08-09-1高数(上)A卷及答案[1]
高数A试题及答案[1]
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln lnx+2x-2x+22-x2.()002lim1cos tt xx e e dtx-→+-=-⎰( )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导 5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________.7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞=9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________. 11.函数3229129y x x x =-+-的单调减少区间是___________. 12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6aa π==⎰则___________. 14.设2cos xz y=则dz= _______.15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1xy x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.a ⎰20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
安徽大学期末试卷MK08-09(1)高数A(一)、B(一)试卷.pdf
).
A.必要条件但不是充分条件 B.充分条件但不是必要条件
C.充分必要条件
D.既不是充分条件也不是必要条件
姓名
专业
院/系
《高等数学 A(一)、B(一) 》(A 卷) 第 1 页 共 6 页
安徽大学期末试卷
2.
设
f
(
x)
=
⎧⎪ ⎨
x
sin
1 x
,
⎪⎩1,
A. 跳跃间断点
x ≠ 0 ,则 x = 0 是 f (x) 的(
=
_______________.
5. 曲线 y = 1 (x > 0) 与直线 y = x, y = 2 所围成的面积为_______________. x
二、选择题(本题共 5 小题,每小题 2 分,共 10 分)
得分
1.
lim
x → x0−
f (x) =
lim
x → x0+
f (x) 是
f
(x) 在 x0 处可微的(
安徽大学期末试卷
4.
lim
(sin
1
+
sin
1
+
sin
1
+
"
+
sin
1
)
1 n
n→∞
2
3
4
n
∫ 5.
x2 1− x4 dx
∫ 6.
dx
ex + 4e−x
《高等数学 A(一)、B(一) 》(A 卷) 第 3 页 共 6 页
∫ 7.
a
1
0 (a2 + x2 )3/ 2 dx
(a > 0)
08-09 高等数学1试题(A卷)及解答
广州大学2008-2009学年第一学期考试卷课 程:高等数学(A 卷)(90学时) 考 试 形 式: 闭卷 考试一.填空题(每空2分,本大题满分16分)1.设⎩⎨⎧≤>=1,1,1)(2x x x x f ,则=-))2((f f . 2. 若函数 ⎩⎨⎧>≤-+=0,)arctan(0,2)(2x ax x b x x x f 在0=x 处可导,则=a ,=b .3.曲线xx x y 122sin -=有水平渐近线=y ______和铅直渐近线=x ______. 4.已知1)(0-='x f ,则=+--→hh x f h x f h )2()(lim000.5.设50()(1)xf t dt x C =++⎰,则常数=C ______,=)(x f ____________.二.选择题 (每小题3分, 本大题满分15分)1. 当0→x 时, )ln(21x +是x 的( )无穷小.(A) 高阶 (B) 低阶 (C) 同阶 (D) 等价学 院专 业班级姓名学号2. 函数12+=x y 在点(1,2)处的法线方程为 ( ).(A) 252--=x y (B) 2521+-=x y (C) 252-=x y (D) 2521--=x y3.2x x f =)(在闭区间],[10上满足拉格朗日中值定理,则定理中的=ξ( ).(A)31 (B) 21 (C) 22 (D) 21-4. 若函数)(x f 在点0x x =处取得极值, 且)(0x f '存在,则必有 ( ) . (A) 0)(0='x f (B) 00>')(x f (C) 0)(0>''x f (D) )(0x f '的值不确定5. x x f ln )(=在),(+∞0内是 ( ).(A) 周期函数 (B) 凹函数 (C) 凸函数 (D )单减函数三.解答下列各题(每小题6分,本大题满分30分)1.212xxy -=arctan ,求dy .2.=y )sin(12+x ,求n (N n ∈)阶导数)()(x y n .3.设曲线参数方程为⎩⎨⎧-=-=321t t y t x ,求dxdy.4.求xx x x ⎪⎭⎫⎝⎛+∞→2lim .5.求)sin (lim xx x 110-→.四.计算下列积分(每小题6分,本大题满分18分)1.⎜⎠⎛++dx x x x )(132222.2.⎜⎠⎛+901dx xx.3.⎰∞+-02dx e x x .五.(本题满分7分).)(所围平面图形的面积求椭圆012222>>=+b a by a x六.(本题满分7分)设0>>a b ,()x f 在[]b a ,连续,在()b a ,可导。
华东交大历年高数上册期末试题及答案08-09高数上试卷及答案
lim
x 0
1 1 x1 ln(x 1)
1
x x1
lim
x0
( x 1) 2 1 1 x 1 ( x 1) 2
1 2
3、 设y (cos x )
sin x
, 求dy.
得分
评阅人
解 两边取对数得 ln y sin x ln cos x
1 sin x y cos x ln cos x sin x y cos x
y (cos x)
dy y dx
sin x
(cos x ln cos x sin x tan x)
(cos x)
sin x
(cos x ln cos x sin x tan x)dx
4、 求不定积分
解
x 4 dx. x
2
得分
评阅人
令x 2 sec t, 则dx 2 sec t tan tdt
华东交通大学 2008—2009 学年第一学期考试卷卷
承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和 因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。 试卷编号: (A)卷
《高等数学(A)Ⅰ 》 课程 (工科本科 08 级) 课程类别:必 闭卷(√)
二、选择题(每题 3 分,共 15 分)
1、
得分
评阅人
lim
x
2 sin 2 x ( x sin )( C ) x x B. 3 C. 2 D. 1
A.4
专业
2 2、 曲 线 x cos t cos t 上 在 对 应 t 点处的法线斜率为 ( A ) 4 y 1 sin t A. 1 2 B. 2 1 C. 1 2 D. 1 2
高数必不挂-2008–2009年第1学期A解答 (2)
2008–2009年第1学期《高等数学A 》课程期末考试试卷解答 2009.1一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) (本大题分3小题, 每小题3分, 共9分) 1、D 2、C 3、C 二、填空题(将正确答案填在横线上) (本大题分5小题, 每小题3分, 共15分) 1、21e 2、0=+ex y 3、3 4、21π+ 5、)1,1( 三 计算题(本大题分9小题,每小题7分,共63分)1、 解: xxxe x y e x y e x y ----='''-=''-=')3(,)2(,)1( 4分x n n e n x y ---=)()1()( 7分3、解:y xe e y yy'--=' 3分1+-='y yxe e y 6分e y y x -='==,1,0 7分4、解:内可导在上连续在)65,6(,]65,6[sin ln )(ππππx x f = 21ln )65()6(==ππf f 3分xx f x f cot )(]65,6[)(='上满足罗尔定理的条件在即 ππ 5分 0)(2)65,6(22,0)(='=+=='ξπξππππf k x x f 使内存在以上即在得令 7分7、解:t at dt dy t at dtdxsin ,cos ==,t dx dy t dx dy 22sec 1tan =⎪⎭⎫ ⎝⎛+= ,,2分d y dxt at t tat 2223==sec cos sec , 4分 k d y dx dy dx =+⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥222321 ==sec sec 231tat tat, 6分ππa kt 1==。
7分6、解:tdt t dx t x tan sec 2sec 2⋅== 令 2分C t tdt dt t t t t +==⋅⋅=⎰⎰sin 41cos 41tan 2sec 4tan sec 22 原式 6分.442C xx +-=7分 7、l 参数方程为x t y t z t =+=+=+⎧⎨⎪⎩⎪75454代入π方程,解得t =-1,故l ,π交点M 0为(,,)2313分过M 0与l 垂直的平面方程为54170x y z ++-=6分 所求直线为 325054170x y z x y z -+-=++-=⎧⎨⎩7分2、)2(u sin cos cos 20x duuu u-=+=⎰ππ原式⎰+=20cos sin cos πdx xx x4分所以原式=4cos sin cos sin 2120ππ=++⎰dx x x x x 7分 9、⎰⎰'+=ππ)(sin sin )(x f xd dx x x f 左边 3分=⎰⎰'-'⋅+πππ00cos )(|)(sin sin )(xdx x f x f x xdx x f 4分=⎰⎰--πππ00sin )(|cos )(sin )(xdx x f x x f xdx x f 6分=.2)0(,3)0()(=∴=+f f f π7分8、解:设},,{z y x d =,⎪⎪⎩⎪⎪⎨⎧=++=+-=-+14322032032zy x z y x z y x , 5分解答:x=-42,y=z=42,即}42,42,42{-=d。
08级高等数学1试题及答案
华东交通大学2008—2009学年第一学期考试卷承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
