且仅当1a =1b ,即a =b 时取等号.①×②,得(a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时取等号. ∴(a +b )⎝⎛⎭⎫1a +1b ≥4.[例2] (1)已知a ,b ,c ∈R +,求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.(2)设a 1,a 2,a 3均为正数,且a 1+a 2+a 3=m ,求证:1a 1+1a 2+1a 3≥9m.[思路点拨] 本题考查平均不等式的应用.解答(1)题时可重复使用均值不等式,(2)题需要先观察求证式子的结构,然后通过变形转化为用平均不等式证明.[精解详析] (1)a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2 ≥33a 2b 2c 2+931a 2·1b 2·1c 2≥233a 2b 2c 2·931a 2·1b 2·1c 2=63,当且仅当a =b =c =43时等号成立. (2)∵⎝⎛⎭⎫1a 1+1a 2+1a 3·m =(a 1+a 2+a 3)·⎝⎛⎭⎫1a 1+1a 2+1a 3≥33a 1·a 2·a 3·3 31a 1·1a 2·1a 3=9·3a 1·a 2·a 3·1a 1·1a 2·1a 3=9.当且仅当a 1=a 2=a 3=m3时等号成立.又∵m >0,∴1a 1+1a 2+1a 3≥9m.三个正数的算术—几何平均不等式定理,是根据不等式的意义、性质和比较法证出的,因此,凡是可以利用该定理证明的不等式,一般都可以直接应用比较法证明,只是在具备条件时,直接应用该定理会更简便.若不直接具备“一正二定三相等”的条件,要注意经过适当的恒等变形后再使用定理证明.连续多次使用平均值不等式定理时要注意前后等号成立的条件是否保持一致.2.已知a ,b ,c ∈R +,证明⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥27. 证明:∵a ,b ,c ∈R +, ∴a +b +c ≥33abc >0.∴(a +b +c )2≥93a 2b 2c 2 又1a 2+1b 2+1c 2≥331a 2b 2c2>0, ∴⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥331a 2b 2c 2·93a 2b 2c 2 =27.当且仅当a =b =c 时,等号成立. ∴⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥27.[对应学生用书P9]一、选择题1.设x 、y 为正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .x +y ≤2(2+1) C .x +y ≤(2+1)2D .x +y ≥(2+1)2解析:x >0,y >0,xy -(x +y )=1⇒xy =1+(x +y )⇒1+(x +y )≤⎝⎛⎭⎫x +y 22⇒x +y ≥2(2+1).答案:A2.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是( ) A .V ≥π B .V ≤π C .V ≥18πD .V ≤18π解析:设圆柱的底面半径为r ,高为h , 则由题意得:4r +2h =6,即2r +h =3, 于是有V =πr 2h ≤π·⎝⎛⎭⎫r +r +h 33=π⎝⎛⎭⎫333=π,当且仅当r =h 时取等号. 答案:B3.设x ,y ,z ∈R +且x +y +z =6,则lg x +lg y +lg z 的取值范围是( ) A .(-∞,lg 6] B .(-∞,3lg 2] C .[lg 6,+∞) D .[3lg 2,+∞) 解析:∵lg x +lg y +lg z =lg(xyz ),而xyz ≤⎝⎛⎭⎫x +y +z 33,∴lg(xyz )≤lg 8=3lg 2(当且仅当x =y =z =2时,等号成立). 答案:B4.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1,则x 的取值范围为( )A.⎣⎡⎭⎫0,18 B.⎣⎡⎭⎫18,1 C .[1,8)D .[8,+∞)解析:∵x =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 =1-a a ·1-b b ·1-c c =(b +c )·(c +a )·(a +b )abc ≥2bc ·2ca ·2ababc=8,当且仅当a =b =c 时取等号,∴x ≥8. 