2014年初中学业水平考试模拟数学试卷30及答案
2014年长沙市初中毕业学业水平模拟考试数学试题及答案
2014年初中毕业学业水平考试模拟试卷数 学考生注意:1.本试卷包括试题卷和答题卡, 共有六道大题,试题卷共4页,答题卡共6页。
2.答题前,必须在答题卷的密封区内填写校名、班号、姓名和学号。
考生在答题卷上作答, 请 务必注意试题序号和答题序号相对应,在试题卷上作答无效。
考试中不准使用计算器。
3.考试时间为120分钟,满分120分,考试结束后将试题卷和答题卷一并交回。
试 题 卷一、选择题(本题共10个小题,每小题3分,共30分,每小题的选项中只有一项符合题目要求,请将答案填在答题卷的表格中)1. 2014-的绝对值是A .2014B .12014C .-2014D .12014- 2.下列运算正确的是A. 22a a a +=B. 236a a a ⋅=C. 33a a ÷=D. 33()a a -=-3. 下列各数中,不是..不等式组⎩⎨⎧≤->32x x 的解的是 A .-2 B .3 C .0 D .24. 若关于x 的一元二次方程2(3)20x k x +++=的一个根是2-,则另一个根是A .2B .1C .1-D .05.一个菱形被一条直线分成面积为x ,y 的两部分,则y 与x 之间的函数图象只可能是6. 如果事件A 发生的概率是1100,那么在相同条件下重复试验,下列陈述中,正确的是A .说明做100次这种试验,事件A 必发生1次B .说明事件A 发生的频率是1100C .说明做100次这种试验中,前99次事件A 没发生,后1次事件A 才发生D .说明做100次这种试验,事件A 可能发生1次7.要说明命题“一组对边平行,一组对边相等的四边形是等腰梯形”是假命题,以下四个图形可以作为其反例图形的是A.任意四边形B.平行四边形C.任意梯形D.直角梯形8.如图1,六边形ABCDEF 中120A ∠=,且它关于直线l 的轴对称图形是六边形''''''A B C D E F .下列判断错误..的是( ) A.''AB A B = B. BC //''B C C.直线l ⊥'BB D.'120A ∠=(图1) (图2) (图3)9.如图2,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则sin ∠AOB 的值等于 A.1210. 如图3,在正方形网格上,与△ABC 相似的三角形是A.△AFDB. △AEDC.△FEDD. 不能确定二、填空题(本题8个小题,每小题3分,共24分,请将答案填写在答题卷的空格中) 11. 2764-的立方根是 ▲ . 12. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是 ▲ .13. 若α∠补角是α∠余角的3倍,则α∠= ▲ .14. 如图4,在九年级学生的志愿填报扇形统计图中,报考了普通高中的人数的部分的圆心角是270°,则报考了普通高中的人数占总人数的百分比为 ▲ .(图4) (图5) (图6)15. 如图5,AC 与BD 交于点P ,AP=CP ,从以下四个论断①AB=CD ,②BP=DP ,③∠B=∠D ,④∠A=∠C 中选择一个论断作为条件,则不一定...能使△APB ≌△CPD 的论断是 ▲ (限填序号). 16. 图6中的直线为一次函数(3)y kx k =+-的大致图象,试写出一个符合条件的k 的值 ▲ .17.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y+的值为▲ .18. 若弧长为20π的扇形的圆心角为150°,则扇形的面积是▲ (答案允许含π).三、解答题(本大题共2个小题,每小题6分,共12分)19.计算:201()2--.20.先化简,后求值:22211()a aaa a a---÷+,其中12a=.四、解答题(本大题共2个小题,每小题8分,共16分)21.某班分成甲、乙两组参加班级跳绳对抗赛,两组参赛人数相等,比赛结束后,依据两组学生的成绩(满分为10分)绘制了如下统计图表:甲组学生成绩统计表乙组学生成绩条形统计图(1)经计算,乙组的平均成绩为7分,中位数是6分,请写出甲组学生的平均成绩、中位数,并分别从平均数、中位数的角度分析哪个组的成绩较好;(2)经计算,甲组的成绩的方差是2.56,乙组的方差是多少?比较可得哪个组的成绩较为整齐?(3)学校组织跳绳比赛,班主任决定从这次对抗赛中得分为9分的学生中抽签选取4个人组成代表队参赛,则在对抗赛中得分为9分的学生参加比赛的概率是多少?22.如图7,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.若∠AFC=2∠D,连结AC、BE.求证:四边形ABEC是矩形.(图7) (图8)五、解答题(本大题共2小题,每小题9分,共18分)23.如图8,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F .(1)求证:CD ∥BF ;(2)若⊙O 的半径为5, cos ∠BCD=0.8,求线段AD 与BF 的长.24.某中学为了创建湖南省合格学校,去年购买了一批图书,其中科普书的单价比文学书的单价多4元,用1200元购买的科普书与用800元购买的文学书数量相等.(1)求去年购买的文学书和科普书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,科普书的单价与去年相同,这所中学今年计划再购买文学书和科普书共200本,且购买文学书和科普书的总费用不超过2135元,这所中学今年至少要购买多少本文学书?六、解答题(本大题共2小题,每小题10分,共20分)25. 某工厂共有10台机器生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器生产的次品数P (千件)与每台机器的日产量x (千件)之间的变化关系如下表(生产条件要求4≤x ≤12):千元,该厂每天生产这种元件获得的利润为y(千元).(提示:利润=盈利-亏损)(1)观察并分析表中的P 与x 的对应关系,用所学过的一次函数、反比例函数或者二次函数的有关知识求出P 与x 的函数解析式;(2)试将y 表示为x 的函数;(3)当每台机器日产量是多少时,该厂当天的利润可达98千元?(4)求当每台机器的日产量为多少时,该厂当天获得的利润最大,最大利润是多少?26.如图9-1,点A 是反比例函数)0(21>=x xy 图像上的任意一点,过点A 作AB ∥x 轴,交另一个反比例函数)0,0(2<<=x k xk y 的图像于点B . (1)当8k =-时:① 若点A 的横坐标是1,求AOB ∠的度数;②如图9-2所示,将①中的AOB ∠绕着点O 旋转一定的角度,使AOB ∠的两边分别交反比例函数21y y 、的图像于点M 、N ,在旋转的过程中,OMN ∠的度数是否变化?并说明理由;(2)如图9-3,若不论点A 在何处,反比例函数2(0,0)k y k x x=<<图像上总存在一点D ,使得四边形AOBD 为平行四边形,求k 的值.(图9-1) (图9-2) (图9-3)2014年初中毕业学业水平考试模拟试卷数学参考答案特别提醒:阅卷前请先审核答案。
2014年初中毕业学业考试模拟考数学试卷(含答案)
2014年初中毕业学业考试模拟考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =75°,∠C =45°, 那么sin ∠AEB 的值为( ) A.12B.C. 2D. 2.下列商标是轴对称图形的是 ( ▲ )(A ) (B )(C ) (D )3.下列计算错误..的是 ( ▲ ) (A )33--=- (B )2223x x+= (D )235()x x =4.如图,是用八块相同的小正方体搭建的一个积木,它的左视图是 ( ▲ )(A ) (B ) (C ) (D )5. 如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,BE =CF ,连结CE 、DF .将△BCE 绕着正方形的中心O 按逆时针方向旋转到△CDF 的位置,则旋转角可以是 ( ▲ )(A ) ︒45 (B )︒60 (C )︒90 (D )︒1206如图为某班35名学生10次数学考试中获得优秀次数的条形统计图,其中上面部分数据 破损导致数据不完全.已知此班学生优秀次数的中位数是5,则根据图形,无法..确定的是 下列哪一选项中的数值 ( ▲ ) (A )3次及以下的人数 (B )4次及以下的人数 (C )5次及以下的人数 (D )6次及以下的人数 (第6题图)7.下面给出了一些关于相似的命题,其中真命题有 ( ▲ ) (1)菱形都相似 (2)等腰直角三角形都相似(3)正方形都相似 (4)矩形都相似 (5)正六边形都相似(A ) 1 个 (B ) 2个 (C ) 3个 (D ) 4个 8在平面直角坐标系中,已知两点A (1,2),B (2,0),把线段AB 平移后得线段CD , 其中A 点对应点是C (3,a ),B 点对应点是D (b ,1),则a -b 的值为 ( ▲ ) (A )1- (B )0 (C )1 (D )29两个完全相同的矩形如图放置,每个矩形的面积为28,图中阴影部分的面积为20,则每个矩形的周长是 ( ▲ ) (A )18 (B )22 (C )26 (D )3210.如图,在△ABC 中,AB =AC ,且∠A =108°,点P 为△ABC 所在平面内一点,且点P 与△ABC 的任意两个顶点构成△PAB 、△PBC 、△PAC 均是等腰三角形,则满足上述条件的所有点P 个数为 ( ▲ )(A )4 (B )6 (C )8 (D )10二、填空题(每小题4分,共24分)13.分解因式:22x x - = ▲ .14.若一个正多边形的一个外角是30,则这个正多边形的边数是 ▲ .15.为了缓解江北区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 的高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60和45.则路况显示牌的宽度BC 是 ▲ 米.(结果保留根号) 16如图,在△ABC 中,∠C =90°,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .若AC =6,AB =10,则⊙O 的半径为______________.17.如图,在正方形网格中,点O 、A 、B 均在格点上,则∠AOB 的正弦值是 ▲ . 18.如图,已知等边ABC △,D 是边BC 的中点,过D 作DE ∥AB 于E , 连结BE 交AD 于D 1;过D 1作D 1E 1∥AB 于E 1,连结BE 1交AD 于D 2;过D 2作D 2E 2∥AB 于E 2,…,如此继续,若记BDE S △为S 1,记11B D E S △为S 2,记22BD E S △为S 3…,若ABC S △面积为Scm 2,则Sn =_________cm 2. (用含n 与S 的代数式表示)三、解答题(本大题有8小题,共78分)(第15题图)(第12题图)(第17题图)19.(本题6分)请先化简:xx x ---2111,再选择一个合适的x 值代入求值.20.(本题8分)如图,已知一次函数与反比例函数的图象交于点 A (-3,-1)和B (a ,3).(1)求反比例函数的解析式和点B 的坐标;(2)连结AO 和BO ,判断△ABO 的形状,请说明理由,并求出它的面积.21.(本题6分)已知:如图,斜坡BQ 坡度为i =1︰2.4(即为QC 与BC 的长度之比),在斜坡BQ 上有一棵香樟树PQ ,柳明在A 处测得树顶点P 的仰角为α,并且测得水平的AB =8米,另外BQ =13米,tanα=0.75.点A 、B 、P 、Q 在同一平面上,PQ ⊥AB 于点C .求香樟树PQ 的高度.22.(本题10分)如图,在△ABC 中,AB =AC ,以AB为直径的O 分别交AC 、BC 于点D 、E ,点F在AC 的延长线上,且12CBF CAB ∠=∠.(1)求证:直线BF 是O 的切线;(2)若AB =5,sin CBF ∠=BC 和BF 的长.(第20题图)(第22题图)C(第21题)23.(本题10分)如图,△ABC 的边长分别为21、23、1,正六边形网格是由24个边长为1的正三角形组成,每个正三角形的顶点称为网格的格点.在下面三个正六边形网格中各画出一个三角形(画出三角形,并用阴影填充),使其同时满足下面三个条件:(1)三个三角形的顶点都在格点上;(2)三个三角形都与△ABC 相似;(3)三个三角形的面积大小都不同.