专业 班级 学号 学生签名:试卷编号: (A )卷《高等数学(A)Ⅰ》 课程 (工科本科08级) 课程类别:必 闭卷(√) 考试时间:2009.1.10题号 一 二三四 五 总分12 3 4 5 6 7 1 2 分值 10 15 7 7777779 98阅卷人(全名)考生注意事项:1、本试卷共 6 页,总分 100 分,考试时间 120 分钟。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每题2分,共10分)_____ 00 0 2)( 1==⎩⎨⎧≥+<+=a x x x a x e x f x 则处连续,在,,设、_________)21()1( 3)1( 2lim=--='→xx f f f x 则,设、________]3 0[29)( 33=+-=ξ上满足罗尔定理的,在函数、x x x f ______)]([ ]1 1[)( 411 =+-⎰-dx x f x x x f 则上为偶函数,,在设、 ___________________cos 5的通解为微分方程、x y =''二、选择题(每题 3分,共15分)1D. 2 C. 3 B. 4 A.) C ()2sin 2sin(1lim=+∞→xxx x x 、)A (4 sin 1cos cos 22=⎩⎨⎧+=+=点处的法线斜率为上在对应曲线、πt t y t t x 得分 评阅人得分 评阅人3633221cos C x C x y ++-=Cx C x C x C x dx x x +-++-+=⎰22222cos 21D. cos 21 C. cos B. cos A.)D (sin 3不定积分、 32D. 31 C. 2 B. 5 A.)B (1 4ππ积为轴旋转一周所得立体体轴围成图形绕及直线、由曲线、y y y y x ==2 D. 1 C. 0 B. 1 A.)C ( 502lim--=⎰-→xdtext x 极限、三、解答题(每题 7分,共49分). 6)12( 12limb a b ax x xx x 、求,设、=---+∞→解)12(2limb ax x x x x ---+∞→1)1()2(2lim-+-++-=∞→x bx b a x a x6=⎩⎨⎧=-+=-61 02b a a3 2-==b a ,].)1ln(11[2lim+-→x x x 求极限、解)1ln()1ln(lim+-+=→x x x x x 原式1)1ln(111lim+++-+=→x xx x x22)1(111)1(1lim++++-=→x x x x1得分 评阅人得分评阅人. )(cos 3sin dy x y x求,设、= 解 两边取对数得x x y cos ln sin ln =x xxx x y ycos sin sin cos ln cos 1-+=' )tan sin cos ln (cos )(cos sin x x x x x y x -=' dx y dy '=dx x x x x x x)tan sin cos ln (cos )(cos sin -=.442dx x x ⎰-求不定积分、解 tdt t dx t x tan sec 2 sec 2==则,令tdt t t ttan sec 2sec 2tan 2⎰=原式dtt ⎰=2tan 2dtt )1(sec 22-=⎰C t t +-=)(tan 2Cx x +--=2arccos 242得分 评阅人得分 评阅人.ln 5 12dx x x e⎰求定积分、 解31 ln 31dx x e ⎰=原式⎰-=e e xd x x x 1 313ln 31)ln (31dxx e e ⎰-= 1 233131e x e 1339131-=9123+=e.]2 1[ln 214 62上的长度,在区间求曲线、x x y -= 解x x y 212-='dxy s ⎰'+=2121dx x x )1(2121+=⎰212)ln 21(21x x +=2ln 2143+= 得分 评阅人得分 评阅人.ln 721的特解满足求微分方程、e y xyx y y x =='=解x yu =令dxx du u u 1)1(ln 1 =-则 dxx du u u ⎰⎰=-1)1(ln 1 C x u ln ln )1ln(ln +=-1+=Cx xe y 通解121===C e yx 得由1 +=x xe y 特解四、综合题(每题 9分,共18分).)( 12拐点的极值及该函数图形的求函数、xxe x f -= 解 xxxeex f 222)(---='210)(=='x x f 得令0)( 21 0)( 21<'>>'<x f x x f x 时,当,时,当121)21( )(21-==e f x f x 极小值为取极小值,时当x x xe e x f 2244)(--+-='' 1 0)(==''x x f 得令 0)( 1 0)( 1>''><''<x f x x f x 时,当,时,当) 1(2-e ,拐点为得分 评阅人得分 评阅人.)1(86 24的通解求微分方程、x e x y y y -=+'-''解 086 2=+-r r 特征方程为4 2 21==⇒r r ,x x e C e C Y y y y 4221086+==+'-''的通解的单根为08642=+-=r r λ x e b ax x y 4)(*+=可设1224 *-=++x b a ax y 代入原方程得把 ⎩⎨⎧-=+=122 14b a a43 41-==b a , xex x y 4)4341(*-=xx x eC e C e x x y 42214)4341(++-=通解五、证明题(8分)dxx f dx x f x f ⎰⎰=22)(cos )(sin ]1 0[)( 1ππ证明:上连续,,在设、证dtdx t x -=-=则,令 2π证211limx x x -+→))((cos )(sin 0 22dt t f dx x f ⎰⎰--=ππ112lim++=→x xdxx f ⎰=20 )(cos π1= 得分 评阅人得分 评阅人.211 0 2等价与时,证明当、xx x -+→等价与故211 xx -+。
2008年全国高考理科数学试题及答案-全国卷1
(Ⅱ)求的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效) 四棱锥中,底面为矩形,侧面底面,,,. (Ⅰ)证明:; (Ⅱ)设与平面所成的角为,求二面角的大小. C D E A B 19.(本小题满分12分)
(注意:在试题卷上作答无效)
已知函数,. (Ⅰ)讨论函数的单调区间; (Ⅱ)设函数在区间内是减函数,求的取值范围. 20.(本小题满分12分)
t O s t O s t O B. C. D. 3.在中,,.若点满足,则( ) A. B. C. D. 4.设,且为正实数,则( ) A.2 B.1 C.0 D. 5.已知等差数列满足,,则它的前10项的和( ) A.138 B.135 C.95 D.23 6.若函数的图像与函数的图像关于直线对称,则( ) A.e2x-1 B.e2x C.e2x+1 D. e2x+2 7.设曲线在点处的切线与直线垂直,则( ) A.2 B. C. D. 8.为得到函数的图像,只需将函数的图像( ) A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位 9.设奇函数在上为增函数,且,则不等式的解集为( ) A. B. C. D. 10.若直线通过点,则( ) A. B. C. D. 11.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心, 则与底面所成角的正弦值等于( ) A. B. C. D. 12.如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每 块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A.96 B.84 C.60 D.48 D B
(注意:在试题卷上作答无效)
13.13.若满足约束条件则的最大值为 . 14.已知抛物线的焦点是坐标原点,则以抛物线与两坐标轴的三个交点 为顶点的三角形面积为 . 15.在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 . 16.等边三角形与正方形有一公共边,二面角的余弦值为,M、N分别 是AC、BC的中点,则EM、AN所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过 程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效) 设的内角所对的边长分别为a、b、c,且. (Ⅰ)求的值;
08高考数学上海卷含答案
上海卷一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式11x -<的解集是.2.若集合A ={x |x ≤2}、B ={x |x ≥a}满足{2}A B = ,则实数a = .3.若复数z 满足z =i (2-z ) (i 是虚数单位),则z = .4.若函数f (x )的反函数为f -1(x )=x 2(x >0),则f (4)= .5.若向量a b 、满足1,2,a b == 且a 与b 的夹角为3π,则a b+ = .6.函数f (xsin 2x x π⎛⎫++ ⎪⎝⎭的最大值是.7.在平面直角坐标系中,从六个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、E (2,2)、F (3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 8.设函数f (x )是定义在R 上的奇函数.若当(0,)x ∈+∞时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .9.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18. 3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 .10.某海域内有一孤岛.岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a 、短轴长为2B r 椭圆.已知岛上甲、乙导航灯的海拔高度分别为h 1、h 2,且两个导航灯在海平面上的投岸恰好落在椭圆的两个焦点上.现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是 . 11.方程x 2+2x -1=0的解可视为函数y -x +2的图像与函数y =x1的图像交点的横坐标.若方程x 4+ax -4=0的各个实根x 1, x 2,…,x k (k ≤4)所对应的点⎪⎪⎭⎫ ⎝⎛14,x x i (I=1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是 .