答案:D 二、填空题5.已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.解析:因为x >0,y >0, 所以x 3+y 4≥2x 3·y 4= xy3,即 xy3≤1,解得xy ≤3,所以其最大值为3. 答案:36.设a >1,t >0,则12log a t 与log a t +12的大小关系为12log a t ________log a t +12(填“<”“≥”或“≤”).解析:因为12log a t =log a t ,又t >0又t +12≥ t . 而a >1,∴log a t +12≥log a t ,故填“≤”.答案:≤7.函数y =x 2x 4+9(x ≠0)有最大值________,此时x =________.解析:∵x ≠0,∴x 2>0.∴y =x 2x 4+9=1x 2+9x2≤12x 2·9x2=16, 当且仅当x 2=9x 2,即x 4=9,x =±3时取等号,即当x =±3时,y max =16.答案:16±38.已知a >0,b >0,c >0,且a +b +c =1,则abc 的最大值是________. 解析:∵a ,b ,c ∈(0,+∞),∴1=a +b +c ≥33abc . 0<abc ≤⎝⎛⎭⎫133=127,当且仅当a =b =c =13时取等号.答案:127三、解答题9.求函数y =2x 2+3x (x >0)的最小值.解:由x >0知2x 2>0,32x >0,则y =2x 2+3x =2x 2+32x +32x≥332x 2·32x ·32x =3392.当且仅当2x 2=32x ,即x =334时,y min =3392=32336.10.已知a ,b 为正实数,a +b =1. 求证:⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. 证明:∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab ≥4.∵a +b 2≤a 2+b 22,∴a 2+b 22≥⎝⎛⎭⎫a +b 22.∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥2⎣⎢⎡⎦⎥⎤a +1a +b +1b 22=⎝⎛⎭⎫1+1a +1b 22≥⎝⎛⎭⎫1+21ab 22≥252.∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. 当且仅当a =b =12时等号成立.11.设a ,b ,c 为正实数, 求证:1a 3+1b 3+1c3+abc ≥2 3.证明:因为a ,b ,c 为正实数,由算术—几何平均不等式可得 1a 3+1b 3+1c 3≥331a 3·1b 3·1c 3, 即1a 3+1b 3+1c 3≥3abc (当且仅当a =b =c 时,等号成立). 所以1a 3+1b 3+1c 3+abc ≥3abc +abc .而3abc+abc ≥23abc·abc =23(当且仅当a 2b 2c 2=3时,等号成立), 所以1a 3+1b 3+1c 3+abc ≥23(当且仅当a =b =c =63时,等号成立).1.3绝对值不等式的解法[对应学生用书P10][读教材·填要点]1.含绝对值的不等式|x|≤a与|x|≥a的解集2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法(1)|ax+b|≤c⇔-c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法(1)分区间讨论法:以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负进而去掉绝对值符号是解题关键.(2)图象法:构造函数,结合函数的图象求解.(3)几何法:利用绝对值不等式的几何意义求解.[小问题·大思维]1.|x|以及|x-a|±|x-b|表示的几何意义是什么?提示:|x|的几何意义是数轴上表示数x的点到原点O的距离;|x-a|±|x-b|的几何意义是数轴上表示数x的点与表示数a,b的点的距离之和(差).2.如何解|x-a|<|x-b|、|x-a|>|x-b|(a≠b)型的不等式的解集?提示:可通过两边平方去绝对值符号的方法求解.[对应学生用书P10][例1]解下列不等式:(1)1<|x-2|≤3;(2)|2x +5|>7+x ; (3)1x 2-2≤1|x |. [思路点拨] 本题考查较简单的绝对值不等式的解法.解答本题(1)可利用公式转化为|ax +b |>c (c >0)或|ax +b |<c (c >0)型不等式后逐一求解,也可利用绝对值的定义分两种情况去掉绝对值符号,还可用平方法转化为不含绝对值的不等式.