并直接写出三个三角形与△ABC 的相似比.相似比: 相似比: 相似比:24.(本题12分)如图,在矩形ABCD 中,AB =1,BC =3,F 为线段..AD 上一点(不与端点A ,D 重合),过F 的直线交矩形的另一边于点E ,且该直线满足21tan =∠DFE ,设AF 长度为x . (1)记BEF △的面积为S ,求S 与x 的函数关系式;(2)当点E 在线段BC 上时,若矩形ABCD 关于直线EF 的对称图形为矩形A ’B ’C ’D ’,试说明矩形ABCD与矩形A ’B ’C ’D ’理由.CB A25.(本题14分)如图,已知二次函数图象的顶点为P(0,-1),且过点(2,3).点A是抛物线上一点,过点A作y轴的垂线,交抛物线于另一点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD.(1)求此二次函数的解析式;x轴交点记为E,证明:(2)当点A在第一象限....内时,PA与①PED PDA△∽△;②∠APC=90°;(3)若∠APD=45°,当点A在y.轴右侧...时,请直接写出点A的坐标.(第26题图)(备用图)参考答案及评分标准一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)14分,共78分)注: 1. 阅卷时应按步计分,每步只设整分;2. 如有其它解法,只要正确,都可参照评分标准,各步相应给分.19. (本题6分)2111x x x--- 111(1)x x x =--- 1分 1(1)x x x -=-1x= 4分满足1,0x ≠的值代入都可 6分20.(本题8分):(1)设xky =,将A (﹣3,﹣1)代入,求得k =3, 1分xy 3=2分 将B (a ,3)代入,求得a =1 3分B (1,3) 4分(2)AO =BO =10 5分 等腰三角形 6分 S ABC △=4 8分21.(本题22.(本题10分)相似比:2:1相似比:1:32 相似比:4:1画对1个给2分,2个4分,3个都对得7分,每个相似比正确得1分,共3分。
[新课标人教版]2014年初中学业水平考试模拟数学试卷(32)
2014年初中学业水平考试模拟数学试卷(32)(考试用时:120分钟 满分: 120分)一、选择题(共10小题,每小题3分,共30分.). 1.-2014的倒数是( ). A .20141B .2014C .-2014D .-201412.在实数2、0、1-、2-中,最小的实数是( ). A .2 B .0 C .1- D .2- 3.下面四个图形中,∠1=∠2一定成立的是( ).4.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ).5.下列运算正确的是( ).A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+ D .()2121a a --=-- 6.如图,已知Rt △ABC 中,∠C =90°,BC=3, AC=4, 则sinA 的值为( ).A .34B .43C .35D .457.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的 俯视图是( ).8.直线1y kx =-一定经过点( ).A .(1,0)B .(1,k)C .(0,k)D .(0,-1)9.下面调查中,适合采用全面调查的事件是( ).A .对全国中学生心理健康现状的调查.B .对永州市食品合格情况的调查.C .对永州电视台《晓了显火》收视率的调查.D .对你所在的班级同学的身高情况的调查. 10.若点 P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 二、填空题(共10小题,每小题3分,共30分). 11.因式分解:22a a += .12.祁阳县政府广场(命名为陶铸广场)位于湖南祁阳城西,为纪念伟大的无产阶级革命家陶铸同志诞辰100周年而修建,2008年建成。
北面正对祁阳行政中心,西临祁阳大道,是金盆路、中兴路、银岭路、复兴路的合围区域,面积40万平方米,是湖南省目前最大的城市广场。
2014年中考数学模拟试卷含答案(精选3套)
济南市2014年初三年级学业水平考试数学全真模拟试卷(时间:120分钟 满分:120分)第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.) 1.-2的绝对值是( )11A. B.2 C. D.222- -2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103 吨B.67.5×103吨C.6.75×104 吨D.6.75×105吨 3.16的平方根是( )A.4B.±4C.8 D .±84.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A.20°B.25°C.30°D.35° 5.下列等式成立的是( )A.a 2×a 5=a 10B.a b a b +=+C.(-a 3)6=a 18D.2a a =6.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是( )1125A. B. C. D.23367.分式方程12x 1x 1=-+的解是( ) A.1 B.-1 C.3 D.无解8.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )111A. B. C. D.248π π π π9.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )x 10x 10A. B.2x 02x 0x 10x 10C. D.x 20x 20+≥+≤⎧⎧ ⎨⎨-≥-≥⎩⎩+≤+≥⎧⎧ ⎨⎨-≥-≥⎩⎩10.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )11.化简2(21)÷-的结果是( )A.221B.22C.12D. 22- - - +12.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为( )A.22B.20C.18D.1613.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数64y y x x=-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC的面积为( )A.3B.4C.5D.1014.如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=( )A.28°B.42°C.56°D.84°15.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B→C→D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为( )第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:(a+2)(a-2)+3a=________.17.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_________.18.如图,两建筑物的水平距离BC为18 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为________ m(结果不作近似计算).19.三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为______cm.20.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_______.21.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)化简222x1x2x1. x1x x--+÷+-(2)解方程:15x2(x1)8x. 24++=+23.(本小题满分7分)(1)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.(2)如图所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.24.(本小题满分8分)五一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人、八年级同学少于100人.若七、八年级分别购票,两个年级共计应付门票费1 575元,若合在一起购买折扣票,总计应付门票费1 080元.(1)请你判断参加郊游的八年级同学是否也少于50人.(2)求参加郊游的七、八年级同学各为多少人?25.(本小题满分8分)某市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽取了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14∶9∶6∶1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽取了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?26.(本小题满分9分)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O 的距离为5,则r的取值范围为_________.27.(本小题满分9分)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.28.(本小题满分9分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于点F,∠1=∠2,连接CB与DG交于点N.(1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=14,求BN 的长.参考答案1.D2.C3.B4.A5.C6.A7.C8.A9.A 10.A 11.D 12.D 13.C 14.A 15.C 16.(a-1)(a+4) 17.-10 18.123 19.6 20.n 13-()21.25522.(1)解:原式=()()()2x 1x 1x x 1x.x 1x 1+--=+- () (2)解:原方程可化为3x+2=8+x,合并同类项得:2x=6, 解得:x=3.23.(1)证明:∵∠1=∠2, ∴∠1+∠EAC=∠2+∠EAC, 即∠BAC=∠EAD.∵在△ABC 中和△AED 中,D C,BAC EAD,AB AE,∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△AED(AAS) (2)证明:∵BE=DF,∴BE-EF=DE-EF,∴DE=BF.∵四边形ABCD 是平行四边形, ∴AD=BC,AD ∥BC, ∴∠ADE=∠CBF,在△ADE 和△CBF 中,DE BF,ADE CBF,AD BC,=⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF(SAS), ∴AE=CF. 24.解:(1)全票为15元,则八折票价为12元,六折票价为9元. ∵100×15=1 500<1 575,∴参加郊游的七、八年级同学的总人数必定超过100人,∴由此可判断参加郊游的八年同学不少于50人.(2)设七、八年级参加郊游的同学分别有x 人、y 人. 由(1)及已知可得,x<50,50<y<100,x+y>100. 依题意可得:()15x 12y 1 575,9x y 1 080,+=⎧⎨+=⎩ 解得:x 45,y 75.=⎧⎨=⎩答:参加郊游的七、八年级同学分别为45人和75人. 25.解:(1)D 等级所占比例为:111496130=+++,则共抽取的人数为:1260().30÷=人 (2)样本中B 等级的频率为:9100%30%;14961⨯=+++C 等级的频率为:6100%20%.14961⨯=+++ (3)样本中A 等级在扇形统计图中所占圆心角度数为:1430×360=168(度); D 等级在扇形统计图中所占圆心角度数为:130×360=12(度). (4)可报考示范性高中的总人数: 300×149()3030+=230(名). 