二、选择(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分. 12.组合数C r n r n rn 、,1(≥>∈Z )恒等于[答]( )(A ).1111--++r n C n r (B)(n +1)(r +1)C 11--r n (C)nrC 11--r n (D)C rn 11--r n .13.给定空间中的直线l 及平面α.条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的 [答]( )(A )充要条件. (B )充分大必要条件. (C )必要非充分条件. (D )既非充分又非必要条件. 14.若数列{a n }是首项为l ,公比为a 23-的无穷等比数列,且{a n }各项的和为a ,则A r 值是[答]( )(A )1. (B)2. (C).21 (D).45 15.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是被圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤ x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点O 满足,不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 [答]( ) (A ) AB(B ) BC(C ) CD(D ) DA 三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在棱长为2的正方体ABC-A 1B 1C 1D 1中,E 是BC 1的中点.求直线DE 平平面ABCD 所成角的大小(结果用反三角函数值表示).17.(本题满分13分)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB .小区的两个出入口设置在点A 及点C 处,且小区里有一条平等于BO 的小路CD .已知某人从C 沿CD 走到D 用B 10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米)18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分. 已知函数f (x )=sin2x ,g (x )=cos ⎪⎭⎫⎝⎛+62πx ,直线x =t (t ∈R)与函数f (x )、g (x )的图像分别交于M 、N 两点. (1) 当t=4π时,求|MN |的值;(2) 求|MN |在t ∈⎥⎦⎤⎢⎣⎡2,0π时的最大值.AEB 1D 1 D C 1A 1BCAODBC19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数f (x )=pqx212-.(1) 若f (x )=2,求x 的值;(2) 若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。
08年全国高考数学大题集(一)
2008年普通高等学校招生全国统一考试(安徽卷)(20).设函数1()(01)ln f x x x x x=>≠且(Ⅰ)求函数()f x 的单调区间; (Ⅱ)已知12axx >对任意(0,1)x ∈成立,求实数a 的取值范围。
(21).设数列{}n a 满足3*010,1,,n n a a ca c c N c +==+-∈其中为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈;(Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈; (Ⅲ)设103c <<,证明:222*1221,13n a a a n n N c++>+-∈-(22).设椭圆2222:1(0)x y C a b a b+=>>过点M ,且着焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上20 解 (1) '22ln 1(),ln x f x x x +=-若 '()0,f x = 则 1x e= 列表如下(2)在 12axx > 两边取对数, 得1ln 2ln a x x >,由于01,x <<所以1ln 2ln a x x>(1) 由(1)的结果可知,当(0,1)x ∈时, 1()()f x f e e≤=-, 为使(1)式对所有(0,1)x ∈成立,当且仅当ln 2ae >-,即ln 2a e >- 21解 (1) 必要性 :120,1a a c ==-∵∴ ,又 2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈充分性 :设[0,1]c ∈,对*n N ∈用数学归纳法证明[0,1]n a ∈当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥则31111k k a ca c c c +=+-≤+-=,且31110k k a ca c c +=+-≥-=≥1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立(2) 设 103c <<,当1n =时,10a =,结论成立 当2n ≥ 时, 3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴ 103C <<∵,由(1)知1[0,1]n a -∈,所以 21113n n a a --++≤ 且 110n a --≥ 113(1)n n a c a --≤-∴ 21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-= ∴1*1(3)()n n a c n N -≥-∈∴(3) 设 103c <<,当1n =时,2120213a c=>--,结论成立 当2n ≥时,由(2)知11(3)0n n a c -≥->21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴222222112212[3(3)(3)]n n n a a a a a n c c c -+++=++>--+++ ∴2(1(3))2111313n c n n c c-=+->+---22解 (1)由题意:2222222211c a bc a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,解得224,2a b ==,所求椭圆方程为 22142x y += (2)方法一 设点Q 、A 、B 的坐标分别为1122(,),(,),(,)x y x y x y 。
高数A(上)试题参考答案
F ′(ξ ) = f (ξ ) + ξ f ′(ξ ) = 0
即
f ′(ξ ) = −
f (ξ )
ξ
。
f ′′ ( x ) =
=
f ′ ( 0) = 0
2 ln (1 + x ) 2 −2 + 1+ x 1+ x
2 ⎡ln (1 + x ) − x ⎤ ⎦ <0 1+ x ⎣
所以,当 x > 0 时, f ′ ( x ) 单调递减,从而 f ′ ( x ) < 0 ,故 f ( x ) < 0 ,即
(1 + x) cos x − 1 x →0 2x
= lim
=
1 cos x − (1 + x) sin x 1 lim = 2 x→0 1 2
2. lim f ( x ) = lim f ( x ) = f (0) = a , − +
x →0 x →0
x →0
ex = 1 , lim− f ( x ) = lim −
2 tde3t ∫ 3 2 3t 2 1 = (te − ∫ e3t dt ) = (te3t − e3t ) + C 3 3 3 = 2 ∫ e3t tdt =
6.令u = x − 1, 则
∫
0
2
f ( x − 1)dx =
−1
∫ f (u)du
dx dx +∫ x ∫ 1+ e 0 1+ x −1
(1 +Βιβλιοθήκη x ) ln 2 (1 + x ) < x2
2、设 F ( x ) = xf ( x ) ,则 F ( x ) 在[0,1]内满足罗尔定理的条件,由罗尔定理,在 (0,1) 内 至少存在一点 ξ ,使得 F ′(ξ ) = 0 成立,由于 F ′( x ) = f ( x ) + xf ′( x ) ,所以
《高等数学(上)》A卷及答案
扬州大学2008级高等数学Ⅰ(1)统考试卷A 班级学号姓名得分一、选择题(每小题3分,共30分)1.设函数1(1)0()xx xf xa x⎧⎪->=⎨⎪≤⎩在点0x=处连续,则a=【】(A)1 (B)1- (C)e (D)1e-2.若当0x→时,tan x x-与nax是等价无穷小,则a=【】(A)3-(B)13-(C)3(D)133.若()2f x'=,则00()()limhf x h f x hh→+--=【】(A)0 (B)1(C)4 (D)4-4.函数43()4f x x x=-在闭区间[1,2]-上的最小值为【】(A)5(B)0(C)16-(D)27-5.设32()1f x x x x=--+,则在区间11[,]33-上【】(A)函数()f x单调减少且其图形是凹的(B)函数()f x单调减少且其图形是凸的(C)函数()f x单调增加且其图形是凹的(D)函数()f x单调增加且其图形是凸的6.若函数()f x()f x'=【】(A (B)(C(D7.设()f x 是以T 为周期的连续函数,k 为正整数,则(1)()d a k T a kTf x x +++⎰【 】(A )仅与k 及T 有关 (B )仅与k 及a 有关(C )仅与a 及T 有关(D )仅与T 有关8.设210()00x e x f x x x ⎧-⎪≠=⎨⎪=⎩, 则(0)f '=【 】(A )∞ (B)2 (C )1 (D )0 9.若抛物线2y ax =与曲线ln y x =相切,则常数a =【 】 (A)12e (B)2e (C)1e(D)e 10.微分方程76sin y y y x '''-+=的特解y *应具有形式【 】 (A)sin cos A x B x + (B)sin A x(C)cos A x (D)()sin ()cos Ax B x Cx D x +++二、填空题(每小题3分,共18分)11.设 0x y xy e e -+=,则d d x y x== .12.131(1x x -+=⎰.13.曲线2y x =与y x = 围成的平面图形的面积为 .14.曲线xx y 12+=的所有渐近线的方程为 . 15.若10[()()]d 1x f x f x e x '+=⎰,且(0)4f =,则(1)f = .16.若xy xe =是某二阶常系数齐次线性微分方程的一个特解,则该微分方程为.三、计算题(每小题6分,共42分)17.求222tan d limsinxxt tx x→⎰.18.求e x ⎰.19.