(2)可利用公式法转化为不含绝对值的不等式. (3)可分类讨论去掉分母和绝对值.[精解详析] (1)法一:原不等式等价于不等式组⎩⎪⎨⎪⎧ |x -2|>1,|x -2|≤3,即⎩⎪⎨⎪⎧x <1或x >3,-1≤x ≤5,解得-1≤x <1或3<x ≤5,所以原不等式的解集为{x |-1≤x <1或3<x ≤5}. 法二:原不等式可转化为:①⎩⎪⎨⎪⎧ x -2≥0,1<x -2≤3,或②⎩⎪⎨⎪⎧x -2<0,1<-(x -2)≤3,由①得3<x ≤5,由②得-1≤x <1,所以原不等式的解集是{x |-1≤x <1或3<x ≤5}. (2)由不等式|2x +5|>7+x ,可得2x +5>7+x 或2x +5<-(7+x ), 整理得x >2或x <-4.∴原不等式的解集是{x |x <-4或x >2}. (3)①当x 2-2<0且x ≠0,即当-2<x <2, 且x ≠0时,原不等式显然成立. ②当x 2-2>0时,原不等式与不等式组⎩⎨⎧|x |>2,x 2-2≥|x |等价,x 2-2≥|x |即|x |2-|x |-2≥0, ∴|x |≥2,∴不等式组的解为|x |≥2, 即x ≤-2或x ≥2. ∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞).含一个绝对值不等式的常见类型及其解法:(1)形如|f (x )|<a ,|f (x )|>a (a ∈R )型不等式 此类不等式的简单解法是等价命题法,即 ①当a >0时,|f (x )|<a ⇒-a <f (x )<a . |f (x )|>a ⇔f (x )>a 或f (x )<-a . ②当a =0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )≠0.③当a <0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )有意义.(2)形如|f (x )|<g (x ),|f (x )|>g (x )型不等式 此类不等式的简单解法是等价命题法,即 ①|f (x )|<g (x )⇔-g (x )<f (x )<g (x ),②|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x )(其中g (x )可正也可负). 若此类问题用分类讨论法来解决,就显得较复杂. (3)形如a <|f (x )|<b (b >a >0)型不等式 此类问题的简单解法是利用等价命题法,即 a <|f (x )|<b (0<a <b )⇔a <f (x )<b 或-b <f (x )<-a . (4)形如|f (x )|<f (x ),|f (x )|>f (x )型不等式 此类题的简单解法是利用绝对值的定义,即 |f (x )|>f (x )⇔f (x )<0, |f (x )|<f (x )⇔x ∈∅.1.设函数f (x )=|2x -a |+5x ,其中a >0. (1)当a =3时,求不等式f (x )≥5x +1的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =3时,不等式f (x )≥5x +1可化为|2x -3|≥1, 由此可得x ≥2或x ≤1.故不等式f (x )≥5x +1的解集为{x |x ≤1或x ≥2}.(2)由f (x )≤0得|2x -a |+5x ≤0,此不等式可化为不等式组⎩⎪⎨⎪⎧x ≥a 2,2x -a +5x ≤0或⎩⎪⎨⎪⎧x <a 2,-(2x -a )+5x ≤0,即⎩⎨⎧x ≥a 2,x ≤a7或⎩⎨⎧x <a 2,x ≤-a3,因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x | x ≤-a 3.由题设可得-a3=-1,故a =3.[例2] 解不等式|x +7|-|3x -4|+3-22>0. [思路点拨] 先求出零点即x =-7,43,再分段讨论.[精解详析] 原不等式化为 |x +7|-|3x -4|+2-1>0,当x >43时,原不等式为x +7-(3x -4)+2-1>0,得x <5+22,即43<x <5+22; 当-7≤x ≤43时,原不等式为x +7+(3x -4)+2-1>0, 得x >-12-24,即-12-24<x ≤43;当x <-7时,原不等式为 -(x +7)+(3x -4)+2-1>0, 得x >6-22,与x <-7矛盾; 综上,不等式的解为-12-24<x <5+22.