26.(1)证明:∵∠CBF=∠CFB , ∴BC=CF. ∵AC=CF , ∴AC=BC ,∴∠ABC=∠BAC.在△ABF 中,∠ABC+∠CBF+∠BAF+∠F=180°, 即2(∠ABC+∠CBF)=180°, ∴∠ABC+∠CBF=90°, ∴BF 是⊙O 的切线;(2)解:连接BD.∵点D ,点E 是弧AB 的三等分点,AB 为直径, ∴∠ABD=30°,∠ADB=90°,∠A=60°. ∵AD=5,∴AB=10,()BFtan603ABBF 103;3535r 53 5.∴︒==∴=-<<+,27.解:(1)设二次函数的解析式为:y=ax 2+bx+c.221a c 4216a 4b c 0b 1b c 4,12a 1y x x 4.21D(2m)m 224 4.2⎧⎧=-⎪⎪=⎪⎪++==⎨⎨⎪⎪=⎪⎪-=⎩⎩=-++=-⨯++= ,,由题意有:,解得:,,所以,二次函数的解析式为:点,在抛物线上,即∴点D 的坐标为(2,4);(2)作DG 垂直于x 轴,垂足为G ,因为D (2,4),B (4,0), 由勾股定理得:BD=25,∵E 是BD 的中点, ∴BE=5.BE BQ 1QBE ABD BD BA 2AB 2BQ Q 10BQ BE 5QBE DBA BD BA 6557BQ 25OQ 6337Q 0.3==∴=∴==∴=⨯==∴ 当≌时,,,点的坐标为(,);当≌时,,,则,点的坐标(,) (3)如图,由A(-2,0),D(2,4),可求得直线AD 的解析式为:y=x+2,则点F 的坐标为:F(0,2).过点F作关于x轴的对称点F′,即F′(0,-2),连接CD,再连接DF′交对称轴于M′,交x轴于N′.由条件可知,点C,D关于对称轴x=1对称,∴DF′=210,F′N′=FN′,DM′=CM′,∴CF+FN′+M′N′+M′C=CF+DF′=2210+,∴四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C=2210+,即四边形CFNM的最短周长为:2210+,此时直线DF′的解析式为:y=3x-2,所以存在点N的坐标为2(,0)3,点M的坐标为(1,1)使四边形CMNF周长取最小值.28.(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB-∠BCO=∠FCO-∠BCO,即∠ACO=∠1,∴∠ACO=∠2,∵∠CAM=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=1 4,∴OE=CO ·cos ∠BOC=4×14=1, 由此可得:BE=3,AE=5,由勾股定理可得:222222222222CE CO OE 4115AC CE AE (15)5210,BC CE BE (15)326,=-=-==+=+==+=+= ∵AB 是⊙O 直径,AB ⊥CD , ∴由垂径定理得:CD=2CE=215,∵△ACM ∽△DCN ,∴CM AC,CN CD= ∵点M 是CO 的中点,11CMOA 42,22==⨯= CM CD 2215CN 6,AC 210BN BC CN 266 6.⨯∴===∴=-=-=济南市2014年初三年级学业水平考试数学全真模拟试卷2第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的).1.如果+30 m表示向东走30 m,那么向西走40 m表示为( )A.+40 mB.-40 mC.+30 mD.-30 m2.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.503.图中几何体的主视图是( )4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10-9B.3.4×10-9C.3.4×10-10D.3.4×10-115.已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cmD.6 cm6.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )1111A. B. C. D.34567.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )A.5种B.4种C.3种D.2种8.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票.根据题意,下列方程组正确的是( )9.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18°B.24°C.30°D.36°10.如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为( )A.4B. 22C.1D.211.如图,数轴上a,b两点表示的数分别为3和-1,点a关于点b的对称点为c,则点c所表示的数为( )A.23B.13C.23D.13-- -- -+ +12.如图,A、B、C是反比例函数kyx=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3∶1∶1,则满足条件的直线l共有( )A.4条B.3条C.2条D.1条13.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为( )A.3.5元B.6元C.6.5元D.7元14.已知关于x 的不等式组()4x 123x,6x ax 1,7⎧-+⎪⎨+-⎪⎩><有且只有三个整数解,则a 的取值范围是( )A.-2≤a-1B.-2≤a <-1C.-2<a ≤-1D.-2<a <-1 15.如图,直线l :y=-x-2与坐标轴交于A 、C 两点,过A 、O 、C 三点作⊙O 1,点E 为劣弧 AO上一点,连接EC 、EA 、EO ,当点E 在劣弧上运动时(不与A 、O 两点重合),EC EA EO-的值是( )A.2 B.3 C.2 D.变化的第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:a 3-ab 2=________. 17.计算124183-⨯=_________. 18.如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是______.19.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是______.20.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_____________.21.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--,现已知121x x 3=-,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2 013=____________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分)(1)解方程组2x 3y 3x 2y 2.-=⎧⎨+=-⎩,(2)化简:1a a ().22a 2a 1-÷++23.(本小题满分7分)(1)如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD ,垂足为E. 求证:BE=DE.(2)如图,AB 是⊙O 的直径,DF ⊥AB 于点D ,交弦AC 于点E ,FC=FE. 求证:FC 是⊙O 的切线.24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1 200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.26.(本小题满分9分)如图,O是菱形ABCD对角线AC与BD的交点,CD=5 cm,OD=3 cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.27.(本小题满分9分)如图,直线1yx 4=与双曲线ky x =相交于A 、B 两点,BC ⊥x 轴于点C (-4,0).(1)求A 、B 两点的坐标及双曲线的解析式;(2)若经过点A 的直线与x 轴的正半轴交于点D ,与y 轴的正半轴交于点E ,且△AOE 的面积为10,求CD 的长.28.(本小题满分9分) 如图,抛物线21y x 1=-交x 轴的正半轴于点A ,交y 轴于点B ,将此抛物线向右平移4个单位得抛物线y 2,两条抛物线相交于点 C.(1)请直接写出抛物线y 2的解析式;(2)若点 P 是x 轴上一动点,且满足∠CPA=∠OBA ,求出所有满足条件的P 点坐标; (3)在第四象限内抛物线y 2上,是否存在点Q ,使得△QOC 中OC 边上的高h 有最大值,若存在,请求出点Q 的坐标及h 的最大值;若不存在,请说明理由.参考答案1.B2.A3.D4.C5.B6.B7.C8.B9.A10.D 11.A 12.A 13.C 14.C 15.A19.2 20.40% 21.416.a(a+b)(a-b) 17.618.1323.(1)证明:作CF⊥BE,垂足为F.∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵四边形EFCD为矩形,∴DE=CF.在△BAE和△CBF中,有∠CBE=∠BAE,∠BFC=∠BEA=90°,AB=BC,∴△BAE≌△CBF,∴BE=CF=DE,即BE=DE.(2)证明:连接OC.∵FC=FE,∴∠FCE=∠FEC.又∵∠AED=∠FEC,∴∠FCE=∠AED.∵OC=OA,∴∠OCA=∠OAC,∴∠FCO=∠FCE+∠OCA=∠AED+∠OAC=180°-∠ADE.∵DF⊥AB,∴∠ADE=90°,∴∠FCO=90°,即OC⊥FC.又∵点C在⊙O上,∴FC是⊙O的切线;24.解法一:解:设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:()()3x 2y 363150%x 2120%y 45x 2:y 15.+=⎧⎨+++=⎩=⎧⎨=⎩,,,解得这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤), 这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤). 答:这天萝卜的单价是3元/斤,排骨的单价是18/斤. 解法二:解:设这天萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:32x y 36150%120%3x 2y 45x 3:y 18.⎧+=⎪++⎨⎪+=⎩=⎧⎨=⎩,,,解得 答:这天萝卜的单价是3元/斤,排骨的单价18元/斤. 25.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%, 利用条形图中喜欢武术的女生有10人, ∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50-10-16=24(人). 补充条形统计图,如图所示:(2)100(3)∵样本中喜欢剪纸的人数为30人,样本容量为100, ∴估计全校学生中喜欢剪纸的人数:1 200×30100=360人. 答:全校学生中喜欢剪纸的有360人. 26.解:(1)∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴直角△OCD 中,2222OC CD OD 53 4 cm =-=-=;(2)∵CE ∥DB ,BE ∥AC , ∴四边形OBEC 为平行四边形, 又∵AC ⊥BD ,即∠COB=90°, ∴平行四边形OBEC 为矩形; (3)∵OB=OD ,∴S 矩形OBEC =OB ·OC=4×3=12(cm 2). 27.