求1ln dx x x ⎰.20.求内接于半径为R的球的正圆锥体的最大体积.21.求由曲线y=y x=所围平面图形分别绕x轴、y轴旋转一周所形成的旋转体的体积.22.求微分方程 cos xy y x '+= 满足初始条件1x y π==的特解.23.求微分方程265x y y y e ''' +-=的通解.四、证明题(每小题5分,共10分)24.设()f x 在[0,1]上可微,对于[0,1]上的每一个,0()1x f x <<, 且()1f x '<,试证在(0,1)内有且仅有一个ξ,使()f ξξ=.25.证明:42(4)(4)0d 2d x x x x ex e x --=⎰⎰.2008级高等数学试题A 参考答案一、1.D 2.D 3.C 4.C 5.B 6.B 7.D 8.C 9.A 10.A 二、11.1 12.2π 13.13 14.0,1x y ==± 15.5e 16.20y y y '''-+=三、17.解2022tan d limsin x x t tx x→⎰204tan d limx x t t x→=⎰ ………………………………………………2分2232002tan tan lim lim 42x x x x x x x →→== ………………………………4分 2201lim 22x x x →==. ……………………………………………6分 18.解ex⎰t22d t e t t ⎰ ……………………………………………………2分222d d t t t t e te e t ==-⎰⎰ ………………………………………4分2212t t te e C =-+ ………………………………………………5分12e C =-+. ………………………………………6分19.解 1ln d x x x ⎰=1201ln d()2x x ⎰ …………………………………………………1分 1120011ln d 22x x x x ⎡⎤=-⎣⎦⎰………………………………3分 1220011lim ln 24x x x x +→⎡⎤=--⎣⎦ ……………………………5分 14=-. ……………………………………………………6分20.解 设圆锥底半径为r ,高为h ,则2222()2r R h R Rh h =--=-. .......1分 于是,圆锥体积 2223111(2)(2)333V r h Rh h h Rh h πππ==-=-. ...........3分 求导得,2()(43)3V h Rh h π'=-. .........................................4分 令()0V h '=,得43h R =. .........................................5分 故 34max 33281h R V V R π===. .........................................6分21.解 (1)222d ]d ()d x V x x x x x ππ=-=-, .....................1分120()d x V x x x π=-⎰ ........................................2分 6π=. ...................................................3分(2)322d 2)d 2()d y V x x x x x x ππ==-, .....................1分31222()d y V x x x π=-⎰ .....................................2分215π=. ..........................................3分22.解 原方程可改写为 1cos x y y x x '+=. 这是一阶线性方程,1()P x x =,cos ()x Q x x=. .........................1分原方程的通解为()d ()d ()d P x x P x xy e Q x e x C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰......................3分11d d cos d xx xxx ee x C x -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰1(sin )x C x =+. ...........5分 由1x y π==得,C π=. 故所求特解为 1(sin )y x xπ==+. ...................................6分23.解 特征方程为 260r r +-=,解之得12r =,23r =-, ...............1分 故相应的齐次方程的通解为 2312x x Y C e C e -=+. ...............2分自由项2()5x f x e =属于()xm P x e λ型(0m =,2λ=). 由于2λ=是特征方程的单根,故可设原方程的一个特解为2x y Axe *=, ........4分 求导得:2(2)x y A Ax e *'=+,2(44)x y A Ax e *''=+.将,,y y y ***'''代入原方程得,1A =.于是,2xy xe *=. ....................................5分 因此,原方程的通解为 23212xx x y C eC e xe -=++. ...................6分四、24.证 令()()F x f x x =-,[0,1]x ∈ .........................1分 则由(0)(1)0F F <和零点定理知()F x 在(0,1)内至少有一个零点 .............3分 又由()0F x '<知()F x 在[0,1]上单调,()F x 在(0,1)内最多只有一个零点. 综上所述,()F x 在(0,1)内有且仅有一个零点,即(0,1)内有且仅有一个ξ,使()f ξξ=................5分25.证242(4)(2)(2)02d d x tx x t t ex e t =+-+--=⎰⎰.........................2分2(2)(2)02d t t e t +-=⎰ .........................3分 20(4)22(1)d t uu u e u =--=-⎰2(4)02du u u e -=⎰ ..................4分 2(4)02d x x e x -=⎰. .........................5分。
东南大学08-09-3高等数学A期末考试试卷(A)参考答案及评分标准.
08-09-3高数A期末试卷(A)参考答案及评分标准09.6.8一.填空题(本题共9小题,每小题4分,满分36分1. 曲面在点处的法线方程是;2.设,则梯度;3.设幂级数的收敛半径是,则幂级数的收敛区间是;4.设闭曲线,取逆时针方向,则曲线积分的值是;5.设函数具有一阶连续偏导数,则曲线积分与路径无关的充分必要条件是;6.将函数在上展开为余弦级数,其和函数在点处的函数值;7. 设为圆周,取逆时针方向,则积分的值是;8.留数;9.取(注:答案不唯一),可使得级数收敛,且级数发散.二. 计算下列各题(本题共4小题,满分30分10.(本小题满分7分)设,其中具有连续的二阶偏导数,具有连续导数,计算.解,(3分)(4分)11.(本小题满分7分)判别级数的敛散性.解,(5分)由比值法得知级数收敛。
(2分)12.(本小题满分8分)判别级数是否收敛,若收敛,判别是绝对收敛,还是条件收敛?并说明理由.解显然,记,令,得,当时,单调递减,由判别法得知级数收敛,(4分)且,而级数发散,由比较判别法得知级数发散,(3分)故条件收敛。
(1分)13. (本小题满分8分)将函数展开为以为周期的级数.解,(1分),(2分),(3分)于是由收敛定理得:(2分)三(14).(本题满分7分)求幂级数的收敛域与和函数.解收敛域为,(1分)令,则(3+3分)四(15)。
(本题满分7分)将函数在圆环域内展开为级数.解(1+2分)(2+2分)五(16).(本题满分7分)计算,其中为曲线,方向沿增大的方向.解记,由公式得(2+1+3+1分)六(17)(本题满分7分)计算,其中为被所截部分,取上侧.解补一个面,取下侧,由和所围成的区域记为,由公式得(3+2+1+1分)七(18)(本题满分6分)设,若存在常数,使得,则收敛.证由于,故正数列单调递减且有下界,数列收敛,(3分)从而得正项级数的部分和收敛,即收敛,再由比较判别法得收敛.(3分)或证由,得正项级数的部分和有上界,即得收敛,(3分)再由比较判别法得收敛.(3分)。
高等数学a大一教材答案
高等数学a大一教材答案一、导数与应用1. 函数与导数1.1 函数的概念与性质1.2 导数的定义与存在条件1.3 导数的性质与计算方法2. 常见函数的导数2.1 幂函数的导数2.2 指数函数的导数2.3 对数函数的导数2.4 三角函数的导数2.5 反三角函数的导数3. 高阶导数与隐函数求导3.1 高阶导数的定义与计算方法3.2 隐函数的定义与求导方法3.3 高阶导数的应用4. 函数的极值与最值4.1 极值的概念与判定条件4.2 最值的概念与求解方法4.3 最值问题的应用二、积分与应用1. 不定积分1.1 基本积分表与积分公式1.2 特殊函数的积分1.3 常用积分计算方法2. 定积分2.1 定积分的概念与性质2.2 牛顿-莱布尼茨公式2.3 定积分的计算与应用3. 定积分的应用3.1 曲线长度与曲面面积3.2 物理问题中的定积分3.3 统计学中的定积分4. 微分方程4.1 常微分方程的基本概念4.2 一阶微分方程的解法4.3 高阶微分方程的解法三、级数与幂级数1. 数列与级数1.1 数列的概念与性质1.2 级数的概念与性质1.3 收敛与发散的判定方法2. 常见级数2.1 等比级数2.2 幂级数2.3 收敛级数的性质与计算方法3. 幂级数的收敛半径与收敛区间3.1 幂级数的收敛半径的定义与计算方法3.2 幂级数的收敛区间的判定方法3.3 幂级数的性质与运算法则4. 函数展开成幂级数4.1 函数在收敛区间内的展开4.2 常见函数的幂级数展开4.3 幂级数的应用总结:本答案提供了高等数学A大一教材中导数与应用、积分与应用、级数与幂级数等部分的相关答案。
通过学习这些内容,可以深入理解数学中的重要概念与方法,并能够运用于实际问题的解决中。
希望本答案对您的学习有所帮助。
08-09年高数A B试卷答案 1.4元
( x − x0 )
2
= A > 0 ,则 f ( x0 ) 是(
)。
A.极小值 B.极大值
C.不是极值 D.不能确定是否是极值
第 2
页
( 共 5 页 )
得分
评卷人
三、计算下例各题: (每小题 5 分,共 40 分)
.15、 ∫ cos x + 1dx
11、 lim +
x →0
ln(arcsin x) cot x
一.