(1)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.(2)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的图象解法和画出函数f (x )=|x -a |+|x -b |-c 的图象是密切相关的,其图象是折线,正确地画出其图象的关键是写出f (x )的分段表达式.不妨设a <b ,于是f (x )=⎩⎪⎨⎪⎧-2x +a +b -c , (x ≤a ),b -a -c , (a <x <b ),2x -a -b -c , (x ≥b ).这种图象法的关键是合理构造函数,正确画出函数的图象,求出函数的零点,体现了函数与方程结合、数形结合的思想.(3)形如|f (x )|<|g (x )|型不等式此类问题的简单解法是利用平方法,即 |f (x )|<|g (x )|⇔[f (x )]2<[g (x )]2 ⇔[f (x )+g (x )][f (x )-g (x )]<0.2.设函数f (x )=|2x +1|-|x -3|. (1)解不等式f (x )≥4; (2)求函数y =f (x )的最小值.解:(1)由题意得,f (x )=|2x +1|-|x -3| =⎩⎪⎨⎪⎧-x -4, x <-12,3x -2, -12≤x ≤3,x +4, x >3,所以不等式f (x )≥4,等价于⎩⎪⎨⎪⎧ x <-12,-x -4≥4或⎩⎪⎨⎪⎧-12≤x ≤3,3x -2≥4或⎩⎪⎨⎪⎧x >3,x +4≥4,解得x ≤-8或x ≥2.所以原不等式的解集为{x |x ≤-8或x ≥2}. (2)由(1)知,当x <-12时,f (x )=-x -4,所以f (x )在⎝⎛⎭⎫-∞,-12上单调递减; 当-12≤x ≤3时,f (x )=3x -2,所以f (x )在⎣⎡⎦⎤-12,3上单调递增; 当x >3时,f (x )=x +4,所以f (x )在(3,+∞)上单调递增.故当x =-12时,y =f (x )取得最小值,此时f (x )min =-72.[例3] 设函数f (x )=|x -1|+|x -a |. 如果∀x ∈R ,f (x )≥2,求a 的取值范围.[思路点拨] 本题考查绝对值不等式的解法.解答本题应先对a 进行分类讨论,求出函数f (x )的最小值,然后求a 的取值范围.[精解详析] 若a =1,f (x )=2|x -1|,不满足题设条件. 若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤a ,1-a , a <x <1,2x -(a +1), x ≥1,f (x )的最小值为1-a .若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤1,a -1, 1<x <a ,2x -(a +1), x ≥a ,f (x )的最小值为a -1.所以∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,-1]∪[3,+∞).含有参数的不等式的求解问题分两类,一类不需要对参数进行讨论,另一类如本例,对参数a 进行讨论,得到关于参数a 的不等式(组),进而求出参数的取值范围.3.(辽宁高考)已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解:(1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6, x ≤2,2, 2<x <4,2x -6, x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4, 解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4, 解得x ≥5.所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a , x ≤0,4x -2a , 0<x <a ,2a , x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2}, 所以⎩⎨⎧a -12=1,a +12=2,于是a =3.[对应学生用书P12]一、选择题1.若不等式|ax +2|<6的解集为(-1,2),则实数a 的取值为( ) A .8 B .2 C .-4D .-8解析:原不等式化为-6<ax +2<6, 即-8<ax <4. 又∵-1<x <2,∴验证选项易知a =-4适合. 答案:C2.如果1x <2和|x |>13同时成立,那么x 的取值范围是( )A.⎩⎨⎧⎭⎬⎫x | -13<x <12 B.