解:(1)∵BC ⊥x 轴,C (-4,0),∴B 的横坐标是-4,代入y=14x 得:y=-1,∴B 的坐标是(-4,-1). ∵把B 的坐标代入ky k 4x==得:, ∴反比例函数的解析式是4y .x=∵解方程组12121y x x 4x 444y 1y 1y x⎧=⎪==-⎧⎧⎪⎨⎨⎨==-⎩⎩⎪=⎪⎩,,,得:,,,∴A 的坐标为(4,1),B 的坐标为(-4,-1);(2)设OE=a ,OD=b ,则△AOE 面积S △AOE =S △EOD -S △AO D,AOE 1110ab b 1,221S a 410,2=- == 即:①并且,②由①,②可解得:a=5,b=5,即OD=5. ∵OC=|-4|=4,∴CD 的长为:4+5=9.28.解:(1)y=x 2-8x+15;(2)当 y 1= y 2,即x 2-1 =x 2-8x+15, ∴x=2,y=3, ∴C (2,3).由题可知, A ( 1 , 0 ) , B ( 0 ,-1), ∴OA =OB= 1 ,∴∠OBA= 45°. 过点 C 作CD ⊥x 轴于点D, ∴D(2,0),∴CD=3.当∠CPA=∠OBA=45°时,∴PD=CD=3 ,∴满足条件的点P有2个,分别为P1 (5,0),P2(-1,0);(3)存在.过点C作CE⊥y轴于点E,过点Q作QF⊥y轴于点F,连接OC、QC、 OQ. 设Q (x0,y0) ,∵Q在y2上,∴y0=x02-8x0+15,∴CE=2,QF=x0,EF=3-y0,OE=3,OF=-y0.∵在△QOC中,OC边长为定值,∴当S△QOC取最大值时,OC边上的高h也取最大值.2014届中考数学模拟测试卷(本试卷满分150分,考试时间120分钟)一、选择题(本题有8小题,每小题3分,共24分) 1.12-的倒数为【 】 A .12B .2C .2-D .1-2.下列图形中,既是轴对称图形,又是中心对称图形的是【 】 A .平行四边形 B .等边三角形 C .等腰梯形 D .正方形3.已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)【 】A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 4.已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距0102=7cm ,则两圆的位置关系为【 】 A .外离 B .外切 C .相交 D .内切5.如图是由七个相同的小正方体堆成的几何体,这个几何体的俯视图是【 】6.某校在开展“爱心捐助”的活动中,初三(一)班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【 】A .10B .9C .8D .4 7.如图7,AB 是⊙O 的直径,点D 在AB 的延长线上, DC 切⊙O 于点C ,若∠A=25°,则∠D 等于【 】 A .20°B .30°C .40° D.50°8.已知二次函数2(0)y ax bx c a =++≠的图象如右图8所示,下列结论①abc >0 ②b<a+c③2a-b=0 ④4a+2b+c >0 ⑤2c<3b⑥a+b >m(am+b)(m 为任意实数), 其中正确的结论有【 】 A . 1个 B .2个 C . 3个D .4个二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-3℃,那么当天的日温差是 ▲ .10.函数12-+=x x y 中自变量x 的取值范围是 ▲ . 11.如图11,四边形ABCD 中,AB//CD ,要使四边形ABCD 为平行四边形,则可添加的条件为 ▲ .(填一个即可).12.因式分解:m 3n -9mn= ▲ .13.已知25-是一元二次方程240x x c -+=的一个根,则方程的另一个根是▲ .14.在平面直角坐标系中,如果抛物线y=3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是 ▲ . 15.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ▲ .16.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 ▲ cm .17.如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 ▲ . 18.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n 为正整数)的根,你的答案是: ▲ .(用n 的代数式 )三、解答题(本大题共有10小题,共96分) 19.(本题8分)(1) (4分)解方程组 ⎩⎨⎧=-=-;1383,32y x y x(2) (4分)821)14.3(45sin 2)31(02+-+︒--π 20.(本题8分)先化简:22a 1a 11a a +2a---÷,再选取一个合适的 a 值代入计算.21.(本题8分)如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D 。
2014年学业水平考试数学科模拟测试试题及答案
2014年学业水平考试数学科模拟测试试题(2013.12)选择题(共51分)一、选择题:(本大题共17小题,每小题3分,共51分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入答题框内) 1. 设集合{}3,5,6,8,A =集合},8,7,5{=B ,则B A =( )A. {5,8}B. {3,6,8}C. {5,7,8}D. {3,5,6,7,8} 2、算法的三种基本结构是( )A .顺序结构、模块结构、条件分支结构B .顺序结构、条件结构、循环结构C .模块结构、条件分支结构、循环结构D .顺序结构、模块结构、循环结构 3、如图,一几何体的三视图如下,则这个几何体是( )A.圆柱B.空心圆柱C.圆D.圆锥 4、函数2cos(2)6y x π=-的最小正周期是( )A.4πB. 2πC .πD.2π 5.下图是一个水平放置的边长为10的正方形,若随意向正方形内扔一个光滑的小玻璃珠,玻璃珠在正方形内滚动且不会滚出正方形外,已知小玻璃珠最终停留在阴影部分的概率是 0.21,则图形中阴影部分的面积是( )A. 0.21B. 2.1C. 21D. 796、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x7、已知4sin 5α=,α是第二象限角,那么tan α的值等于( ) A .43-B.34- C.43 D.34俯视图主 视 图 左视图8、抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 ( )A.至多两件次品 B .至多一件次品 C.至多两件正品 D.至少两件正品9、已知12xa =(,12b x =log ,2c x =,当1(0,2x ∈时,,,a b c 中最大的是( ) A.a B . b C. c D. 不能确定10、在ABC ∆中,若7,3,8a b c ===,则角A 等于( )A.2πB .3πC.4π D.6π 11.已知直线的点斜式方程是12y x +=-,那么此直线的斜率为A.14B.13C.12D. 112. 函数()23x f x x =-的零点所在的区间是A. ()0,1B. (-1,0)C. (1,2)D. (-2,-1)13. 已知实数x 、y 满足0,0,33,x y x y ≥⎧⎪≥⎨⎪+≥⎩则z x y =+的最小值等于A. 0B. 1C. 2D. 314、不等式03x x≥-的解集是( ) A.{}|03x x ≤≤B. {}|0,3x x x ≤≥或 C . {}|03x x ≤< D. {}|0,3x x x ≤>或15. 已知等比数列{}n a 中,1416,2,a a =-=则前4项的和4S 等于 A. 20 B. -20 C. 10 D. -10 16. 当输入的x 值为3时,右边的程序运行的结果等于A. -3B. 3C. -2D. 217. 在平行四边形ABCD 中,++ =( )A. ACB.BDC. DBD. AD非选择题(共49分)二、 填空题:(本大题共5个小题,每小题3分,共15分。
2014年学业水平考试模拟考试数学试卷(含答案)
2014年学业水平考试模拟考试数学试题(含答案)第1卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-6的绝对值是D.67如图,所给图形中是中心对称图形但不是轴对称图形的是3.直线口,6被直线c所截,的度数是A. 1290B. 510C. 490D. 4004.下列运算,正确的是A.3x2-2x2=1B.(2ab)2=2a2b2C.(a+b)2=a2+b2D. -2(a-l)=-2a+25.不等式的解集在数轴上表示正确的是6.己知点P(2,m)在直线y=x-n的函数图象上,则m+n的值为7.已知等腰三角形两边的长分别为4,9,则这个等腰三角形的周长为A. 13 B. 17 C. 22 D. 17或228.计算的结果为:9.一组数据:3,2,1,2,2的众数,中位数分别是A.2,1 B.2,2 C.3,l D.2,310.在Rt△ABC中,∠C=900, sinA=4/5,则 cosB的值等于11.下表为某公司200名职员年龄的人数分配表,其中36~42岁及50~56岁的人数因污损而无法看出.若36~42岁及50~56岁职员人数所占的百分比分别为a%、b%,则a+b的值A.10 B.45 C.55 D.9912.对于一次函数y=-2x+4,下列结论错误的是A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0.,4)13.如图,AB是点D是AC上一点,于点E,且CD=2,DE=1,则BC的长为14.如图,将一张边长为4的正三角形纸片剪成四个全等的小正三角形,得到4个小正三角形,然后将其中的一个三角形再剪成四个全等的小正三角形,得到7个小正三角形.根据以上操作,若得到2014个小正三角形时,则最小正三角形的面积等于15.如图,在平面直角坐标系中,A(1,0),B(3,0),C(O,-3),CB平分/ACP,则直线PC 的解析式为第II卷(非选择题共75分)16.分解因式:X2 +X=17.近期我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知l毫米=1000微米,用科学记数法表示2.5微米是____ 毫米.18.不等式组的解集是____19.如图,在的角平分线DE与BC交于点E.若BE=CE则∠DAE=____度.20.函数的图象的交点坐标为(口,6),则的值为21.如图所示,点P(m,n)为抛物线上的任意一点,以点P为圆心,1为半径作圆,当与x轴相交时,则m的取值范围为三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.)22(1)(本小题满分3分)22(2)(本小题满分4分)解方程组:如图,四边形ABCD是平行四边形,点E、A、C、F在同一直线上,且AE=CF求证:BE=DF.23(2)(本小题满分4分)如图,在弦AB与半径OC相交于点D,AB=12,CD=2.24(本小题满分8分)某校为了创建书香校园,购进了一批科普书和文学书.其中科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等,则文学书有多少本?25.(本小题满分8分)小亮和小明对一个问题观点不一致,小亮认为:从2,-2,4,-4这四个数中任取两个不同的数分别作为点P(x,y)的横、纵坐标,则点P(x,y)落在反比例函数图象上的概率一定大于落在正比例函数y= -x图象上的概率,而小明认为两者的概率相同,你赞成谁的观点?说明你的理由,已知:AB为的直径,P为AB延长线上的任意一点,过点P作的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图l,若∠CPA恰好等于300,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由,27.(本小题满分9分)己知一次函数y= -x +1与抛物线交于A(O,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长,如图,等腰的直角边长为点D为斜边AB的中点,点P为AB上任意点,连接PC,以PC为直角边作等腰(1)求证:(2)请你判断AC与BD有什么位置关系?并说明理由.(3)当点P在线段AB上运动时,设AP=x,△PBD的面积为S,求S与x之间的函数关系式.。
2014年初中学业水平考试模拟数学试卷共33套(附答案解析)