单项选择题: (每小题 3 分,共 15 分)
15. cos x + 1dx 解: x = t − 1, dx = 2tdt (1 分)
2
1.C 2. B 3.D 4.A 5.C
二. 填空题: (每小题 3 分,共 15 分)
∫
1 2 6. ( −∞, 0 ) ∪ (2, ∞) .7. 2 . 8. ( 0,1) .9. − (1 − x ) + C .10. 2
上海大学 2008-2009 学年度秋季学期 高等数学 A(1) 考试试卷答案(A 卷)
1 ⎤ ⎡ 14.设 y = ⎢ f (sin ) ⎥ , 其中 f 是可微函数,求 y′( x) . x ⎦ ⎣
解: y′ = 2 f (sin ) f ′(sin ) cos
2
1 x
1 x
1 1 (− 2 ) (5 分) x x
ln x dx (1 − x) 2
得分
评卷人
四、应用题(8 分)
19.在曲线 y =
1 2 ( x + 1) ( x > 0 )上任意点 P 作切线,切线与 x 轴交点是 M ,又从点 P 向 2 x 轴作垂线,垂足为 N 。试求三角形 PMN 面积的最小值。
高等数学A、B(上)A卷参考答案
高等数学A 、B(上)试题A 参考答案与评分标准(20110119)一、单项选择题(每小题3分,共18分)1:A 2: B 3:A 4:A 5: C 6:D 二、填空(每小题2分,共16分)1:4π, 2:153y x =-, 3:1(1)!n -, 4ln(x C -++, 5:()()f x f a -, 6:8π, 7:21ln 2x , 8:2x cx -+。
三、计算题(每小题7分,共14分)12200ln(1)1/(1)11lim lim (ln(1)1)2limx t t t t t x x t x t e e e e -→+∞→→+-+-+-24571.原式解:====.2. 解1dy dx t==,4分2223(1/)1t d y t dx t'+==-.7分四、计算题(每小题7分,共14分)1.解 0,y x e y y xy ''++=两边对求导:3分 yyy e x'=-+, 5分 .y ydy dx e x=-+7分2.解2222211111ln(1)ln(1)(1)-d ln(1)(1)ln(1)22122-1242x x x x x dx x x x x x x c x x ----+--++-+-⎰⎰212+2原式===五、计算题(每小题7分,共14分) 10101110110111221()[ln(1)]|ln(1)|[1ln 2ln(1)]ln 2111ln(1)ln(1).t t x t dt dt f t dt t e t e t e e e -----+-=+=-+++=-+++++=++=+=⎰⎰⎰11.解原式或=2. 解 ln ln ln 2ln 22ln ln ln ln |,3|().722b b y y by y ba y a aaA e dy e b a V e dy e b a πππ===-===-⎰⎰分分六、计算题(每小题8分,共16分)1.解 特征方程为 21210,1,1r r r -===-, 对应齐次方程通解12x x Y c e c e -=+,4分1λ=是单根,设*()x y x ax b e =+, 1,1a b ==-, 7分(1+1+1)通解 212()x x x y c e c e x x e -=++-。
安徽大学 2008—2009 学年第一学期高等数学附答案
《高等数学C (一)》(A 卷) 第 1 页 共 6 页安徽大学 2008—2009 学年第一学期《高等数学 C (一)》考试试卷(A 卷)(闭卷时间 120 分钟)一、填空题(每小题 2 分,共 10 分)1.已知 f (x ) = sin x , f [ϕ(x )] = 1- x 2 ,则ϕ (x ) = .2.设 x →∞ 时, 1 ax 2+ bx与sin 1 是等价无穷小量,则a =x, b =. 3.曲线C : y = 3x 5 -10x 4 +10x 3 + 3x +1 上的拐点坐标为.4.设 f (x ) = xe x ,则n 阶导函数 f (n ) (x ) = .5.设 y = f ( x ) 为由方程 x 3 + y 3 - sin 3x + 3y = 0 所确定的隐函数,则 y '(0) = .二、选择题(每小题 2 分,共 10 分)1. 设函数 f (x ) = lim1+ xn →∞1+ x n(x > -1) ,则对于函数 f (x )( )A.不存在间断点.B. 仅有 x = 1 是间断点.C.仅有 x = 0 是间断点.D. x = 0 与 x = 1 都是间断点.2. 函数 f (x ) 在点 x 0 处的左、右导数存在且相等是 f (x ) 在点 x 0 处可导的 ( )A.充分非必要条件 .B.必要非充分条件.C.充分必要条件D.无关条件.3. 设 f (x ) 的导函数为sin 2x ,则 f (x ) 有一个原函数为()A. - 1 cos 2xB. 1 cos 2xC. - 1 sin 2xD. 1 sin 2x2 2 4 4得 分得 分院/系专业姓名学答题 勿 超 装订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------《高等数学C (一)》(A 卷) 第 2 页 共 6 页4. 下列说法正确的是( )A . 函数 f ( x ) 在(a , b ) 内的极值点一定是驻点.的 值. 定D. 若 f '( x 0 ) = f '( x 0 ) = 0 ,则 x = x 0一定不是 f ( x ) 的极值点.5. 下列各种描述正确的是()A. +∞ 1 d x =- x -1 +∞ = 1 .B.因为 f (x ) = 1为奇函数,所以11d x = 0 .⎰1x 21 +∞ax⎰-1xC. ⎰-∞ sin x d x = lim ⎰-a sin x d x = lim 0 = 0 . a →+∞a →+∞ D. 1 1 d x =- x -1 1 = -2 .⎰-1 x2-1三、计算下列极限(每小题 6 分,共 24 分)1. limn →+∞2. n 得分B . 函数 f ( x ) 在[a , b ] 内C . 函数 f ( x ) 的驻点一 最大值一定是极大 不是间断点.《高等数学C (一)》(A 卷) 第 3 页 共 6 页( ) 3.lim x (π- arctan x ) x →+∞214. lim cosx sin 2 x x → 0四、计算下列积分(每小题 6 分,共 24 分)1.x ( a > 0 )得 分《高等数学C (一)》(A 卷) 第 4 页 共 6 页⎰ e2. ⎰2d x3.1 d xx4.⎰e -1| ln x | d x《高等数学C (一)》(A 卷) 第 5 页 共 6 页♥五、综合分析题(每小题 10 分,共 20 分)♣ x 2 , f (x ) = x ≤ 1, '1.设 ♦ax + b , x > 1.试确定a , b 的值,使得 f (x ) 处处可导,并求其导函数 f (x ) .2.设 D 为由曲线 xy = 1和直线 x = 1, x = 2, y = 0 所围成的平面图形. (1) 求 D 的面积. (2) 求由 D 绕 x 轴旋转所得到的旋转体体的体积.得 分《高等数学C (一)》(A 卷) 第 6 页 共 6 页b六、证明题(每小题 6 分,共 12 分)x 2 x31. 证明方程1 + x ++ = 0 有且仅有一个实根. 2 62. 设 f ( x ) , g ( x ) 在[a , b ] 上连续,且 g ( x ) ≠ 0 , x ∈[a , b ].试证明至少存在一个ξ ∈ (a , b ) ,b使得⎰af ( x )d x = f (ξ ) .⎰a g ( x )d x g (ξ )得 分1n →∞I I 2 = lim [ |n (n + 1) − |n (n − 1)] . ... ...... ...... ...... ...... ....... .....(2 ) 1安大22 2008-2009 2 2 《等学C ) C 考试(A )) 考 A(参 与评标一填题每题 (分共10 2 10 )1. ϕ(x ) = arcsin(1 − x 2);2. a = 0, b = 1;3. (0, 1);4. (x + n )e x ;5. 1.二填题每题 (分共10 2 10 )1. B;2. C;3. C;4. C;5. A.三填下列限每题分 (分共10 6 24 )1. lim[ √1 +2 + ··· + n − √1 +2 + ··· + (n − 1)] n →∞ 2 lim n 2 .... ...... ...... ...... ...... ...... ...... (4 ) = n →∞ n (n + 1) 2+n (n − 1)2 = I 1 I 1= √2 ... ...... ...... ...... ...... ...... ...... ...... ..... (6 )2 + 22. 为2011 = √n 2011n < √n 2008n + 2009n + 2010n + 2011n < √n4 · 2011n = 2011√n 4 .. ...... ...... ...... ...... ...... ...... ...... ....... ...... ...... ...... ...... . (3 ) 且 lim2011 = 2011 = lim 2011√n 4 . ...... ...... ....... ...... ...... ...... ...... . (4 )n →∞ 故夹定理知,n →∞lim √n 2008n + 2009n + 2010n + 2011n = 2011 ............................................................. (6 )n →∞√ | ⇐⇒1 0 √ 9 I a − 1 J d x 2 2 .... ...... ...... ...... ...... ...... . (3 ) 0 1 + x + √ (1 + x )3 √ 1 3 4 6 x 2 x 2 − 91 − 9t2 e −1 1e −1 1 e −1 √ J 9x 3. lim x ( π − arctan x )lim π2 − arctan x ........................................................ (2 )x →+∞ 2 1x →+∞1 x = lim− 1 + x 2 = lim x 2= 1 .................................................................. (6 ) x →+∞ 1 − x 2 1x →+∞ 1 + x 2llim ln cos x 4. lim(cos x ) sin 2 x = lim e sin 2 x ln cos x = e x →0 sin 2x ..................................................... (3 )x →0lim − sin x cos x x →01= e x →0 2 sin x cos x = e − 2 ................................................................................................................................................................ (6 )四填下列限每题 (分共10 6 24 )1. J √a − x d x = J √ a d x − J √ xd x ........................................ (1 ) a 2 x 2 J ( ) a 2 − x 2 a 2 − x 2 1 − ( x ) a − x= a arcsin a + a 2 − x 2 + C ............................................................................ (6 )2. 令 t = √x + 1, x = t 2− 1, d x = 2d t , t √3 x |2. 故 J 2√d x = J 1 3 2t d t t + t 3 = J 1 3 2d t 1 + t 2...... ...... ...... ...... ...... ...... ...... .... (3 )= 2 arctan t | √3 =2( π − π) = π ................................................................ (6 )3. 令 x = 1 , t = 1 , d x = − 1 d t . 故 t J √d x= − Jx√ t d t t 2 . ...... ...... ...... ....... ...... ...... ...... . (2 )1 d9t2 18 1 − 9t 2= 1 √1 − 9t 2 + C .............................................................. (4 )1 √x2 − 9 + C ............................................................................................ (6 ) 4. J e | ln x |d x = J e ln x d x − J 1ln x d x .............................................................. (2 ) = (x ln x − x )|e− (x ln x − x )|1 . ... ...... ...... ...... ...... ...... ...... . (5 ) = 2 − 2e −1 ......................................................................................................................................................... (6 )22 x ad 2 − = xa = − = = 23−⎩ 2, x > 1 ⎨⎪ 32 a aS = J 2 1 d x = ln x l 2 = ln 2.................................................................................... (4 ) x 1 x 2a a ∈ 五填分析 小题 (分共10 10 20 )1. x > 1 . f (x ) = a ; x < 1 . f (x ) = 2x ..................................... (2 )f + (1) = a , 且 f (1) = 2, f (x ) x = 1 5 故 a = 2 ................................... (5 ) 此 为 f (x ) x = 1 5)l (= 1 = f (1) = lim f (x ) = a + b ,x →1−故 b = −1 .................................................................................................................... (8 )进一t f (x ) = ⎧⎧ 2x , x ≤ 1 2. 面域D 面 D 域题.. ...... ...... ...... ...... ...... ...... ..... (10 )设X x 转得体(V 积题 V x , ,题 x , x ∈ [1, 2],V = π J 2 ( 1 )2d x = 1 π ...................................................................................... (10 )六填题 题题 分共10 6 121. 设 f (x ) = 1 + x + x 2 + x 3 .....................................................................................................................(2 )2 6f (0) = 1, f (−2) = − 1 < 0. 在理 f (x ) )l 故夹 Æ 知, ∃ξ ∈ (−2, 0), s.t. f (ξ) = 0 ............................................................................................ (4 )另一,域 f (x ) = 1 + x + x 2> 0, (= f (x ) (−∞, ∞)故 f (x ) 有且根有一... ................................. (6 )2. 设 F (x ) = J x f (t )d t , G (x ) = J x g (t )d t , x ∈ [a , b ] ............................................... (2 ) 在理 F (x ) = f (x ), G (x ) = g (x ) 0, x ∈ [a , b ], 且J bf (x )d x = F (b ) − F (a ) J bg (x )d x = G (b ) − G (a ) .............................................................................................. (4 ) 夹 Cauchy 可 知 , Æξ (a , b ), s.t.bf (x )d x abg (x )d xa= F (b ) − F (a ) G (b ) − G (a ) F (ξ) = G (ξ) = f (ξ) g (ξ) . ... ...... ....... ...... ...... ...... .. (6 ) 1 x 1。
高数a上册期末试题及答案