⎩⎨⎧⎭⎬⎫x | x >12或x <-13C.⎩⎨⎧⎭⎬⎫x | x >12 D.⎩⎨⎧⎭⎬⎫x | x <-13或x >13解析:解不等式1x <2得x <0或x >12;解不等式|x |>13得x >13或x <-13.如图所示:∴x 的取值范围为⎩⎨⎧⎭⎬⎫x | x >12或x <-13.答案:B3.如果关于x 的不等式|x -a |+|x +4|≥1的解集是全体实数,则实数a 的取值范围是( )A .(-∞,3]∪[5,+∞)B .[-5,-3]C .[3,5]D .(-∞,-5]∪[-3,+∞)解析:在数轴上,结合绝对值的几何意义可知a ≤-5或a ≥-3. 答案:D4.若关于x 的不等式|x +1|≥kx 恒成立,则实数k 的取值范围是( ) A .(-∞,0] B .[-1,0] C .[0,1]D .[0,+∞)解析:作出y =|x +1|与l1;y =kx 的图象如图,当k <0时,直线一定经过第二、四象限,从图看出明显不恒成立;当k =0时,直线为x 轴,符合题意;当k >0时,要使|x +1|≥kx 恒成立,只需k ≤1.综上可知k ∈[0,1]. 答案:C 二、填空题5.不等式|2x +1|-2|x -1|>0的解集为________.解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x | x >146.不等式|x +1||x +2|≥1的实数解集为________.解析:|x +1||x +2|≥1⇔|x +1|≥|x +2|,x +2≠0⇔(x +1)2≥(x +2)2,x ≠-2⇔x ≤-32,x ≠-2.答案:(-∞,-2)∪⎝⎛⎦⎤-2,-327.若不等式| x +1x | >|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是________.解析:∵|x +1x |≥2,∴|a -2|+1<2,即|a -2|<1,解得1<a <3.答案:1<a <38.若关于x 的不等式|x -1|+|x -a |≥a 的解集为R (其中R 是实数集),则实数a 的取值范围是________.解析:不等式|x -1|+|x -a |≥a 恒成立, a 不大于|x -1|+|x -a |的最小值, ∵|x -1|+|x -a |≥|1-a |,∴|1-a |≥a,1-a ≥a 或1-a ≤-a ,解得a ≤12.答案:⎝⎛⎦⎤-∞,12 三、解答题9.解不等式|2x -4|-|3x +9|<1. 解:(1)当x >2时,原不等式可化为⎩⎪⎨⎪⎧x >2,(2x -4)-(3x +9)<1, 解得x >2.(2)当-3≤x ≤2时,原不等式可化为⎩⎪⎨⎪⎧ -3≤x ≤2,-(2x -4)-(3x +9)<1, 解得-65<x ≤2.(3)当x <-3时,原不等式可化为⎩⎪⎨⎪⎧x <-3,-(2x -4)+(3x +9)<1, 解得x <-12.综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x | x <-12或x >-65.10.已知函数f (x )=|2x -1|+|x -2a |. (1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围. 解:(1)当a =1时,原不等式可化为|2x -1|+|x -2|≤3,当x >2时,得3x -3≤3,则x ≤2,无解;当12≤x ≤2时,得x +1≤3,则x ≤2,所以12≤x ≤2; 当x <12时,得3-3x ≤3,则x ≥0,所以0≤x <12.综上所述,原不等式的解集为[0,2]. (2)原不等式可化为|x -2a |≤3-|2x -1|, 因为x ∈[1,2],所以|x -2a |≤4-2x , 即2x -4≤2a -x ≤4-2x ,故3x -4≤2a ≤4-x 对x ∈[1,2]恒成立.当1≤x ≤2时,3x -4的最大值为2,4-x 的最小值为2, 所以a 的取值范围为1.11.已知函数f (x )=|x +3|+|x -a |(a >0). (1)当a =4时,已知f (x )=7,求x 的取值范围; (2)若f (x )≥6的解集为{x |x ≤-4或x ≥2},求a 的值.解:(1)因为|x +3|+|x -4|≥|x +3-x +4|=7,当且仅当(x +3)(x -4)≤0时等号成立. 所以f (x )=7时,-3≤x ≤4,故x ∈[-3,4]. (2)由题知f (x )=⎩⎪⎨⎪⎧a -3-2x , x ≤-3,a +3, -3<x <a ,2x +3-a , x ≥a ,当a +3≥6时,不等式f (x )≥6的解集为R ,不合题意;当a +3<6时,不等式f (x )≥6的解为⎩⎪⎨⎪⎧ x ≤-3,a -3-2x ≥6或⎩⎪⎨⎪⎧x ≥a ,2x +3-a ≥6,即⎩⎪⎨⎪⎧ x ≤-3,x ≤a -92或⎩⎪⎨⎪⎧x ≥a ,x ≥a +32.又因为f (x )≥6的解集为{x |x ≤-4或x ≥2}, 所以a =1.1.4绝对值的三角不等式[对应学生用书P13][读教材·填要点]绝对值的三角不等式(1)定理1:若a ,b 为实数,则|a +b |≤|a |+|b |. 当且仅当ab ≥0时,等号成立.(2)定理2:设a ,b ,c 为实数,则|a -c |≤|a -b |+|b -c |,等号成立⇔(a -b )(b -c )≥0,即b 落在a ,c 之间.①推论1:||a |-|b ||≤|a +b | ②推论2:||a |-|b ||≤|a -b |[小问题·大思维]1.|a +b |与|a |-|b |,|a -b |与|a |-|b |及|a |+|b |分别具有什么关系? 提示:|a |-|b |≤|a +b |,|a |-|b |≤|a -b |≤|a |+|b |.2.不等式|a |-|b |≤|a ±b |≤|a |+|b |中“=”成立的条件分别是什么?提示:不等式|a |-|b |≤|a +b |≤|a |+|b |,右侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0,且|a |≥|b |;不等式|a |-|b |≤|a -b |≤|a |+|b |,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0且|a |≥|b |.3.绝对值不等式|a -c |≤|a -b |+|b -c |的几何解释是什么?提示:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C ,当点B 在点A ,C 之间时,|AC |=|AB |+|BC |;当点B 不在点A ,C 之间时,|AC |<|AB |+|BC |.[对应学生用书P13][例1] (1)以下四个命题:①若a ,b ∈R ,则|a +b |-2|a |≤|a -b |; ②若|a -b |<1,则|a |<|b |+1; ③若|x |<2,|y |>3,则|x y |<23;④若AB ≠0,则lg |A |+|B |2≥12( lg|A |+lg|B |).其中正确的命题有( )A .4个B .3个C .2个D .1个(2)不等式|a +b ||a |-|b |≥1成立的充要条件是________.[思路点拨] 本题考查绝对值的三角不等式定理的应用及充要条件等问题.解答问题(1)可利用绝对值的三角不等式定理,结合不等式的性质、基本定理等一一验证;解答问题(2)应分|a |>|b |与|a |<|b |两类讨论.[精解详析] (1)|a +b |=|(b -a )+2a |≤|b -a |+2|a | =|a -b |+2|a |,∴|a +b |-2|a |≤|a -b |,①正确; 1>|a -b |≥|a |-|b |,∴|a |<|b |+1,②正确; |y |>3,∴1|y |<13.又∵|x |<2,∴|x ||y |<23.③正确;⎝⎛⎭⎫|A |+|B |22=14(|A |2+|B |2+2|A ||B |), ≥14(2|A ||B |+2|A ||B |)=|A ||B |, ∴2lg |A |+|B |2≥lg|A ||B |.∴lg|A |+|B |2≥12(lg|A |+lg|B |),④正确. (2)当|a |>|b |时,有|a |-|b |>0, ∴|a +b |≥||a |-|b ||=|a |-|b |. ∴必有|a +b ||a |-|b |≥1.即|a |>|b |是|a +b ||a |-|b |≥1成立的充分条件. 当|a +b ||a |-|b |≥1时,由|a +b |>0, 必有|a |-|b |>0. 即|a |>|b |,故|a |>|b |是|a +b ||a |-|b |≥1成立的必要条件. 故所求为:|a |>|b |. [答案] (1)A (2)|a |>|b |。
高中数学人教B版选修4-5教学案第二章 2.3~2.4 平均值不等式(选学) 最大值与最小值问题优化的数学模型
.~平均值不等式(选学)最大值与最小值问题,优化的数学模型[读教材·填要点].平均值不等式()定理(平均值不等式):设,,…,为个正数,则≥,⇔==等号成立=.…①推论:设,,…,为个正数,且…=,则++…+≥.⇔且等号成立==…==.②推论:设为常数,且,,…,为个正数;则当++…+=时,…≤,且等号成立⇔===….()定理:设,,…,为个正数,则≥,==等号成立⇔…=.()定理:设,,…,为正数,则≥≥,等号成立==⇔…=.推论:设,,…,为个正数,则(++…+)(++…+)≥..最值问题≤,使得()∈()设为()的定义域,如果存在∈,),()≥(()则称()为()在上的最大(小)值,称为()在上的最大(小)值点,寻求函数的最大(小)值及最.大(小)值问题统称为最值问题[小问题·大思维].利用基本不等式≥求最值的条件是什么?提示:“一正、二定、三相等”,即:()各项或各因式为正;()和或积为定值;()各项或各因式能取得相等的值..应用三个正数的算术—几何平均不等式,求最值应注意什么?提示:三个正数的和为定值,积有最大值;积为定值,和有最小值.当且仅当三个正数相等时取得.[例]已知>,>,且+=,求+的最小值.[思路点拨]本题考查基本不等式的应用,解答本题可灵活使用“”的代换或对条件进行必要的变形,然后再利用基本不等式求得和的最小值.[精解详析]法一:∵>,>,+=,∴+=(+)(+)=++≥+=.当且仅当=,又+=,即=,=时,上式取等号.故当=,=时,(+)=.()运用不等式求最大值、最小值,用到两个结论,简述为:“和定积最大”与“积定和最小”.()运用定理求最值时:必须做到“一正,二定,三相等”..求函数()=(>)的最大值及此时的值.解:()=-.因为>,所以+≥,得-≤-,因此()≤-,当且仅当=,即=时,式子中的等号成立.由于>,因而=时,等号成立.因此()=-,此时=.[例]已知为正实数,求函数=(-)的最大值.。
高中数学选修第四章教案
高中数学选修第四章教案
一、教学目标:
1. 理解数列的概念,掌握等差数列、等比数列的性质及求通项公式的方法。
2. 了解数学归纳法的基本原理和应用方法。
3. 能够应用数列的性质和数学归纳法解决实际问题。
二、教学重点:
1. 等差数列的性质及求通项公式的方法。
2. 等比数列的性质及求通项公式的方法。
3. 数学归纳法的基本原理和应用方法。
三、教学难点:
1. 数学归纳法的应用方法。
2. 难题的解决思路及方法。
四、教学内容:
1. 数列的概念和基本性质。
2. 等差数列的定义、通项公式及性质。
3. 等比数列的定义、通项公式及性质。
4. 数学归纳法的基本原理和应用方法。
五、教学过程:
1. 引入:通过一个生活中的例子引导学生理解数列的概念。
2. 讲解等差数列的定义、通项公式及性质。
3. 讲解等比数列的定义、通项公式及性质。
4. 系统讲解数学归纳法的基本原理和应用方法。
5. 练习:布置一定数量的练习题供学生自主练习。
六、教学反思:
本章内容相对较为抽象,需要学生反复练习和思考,老师要引导学生理解数列的性质及数学归纳法的应用方法,帮助学生建立良好的数学思维习惯。
同时,教师要及时发现学生在学习过程中的问题,及时做出调整和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.直线y=2x- 与曲线 0≤φ≤2π的交点坐标为________.
解析: ⇒
将①代入②中,得y=1-2x2(-1≤x≤1),
∴2x2+y=1.
由 解之得 或 (舍去).
答案:
14.直线 (t为参数)与曲线 (α为参数)的交点个数为________.
解析:直线的普通方程为x+y-1=0,圆的普通方程为x2+y2=32,圆心到直线的距离d= <3,故直线与圆的交点个数是2.
当x= 时,y=1-2× 2= ,故选C.
2.若P(2,-1)为圆O: (0≤θ≤2π)的弦的中点,则该弦所在直线l的方程是()
A.x-y-3=0B.x+2y=0
C.x+y-1=0D.2x-y-5=0
解析:选A∵圆心O(1,0),∴kPO=-1.
∴kl=1.
∴直线l的方程为x-y-3=0.
3.曲线 (θ为参数)的对称中心()
[对应阶段质量检测(二)P47]
(时小题,每小题5分,共50分)
1.方程 0≤θ≤2π表示的曲线上的一个点的坐标是()
A.(2,-7)B.(1,0)
C. D.
解析:选C由y=cos 2θ得y=1-2sin2θ,
∴参数方程化为普通方程是y=1-2x2(-1≤x≤1).
A. B.
C. D.
解析:选A设P(3cosθ,5sinθ),
则|OP|2=9cos2θ+25sin2θ
=9+16sin2θ=13.
解得sin2θ= .又0≤θ≤ ,
∴sinθ= ,cosθ= .
∴x=3cosθ= ,y=5sinθ= .
∴P的坐标为 .
9.设曲线 与x轴交点为M,N,点P在曲线上,则PM与PN所在直线的斜率之积为()
解析:选Ax+y2=cos2θ+sin2θ=1,即y2=-x+1.又x=cos2θ∈[0,1],y=sinθ∈[-1,1],
∴为抛物线的一部分.
6.点P(x,y)在椭圆 +(y-1)2=1上,则x+y的最大值为()
A.3+ B.5+
C.5D.6
解析:选A椭圆的参数方程为 0≤θ≤2π,
x+y=2+2cosθ+1+sinθ=3+ sin(θ+φ),
A.过圆心B.相交而不过圆心
C.相切D.相离
解析:选B直线与圆的普通方程分别为3x-y+2=0与(x+1)2+(y-3)2=4.
圆心(-1,3)到直线的距离
d= = = .
而d<2且d≠0,
故直线与圆相交而不过圆心.
5.参数方程 0≤θ≤2π所表示的曲线为()
A.抛物线的一部分B.一条抛物线
C.双曲线的一部分D.一条双曲线
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换 得到曲线C′,设曲线C′上任一点为M(x,y).求x+2 y的最小值.
解:(1)直线l的普通方程为:y-2= (x-1),
曲线C的直角坐标方程为:x2+y2=1.
(2)由已知得曲线C′: +y2=1.
令
∴x+2 y=3cosθ+2 sinφ
∴(x+y)max=3+ .
7.过点(3,-2)且与曲线 0≤θ≤2π有相同焦点的椭圆方程是()
A. + =1B. + =1
C. + =1D. + =1
解析:选A曲线化为普通方程是 + =1.∴焦点坐标为(- ,0),( ,0),排除B、C、D.
8.已知过曲线 0≤θ≤ 上一点P与原点O的距离为 ,则P点坐标为()
答案:2
三、解答题(本大题共有4小题,共50分)
15.(本小题满分12分)求直线 被曲线ρ= cos 所截得的弦长.
解:将方程 ρ= cos 分别化为普通方程3x+4y+1=0,x2+y2-x+y=0,圆心为C ,半径为 ,圆心到直线的距离d= ,
弦长=2 =2 = .
16.(本小题满分12分)在极坐标系中,圆C的方程为ρ=2 sin ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数),判断直线l和圆C的位置关系.
A.- B.-
C. D.
解析:选A令y=0,得sinθ=0,∴cosθ=±1.
∴M(-2,0),N(2,0).设P(2cosθ, sinθ).
∴kPM·kPN= · = =- .
10.已知直线 和圆x2+y2=16交于A,B两点,则AB的中点坐标为()
A.(3,-3)B.(- ,3)
C.( ,-3)D.(3,- )
A.在直线y=2x上B.在直线y=-2x上
C.在直线y=x-1上D.在直线y=x+1上
解析:选B将 (θ为参数)化为普通方程为(x+1)2+(y-2)2=1,其表示以(-1,2)为圆心,1为半径的圆,其对称中心即圆心,显然(-1,2)在直线y=-2x上,故选B.
4.若圆的参数方程为 (0≤θ≤2π),直线的参数方程为 (t为参数),则直线与圆的位置关系是()
解析:选D将直线的参数方程代入圆的方程 2+ 2=16,
得t2-8t+12=0,t1+t2=8, =4,
则AB的中点为 ⇒
二、填空题(本大题有4小题,每小题5分,共20分)
11.圆的参数方程为 0≤θ≤2π,则此圆的半径为________.
解析:平方相加得x2+y2=9sin2θ+24sinθcosθ+16cos2θ+16sin2θ-24sinθcosθ+9cos2θ=25,所以圆的半径为5.
答案:5
12.设直线l1的参数方程为 (t为参数),直线l2的方程为y=3x-4.若直线l1与l2间的距离为 ,则实数a的值为________.
解析:将直线l1的方程化为普通方程得3x-y+a-3=0,直线l2即3x-y-4=0.由两平行线的距离公式可得 = ⇒|a+1|=10⇒a=9或a=-11.
= sin(θ+φ) .
∴x+2 y的最小值是- .
18.(本小题满分14分)在直角坐标系xOy中,直线l的参数方程为 在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2 sinθ.
解:消去参数t,得直线l的直角坐标方程为y=2x+1.
ρ=2 sin 即ρ=2(sinθ+cosθ),
两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),
故圆C的直角坐标方程为(x-1)2+(y-1)2=2,
圆心C到直线l的距离
d= = < ,
所以直线l和圆C相交.
17.(本小题满分12分)已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为