2014年初中学业水平考试模拟数学试卷(1)一、选择题(每小题3分,共24分) 1、2014-的值是( )A.20141 B.20141- C.2014 D.2014- 2、小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数是61700000,这个数用科学记数法表示为( )A. 561710⨯B. 66.1710⨯C. 76.1710⨯D. 80.61710⨯ 3、如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( )(第3题图) A B C D 4、函数y=x-32中自变量x 的取值范围是( )A. 633a a a ÷=B. 238()a a =C. 222()a b a b -=-D. 224a a a += 6则此男子排球队20名队员的身高的众数和中位数分别是( ) A .186cm ,186cm B .186cm ,187cm C .208cm ,188cm D .188cm ,187cm7、如图,在平面直角坐标系中,直线y =-3x +3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线上则a 的值是( ) A .1 B .2 C .3 D .48、如图,已知抛物线x x y 421+-=和直线x y 22=.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2. 下列判断: ①当x >2时,M =y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在;④若M =2,则x = 1 .其中正确的有 ( ) A .1个 B .2个 C . 3个 D .4个二、填空题:(每小题3分,共24分)9、分解因式:2327x -= . 10、计算:= .11、由于H7N9禽流感的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 12、如图,直线l 1∥l 2∥l 3,点A 、B 、C 分别在直线l 1、l 2、l 3上.若∠1=70°,∠2=50°,则∠ABC= 度.13、在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是________.14、一圆锥的底面半径为1cm ,母线长2cm ,则该圆锥的侧面积为___________2cm . 15、如图AB 是⊙O 的直径,∠BAC=42°,点D 是弦AC 的中点,则∠DOC 的度数是 度.16、我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是 _________ . 三、 解答题(本大题共9个小题,共72分) 17、(本小题6分)计算:1)41(45cos 22)31(-+︒--+- 18、(本小题6分)解方程:xx 332=- 19、(本题满分6分)先化简,后求值:224222aa a a a a +⎛⎫-÷ ⎪--⎝⎭,其中a = 3.20、(本题满分6分)如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上). (1)把ABC △沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的11A B C 1△; (2)把11A B C 1△绕点1A 按逆时针方向旋转90°,在网格中画出旋转后的22A B C 1△; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.21、(本小题8分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?22、(本小题8分) 如图,已知四边形ABDE 是平行四边形,C 为边B D 延长线上一点,连结AC 、CE ,使AB =AC . ⑴求证:△BAD ≌△AEC ;⑵若∠B =30°,∠ADC =45°,BD =10,求平行四边形ABDE 的面积.图① 图②23、(本小题10分)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲。
2014年初中学业水平考试模拟数学试卷(31)
2014年初中学业水平考试模拟数学试卷(31)一、选择题(共15小题,每小题2分,共30分)1.下列各数中,最大的是( )A .-3B .0C .1D .22.式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x <1 B .x ≥1 C .x ≤-1 D .x <-13.不等式组⎩⎨⎧≤-≥+0102x x 的解集是( )A .-2≤x ≤1B .-2<x <1C .x ≤-1D .x ≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球. B .摸出的三个球中至少有一个球是白球. C .摸出的三个球中至少有两个球是黑球. D .摸出的三个球中至少有两个球是白球.5.若1x ,2x 是一元二次方程0322=--x x 的两个根,则21x x 的值是( )A .-2B .-3C .2D .3 6.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的 度数是( )A .18°B .24°C .30°D .36°7.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )A .21个交点B .18个交点C .15个交点D .10个交点8. 下面所示的几何体的左视图是 ( )9.已知O ⊙的半径r ,圆心O 到直线l 的距离为d ,当d r =时,直线l 与O ⊙的位置关系是 ( )A .相交B .相切C .相离D .以上都不对10.把抛物线y =x 2向上平移2个单位,所得的抛物线的表达式为 ( )A. y =x 2+2B. y =x 2-2C. y =(x +2)2D. y =(x -2)211.甲、乙两名运动员在六次射击测试中的部分成绩如下:第6题图D CBA甲的成绩乙的成绩如果两人测试成绩的中位数相同,那么乙第六次射击的成绩可以是 ( ) A .9环 B .8环 C .7环 D .6环12.如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+13.下列说法正确的是( )A .等腰梯形的对角线互相平分.B .一组对边平行,另一组对边相等的四边形是平行四边形.C .线段的垂直平分线上的点到线段两个端点的距离相等.D .两边对应成比例且有一个角对应相等的两个三角形相似14.某同学参加射击训练,共射击了六发子弹,击中的环数分别为3,4,5,7,7,10.则下列说法错误的是( )A .其平均数为6B .其众数为7C .其中位数为7D .其中位数为6 15.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是 ( ) A .a >b B . a >-bC .-a >bD .-a <-b二、填空题(每小题3分,共30分) 16.计算︒45cos = .17.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是 .18.太阳的半径约为696 000千米,用科学记数法表示数696 000为 .19.如图,AB CD ∥,EF AB ⊥于EEF ,交CD 于F ,已知160∠=°,则2∠= .20.如图,D 、E 两点分别在AC 、AB 上,且DE 与BC 不平行,请填上一个你 认为合适的条件: ,使得△ADE ∽△ABC .CDB A EF12图21.永州市新田县的龙家大院至今已有930多年历史,因该村拥有保存完好的“三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文化名村.如图是龙家大院的一个窗花图案,它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心对称图形的是___________(只填序号).22.某商场开展购物抽奖促销活动,抽奖箱中有1000张抽奖卡,其中有一等奖10张,二等奖20张,三等奖30张,其余抽奖卡无奖.某顾客购物后参加抽奖活动,他从抽奖箱中随机抽取一张,则中奖的概率为_________. 23.若反比例函数k y x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在 _________象限.24.4的的平方根是_________.25.已知三条不同的直线a 、b 、c 在同一平面内,下列四条命题: ①如果a //b ,a ⊥b ,那么b ⊥c ; ②如果b //a ,c //a ,那么b//c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b//c. 其中真命题的是_________。
2014年学业水平考试数学试题参考答案
2014年学业水平考试数学试题参考答案一、选择题: 二、填空题:16. 2014 17. 500 18. a ba- 19. 6 20. 6 21. ①②④ 三、解答题:22.(1)解:原式=2+3-23+1-6 ……………………………………………2分 =-23 …………………………………………………………..3分 (2)解:方程两边都乘以最简公分母(x ﹣3)(x +1)得:3(x +1)=5(x ﹣3), ………………………………………………4分 解得:x =9, ………………………………………………………….5分 检验:当x =9时,(x ﹣3)(x+1)=60≠0, ……………………….6分 ∴原分式方程的解为x =9. ………………………………………….7分23.(1)证明:∵AC =BD ,∴AC +CD =BD +CD ,即AD =BC . ……………………………………1分 在△ADE 和△BCF 中,AD =BC∠A =∠B AE =BF∴△ADE ≌△BCF (SAS ). ……………………………………2分∴∠E =∠F . ……………………………………3分 (2)解:∵在Rt △ADB 中,∠BDA =45°,AB =3 ∴DA =3 …………1分在Rt △ADC 中,∠CDA =60°∴tan60°=CAAD …………2分CA= 33 ………………………………………3分 ∴BC=CA -BA=(33-3) 米 ………………………4分24.解:设甲种商品应购进x 件,乙种商品应购进y 件. …………1分根据题意,得 1605101100.x y x y +=⎧⎨+=⎩…………5分解得:10060.x y =⎧⎨=⎩………………………………7分答:甲种商品购进100件,乙种商品购进60件. …………8分1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ABDCCDBDDBBDAAC25.解:列表得1 2 3 1 2 3 4 2 3 4 5 3456································································································································· 4分共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种, 摸出的两个小球标号之和是3的占2种, 摸出的两个小球标号之和是4的占3种, 摸出的两个小球标号之和是5的占2种, 摸出的两个小球标号之和是6的占1种; 所以棋子走到E 点的可能性最大, ···························································· 7分棋子走到E 点的概率=3193=. ······························································· 8分26.解:(1)90331802ACB l ππ=⨯= …………………….2分 扇形OAB 的周长为362π+……………………….3分 (2)连结OC ,交DE 于M ,∵四边形ODCE 是矩形 ∴OM =CM ,EM =DM ………………….4分 又∵DG =HE∴EM -EH =DM -DG ,即HM =GM …………………….5分 ∴四边形OGCH 是平行四边形 ……………………………6分 (3)DG 不变; …………………………………………….7分在矩形ODCE 中,DE =OC =3,∴DG =1 ………………..9分27.解:(1)CF =EF ························································································· 1分连接BF (如图①).∵△ABC ≌△DBE ∴BC =BE ,AC =DE∵∠ACB =∠DEB =90° ∴∠BCF =∠BEF =90°又∵BF =BF ,∴Rt △BFC ≌Rt △BFE . ∴CF =EF . ··········································································································2分 AF +EF =DE ·········································································································3分 ∵AF +EF =AF +CF =AC 又∵AC =DE ∴AF +EF =DE . ··································································································4分 (2)画出正确图形(可不加辅助线)如图② ·································································5分AF +EF =DE 仍然成立. ······················································································6分 (3)不成立.此时AF ,EF 与DE 的关系为AF - EF =DE ······································7分理由:连接BF (如图③),∵△ABC ≌△DBE ,∴BC =BE ,AC =DE , ∵∠ACB =∠DEB =90°,∴∠BCF =∠BEF =90°.第2次A O BCEH G D M 第1次又∵BF =BF ,∴Rt △BFC ≌Rt △BFE . ·································································8分 ∴CF =EF . 又∵AF -CF =AC ,∴AF -EF = DE . ∴(1)中的结论不成立. 正确的结论是AF -EF = DE ··································9分28. 解:(1)103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的函数解析式为223y x x =--. ·············································· 2分 (2)令2230x x --=,解得11x =-,23x =,∴点C 的坐标为(3,0). ········································································ 3分 ∵223y x x =--=2(1)4x --∴点E 坐标为(1,-4). ········································································ 4分设点O D =m ,作EF ⊥y 轴于点F .∵222223DC OD OC m =+=+,22222(4)1DE DF EF m =+=-+ ∵DC =DE ,∴22223(4)1m m +=-+,解得m =1, ∴点D 的坐标为(0,-1). ……………… 5分 (3)满足条件的点P 共有4个,其坐标分别为:(13,-2),(-13,0) ,(3,-10) ,(-3,8). ………………………………………………9分F图① ABCDEABC DEF图③ 图② A BC DEF第27题图ABCO DFxy第28题图E。
2014年初中学业考试数学模拟试题(含答案)
2014年初中学业考试数学模拟试题第I 卷(选择题共60分)一、选择题(本大题共20小题,每小题3分,满分60分) 1.3-的倒数是( )A .13-B .13C .3-D .32.2007年我市初中毕业生约为3.94万人,把3.94万用科学记数表示且保留两个有效数字为( )A.44.010⨯B.43.910⨯C.43910⨯D.4.0万3.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行.那么,在形成的这个图中与α∠互余的角共有( ) A.4个B.3个C.2个D.1个4.计算:101|5|20072-⎛⎫-+- ⎪⎝⎭的结果是( )A 5B 6C 7D 85.在平面直角坐标系中,若点()2P x x -,在第二象限,则x 的取值范围为( )A.0x > B.2x < C.02x <<D.2x >6.如图是一个风筝的图案,它是轴对称图形,量得∠B =30°,则∠E 的大小为( )A. 30°B. 35°C. 40°D. 45°7.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则此三角形的周长是( ) A. 11 B. 13 C. 11或13 D. 不能确定 8.在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )A. B. C. D.9.北京奥组委从4月15日起分三个阶段向境内公众销售门票,开幕式门票分为五个档次,票价分别为人民币5000元、3000元、1500元、800元和200元.某网点第一周内开幕式门票的销售情况见统计图,那么第一周售出的门票票价..的众数是( ) A .1500元B .11张C .5张D .200元10.已知方程组42ax by ax by -=⎧⎨+=⎩,的解为21x y =⎧⎨=⎩,,则ABC F(第06题图)ED(第11题10 12第一周开幕式门票销售情况统计图数量(张)23a b -的值为( )A.4 B.6 C.6-D.4-11.抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x 的取值范围是( )A. 14<<-xB. 13<<-xC. 4-<x 或1>xD. 3-<x 或1>x12.如图,在ABC △中,10AB =,8AC =,6BC =,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 长度的最小值是( )A .4.75B .4.8C .5 D.13.李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是( )A. (1)(2)(4) B. (2)(3)(4) C. (1)(3)(4) D. (1)(2)(3)14.下列说法错误的是( )A .16的平方根是士2B .2是无理数C .327-是有理数D .22是分数 15.下列图形中,既是轴对称图形又是中心对称图形的是( )16.以平面上两个不重合的点A 、B 为其中两个顶点作位置不同的等腰直角三角形,一共可以作出( ) A .2个 B .4个 C .6个D .8个17.小刚和小明一起玩一种转盘游戏,如图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用1、2、3表示.固定指针,同时转动两个转盘,任其自由停止,若两指针指的数字和为奇数,则小刚获胜;否则,(第12题)A小明获胜。
宁波市2014年初中毕业生学业考试数学模拟试卷(附答案 答卷 评分标准)
第二次模拟考试数学参考答案一、选择题(每题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBADBCCBADCC二、填空题(每小题3分,共18分)13、 1 14、 5/12 15、 -2 16、 (4π+8)cm 2 17、 2 18、 34 三、解答题(19,20题各6分,21题9分,22题8分,23题8分,24题7分,25题10分,26题12分, 共66分)19. (本小题满分6分)解:原式=x+2 ……………………………………………3分 (选取的x 的值x ≠2且x ≠0)………………………6分 20. (本小题满分6分)解:作CH ⊥AB 于H (1分) Rt △ACH 中CH =AC ·sin A =43×sin30°=23 ……………(3分) AH= AC ·cos A=43×cos30°=6∴BH =AB -AH =4 …………………(4分) ∴tan B =23342CH BH ==…………………(5分) ∴污渍部分内容内为32…………………(6分) 21. (本小题满分9分)答案不唯一,图略,每种画法4分,结论1分22. (本小题满分8分)解:(1)1283834--=%%%………………………2分 (2)8160.342400÷=………………………………3分2400(840816144)600A =-++=…………………4分 1(0.340.250.06)0.35B =-++=………………………5分 A 的值为600,B 的值为0.35……………………………6分 (3)408341200÷=%…………………………7分 240012002÷=……………………………………8分该校学生平均每人读2本课外书.23. (本小题满分8分)(1)证明:∵△ADC 沿直线AD 翻折后点C 落在点E 处, ∴△ADC ≌△ADE ,---------------1分 ∴CD=ED , ∴∠DCE=∠DEC ,∵AD 为中线,∴BD=DC ,∴BD=DE ,∴∠DBE=∠DEB ,--------------2∵∠DBE+∠BEC+∠ECB=1800,即2∠DEB+2∠CED=1800, ∴∠DEB+∠CED=900,∴BE ⊥EC-----------------3 (1) 画图正确ADBE 是平行四边形-------------------4证明:∵△ADC 沿直线AD 翻折后点C 落在点E 处, ∴△ADC ≌△ADE , ∴AE=AC ,DE=DC∵AC=DC ,∴AE=AC=DE=DC ,∴四边形AEDC 是菱形----------------------------6∴AE//DC ,且AE=DC-------------------7 ∵AD 是中线,∴BD=DC ,∴AE//BD ,且AE=BD∴四边形ADBE 是平行四边形-----------------------824. (本小题满分7分)(1)将(3,0),(1,0)A B -代入2y x bx c =++,得93010b c b c -+=⎧⎨++=⎩, 23b c =⎧⎨=-⎩ ∴223y x x =+---------------------------3分 (2)∵2223(1)4y x x x =+-=+-∴对称轴1x =-, 而A ,B 关于对称轴对称 ∴连结BD 与对称轴的交点即为所求P 点.过D 作DF ⊥x 轴于F. 将2x =-代入223y x x =+-, 则4433y =--=- ∴D (-2,-3)----------------4分∴3,1(2)3DF BF ==--= Rt △BDE 中,BD=223332+= ∵PA=PB ∴PA+PD=BD=32故PA+PD 的最小值为32 --------------------------7分25. (本小题满分10分)解:(1)设A 型x 块,B 型(5000-x )块 23500≤5.2x+4.15(x-5000) ≤24000 解得15260930952121x ≤≤-------------------------2分 X 取100的倍数,∴x 为2700,2800,2900,3000∴有4种方案① A 型2700块,B 型2300块 ② A 型2800块,B 型2200块 ③ A 型2900块,B 型2100块④A 型3000块,B 型2000块-------------------------3分 (2)设总费用为W 元W=5.2x+4.15(x-5000)=1.05x+20750--------------------------5分 当x=2700时,总费用为最少为23585元--------------------------6分(3)W=(5+0.2-m)x+4.15(x-5000)=(1.05-m )x+20750--------------------7分ABCDE当m>1.05时,当x=3000时费用最少,选择方案④A 型3000块,B 型2000块 当m<1.05时,当x=2700时费用最少,选择方案①A 型2700块,B 型2300块 当m=1.05时,四种方案费用一样。
济南市2014年初三年级学业水平模拟考试数学试题(有答案)
济南市2014年初三年级学业水平模拟考试数学试题(含答案)(2014.5)第1卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是( )2.如图所示几何体的左视图是(’ )3.窠市2014年第÷季度财政收入为42176亿元,用科学记数法(结果保留两个有效数字)表示为( )A. 42.7×108元B. 4.3xl09元C. 4.2xl09元D. 42x108元4.如图,将三角尺的直角顶点放在直尺的一边上,的度数等于( )A.500B.300 c. 200 D. 1505.下列函数中:、自变量x的取值范围是的是( )6.“泉城是我家,爱护靠大家”,为创建文明城市,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为遇到黄灯的概率为那么他遇到绿灯的概率为( )7.不等式组的解集在数轴上表示为( )8.方程(x+l)(x-2)= x+l的解释( )A.2B.3C.-1,2D.-1,39。
如图,△ABC是等边三角形,P是的平分线BD上一点,于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF-2,则PE的长为( )10.如图,点A是直线l外一点,在l上取两点B、C分剐以A、C为圆心,BC、AB的长为半径画弧,两弧线交于点D,分别连结AB、AD、CD,则四边形ABCD一定是()A.平行四边形 B.矩形C.菱形D.梯形11.已知的位置关系是( )A.相交B.外切c.外离 D.内含12.某机械厂七月份生产零件50万个,第三季度生产零件196万个,设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )A.50(1+X)2=1.96B.50+50(l+x)2= 196C. 50+50(l+x)+ 50(l+x)2 =196D. 50+50(l+x)+50(1+2x)=19613.抛物线y= -x2+ bx+c的部分图象如图所示,若y>0,则x的取值范围是( ) ’14.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a, 2a,线段AB的延长线交x轴于点C,若则k为( )A. 5B.. 6C. 7D. 815.如图,在的半径为l,点p是AB边上的动点,过点p作的一条切线则线段PQ的最小值为( )二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式ax2—4a=1 7.如图,矩形ABCD的对角线AC和BD相交于点O,过点D的直线分别交AD和BC于点E、F, AB=2,BC =3,则图中阴影部分的面积为.18.如图,要制作一个母线长为8cm,底面圆周长是l2兀cm的圆锥形小漏斗,若不计损耗,则所需纸板的面积是cm219.如图,在一场羽毛球比赛中,站在场内M处的运动员林丹把球从N点击到了对方内的B点,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM=米.20.如图,边长为l的正方形ABCD绕点A逆时针旋转450到正方形AB’C'D’,图中重合部分的面积为__ __.21.菱形ABCD中,AB=AC,点E、F分别为边AB,BC上的点,且AE=BF,连接CE、AF 交于点H,连接DH交AC于点D.则下列结论:正确的是三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算骤.)22..(本小题满分7分)23.(本小题满分7分)(1)如图,已知AB是的直径,弦于E,AC=8, CD=6,求的值.(2)如图,在△ABC中,求AB的长,26.(本小题满分9分)如图,已知△ABC中,AB=lOcm,AC=8cm,BC=6cm.如果点P 由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,P点为2cm/s,Q点速度为lcm/s,连接PQ,设运动的时间为,(单位:s)(1)当t为何值时,(2)设四边形PQCB的面积为S(单位:cm2),当t为何值时,S取得最小值,并求出最小值.(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.r'27.(本小题满分9分)阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点a、点b重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系,28.(本小题满分9分)如图,已知抛物线的顶点坐标为且与y轴交于点C,与x轴交于A,B两点(点A在点B的左边),且A点坐标为(2,O).(1)求抛物线的解析式及B点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)以AB为直径的与直线CE相切于点E,CE交x轴点D,求直线CE的解析式.答案选择1-5 ADBCD 6-10 DBDCA 11-15 ACBDC填空16. a(x +2)(x -2) 17. 3 18. 48πcm2 19.3.42 米 20.12 21.①②③④22. (1) 化简: 22111x x x x ++++解:原式=2211x x x +++ …………………………..………1分 2(1)1x x +=+……………………………………………………2分 1x =+………………………………………………………3分(2)解 ∵3582 1.x y x y +=⎧⎨-=⎩,①②由②得12-=x y ,③将③代入①,得8)12(53=-+x x .解得1=x .代入③,得1=y .……………… 2分∴原方程组的解为11.x y =⎧⎨=⎩, ……………………………… 4分23.(本题满分7分)(1)解:∵AB 是⊙O 的直径,CD AB ⊥∴CE=DE=CD21=3,∠ACB=90°,∠AEC=90°………1分∴∠ABC=∠ACD ……..………2分∴cos ∠ABC= cos ∠ACD=83=AC CE ………3分(2)如图,在△ABC 中,∠A=30°,∠B=45°,AC=32,求AB 的长. (2)作CD ⊥AB 于点D ,∵∠A=30°,∴AD=3……………………………………………5分 又∵∠B=45°∴6分 ∴7分45°30°C BAD第23(1)题图24.设现在平均每天植树x 棵,则原计划平均每天植树(x ﹣5)棵.………1分 依题意得:, ………4分 解得:x=20,………6分经检验,x=20是方程的解,且符合题意.………7分 答:现在平均每天植树20棵.………8分 25. 【答案】:(1)20,(1分) 2 ,(1分) 1(1分);(2) 如图(2分,各1分)(3)选取情况如下:(列表或树形图正确2分、计算概率1分)∴所选两位同学恰好是一位男同学和一位女同学的概率2163==P .....................8分26.(本小题满分9分) 解:(1)∵PQ ∥BC ,∴,..............................................1分即810210tt =-...................................................................2分 解得t=1340,∴当t=1340s 时PQ ∥BC ............................................3分(2)∵AB=10cm ,AC=8cm ,BC=6cm ,∴∠C=90°...............................4分 过P 点作PD ⊥AC 于点D . ∴PD ∥BC ,∴,即,解得PD=6﹣t ......................5分∴S=-⨯⨯8621×AQ×PD=24-×t×(6﹣t )=479)25(532+-t ∴当t=s 时,S 取得最小值,最小值为479cm2..................................6分(3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP=S △ABC=12.S △AQP=12)566(21=-t t , ∴123532=+-t t ,...............................................8分化简得:t2﹣5t+20=0, ∵△=(﹣5)2﹣4×1×20=﹣55<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分...................................9分 27.(1)点E 是四边形ABCD 的边AB 上的相似点. 理由:∵∠A=55°, ∴∠ADE+∠DEA=125°........................1分 ∵∠DEC=55°,∴∠BEC+∠DEA=125°.∴∠ADE=∠BEC . ........................2分 ∵∠A=∠B ,∴△ADE ∽△BEC .∴点E 是四边形ABCD 的AB 边上的相似点.........................3分 (2)作图如下:........................6分D(3)∵点E 是四边形ABCM 的边AB 上的一个强相似点, ∴△AEM ∽△BCE ∽△ECM , ∴∠BCE=∠ECM=∠AEM .由折叠可知:△ECM ≌△DCM ,........................7分 ∴∠ECM=∠DCM ,CE=CD , ∴∠BCE=∠BCD=30°, ........................8分 ∴BE=CE=AB .在Rt △BCE 中,tan ∠BCE==tan30°,∴,∴.........................9分28.解:(1)由题意,设抛物线的解析式为y=a (x ﹣4)2+(a≠0)∵抛物线经过(2,0)∴032)42(2=+-a解得:a=61-∴y=32)4(612+--x .......................2分 当y=0时,x2﹣x+2=0解得:x=2或x=6 ∴B (6,0);.......................3分 (2)存在,如图2,由(1)知:抛物线的对称轴l 为x=4, 因为A 、B 两点关于l 对称,连接CB 交l 于点P ,则AP=BP ,所以AP+CP=BC 的值最小.......................4分 ∵B (6,0),C (0,2) ∴OB=6,OC=2 ∴BC=2,∴AP+CP=BC=2.......................6分(3)如图3,连接ME ∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDEEP图 2E图1∵在△COD与△MED中∴△COD≌△MED(AAS),.......................7分∴OD=DE,DC=DM设OD=x则CD=DM=OM﹣OD=4﹣x则RT△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2∴x=∴D (,0).......................8分设直线CE的解析式为y=kx+b∵直线CE过C(0,-2),D (,0)两点,则解得:∴直线CE的解析式为234-=xy.......................9分E图3{223-==+bbk{234-==b k。
2014年安徽省初中毕业学业考试数学模拟试题及答案
安徽省2014年初中毕业学业考试数学模拟试题(本试卷满分150分,考试时间120分钟)一、选择题(本大题共有10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求.)1.-4的绝对值是( )A .2B .4C .-4D .16 2.下列运算正确的是 ( )A .624a a a =⋅B .23522=-b a b aC .()523a a =- D .()633293b a ab =3a=,则a 的取值范围是( ) A .a ≤0; B .a <0; C .0<a ≤1; D .a >04. 关于反比例函数y =4x的图象,下列说法正确的是( )A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 5.下列图形中是中心对称图形,但不是轴对称图形的是( ).AD6.设12a x x =+,12b x x =⋅,那么12x x -可以表示为( )A 7.清明节前,某班分成甲、乙两组去距离学校4km 的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min 到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km /h ,则x 满足的方程为( )A .x 4-x 24=20 B .x 24-x 4=20 C .x 4-x 24=31 D .x 24-x 4=31 8.如图,把正△ABC 的外接圆对折,使点A 与劣弧BC⌒ 的中点M 重合, 折痕分别交AB 、AC 于D 、E ,若BC=5,则线段DE 的长为 ( ) A.52 B. 1039. 一个正方体的6个面分别标有“2”,“3”,“4”,“5”,“6”,“7 ”其中一个数字,如图表示的是正方体3种不同的摆法,当“2”在上面时,下面的数字是( ) A . 4 B . 5 C . 6 D . 7A BCDP10. 如图,矩形ABCD中,1AB=,2BC=,点P从点B出发,沿B C D→→向终点D匀速运动,设点P 走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()第10题)二、填空题(本大题共有4小题,每小题5分,共20分.)11.PM 2.5是指大气中直径小于或等于0.0000025 m的颗粒物,将0.0000025用科学记数法表示为 .12.已知数据54321,,,,aaaaa的平均数是a,则数据54321,,,7,,aaaaaa的平均数是.(结果用a 表示)13.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),则B点从开始至结束所走过的路程长度为____ _____.(第13题图)14.将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”.已知等边三角形的边长为2,则它的“面径”长可以是(写出2个).三、解答题(本大题共有2小题,每小题8 分,满分16分)15.先化简,再求值:22122121x x x xx x x x---⎛⎫-÷⎪+++⎝⎭,其中x=2.16.据统计,2008年全国公务员参考人数为64万,2010年为92.7万,2012年为96万,试求从2008年)到2012年每两年的平均增长率,并估计按此增长率2014年参考人数会不会达到115万? 2.4四、(本大题共有2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,3),(﹣4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),再将线段A1B1绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1,A2B2;(2)计算在这两次变换过程中,点A经过A1到达A2的路径长.18.四川省雅安市芦山县(北纬30.3度,东经103.0度)2013年4月20日8点02分发生7.0级地震,震源深度13千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年初中学业水平考试模拟数学试卷(30)一 选择题(每小题3分 ,共 30分 )1. 生物学家发现一种病毒和长度约为0.000043mm ,用科学记数法表示这个数的结果( )A. 4.3³10-4 B 4.3³10-5 C .4.3³10-6 D .43³10-5 2.已知⎩⎨⎧==21y x 是方程2mx-y=10的解,则m 的值为( )A.2 B.4 C.6 D.103、如果一个等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为( )。
A 、40°,40°B 、80°,20°C 、50°,50°D 、50°,50°或80°,20°4. 下列运算中正确的是( ) A.a 2²a 3=a 5B.(a 2)3=a 5C.a 6÷a 2=a 3D.a 5+a 5=2a 105.如图4,有一张一个角为︒60的直角三角形纸片,沿其一条中位线剪开后, 不能拼成的四边形是( )A .邻边不相等的矩形B .等腰梯形C .有一个角是锐角的菱形D .正方形 6.如果等腰梯形两底的差等于一腰长,那么这个等腰梯形的锐角是( ) A .︒60 B .︒30 C .︒45 D .︒757.永州某县有68万人口,各民族所占比例如图1所示,则该县少数民族人口共有( )A .30.0万B .37.4万C .30.6万D .40.0万8.(3分)(2012•永州)如图所示,下列水平放置的几何体中,俯视图是矩形的是( )...9.在Rt △ABC,∠C =90°, sinB =5,则sinA 的值是( ) A.35 B.45 C.53 D.5410.已知3x =是关于方程23230x ax a +-=的一个根,则关于y 的方程212y a -=的解图4DBCADBCA是( )B.C.D.以上答案都不对二、填空题(每小题3分,共30分)11. 不等式组⎩⎨⎧<-≥+0101x x 的整数解是_________________.12、一组数据中,数据15和13各有4个,数据14有2个,这组数据的平均数是 ;方差是 。
13. 计算(13)-2+(2-兀)0=__________. 14.如图,在等腰梯形ABCD 中,AC ⊥BD ,AC=6㎝,则等腰梯形ABCD 的面积为_________.15、点P (2,-3)先向左平移4个单位,再向上平移5个单位,所得点的坐标是____________16.因式分解:a 3-ab 2= .17、将方程3(1)5(2)x x x -=+化为一元二次方程一般形式是18.已知一个三角形的两边长为 3和 4 , 若第三边长是方程212350x x -+=的一个根,则这个三角形周长为____________,面积为____________.19. 如图,已知△ABC ∽△DBE . DB =8 , AB =6 ,则ABC S ∆:DBE S ∆=_________.20、如果一个扇形的圆心角为135,半径为8,那么该扇形的弧长是 .三、(本题共3小题,每小题8分,共24分)21、计算201)345(tan 32)31()21(--⨯+--22. 18、如图所示,有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形面积等分),试设计两种方案(用尺规作图,保留作图痕迹,不要求写出做法),并简要说明理由。
23、一次课外实践活动中,一个小组测量旗杆的高度如图,在A 处用测角仪(离地高度为1.2米)测得旗杆顶端的仰角为15,朝旗杆方向前进20米到B 处,再次测得旗杆顶端的仰角为30,求旗杆EG 的高度.四、(本题满分20分 , 每小题10分)24如图,AB 是半圆O 的直径,点C 是⊙O 上一点(不与A ,B 重合),连接AC ,BC ,过点O 作OD ∥AC 交BC 于点D ,在OD 的延长线上取一点E ,连接EB ,使∠OEB=∠ABC .⑴求证:BE 是⊙O 的切线;⑵若OA=10,BC=16,求BE 的长25.如图, 点O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD.证明:四边形OCED 是菱形:(2)若AB=6,BC=8,求四边形OCED 的面积.B (第24题图)20米五、综合题(本小题满分16分)26、如图,将直角三角形ABO 放入平面直角坐标系xoy 中,直角顶点O 与原点重合,点(6)A m ,,(1)B n ,为两动点,Rt ⊿ABO 能够绕点O 旋转,其中03m <<.作BC⊥x 轴于C 点,AD ⊥x 轴于D 点.(1)求证:6mn =-;(2)当10AOB S =△时,抛物线经过A B ,两点且以y 轴为对称轴,求抛物线对应的二次函数的关系式;(3)在(2)的条件下,设直线AB 交y 轴于点F ,过点F 作直线l 交抛物线于P Q ,两点,问是否存在直线l ,使:1:3POF QOF S S =△△?若存在,求出直线l 对应的函数关系式;若不存在,请说明理由.附本次数学模拟试卷答案(26题图)一.选择题(本题共有10个小题,每小题3分,共30分)二、填空题(共10个小题,每小题3分)⑾ ﹣1 0 ⑿ 14 4/5 ⒀ 10 ⒁ 18㎝ ⒂ (﹣2, 2) ⒃a(a +b)(a -b) ⒄3x2-8x -10﹦0 ⒅ 12 ,6 ⒆ 9/16 ⒇ 6x三 解答题(每小题8分,共24分) 21解原式﹦√3﹢122作图略23、解:由已知030,15=∠=∠EDF ECD 所以015=∠CEDECD CED ∠=∠∴……….(3分)20==∴DE DC 在Rt △DEF 中由DEEFEDF =∠sin ,得1030sin 20sin 0=⨯=∠⋅=EDF DE EF …….(3分)又FG=CA=1.2米因此EG=EF+FG=10+1.2=11.2(米)………………….(2分)四(共20分,每小题10分)24 证明:⑴∵AB 是半圆O 的直径 ∴∠ACB=90° ∵OD ∥AC ∴∠ODB=∠ACB=90° ∴∠BOD+∠ABC=90° 又∵∠OEB=∠ABC ∴∠BOD+∠OEB=90° ∴∠OBE=90° ∵AB 是半圆O 的直径 ∴BE 是⊙O 的切线⑵在ABC Rt ∆中,AB=2OA=20,BC=16,∴1216202222=-=-=BC AB AC ∴341216tan ===AC BC A ∴34tan ==∠OB BE BOE ∴3113103434=⨯==OB BE .25. (1)证明:∵DE ∥AC ,CE ∥BD , ∴四边形OCED 是平行四边形.在矩形ABCD 中,OC=OD∴四边形OCED 是菱形.(2)连接OE,由菱形OCED ,得CD ⊥OE, ∴OE ∥BC.又∵CE ∥BD, ∴四边形BCEO 是平行四边形 五 综合题(满分16分 )1520米26、解:(1)由已知:A 、B 点坐标分别为(6)(1)m n ,,,, 16BC OC n OD m AD ∴==-==,,,,∵BC x ⊥轴,AD x ⊥轴,OA OB ⊥, 易证CBO DOA △∽△, 166CB CO BO n mn DO DA OA m -∴==∴=∴=-,, (2)由(1)得,OA mBO =,又10AOB S =△,1021=⋅OA OB , 即20,202=∴=⋅mOB OA OB ,又222221(1)20623OB BC OC n m n mn m n =+=+∴+==-∴==-,,,,,A ∴坐标为(26)B ,,坐标为(31)-,,易得抛物线解析式为210y x =-+. (3)作PM y ⊥轴于M 点,QN y ⊥轴于N 点,假设存在直线l 交抛物线于P Q ,两点,且使:1:3POF QOF S S =△△,如图所示,则有:1:3PF FQ =,直线AB 为4y x =+,且与y 轴交于(04)F ,点,4,OF ∴= ∵ P 在抛物线210y x =-+上,∴ 设P 坐标为2(10)t t -+,, 则221046FM x x =-+-=-+,易证PMF QNF △∽△,13PM MF PF QN FN QF ∴===, 2333318QN PM t NF MF t ∴==-==-+,,2314ON t ∴=-+,Q ∴点坐标为)143,3(2--t t ,因为Q 点在抛物线210y x =-+上,22314910t t ∴-=-+,解得t =P ∴坐标为(,Q 坐标为8)-,∴存在直线PQ为4y=-+.根据抛物线的对称性,还存在直线PQ另解为4y=+.(8分)OE=BC=8, ∴S四边形OCED =12OE²CD=12³8³6=24。