高数a上册期末试题及答案一、选择题(每题5分,共20题)1. 设函数 $f(x) = \sqrt{3x-2}$,则其定义域为A. $(-\infty, \frac{2}{3}]$B. $\left[ \frac{2}{3}, \infty \right)$C. $[\frac{2}{3}, \infty)$D. $(-\infty, \frac{2}{3}) \cup [\frac{2}{3}, \infty)$答案:C2. 函数 $y = \sin^2 x + \cos^2 x$ 的值域为A. $(-\infty, 1]$B. $[0, 1]$C. $[1, \infty)$D. $[\frac{1}{2}, 1]$答案:B3. 设函数 $f(x) = e^x \ln x$,则 $f'(x) = $A. $e^x \ln x$B. $e^x \left( \frac{1}{x} + \ln x \right)$C. $e^x \left( \ln x - \frac{1}{x} \right)$D. $e^x \left( \frac{1}{x} - \ln x \right)$答案:B4. 若直线 $y = 3x + b$ 与抛物线 $y = ax^2 + bx + 1$ 相切,则 $a + b = $A. 2B. 3C. 4D. 5答案:D5. 函数 $f(x) = \frac{x-1}{\sqrt{x^2 + 1}}$ 的渐近线为A. $y = x - 1$B. $y = x + 1$C. $y = -x + 1$D. $y = -x - 1$答案:A6. 函数 $f(x) = \ln(1 + e^{2x})$ 的反函数为A. $f^{-1}(x) = \ln(x) - \ln(1 - x^2)$B. $f^{-1}(x) = \ln(x^2 - 1)$C. $f^{-1}(x) = \frac{e^x - 1}{2}$D. $f^{-1}(x) = \frac{1}{2} \ln(x) + \ln(1 - x)$答案:D7. 设函数 $f(x) = \arcsin (\sin x)$,则当 $x = \frac{5\pi}{6}$ 时,$f(x) =$A. $\frac{5\pi}{6}$B. $\frac{\pi}{6}$C. $\frac{\pi}{3}$D. $\frac{2\pi}{3}$答案:C8. 函数 $f(x) = \frac{\sin x}{\cos^2 x}$ 的最大值为A. 1B. $\sqrt{3}$C. 2D. $2\sqrt{3}$答案:D9. 函数 $f(x) = x^2 + 2x + 1$ 在区间 $[-1, 1]$ 上的最大值为A. 0B. 1C. 2答案:D10. 函数 $f(x) = \frac{x^2 - 1}{x^2 + 1}$ 的图像关于直线 $x = a$ 对称,则 $a = $A. 1B. 0C. -1D. 2答案:B11. 设 $\sin \alpha = \frac{1}{4}$,$\cos \beta = \frac{4}{5}$,且$\alpha$ 和 $\beta$ 都是第二象限角,则下列四个式子中成立的是A. $\sin (\alpha - \beta) = -\frac{3}{4}$B. $\sin (\alpha + \beta) = \frac{3}{8}$C. $\cos (\alpha - \beta) = \frac{1}{5}$D. $\cos (\alpha + \beta) = \frac{2}{5}$答案:C12. 如果点 $A(1, 2)$ 在抛物线 $y = -x^2 + 3x + k$ 上,那么 $k = $A. -3B. -5D. -9答案:B13. 设函数 $f(x) = x^3 - 3x^2 - 4x + 12$,则 $f'(x)$ 的零点有A. -2, 2B. -1, 3C. -4, 3D. -1, 4答案:A14. 设点 $P(x, y)$ 满足 $y^2 = px$,其中 $p > 0$ 是常数,则焦点所在的直线方程为A. $y = -\frac{p}{2}$B. $x = -\frac{p}{2}$C. $y = \frac{p}{2}$D. $x = \frac{p}{2}$答案:B15. 函数 $f(x) = x^3 - 3x + 1$ 在区间 $[0, 2\pi]$ 上的最小值为A. -1B. 0D. 2答案:A16. 设直线 $y = 2x + 1$ 与曲线 $y = x^2 + bx + c$ 相切,则 $b + c = $A. 0B. $\frac{1}{2}$C. 1D. 2答案:C17. 设函数 $f(x) = (1 - x^2) \cos x$,则 $f''(x)$ 的一个零点在A. $(0, \frac{\pi}{2})$B. $(0, \pi)$C. $(\pi, 2\pi)$D. $(\pi, 3\pi)$答案:B18. 设函数 $f(x) = \sin^2 x - \sqrt{3} \sin x \cos x + \cos^2 x$,则$f(x)$ 的最大值为A. 2B. $2\sqrt{2}$C. 3D. $2 + \sqrt{3}$答案:C19. 设函数 $f(x) = e^x$,$g(x) = x^2$,则 $f(x) \cdot g(x) = $A. $e^{x^2}$B. $x^2 e^x$C. $x^2 e^{x^2}$D. $x^2 + e^x$答案:B20. 设 $a > 0$,则 $\lim\limits_{x \to +\infty} \frac{x^a}{e^x}$ 的值为A. 0B. $\frac{1}{e}$C. 1D. $+\infty$答案:A二、计算题(每题10分,共4题)1. 求函数 $f(x) = \frac{2x^2 - 3x + 1}{x - 1}$ 的极限 $\lim\limits_{x\to 1} f(x)$.解:使用“分子分母可约”的性质,可将函数 $f(x)$ 化简为 $f(x) = 2x - 1$,则 $\lim\limits_{x \to 1} f(x) = \lim\limits_{x \to 1} (2x - 1) = 2(1) - 1 = 1$.答案:12. 求曲线 $y = e^x$ 与直线 $y = kx$ 相交的两个点的坐标,其中 $k > 0$ 是常数.解:将曲线 $y = e^x$ 和直线 $y = kx$ 代入方程中,得到 $e^x = kx$,然后可以使用迭代法或图像法求得相交点的坐标.答案:相交点的坐标为 $(x_1, e^{x_1})$ 和 $(x_2, e^{x_2})$,其中$x_1$ 和 $x_2$ 是满足方程 $e^x = kx$ 的两个解.3. 求曲线 $y = \sin x$ 与直线 $y = x$ 相交的点的个数,并说明理由.解:将曲线 $y = \sin x$ 和直线 $y = x$ 代入方程中,得到 $\sin x = x$,然后可以通过分析函数的周期性和图像来确定相交点的个数.答案:方程 $\sin x = x$ 的解存在无穷个,但相交点的个数取决于给定的区间. 在区间 $[0, \pi]$ 上,方程有一个解;在区间 $[2\pi, 3\pi]$ 上,方程又有一个解. 因此,相交点的个数是不确定的.4. 求函数 $y = x^2 + x$ 在区间 $[-2, 2]$ 上的最大值和最小值,并求出取得最大值和最小值的点.解:首先求导数 $y' = 2x + 1$,然后令 $y' = 0$,解得 $x = -\frac{1}{2}$,将 $x = -2, -\frac{1}{2}, 2$ 代入函数 $y = x^2 + x$,得到对应的 $y$ 值. 最大值为 $y = y_{\text{max}}$ 对应的点为 $(-\frac{1}{2},y_{\text{max}})$,最小值为 $y = y_{\text{min}}$ 对应的点为 $(-2,y_{\text{min}})$ 和 $(2, y_{\text{min}})$.答案:最大值为 $y_{\text{max}} = \frac{5}{4}$,取得最大值的点为 $(-\frac{1}{2}, \frac{5}{4})$;最小值为 $y_{\text{min}} = -2$,取得最小值的点为 $(-2, -2)$ 和 $(2, -2)$.三、证明题(每题20分,共2题)1. 证明函数 $f(x) = \frac{x^3}{3} - x^2 + 2x$ 的导数 $f'(x)$ 恒大于零.证明:求导数 $f'(x) = x^2 - 2x + 2$,我们可以通过判别式来判断 $f'(x)$ 的正负性.判别式为 $\Delta = (-2)^2 - 4(1)(2) = 4 - 8 = -4$,由于 $\Delta < 0$,所以判别式小于零,即 $f'(x)$ 的二次项系数小于零,说明二次项的系数是正的,从而导数 $f'(x)$ 恒大于零.证毕.2. 证明函数 $f(x) = x^3 - 3x^2 + 3$ 的图像关于直线 $x = 1$ 对称.证明:要证明函数的图像关于直线 $x = 1$ 对称,需证明对于任意$x$ 值,函数 $f(x)$ 和 $f(2 - x)$ 的函数值相等.将 $f(x) = x^3 - 3x^2 + 3$ 代入 $f(2 - x)$,得到 $f(2 - x) = (2 - x)^3 -3(2 - x)^2 + 3$,对其进行展开和化简得到 $f(2 - x) = (2 - x)^3 - 3(2 -x)^2 + 3 = x^3 - 3x^2 + 3 = f(x)$,即 $f(x) = f(2 - x)$,证明了函数的图像关于直线 $x = 1$ 对称.证毕.四、应用题(每题50分,共1题)1. 求函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值.解:求导函数 $f'(x) = 3x^2 + 2x - 3$,令 $f'(x) = 0$,求得驻点的 $x$ 坐标,然后将其代入原函数求得对应的 $y$ 坐标.求导的一阶导数方程为 $f'(x) = 3x^2 + 2x - 3 = 0$,通过求根公式求得 $x = -1$ 和 $x = \frac{1}{3}$,将其代入原函数 $f(x)$ 得到对应的$y$ 坐标.将 $x = -1$ 代入 $f(x)$,得到 $f(-1) = (-1)^3 + (-1)^2 - 3(-1) = -1 + 1+ 3 = 3$,将 $x = \frac{1}{3}$ 代入 $f(x)$,得到 $f(\frac{1}{3}) =(\frac{1}{3})^3 + (\frac{1}{3})^2 - 3(\frac{1}{3}) = \frac{1}{27} +\frac{1}{9} - 1 = 0$.因此,函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$.答案:驻点为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$,分别对应极大值和极小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
).
(A) [
4 , + ∞) ; 3
4 ]; 3
y
(C) [ −2, 0] ;
(D)没有凹区间。
5.函数 y
= y ( x) 是可微函数且由方程 ∫0 et dt + ∫x cos tdt = 0 所确定, 则 y '( x ) = ( D )。
2
0
(A)
e y cos x ;
2
(B)
。
解:
1 t2 y = 1− = , 1+ t2 1+ t2 dy yt' t ∴ = = . dx xt' 2
' dyx 1 = . dt 2
xt' =
2t . 1+ t2
……2 分
……4 分
……5 分
1 2 d y dy 1 2 = 1+ t . ∴ = ⋅ = 2t dt dx 4t dx 2 2 dt 1 + t
……2 分
……3 分
……4 分
……5 分
第 7 页 共 7页
在x
= 0 处的连续性与可导性。
解:
又
1 =0 x →0 x →0 x 而 f (0) = 0 , ∴ f ( x ) 在 x = 0 处连续. 1 x3 sin − 0 f ( x) − f (0) x f '(0) = lim = lim x →0 x →0 x−0 x−0 1 = lim x 2 sin = 0 . x →0 x 故 f ( x ) 在 x = 0 处可导. ∵ lim f ( x) = lim x3 sin
πHale Waihona Puke 22 1 1 = sin 2 x − sin 2 x = 1 . π 2 2 0 2
0
……7 分
2.(应用题) 某车间靠墙壁要盖一间长方形小屋, 现有存砖只够砌 20m 长的墙壁, 问 应围成怎样的长方形才能使这间小屋的面积最大? 解: 如图所示. 设这间小屋的宽为 x ,长为 y , 则小屋的面积 为S 则
则 dy
=
则
f '(e x )e x dx
a=
。
4. 若点 (1, 3) 是曲线 y
= ax3 + bx 2 的拐点,
−
3 2
,
b=
9 2
。
第 1 页 共 7页
二、 单项选择题 (每小题 3 分,共 15 分)
得分 评阅人
1. 下列函数在其定义域内连续的是(
B
)。
(A)
(C)
cos x, x ≤ 0, f ( x) = sin x, x > 0. 1 , x ≠ 0, f ( x) = x 0, x = 0.
学年第一学期期末考试试卷及答案 南昌大学 2008~2009 学年第一学期期末考试试卷及答案 ~
试卷编号: 试卷编号: 课程编号: 课程编号: T55010001 课程名称: 高等数学(Ⅰ 上 课程名称: 高等数学 Ⅰ). (上) 学号: 学号: ( A )卷 卷
考试形式: 考试形式: 闭卷 班级: 班级:
= xy . 已知 2 x + y = 20 , 即 y = 20 − 2 x . S = x(20 − 2 x) = 20 x − 2 x 2 . x ∈ (0, 10). S ' = 20 − 4 x. 令 S ' = 0 , 得驻点 x = 5 . 由 S '' = −4 < 0 知 x = 5 为极大值点, 又驻点
……2 分 ……4 分
……6 分
……7 分
2. 设函数 f ( x ) 在 [0, 2] 上连续, 在 (0, 2) 内可导, 且 f (0) + f (1) = 2 , f (2) = 1 .证明:必存在 ξ ∈ (0, 2) ,使 f '(ξ ) = 0 。
证明:
∵ f ( x) 在 [0, 2] 上连续, ∴ f ( x) 在 [0, 1] 上连续, 且在 [0, 1] 上必有最大值 M 和最小值 m , 于是 m ≤ f (0) ≤ M , m ≤ f (1) ≤ M . 故 2m ≤ f (0) + f (1) ≤ 2 M f (0) + f (1) m≤ ≤M. 2 由介值定理知,至少存在一点 c ∈ [0, 1] ,使 f (0) + f (1) f (c ) = = 1. 2 ∵ f (c) = f (2) = 1,且 f ( x) 在 [c, 2] 上连续,在 (c, 2) 内可导,由罗尔定理知,必存在 ξ ∈ (c, 2) ⊂ (0, 2) , 使 f '(ξ ) = 0 . 证毕.
适用班级: 姓名: 适用班级: 08 级理工科 姓名: 学院: 学院:
题号 题分 得分 一 15 二 15 三 16
专业: 专业:
四 14 五 14 六 14 七 12 八
考试日期: 考试日期: 2009.1.6.上午 上午
九 十 总分 100 累分人 签名
考生注意事项:1、本试卷共 7 页, 请查看试卷中是否有缺页或破损。 如有立即举手报告以便更换。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
y−
π
4
= x − 1;
(D)
y = x − 1。
A )。 (D)
3.在区间 [ −1,1] 上满足拉格朗日中值定理条件的函数是 ( (A)
1 ; x−2
(B)
ln x
;
(C)
( 2 x − 1)
A
1 3;
arctan
1 。 x
4. 曲线 y
= x3 − 4 x 2 + 3 x + 4 的凹区间是(
……2 分 ……3 分 ……5 分 ……6 分 ……7 分
唯一, 故极大值点就是最大值点. 因此当宽为 5m, 长为 10m 时, 这间小屋的面积最大.
y
x
第 6 页 共 7页
七、解下列各题(共 2 小题,第 1 小题 7 分,第 2 小题 5 分,共 12 分)
.
得分 评阅人
1. 讨论函数
1 3 x sin , x ≠ 0, f ( x) = x 0, x=0
(B)
f ( x) = ln x + cos x.
x + 1, f ( x) = 0, x − 1,
(D)
x < 0, x = 0, x > 0.
2.曲线 y (A) (C)
= arctan x 在横坐标为 1 的点处的切线方程是( A ) 。 π 1 1 y − = ( x − 1) ; (B) y = ( x − 1) ; 4 2 2
一、 填空题(每个空 3 分,共 15 分)
得分 评阅人
1. 设
f ( x) 的 定 义 [ − a, 1 − a ]
2 = n 3
域 是 [0,1] , 则 函 数 。
f ( x + a) (a > 0)
的 定 义 域 是
2.
n→∞
lim 3n sin
2
。
3. 设 y
= f (e x ), f ( x) 为可导函数,
得分 评阅人
1.设 y
= 3 x+ 3 x ,
求 y '( x ) 。
− 2 3
解:
1 y' = x + 3 x 3
(
)
1 −2 1 + x 3 3
……8 分
2.设
x = ln(1 + t 2 ), y = t − arctan t ,
' t
求
d2y dx 2
ey
2
;
(C)
−e− y cos x
2
;
(D) e
− y2
cos x 。
第 2 页 共 7页
三、求下列极限(共 2 小题,每小题 8 分,共 16 分)
得分 评阅人
2x + 3 1. lim x →∞ 2 x + 1
解:
x +1
。
2 原式 = lim 1 + x →∞ 2x + 1 2 x +1 1 2 2 2 2 = lim 1 + ⋅ 1 + x →∞ 2x + 1 2x + 1 =e
π
解:
原式 =
∫ π = ∫ cos x sin xdx
0 0
0
cos 2 x sin 2 x dx
……3 分
= ∫ 2 cos x sin x dx − ∫π cos x sin x dx
0 2
π
π
……5 分
= ∫ 2 sin x d (sin x) − ∫π sin x d (sin x)
0
π
π
2 ' x
……7 分
第 4 页 共 7页
五、求下列不定积分(共 2 小题,每小题 7 分,共 14 分)
得分 评阅人
1. 解:
∫ tan
3
x sec xdx 。
原式 =
∫ tan xd (sec x) = ∫ (sec2 x − 1)d (sec x)
2
……2 分 ……5 分 ……7 分
1 = sec3 x − sec x + C 3
2.
∫
ln x dx 。 2 x 1 x ln x 1 =− + dx x x2 ln x 1 =− − +C x x
− ln xd
解: