2014国外网络趣图汇编
48个最有用而有趣的网站
48个最有用而有趣的网站1.Wikipedia 一个在线的百科全书:任何人都可以编辑入口。
你不仅仅可以修正文本,而且还可以添加图片和声音来修饰入口。
它并不像其他百科全书那样具有权威性,但是它的不规则也给阅读带来了很多乐趣。
2.How Stuff Works 在这个迷人的网站里,你可以选择10个类别的内容,比如电脑素材,在这里你会发现诸如图形卡是如何工作的等等技术问题的描述。
3.Help 如果你在寻找一个问题的答案,你可以试试。
如果你没有时间浏览论坛,你可以订阅它的免费时事通讯,里有最受欢迎的问题列表。
4.Gizmodo 这个美国的blog网站上有各种各样的小玩意。
这里有很多好的产品和想法。
5.Crossword Buddy /puzzles 那些痴迷于填字游戏的人应该会喜欢这个网站。
你可以自己填字母,也可以把可能的字列出来。
功能简单而令人满意。
6.午休小游戏 Office Humour 如果你的老板不在办公室,而办公室里可以轻松一下的时候,这个网站能够让笑意出现在你的脸上。
欢闹的视频短片和来自全世界的剪报将让漫长的一天变得短一些。
7.The Onion 另一个美国网站,它处理新闻的方式有点类似MontyPython对垃圾邮件的功能。
8.JibJab JibJab表明网络能够为无所事事的人找到事情做。
整个网站中充斥着讽刺和调侃,并提供很多活泼好玩的歌曲和电子贺卡。
9.My Cat Hates You 我们是一个热爱动物的国家,但是这个网站却证明我们的一些猫科朋友并没有对我们的善意有相应的反馈。
喜欢或不喜欢猫的人都会在这里哈哈大笑。
10.游戏和娱乐 Miniclip 这里有很多有趣的在线游戏。
有超过100个免费游戏,另外一些游戏需要你使用信用卡进行注册付费才能使用。
页面上部的游戏你可以和其他人一起玩,赌注是真的金钱。
11.Y etisports 我们在圣诞节发布之前,就有了CD-ROM,这对于杂志来说是一项严重的威胁。
国外另类设计网址
法国(France)http://www.purple.fr优雅简约的影像魅力最好的青年文化杂志,超级话题制造者法式的优雅搭配超炫的时尚影像http://www.crash.frFashion Ressources纯时尚摄影http://www.photo.fr美艳时尚照片集A TRANSCULTURAL™ Styles and Ideas magazine新锐的影像、优美的文字、独特的巢self service年轻的视觉艺术家们Jalouse 巴黎时装公报旗下的时尚摄影集英国(UK)TANK 很波普、很混乱、很时尚,最嬉皮、最现代、最好看ANOTHER A fashion magazine for men & women,双季出刊的男女同体时装本125 a photographic showcase and print sales gallery 新生代概念杂志SPOON 视觉冲击力超强的时尚摄影画册I-D 经典的半闭眼封面刊标,流行文化配搭时尚摄影DAZED & confused Fahion & pop Cuture 贩卖时尚、艺术和流行文化EXIT A new cutting-edge, limited-edition, bi-annual, super slick, glossy, image-led magazineWALLPAPER 全世界的墙纸icon ]A major new international design and architecture magazineeye 最好的平面设计读本10 Fashion Fashion FashionThe FADER 主流、边缘、地下,只为音乐BOLZ art - design - mode - cultureAd!dict 个性事物集合体,表演艺术家、音乐人、摄影师、设计师、室内设计师SPIN 不仅仅只有音乐那么简单lab 个性事件Intersection [url]concept, custom, production, industrial, classic and imaginary 不只是汽车那么简单blag a down-to-earth cultural taste magazineAmelia's 影像随笔、时装故事Amaan 超级时尚影像Wonderland for men & women, visual culture -art, design, film & moreabove fashion, beauty & moreKAREN Made out of the ordinary意大利(Italy)COLORS /colors脱胎于BEBETTON的时装体系,更多的是人文关怀Sogo an inviting magazine, always different, surprising, interesting, fresh and new.Pig 意大利流行文化潮流志LABEL arts, architecture, fashion, music, design & lifestylevictim The 1st italian-based international fashion & lifestyle magazinearia 世界上最奢华的时尚杂志the most luxurious magazine in the world and a must-buy for any fashion fan.德国(German)ZOO http://zoomagazine.de德国的时尚影像书032c FAsahion Art Conflict 双年刊视觉文化杂志TUSH 汉堡制造,让人惊艳的华丽影像Boiler http://www.boilermag.itNew Italian Artberliner 用德语和英语发声的柏林人讲述柏林的艺术、文化、时装、生活方式sleek for art & fashionform http://www.form.deThe European Design MagazineSpezial Fotografie http://www.stern.de明星杂志定期推出的摄影师画册Bransch 集结多位摄影师作品的纯摄影集DEUTSCH Fashion, Style, Entertaimentsquint 斜视眼用100%的时代精神观察生活中的美丽事物Lodown Music Fashion Art Sports EntertamentSepp 来自柏林,足球加时装的视觉冲击力+rosebud 神秘的蔷薇花蕾西班牙(Spain)Big 以西班牙为基地,在世界各地制造话题Neo2 http://www.neo2.es马德里的美艳时尚画册Clone 时装摄影设计艺术建筑文化Vanidad http://www.vanidad.esThe first spanish trend-setter magazine, covering music, design, technology, product, film, video, music and book reviews.le http://cool A weekly free magazine, djs, exhibitions, odd movies & happenings.alterEGO New Style比利时(Belgium)A 来自安特为普的新生态事实杂志BEople http://www.beople.be比利时的文化、艺术、生活方式、时装、音乐A PRIOR /A series of publications on contemporary artA+ http://www.a-plus.beBelgium's leading review in the fields of architecture, town planning, design and art.奥地利(Austria)WeAr 艺术与流行的休闲表达,时装流行报告荷兰(Netherland)BABY Source of Inspiratiion 灵感的来源,玩得就是心跳Re- 不一样的个人单体影像BUTT 艺术、性、生活性感的男性同志书EYEMAZING 魔幻、诡异的影像,让人疯狂的视觉影像杂志foam http://www.foam.nlInternational photography magazineFRAME 最酷最火的空间概念,艺术和建筑结合的绝妙创意Blend http://www.blend.nlLIfestyle magazine for him & her丹麦(Denmark)DANSK http://www.danskmagazine.dksurprise surprise surprise,美艳绝伦的时尚影集HE men's fashion 新锐男性时装书cover http://www.cover.dkfashion fashion fashionS Magazine 只有时尚影像瑞典(Sweden)BON 先锋视觉影像Stockholm New Nature, design, fashion,...Rodeo http://www.rodeomagazine.sethe best, the smartest and the most exciting things happening at the moment.挪威(Norway)Carl*s Cars a magazine about people 汽车文化搭配音乐、时装、电影和设计芬兰(Finland)PAP a new international "Fashion Bible".Bulgaria Bulgaria is about life.瑞士(Switzerland)soDA http://www.soda.chmagazine for visual culture波兰(Poland)A4 Fashion, design, art and culture土耳其(Turkey)34 建筑、文化、时尚俄罗斯(Russia)ANTE art, design and cultural inquiry美国(U.S.A)I.D. Internatioal Design MagazineVISIONAIRE 结合艺术与时尚的超级影像V VISIONAIRE出版的超级时尚影像剪刀VMAN VISIONAIRE出版的男性版时尚影像ZINK High fashion beauty photographySUPER 超级男女同体时装书surface 最新鲜、最有洞察力,时装、艺术、建筑、电影、音乐、家居FLAUNT 美得让人吃惊,艺术,流行,建筑学,设计、音乐PAPER Brought to you 美国的流行文化搭配时尚动力Black Book 流行文化黑皮书VERY 流行文化和艺术的混血儿,旗下的非常城市和非常时装是很实用的迷你城市指南和私人购物顾问2wice 跨学科的艺术日记Esopus 艺术、文学、电影、音乐Blind Spot 优雅的设计、精致的包装、盲目的艺术Index 醒目的人物肖像封面、干净的设计、些许的性感、出其不意的人物访问Metropolis 室内设计、产品设计、平面设计、……Atomica a high end fashion, music and lifestyle 来自加州比华利山庄SOMA 旧金山的流行文化本CRU POP icons & emerging stars fashion music beauty lifestyle.dwell at home in the modern worldLook-Look 两年一期,洛杉矶带来,100%年轻人创造的青年文化杂志Clear a fashion and design magazine, coveringclothing, furniture, architecture, and graphic design. Zembla fun with wordsFugue 音乐时尚艺术文化生活Vegas A national lifestyle magazine for Las Vegas944 fashion, lifestyle, culture & entertainmentXLR8R electronic music, culture, style & technologye/i music electronic and otherwisefidget 概念主题创作Fuse Art, Media, PoliticsL [url][/url]New York City's Local Event GuideMe An independent quarterly magazine devoted to people in creative professions. SMOCK A hip, new edge art magazine with a fresh art attitude.SEED Science is CultureProphecy architecture, art, fashion, music + culture.TheBlowUp 印刷和网络同时发行的时尚本加拿大(Canada)B&W 朴素的黑白纯摄影NUVO [/url]风格类生活方式本,新建筑、独家时装、精致烹饪、旅行游记Coupe 设计、科技、艺术、人文Butter A free trend magazine and cultural scrap book.澳大利亚(Australia)POL OXYGEN design art architectureFollow 男女分册的时尚影集Poster .au流行海报是面向全球发行的独特影像cream 澳洲人最喜欢的流行文化杂志EMPTY A magazine about creativity, based in Sydney.doingbird Fashion & Arts中国(China)東西雜誌 东西两方的文化视点,给你不一样的时尚观感號外 香港制造,视野触及生活各个层面,用摩登时髦的视觉手法表现现代城市的生活快感生活 把对生活的感悟写进文字,流淌在字里行间的美好生活细节VISION 中国最好的视觉艺术人文读本eGG 台湾出产的蛋化产品ppaper 设计来源于生活,好设计,好生活Chalk /chalk/[/url]香港制造、时尚影像、青年文化------------------------日本时尚杂志的网站VIVI/vivi/non-no]http://non-no.shueisha.co.jp/oggi/oggi/[/url]FINEhttp://www.hinode.co.jp/public/fine/FARU/frau/RAY/CAWAII/SEVENTEENhttp://st.shueisha.co.jp/POPTEEN/index2.htmlPOPTEEN(TW)/asp/mag/PTN/index.aspsmarthttp://www.takarajimasha.co.jp/smart/SPURhttp://spur.shueisha.co.jp/ZIPPERhttp://www.shodensha.co.jp/zipper/MELONEThttp://www.melonet.jp/PICHI LEMON/i-V oce/voce/with (即<秀with>)/with/ELLEhttp://www.elle.co.jp/CUTIEhttp://www.takarajimasha.co.jp/cutie/CanCam/cancam/BAILAhttp://baila.shueisha.co.jp/MOREhttp://more.shueisha.co.jp/MINIhttp://www.takarajimasha.co.jp/mini/MINA/index.htmlSPRINGhttp://www.takarajimasha.co.jp/spring/SWEEThttp://www.takarajimasha.co.jp/sweet/OLIVEhttp://olive.magazine.co.jp/PS(PRETTY style)/SEDAhttp://www.hinode.co.jp/public/seda/HARPER'S BAZAARhttp://www.bazaar.co.jp/カジカジ/Vingtainehttp://www.hfm.co.jp/magazines/ving...opics/index.htmEF(依人风尚日版)/style(OL )http://kodansha.cplaza.ne.jp/style/Make up Magazine/VOGUEhttp://www.vogue.co.jp/splash.htmlBOON/FINEBOYS/ 集英社(有多本杂志)http://www.shueisha.co.jp/光文社。
国外免费图床大集合
国外免费图床大集合/index.php(接受的格式图片JPG,GIF,PNG,还有FLASH动画的SWF,单一文件大小限制1024KB)这个网站也可以接受注册成为会员,这样就有相册。
/(文件格式只能为jpg、jpeg、gif和png格式,且文件不能超过650KB)/(文件格式只能为jpg、jpeg、gif和swf格式,且文件不能超过1MB免费空间为10mb)/(文件格式只能为jpg、bmp、gif和png格式,对文件大小好像没有限制,不过超过250KB 的会被自动缩小)/(文件格式只能为jpg、jpeg、gif和png式,且文件不能超过1MB。
限制为100MB)/(文件格式可以为jpg、jpeg、gif、bmp、png和swf格式,但文件不能超过1MB)以下空间较小////////free_image_hosting/(max.size: 4 MB )//(max. size: 2MB )//servic...e_image_hosting/HKNet:/Kodak:/PBase PhotoDatabase:/PhotoIsland:/SonyImageStation:/Streamload:/Xprofile://补充: 如何找图床第一步你必须有自己的上传空间,即可以放置自己电脑上文件的站点,这就是大家常挂在嘴头上的,所谓的免费空间,俗称:“床”。
(1)如何寻找自己可意的床?什么是好床?速度快、文档大、空间大、上传容易(FTP)、允许多种文件类型、允许成人内容、没有其他限制(最好支持直接拉图即HOTLINK),这就是最好的。
然而天下没有那么多的好事!快的床用的人多了自然快不起来;人家站点又是免费的,自然加点广告以维持生存,当然一般不允许HOTLINK。
所以拥有一张稳定的好床,是贴图人最快乐的事!也是广大贴图人永远的追求!哈!大家也不要太悲观!世界这么大,每天新生站点千千万,只要用心留意,总能找到自己可意的。
全球50大奇特网站
全球50大奇特网站50. 桌面城市这个名叫东子的偏执狂不知花了多少工夫,的内容量达到了40G,很多图片都是站长本人在国外搜集后,自己进行加工的作品。
49. 画猪头在指定的对话框里面随便画一个猪头,然后点击“提交”,之后会得到一份关于你的个性的报告。
当然大部分都是臭骂你的话,但是在你之前已经有965,541个人乐滋滋地找骂了……48. 射精计算器科学是严谨的,因此有人搞出了这么一个在线计算器:把你每周的次数和每次的大致距离填写进去,会得到你已经射了多少米、死了多少精虫的统计数据。
47. 通缉犯这里是全英国最危险的通缉犯发布榜,到目前为止还没见到一个女性(怎么搞的女同志们?撑起半边天来嘛!)你可以参照这里的照片躲开危险,也可以亲自去捉住在逃犯领取1万英镑的奖金。
46. 粗口集合为了表达对粗口和暴力精神的崇敬,对因殴打老婆而锒铛入狱的著名艺人Ross Kemp的欣赏和遗憾,他的Fans整了这么一个只有他的头像和他“名言”的网站,相当搞笑,堪称英文粗口经典集合。
45. 最简洁网站有谁能想到这么一个全部内容都被数字包含的网站,能挤进这个伟大的网站专题?但它的简洁把我们征服了,另外,它还有难能可贵的幽默感和恐怖的科学精神……44. 超级装备通过巨大的照片,了解当今最牛的跑车。
43. 烂番茄最近各种电影网站如同雨后春笋一般纷纷冒出头来,但是这个始终是最好的一个:这里评选出的是最烂的片子,并用“一般烂、很烂、超级烂”这样的级别给它们分类。
参评作品中甚至还包括了一些电视游戏。
42. 魔术吧街头魔术联盟(Street Magic Union),简称“SMU”。
这里由一群魔术爱好者自发组织的团体。
为所有热爱魔术的人们提供了窥探和偷技的阵地。
41. 省钱网天才的理财网,名气和好评迅速彪升,电视台专门为了它开了一档节目。
在这里主持人Martin Lewis手把手教给你从租DVD到缴水费省钱的各种方法。
40. 电影随便看只要在这里下载一个免费软件,请你精于电脑的同事帮忙装好,全世界的电影就都成为你的囊中之物。
④Fast triangle reordering for vertex locality and reduced overdraw
ACM Reference FormatSander, P ., Nehab, D., Barczak, J. 2007. Fast T riangle Reordering for Vertex Locality and Reduced Overdraw.ACM Trans. Graph. 26, 3, Article 89 (July 2007), 9 pages. DOI = 10.1145/1239451.1239540 http://doi.acm.org/10.1145/1239451.1239540.Copyright NoticePermission to make digital or hard copies of part or all of this work for personal or classroom use is grantedwithout fee provided that copies are not made or distributed for profi t or direct commercial advantageand that copies show this notice on the fi rst page or initial screen of a display along with the full citation.Copyrights for components of this work owned by others than ACM must be honored. Abstracting withcredit is permitted. T o copy otherwise, to republish, to post on servers, to redistribute to lists, or to use anycomponent of this work in other works requires prior specifi c permission and/or a fee. Permissions may berequested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New Y ork, NY 10121-0701, fax +1(212) 869-0481, or permissions@.© 2007 ACM 0730-0301/2007/03-ART89 $5.00 DOI 10.1145/1239451.1239540/10.1145/1239451.1239540Fast Triangle Reordering for Vertex Locality and Reduced OverdrawPedro V .SanderDiego Nehab Joshua Barczak Hong Kong University of Science and Technology Princeton University 3D Application Research Group,AMD (a)Lin and Yu [2006]4.76sec,0.63ACMR (b)Hoppe [1999]226ms,0.65ACMR (c)Our work 51ms,0.69ACMR (d)Nehab et al.[2006]40sec,1.21MOVR,0.73ACMR (e)Our work 76ms,1.18MOVR,0.72ACMR Figure 1:Vertex cache efficiency and overdraw.Views of a 40k triangle Dragon model are shown,where red regions represent cache misses,and dark regions represent high overdraw rate.As a preprocessing stage,real-time rendering applications optimize the order triangles are issued to reduce the average post-transform vertex cache miss ratio (ACMR)(a-c).Recent algorithms also minimize the overdraw ratios (OVR)(d-e)with little cache degradation.We present novel algorithms that result in excellent vertex cache efficiency (c)as well as low overdraw (e).Our methods are significantly faster than previous approaches (compare timings),and are suitable for run-time execution.AbstractWe present novel algorithms that optimize the order in which trian-gles are rendered,to improve post-transform vertex cache efficiencyas well as for view-independent overdraw reduction.The resultingtriangle orders perform on par with previous methods,but are or-ders magnitude faster to compute.The improvements in processing speed allow us to perform theoptimization right after a model is loaded,when more informationon the host hardware is available.This allows our vertex cache opti-mization to often outperform other methods.In fact,our algorithmscan even be executed interactively,allowing for re-optimization incase of changes to geometry or topology,which happen often inCAD/CAM applications.We believe that most real-time renderingapplications will immediately benefit from these new results.1IntroductionModern rendering pipelines accept input in a variety of formats,butthe most widely used representation for geometry is based on vertexand index buffers .A vertex buffer provides the 3D coordinates andattributes for a set of vertices.The index buffer defines a set oftriangles,each given by the triad of indices of its vertices in thevertex buffer.As each triangle is processed for rendering,referenced verticesare processed by a vertex shader in an operation that can be com-putationally expensive.The cost comes from a combination of thebandwidth required to load the data associated to each vertex (i.e.,position,normal,color,texture coordinates,etc),and the instruc-tions required to process them (i.e.,transform and lighting).Ap-plications whose rendering cost is dominated by this bottleneck are said to be vertex-bound .Another potential bottleneck exists during rasterization.Each generated pixel is processed by a pixel shader ,which might per-form expensive operations in the process of computing the final pixel color.Once again,the cost comes from bandwidth associ-ated to texture lookups and from the ALU instructions executed by the GPU.When this cost dominates the total rendering cost,ap-plications are said to be pixel-bound (or fill-bound ).The growing complexity of per-pixel lighting effects has progressively increased concerns with this bottleneck.Naturally,modern GPUs employ a variety of optimizations that attempt to avoid unnecessary computations and memory references.Two such optimizations are the post-transform vertex cache ,used during vertex processing,and early Z-culling ,used during pixel processing.Interestingly,the effectiveness of both optimizations is highly dependent on the order on which triangles are issued.Given the new unified shader architectures,reducing vertex and pixel load at run-time is beneficial for both vertex-and pixel-bound applica-tions.It is therefore desirable to generate a triangle order that is suitable for both optimizations.The post-transform vertex cache holds a small number of trans-formed vertices in a FIFO queue.When a triangle references a vertex found in the cache,results are reused directly,without any external data transfers or further processing required.The average cache miss ratio (ACMR)can be greatly reduced if triangles are ordered to increase vertex reference locality.The ACMR in turn has a strong impact on the frame rate of vertex-bound applications (see figure 2a).Many algorithms have therefore been proposed to generate low-ACMR triangle orders (section 2).Early Z-culling is an optimization by which the GPU tests the depth of each pixel against the Z-buffer before executing its pixel shader.If the depth is such that the results would be discarded,no additional work is performed.This optimization is most effective when there is little overdraw .Overdraw can be defined as the ra-tio between the total number of pixels passing the depth test and the number of visible pixels (a ratio of 1means no overdraw).The graph in figure 2b illustrates the dependency between overdraw ra-tios and rendering times,in a pixel-bound scenario.ACM Transactions on Graphics, Vol. 26, No. 3, Article 89, Publication date: July 2007.0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2R e n d e r i n g t i m era t i o ACMR ratio 0.6 0.70.8 0.9 1 1.10.6 0.7 0.8 0.9 1 1.1R e n d e r i n g t i m e ra t i o OVR ratioFigure 2:ACMR and overdraw impact on rendering times.(a)In a com-pletely vertex-bound scenario,the dependency between ACMR and render-ing time is almost linear.(b)The same is true of overdraw ratios and render-ing times,when pixel shading is the bottleneck (although our measurementswere more noisy).The task of determining a static triangle order that produces lowoverdraw without harming the vertex cache locality has been thetopic of recent research [Nehab et al.2006].The basic insight is topartition each model into triangle clusters,or contiguous patches.Since clusters contain many triangles,preserving vertex localitywithin clusters is enough to guarantee a low overall ACMR.Theseclusters can then be atomically sorted according to a metric thatminimizes overdraw.Surprisingly,it is possible to design view-independent metrics that result in a static cluster order that greatlyminimizes overdraw.The facts that vertex cache performance isnot harmed,and that nothing else must be changed in a renderingpipeline,make the idea very attractive.In this paper,we present novel,extremely efficient algorithmsfor post-transform vertex cache optimization (section 3),for split-ting meshes into triangle clusters that do not significantly worsenthe ACMR (section 4),and for sorting these clusters into a viewindependent order that reduces overdraw (section 5).The main fea-tures are the following:•Our methods are orders of magnitude faster than previous pro-posals,and thus can be executed interactively;•As far as quality is concerned,our methods perform on par withprevious methods;•In order to simplify integration with existing applications,ourmethods operate directly on vertex and index buffers;•Therefore,unlike many previous methods,our algorithms oper-ate transparently on non-manifold models;•They are also substantially simpler to implement than most pre-vious methods.In several application domains,such as games and CAD/CAMapplications,models frequently undergo changes in geometry andtopology.It is desirable to re-optimize such models,and in thatcase the efficiency of the optimization process is very important.Our work allows these systems to bring the optimization stage torun-time.At run-time,the exact post-transform vertex cache sizemight be available,and we can therefore target the correct value.Alternatively,when used as a pre-processing stage,our algorithmscan greatly reduce processing time.For these reasons,we believethat many real-time rendering applications,vertex-or pixel-bound,will immediately benefit from our results.2Previous workVertex cache optimization The first practical approaches totackle the vertex bandwidth problem were based on trianglestrips [Akeley et al.1990;Evans et al.1996;Speckmann andSnoeyink 1997;Xiang et al.1999].Even early GPUs supportedstrips natively (with a 2-entry cache),so these methods resulted inACMR values close to 1,as long as the mesh could be encoded withrelatively few strips.Substantial effort was therefore dedicated tothe NP-complete problem of finding single-strip representations for meshes [Garey et al.1976;Dillencourt 1996;Arkin et al.1996;Es-tkowski et al.2002].In order to reduce bandwidth even further,Deering [1995]pro-posed a geometry compression scheme based on generalized trian-gle meshes .What set Deering’s work apart from other approaches to geometry compression [Taubin and Rossignac 1998;Gumhold and Straßer 1998;Touma and Gotsman 1998]was that the decom-pression stage was designed to be easily implemented on hard-ware [Deering and Nelson 1993].Generalized triangle meshes explicitly manage a fixed size cache,with instructions to replace cached vertices or to reference them to define triangles.Chow [1997]later provided algorithms to encode triangle meshes into this representation,achieving near optimal results (ACMR 0.6–0.7).Bar-Yehuda and Gotsman [1996]proved that for a cache size of k ,the optimal ACMR was bound by 0.5+Ω(1/k ),whereas to ensure each vertex in a n -vertex mesh is processed only once,a cache size of O (√(a)K-Cache-Reorder Lin and Yu[2006](b)D3DXMeshbased on[Hoppe1999](c)OpenCCLYoon and Lindstrom[2006](d)dfsrendseqBogomjakov et al.[2001](e)Our workFigure3:Triangle ordering paths.Thefigures show the patterns generated by a variety of different triangle order optimization algorithms.Adjacent triangles are connected by a blue line,so that the paths are visible.The structure in the triangle orders allows us to generate satisfactory clusters by simply breaking the optimized sequence into smaller,contiguous subsequences of triangles.able estimate of the cache size,other methods perform much better (including our own)[Hoppe1999;Lin and Yu2006].Nevertheless,the vertex cache size does vary with the hardware, and could potentially depend on the amount of information being passed from the vertex shader to the pixel shader(seefigure10). In order to perform the optimization during a pre-process stage, Lin and Yu[2006],and Hoppe[1999]must therefore underestimate this value.The efficiency of our method allows us to bring the optimization to run-time,and this gives our method an edge over previous alternatives.Finally,we can also re-optimize models to reflect changes,and this makes our method especially useful for CAD/CAM applications.Overdraw reduction A common approach to overdraw reduc-tion exploits early Z-culling with two rendering passes.On thefirst pass,using no pixel shader,the geometry is rendered to prime the Z-buffer.On the second pass,pixel shading is enabled,and the scene is rendered again,except this time the depth test is changed to less then or equal.Since only visible pixel will pass that test, the expensive shading computations will only be executed on them. For pixel intensive applications,it might be well worth it to render geometry twice in order to reduce the pixel load.However,when geometry is also complex,this solution is not acceptable.In such cases,visibility sorting and occlusion culling tech-niques[Airey1990;Teller and Sèquin1991;Greene et al.1993] are recommended.In order to determine visibility,modern meth-ods[Hillesland et al.2002;Bittner et al.2004;Govindaraju et al. 2005]use hardware-based occlusion queries,and some can take advantage of predicated rendering[Blythe2006].Although these methods can reduce overdraw,they traditionally operate at coarse levels,grouping primitives together.Our overdraw reduction strat-egy could therefore be used tofind an appropriate order in which to render the primitives in each group that passes the occlusion test.Interestingly,in the presence of early Z-culling,the amount of overdraw is determined by the order on which the primitives are traversed.When predicated rendering is used,a group can only be culled if none of its pixels passes the depth test.In that case,al-though rendering the primitives would certainly be wasteful,the ac-tion would not incur any additional overdraw.Furthermore,due to the use of proxy geometry in occlusion queries,the Z-buffer band-width would not change significantly either.As far as ordering is concerned,the best strategy is to draw tri-angles in front-to-back order.The most direct way to achieve this is to use view-dependent sorting.Although there are efficient ap-proaches to visibility sorting[Govindaraju et al.2005],it would be convenient tofind a view-independent order that reduces overdraw without requiring any changes to the application.This is the problem addressed by Nehab et al.[2006].To produce such an ordering,they cluster the mesh into planar patches,and sort the resulting patches by approximating a solution to the minimum feedback arc set problem on the partial order graph that represents pairwise cluster occlusions.Each patch can later be independently optimized for vertex cache efficiency,using any method of choice. Since the patches include a considerable number of triangles,the technique does not harm vertex bound applications.This method was also designed to operate off-line,and little con-sideration was given to running times.In fact,the clustering and partial order graph generation stages can each take in the order of minutes to complete.Our new method follows a different strat-egy.We design a metric that is extremely efficient to evaluate.This allows us to use a much larger number of clusters,which in turn causes their shape to be less relevant.We can therefore design a fast clustering method.In order to prevent these smaller clusters from harming the vertex cache,we generate them during the vertex cache optimization itself,taking into account the state of the cache. 3Post-transform vertex cache optimization Vertex and index buffers provide no explicit adjacency information. Worst of all,models so defined can contain multiple disconnected components and even represent non-manifold meshes.Triangle ad-jacency information(the dual graph),generally required by strip-based methods,can be awkward to maintain for non-manifolds.We are looking for an algorithm that runs to completion in a time budget comparable to that of generating this information.We therefore re-strict ourselves to considering only vertex-triangle adjacency.This information is efficiently captured by an offset map into an array that lists the triangles for each vertex.Basic idea Given this vertex adjacency,we could directly out-put the triangle lists for each vertex(issuing each triangle only once,of course).Intuitively,the operation clusters triangles around common vertices,much like triangle fans.However,triangles are ordered randomly within each fan(seefigure4a).Interestingly, within a small neighborhood,the relative order on which the tri-angles are generated does not matter,as long as the post-transform vertex cache is large enough to hold the entire neighborhood(i.e., 7vertices in regular meshes).We therefore do not have to sort the triangles before issuing them.This gives us the freedom to explore triangle orders that are locally random or,in other words,tipsy.When considering variants of this idea,it is hard to predict the expected cache hit ratio,especially in non-uniform models.Nev-ertheless,we can gain valuable insight by analyzing the algorithm under certain simplifying assumptions,which we call steady state. For that,assume a large cache size,and an infinite,regular tessella-tion.For the example infigure4a,it is easy to see that the steady state ACMR is7/6.Naturally,in real models,thefinal ACMR will be worse.This is due to the fact that triangle fans will start collid-ing,and at some point we will be forced to reference n+1vertices, while issuing only n triangles,for n<6.Fortunately,we can do much better than n+1Fanning vertex sequence While a vertex is being fanned,each issued triangle references other vertices.These form a subset of the 1-ring of the fanning vertex.For efficiency reasons,we select the next fanning vertex from among this subset,which we call the1-ring candidates.Among them,we consider those that would still be in the cache,even after being fanned themselves.If there are multiple options,we pick the candidate that entered the cache the earliest.Otherwise,we arbitrarily pick thefirst1-ring candidate.When the algorithm reaches a point where all1-ring candidates have already been fanned(i.e.,a dead-end),we select the most re-cently referenced vertex that still has non-issued triangles.In many cases,this vertex is still in the cache.Therefore,this choice is bet-ter than picking an arbitrary vertex based on the input order alone, which we do only as a last resort.The linear time algorithm The complete pseudo-code for the al-gorithm is presented below,followed by a discussion.Tipsify(I,k):OA=Build-Adjacency(I)Vertex-triangle adjacencyL=Get-Triangle-Counts(A)Per-vertex live triangle counts C=Zero(Vertex-Count(I))Per-vertex caching time stamps D=Empty-Stack()Dead-end vertex stackE=False(Triangle-Count(I))Per triangle emittedflagO=Empty-Index-Buffer()Empty output bufferf=0Arbitrary starting vertexs=k+1,i=1Time stamp and cursorwhile f>=0For all valid fanning verticesN=Empty-Set()1-ring of next candidatesforeach Triangle t in Neighbors(A,f)if!Emitted(E,t)for each Vertex v in tAppend(O,v)Output vertexPush(D,v)Add to dead-end stackInsert(N,v)Register as candidateL[v]=L[v]-1Decrease live triangle countif s-C[v]>k If not in cacheC[v]=s Set time stamps=s+1Increment time stampE[t]=true Flag triangle as emitted Select next fanning vertexf=Get-Next-Vertex(I,i,k,N,C,s,L,D)return OGet-Next-Vertex(I,i,k,N,C,s,L,D)n=-1,p=-1Best candidate and priorityforeach Vertex v in Nif L[v]>0Must have live trianglesp=0Initial priorityif s-C[v]+2*L[v]<=k In cache even after fanning?p=s-C[v]Priority is position in cache if p>m Keep best candidatem=pn=vif n==-1Reached a dead-end?n=Skip-Dead-End(L,D,I,i)Get non-local vertexreturn nSkip-Dead-End(L,D,I,i)while!Empty(D)Next in dead-end stackd=Pop(D)if L[d]>0Check for live trianglesreturn dwhile i<Vertex-Count(I)Next in input orderi=i+1Cursor sweeps list only onceif L[i]>0Check for live trianglesreturn ireturn-1We are done!The function Tipsify()receives an index buffer as input,and outputs an optimized index buffer containing the same triangles, reordered according to the algorithm weoutlined.(a)Tipsy fans(b)TipsifyFigure4:Tipsification.The red line shows the order on which the triangles are issued.The blue line shows the fanning vertex sequence.(a)Randomly choosing the fanning vertices yields7/6ACMR.(b)With the zig zag pattern of period2n,we reach the nearly optimal steady state of n+2a fanning vertex,we simply take the next vertex with live triangles, in input order.Amortized run-time analysis Unlike most previous approaches, our method runs in time that is linear on the input size.The running time does not depend on the target cache size k.This is clear from the fact that k only appears in constant-time expressions.For the run-time analysis,it is easier to initially exclude the cost of Get-Next-Vertex().In that case,the main loop in Tipsify() runs in time O(t),where t is the number of input triangles.Each vertex is fanned at most once,and each fanning operation only vis-its the vertex’s neighboring triangles.Therefore,each triangle is visited at most three times(one for each of its vertices).Further-more,for each visited triangle,all operations are constant-time.As for Get-Next-Vertex(),notice that along its entire life-time,the dead-end stack D receives only3t indices.This is be-cause each triangle is emitted only once,and each triangle pushes only its three vertex indices on D.Therefore,thefirst loop in Get-Next-Vertex()can only be executed3t times.Next,con-sider the second loop.Index i gets incremented,but it is never decremented.Therefore,this loop also can only be executed3t times,and this completes the proof.Steady state analysis Interestingly,after an initial spiraling pat-tern,our method converges to a zig zag pattern,as shown infig-ure4b.Intuitively,this zig zag occurs because the fanning sequence tries to follow the previous strip of vertices,since they are still in the cache(remember the algorithm encourages fanning vertices that have entered the cache earlier).Eventually,it reaches a point where the adjacent vertices from the preceding strip are not on the cache. The sequence is then forced to turn around again in order to fan a recently processed vertex that is still in the cache.Counting the number of issued triangles versus the number of newly transformed vertices at each cycle,we reach the steady state performance of n+2(a)occlusion potential integral(b)fastapproximation(c)fast approximation on clusters(d)Nehab et al.[2006]Figure6:View independent triangle orders.Bright regions should bedrawnfirst.(a)The occlusion potential integral(equation2).(b-c)Thefast approximation of equation4,at the triangle level(b)and at the clusterlevel(c).Notice how the approximation respects the relative order dictatedby the integral.(d)Unsurprisingly,Nehab et al.[2006]produces a similarorder,although at a much coarser level.greater than log t,the complexity is sub-linear on the number of tri-angles.In practice,this is always the case.For instance,even witha tiny average cluster size of20(which would definitely harm thevertex cache performance),it would take a model with t>20·220triangles before n log n>t.5View-independent cluster sortingTo minimize overdraw in a view-independent way,we should startby drawing surface points that are more likely to occlude other sur-face points,from any viewpoint.This likelihood is captured by theocclusion potential integral O(p,M)of an oriented point p,relativeto model M.It is defined as the area of M that can be occluded bypoint p,and is given by the following equation:O(p,M)= q∈M R( p−q,n p )R( p−q,n q )2is the unit ramp function, , is the dot product,and n p and n q are the normals at points p and q,respectively.In order to understand the integral,considerthe diagram on the left.A point p can only oc-clude a point q if neither of them is back-faceculled when p is in front of q.In other words,p−q,n p and p−q,n q must both be posi-tive.In the diagram,points r,u,and v fail oneor both these tests,and therefore do not con-tribute to p’s occlusion potential.Point q passes both tests.In thatcase,the contribution reflects the foreshortening of both p and q,asseen by an orthographic camera.This is the role of the cosine termsarising from the dot products and normalized by the denominator.Ideally,we would like to sort individual surface points based ontheir occlusion potentials(points with higher potentials drawnfirst).However,to preserve the vertex cache,we must instead sort triangleclusters atomically.We therefore extend the definition of occlusionpotential to surface patches P,as follows:O(P,M)= p∈P O(p,M)d p(3)Unfortunately,computing the occlusion potential integraltakes O(t2)time,where t is the number of triangles in the mesh.Instead,we resort to an O(t)approximation that can be efficientlycalculated.Intuitively,points with high occlusion potential will beon the outskirts of a model,and will be pointing away from it.We therefore define the approximate occlusion potential of a sur-face patch P with regard to model M,asO′(P,M)=(C(P)−C(M))·N(P)(4)where C is the centroid function,and N(P)represents the averagenormal of patch P.In general,the value of the approximate occlusion potential willnot be close to the value of the integral.In fact,the approxima-tion can produce negative values.Nevertheless,the relative orderof the values produced tend to be very similar.Figure6a shows theBunny model,on which each vertex has been shaded according toequation2.The vertices were sorted,and then colored from blackto white in decreasing order of occlusion potential.Figure6b wasinstead ordered and shaded according to equation4(at the trianglelevel).Notice the dark regions between the ears,and also abovethe tail,paws,and thighs.These regions do not occlude any partof the model,regardless of viewpoint,and are therefore drawn last.Conversely,the top of the head cannot be occluded,and is there-fore drawnfirst.The same approximation can be performed at thecluster level.Figures6c shows the results of sorting the fast linearclusters described in the previous section.The clusters are so smallthat results are similar to the triangle level paring withfigure6d,we can see that the overall order followed by Nehab et al.[2006]is similar,although at a much coarser level.6ResultsRunning times Figure7(left)shows the running times,in log-arithmic scale,of Tipsify()and several other vertex cache op-timization methods.Tests were run on an Intel Pentium42GHzprocessor.The Dragon model was decimated into20uniformlyspaced resolutions ranging from40k to800k triangles.A varietyof algorithms(the original authors’implementations)were used tooptimize each model for vertex locality.Note that our method isconsiderably faster than all other methods,and runs approximately100x faster than K-Cache-Reorder,which produces the best trian-gle orders.The ratios would be even larger when optimizing forlarge cache sizes(the plot uses a cache size of12),since our run-ning time depends only on the number of triangles.Figure7(right)compares the running times(also in logarithmic scale)of our entiresystem with that of Nehab et al.[2006],which is the only previousmethod that optimizes for vertex cache and overdraw.In this case,our new approach is approximately1,000times faster.Due to the significant reduction in processing time,which al-lows us to optimize models at load time,we can take advantage ofthe actual host hardware post-transform vertex cache sizes and theamount of information stored per vertex to generate a triangle orderoptimized for these particular settings.Until this information is di-rectly available through official APIs,the best parameters for eachconfiguration can be tabulated and looked up at run-time.Vertex cache optimization To avoid cacheflushes,previousmethods must optimize for conservative cache sizes(K-Cache-Reorder,based on[Lin and Yu2006]and D3DXMesh,based on[Hoppe1999]),and yield suboptimal performance in systems with alarge cache size.The graphs infigure9show that K-Cache-Reorderyields the best ACMR results when optimizing for cache size12.However,if the run-time cache size increases above20-24,mod-els optimized at load time with Tipsify()can achieve even bet-ter ACMRs.In contrast,cache oblivious methods(dfsrenseq[Bo-gomjakov and Gotsman2002]and OpenCCL[Yoon and Lindstrom2006])only surpass K-Cache-Reorder at much larger cache sizes.To verify that improvements in ACMR translate into higherframe rates,we tested a vertex bound application on different hard-ware.We also varied vertex format configurations,since larger ver-tices(i.e.,with more attributes)consume more cache space,and canreduce the number of entries available.In each test,a model wasoptimized with K-Cache-Reorder,assuming cache sizes12(rec-89-6 • Sander et al.ACM Transactions on Graphics, Vol. 26, No. 3, Article 89, Publication date: July 2007.。
100个最稀奇古怪的网站
100个最稀奇古怪的网站【网站名称】:眼睛的幻觉【网站链接】:http://www.michaelbach.de/ot/index.html 【网站简介】:在这里你可以体验各种“空间频率扭曲”,实际上那只是“你的眼睛背叛了你的心”而已【网站名称】:路边收集衣【网站链接】:/【网站简介】:该网站专门收集路边被人丢弃的衣物,但他绝对不是捡LJ的,我们怀疑该网站的创始人是个有怪癖的家伙。
【网站名称】:粗口合集【网站链接】:/【网站简介】:为了表达对粗口和暴力精神的崇敬,以及对著名艺人Ross Kemp 的欣赏和遗憾,他的Fans 整了这么一个只有他的头像和他“名言”的网站。
【网站名称】:打进富人榜【网站链接】:/【网站简介】:输入收入水平,看看你在地球的财富排行中数老几。
很有可能你会惊奇地发现,自己居然属于高收入人群。
【网站名称】:厕所博物馆【网站链接】:/【网站简介】:从厕所涂鸦到马桶设计,从两性如厕研究到厕所的社会功能,我们大便的地方其实并不那么单纯……当然,一定不能错过裘·德洛等一干名人蹲马桶时的情景【网站名称】:伤疤比赛【网站链接】:/【网站简介】:男人就喜欢显摆自己的伤疤,因此应该找个地方让他们比比。
在这里,你可以找到来自世界各地的对手。
不过老实说,你“六岁时从炕上掉下来”留下的伤疤和这里的前十名相比可能只是一个小针眼而已。
【网站名称】:妈妈说就算你注册的域名再长baidu都能搜索出来,对应网址看看【网站链接】:http://www.mamashuojiusuannizhuc …/【网站简介】:据说这个域名是百度的员工注册的,点开一看,果然是百度。
【网站名称】:博客分析机【网站链接】:/quiz/blog.php【网站简介】:编辑小马用自己的博客试了试,分析结果说他的博客有38%以上自恋成分,没错,小马承认了,你也来试试吧!【网站名称】:国际爱好洗碗池边进餐者协会【网站链接】:/【网站简介】:据说在洗碗池旁吃饭是一种新的健康饮食方式,鬼晓得是不是真的。
全世界50大经典网站3
29.交友你是一个孤独的人?到这个只接受可信朋友注册的网站来看看(而不是随意上QQ上搜一个名为“小甜甜”的90多岁老奶奶)。
顺便说一句,帕米拉·安德森也是这里的会员。
=================================28.淘宝?NO!踏宝!如你所知,《男人装》编辑大多是马大哈,编辑老陈更是糊涂蛋中的上品,某日,他准备登录淘宝网,没成想少打了个O,结果就出来了这么个玩意儿。
内容如何暂且不谈,光是这个首页的创意就挺值得赞赏。
=================================27.伤疤大赛男人就喜欢显摆自己的伤疤,因此应该找个地方让他们比比看。
在这里,有这种嗜好的人可以找到全世界的对手,不过别忘了,你“六岁时从火车上掉下来”留下的伤疤和这里的前十名相比看起来可能只是一个小针眼而已。
=================================26.金色视频就如同在你的电脑上开通了六万个电视频道一样,你只要点点鼠标就可以观看到各种电视节目,从体育到戏剧。
这里有100万小时的剪辑供你免费观看。
=================================25.疯狂的手指一个极为简单但是极令人着迷的游戏,就是要看你能在多短时间内打完26个字母,然后把你的成绩转给同事们看,然后看着他们拼命敲键盘。
我们的记录?秒。
但据说最高记录是在秒内敲完了26个字母,是不是地球人啊,他!=================================24.眼睛的幻觉德国某大学的科学家们贡献了这个神奇的眼睛魔术网站,在这里你可以体验“空间频率扭曲”,实际上那只是“你的眼睛背叛了你的心”而已。
================================= 23.全球富人榜把你的收入水平打进去,看看你在地球的财富排行中数老几。
你很有可能会惊奇地发现,确实你是属于高收入人群,同阿布在一起!================================= 造谣他们自称是:中国最牛B的IT造谣网站,扯牛B企业的蛋,满足网友变态的需求……不过,在他们自己做的调查中,有30%的网友认为该网站是个垃圾,应该关掉。
エンジン
エンジン发动机エンジンアセンブリ发动机总成エンジンマウンティング发动机悬置シリンダブロック气缸体シリンダヘッド气缸盖ピストン及びコンロッド活塞与连杆クランク及びフライホイール曲轴与飞轮カムシャフト凸轮轴動弁機構配气机构吸気及び排気マニホールド进排气歧管オイルパン及び潤滑グループ油底壳及润滑组件オイルトラップ机油收集器オイルポンプ机油泵オイル粗フィルタ机油粗滤器オイルラジエータ机油散热器クランクケース・ベンチレータ曲轴箱通风装置エンジン起動追加装置发动机起动辅助装置ディストリビュータ駆動装置分电器传动装置オイル細密フィルタ机油细滤器オイルタンク及びオイル配管系統机油箱及油管減圧器减压器減圧器制御装置减压器操纵机构タイミングギヤ正时齿轮机构クランクバランサ機構曲轴平衡装置エンジン定格銘板发动机标牌エンジン吊具发动机吊钩プーリ及び張力調整装置皮带轮与张紧轮エンジン・エレクトロニック・コントロール・ユニット(ECU)アクチュエータ发动机电控单元执行装置エンジン診断パッケージ发动机工况诊断装备燃料供給系統供给系燃料供給装置供给系装置燃料タンク燃油箱補助燃料タンク副燃油箱燃料タンクカバー燃油箱盖燃料配管系統及びコネクタ燃油管路及连接件燃料ポンプ输油泵キャブレータ化油器スロットル制御装置油门操纵机构エアフィルタ空气滤清器ガバナー调速器燃料噴射ポンプ燃油喷射泵インジェクタ喷油器エンジン、燃料供給停止装置发动机断油机构燃料電磁弁/SOL 燃油电磁阀燃料細密フィルタ燃油细滤器過給機/SC 增压器インタークーラ/IC 中冷器燃料圧力ダンパ燃油压力脉动衰减器燃料分配器燃油分配器燃料噴射ポンプ駆動装置燃油喷射泵传动装置電子制御式燃料噴射(ECI)ポンプ电控喷射燃油泵電子制御式燃料噴射(ECI)インジェクタ电控喷射喷油器油水分離器油水分离器黒煙制限装置冒烟限制器自動進角装置自动提前器高圧燃料配管高压燃油管路燃料噴射配管系統燃油喷射管路燃料蒸発ガス排出制御システム燃油蒸发物排放控制系统燃料圧力レギュレータ燃油压力调节器吸気システム进气系统逃し弁释压阀アイドリング空気流量制御弁/IACV 怠速控制阀燃料ガス供給装置燃气供给系装置ガスタンク贮气瓶ガス経路燃气管路蒸発器蒸发器フィルタ过滤器燃料ガス混合器混合器空燃比制御弁/AFCV 燃气空燃比调节阀圧力調節装置燃气压力调节器ガス流量弁气体流量阀ガスインジェクタ气体喷射器充填孔充气口总成充填三方弁アセンブリ充气(出气)三通总成ガス圧力逃し弁燃气减压阀ガス安全装置燃气安全装置燃料選択スイッチ燃气选择开关前置エアクリーナ空气预滤器燃料供給系統ECUアクチュエータ供给系电控单元执行装置化合物かごうぶつ化和物航空障害灯航空障碍灯最寄(もより)就近スプリンクラー自动洒水消防装置トラッククレーン汽车式起重机三脚クレーン(さんきゃく)三脚起重机門型クレーン(もんがた)门式起重机タワークレーン塔式起重机軽量コンクリート轻量混凝土ホローブリック空心砖被せ板(かぶせいた)盖板トレンチ/ピット地沟パネル建築板式建筑ブロック建築预制砌块建筑プレハブ建築预制件组合建筑フラッシンゲ遮雨板鉄骨構造钢结构枠組み構造(わくぐみ)框架结构セントラル·ヒーディンゲ集中供热間歇騒音(かんけつ)间歇噪音アイナット吊環螺母アイボルト吊环螺钉合いマーク对准表记アウトライン轮廓アウトライン大纲亜鉛ジップ扩散[シ叁]锌电[金度]亜鉛めっき鋼板[金度]锌钢板アーク電圧电弧电压アーク切断电弧切割アーク時間燃弧时间アークシュート[一/伙]mie弧[シ勾]アーク溶接电弧焊アークサブレッサ电弧抑制器アークサブレッサ用コンデンサ电弧抑制电容器アークサブレッサ用抵抗器电弧抑制电阻器アーク接触子引弧补助触点アクセサリ补助的アクセサリ次要的圧延鋼轧制钢圧延鋼板轧制钢板頭なし溝付ネジ无头带槽定位螺钉頭なし六角穴付ネジ内六角紧定螺钉圧着端子压接端子圧入压入圧縮荷重压缩载荷圧縮バネ压(缩弹)簧压力弹簧当て板?板丸穴圆孔スロッタ加工穴打孔穴ぐり加工穴扩孔ドリル加工穴[金占]孔穴あけ开孔穴(パンチ)冲孔穴ぐり扩孔穴径孔径油遮断器油断路器油入変圧器油浸变压器アブソーバー吸收器,吸收体,减震器アーマチュアコイル电枢rao组,电枢线圈アーム杆,杠杆,支架,臂,柄アルゴン溶接焊]弧焊(ガラスの)泡气眼アンカーボルト地脚螺栓イギリス・スパナ活动扳手,活(络)扳手イコライザー均衡器,均值器,均压器異常値反常值板バネ板簧位置表示器定置指示器一次側回路断路器一次电路切断开关一次側電圧原边电压一次側電流原边电流一般仕様普通规格印加電圧外加电压インサイドノギス内径(游标)[上/下]尺インサイドマイクロメーター内径千分尺,内径测微仪印刷配線印刷电路インターナショナルギヤー内尺轮,齿圈インターナショナルピニオン内尺轮,齿圈インターロック连锁,互锁,结合,连结インターロック機構连锁装置インターロックレバー连锁杆インターロック板连锁板インターロックスイッチ连锁开关インターロック穴连锁槽インチング微动インチねじ英制螺纹インナー・レース内环インパクトレンチ机动扳手インバーター变换器(变流器,变频器,变压器)インバーター反用换流器,到相器,反相器,到换器,逆变器(由直流变交流)ウィットねじ威氏螺纹植込みボルト双头螺栓植込みボルト朱螺栓ウェルダー焊机,焊接装置ウェルド焊接,焊缝ウォームギア蜗轮打込みばめ紧配合,静配合打抜き冲载,冲切,冲孔,打孔埋め金?铸金属埋め込み形埋入式エアー圧力压缩空气压エア・ギャップ空气隙,空隙,气隙エア作動气动エア・ブロー鼓风,送风,气排屑エキセントリック偏心的,偏心轮,偏心器,偏心圆液体抵抗器液体电阻器エコノマイザー降压变压器エポキシ樹脂环[气<羊]树脂円周ピッチ周节円すいねじ圆锥螺纹延長レール延长钢轨円板圆盘,圆形扁平的板円盤圆盘,圆板エンド・プレート端(面)板,底板,端盖,封头沿面沿面沿面距離沿面放?的最短距离オイルシール油封オイルレス无油式,无油的応急復旧紧急修复,紧急复位応力除去应力消除応力腐食割れ应力腐蚀裂纹応力除去(焼なまし)消除应力退伙大口電力巨大电功率,强大电力(100千瓦以上)送り送进,进给おくれ小電流时滞小电流押さえねじ紧固螺钉押しねじ止动螺钉オーステナイトステンレス鋼奥氏体不锈钢雄ねじ螺栓オーバー・トラベル超程,超越,过调,重调帯鋼带钢オプショナル・パーツ任选零件オリフィス锐孔オー(O)リングO形密封圈温度勾配温度倾斜開極断开開極速度接触速度,动作速度外型模套介在(物)jia2杂物外作外协(加工)外作部品外协(加工)件、外购件界磁開閉器励磁开关潰食侵蚀,渍蚀外注依存度外订购依靠度,外订货依赖率回転真空ポンプ旋转式空气缩机回転シャフト旋转轴ガイドアングル导向角ガイド溝导向槽ガイドホール导向孔ガイド板导板ガイドピン导xiao1ガイドブロック导kuai4ガイドフレーム导承框ガイドレール导轨開閉能力断开能力開閉サージ开关(时)浪涌,开关(时)冲击開閉遮断電流开关截止电流開路开路,断路開路状態断路状态開路動作断路动作開路バネ断开弹簧開路時間断开时间鏡板封头,盖板かぎボルト[金勾]状螺栓可逆電動機可逆电动机かくネジ方螺栓かくブローチ方孔拉刀加減ボルト调整螺钉加減ネジ调整螺栓加減ナット调整螺母かさ歯車伞齿轮かしめ[金卯]接かしめナット自锁螺母過剰品質额外质量ガスシールド气体保护ガス充填充气ガス溶接气[伙旱]ガス切断气割ガス遮断機气体断路器ガスケット密封?片形鋼型钢型鍛造模锻型鋳造模铸型加工模具加工架台框,架,框架,[木勾]架,机架活線作業带电作业過電流引外しコイル过流脱扣线圈可動導体可动导体可動接触子活动接头可動電極可动电极可動ブレード动叶可動率机动性,移动性,迁移率,变化率稼動率运转率,实际作业率,实动率可変抵抗器可变电阻,可变阻力カム・フォローワー凸轮从动件カラー轴环,柱环,套环,圈,?圈ガラスバルブ玻璃mie弧室仮締めボルト临时紧固螺栓カレント流,电流,流动,气动側板边盖,侧板間隔片?片,塞kuai4,间隔板貫通形変流器贯通变流器キー溝楔槽キー座楔子機械削り机械切削機械削り代机械切削余量工作機械机床危険物危险品危険角度临界角危険荷重危险载荷きさげ作業刮研気中開閉器空气开关気中遮断機空气断路器気中コロナ空气中电[日/军]キック反冲,突跳キャッチ锁[门<一],门扣,[才当]住,促住キャノンプラグ圆柱形插头キャパシター电容器ギャップ・ゲージ厚薄规,间隙规キャブタイヤコード橡皮绝缘线キューピクル(配电装置的)密封配电盘,隔离配电盘供試体试样極間极距局部ひずみ局部变形,局部应变局部焼入れ局部淬伙局部焼鈍し局部退伙曲率曲率曲率半径曲率半径許容負荷容许负载許容トルク许用转矩切替レバー转换手柄切替レンジ转换量程切替ノブ转换旋[金丑]切替操作变换操作切替時間换向时间切欠き缺口,切口切欠き効果切口(应力集中)效应切り込み切深,吃刀深度亀裂龟裂,细裂KH(キロヘルツ)千赫KV(キロボルト)千伏KV A(キロボルトアンペア)千伏安KW(キロワット)千瓦KWH(キロワットアワー)千瓦小时緊急トリップ紧急断开銀ろう付银焊銀接触银接点,银触点銀めっき[金度]银金属被膜金属被覆层金属コネクタ金属结合管,金属插头空気工具风动工具,气动工具くぎ打ち钉钉子くぎ抜き起钉子鎖車[金连]轮口出し線引出线,引线駆動トルク驱动力矩くまどり電動機罩极式电动机組み合わせフランジ凸缘,法兰盘組立職場装配车间組立手順装配工序組立ゲージ组合量规組立治具装配jia具グラインディング磨削,研磨グラインド磨,研磨グラウンディング接地,接地装置クラッディング包层,包覆クラッド金属包层クラッド鋼包覆钢クランク軸曲轴黒皮皮(铸件,铸件的)金属黒皮ボルト粗制螺栓グランドパッキン压盖填料,压盖密封?グリースアップ加油,注油グリース除去排出黄油,排油,除油クロスバー横臂,横梁計器(ゲージ)规,表,计,测量仪表,量规,测量計器(メーター)计,仪表,表,测量仪表,计数器,米計器用変圧器仪用变压器計器用変流器仪用变流器計器用変圧変流器仪表变压变流器携行電気ドリル手电[金占]経済抵抗器经济电阻器経年変化时效变化,老化罫書hua线罫書針hua4线针化粧版装饰板削り代切削余量,加工余量削り仕上げ切削加工結線连结,接线結線図连结图,接?图欠相缺相欠相保護缺相保护ゲッタ吸气剂,收气剂,吸气器,收气器月間手入(每月定期检修)月修理決定基準决策标准ケーブル电[糸览],多心导线,被覆线検電装置验电装置研磨バレルgun(研)磨限界ゲージ极限(量)规限界ねじゲージ极限螺纹量规減磁减磁,去磁,退磁限時継電器定时继电器,限时继电器限流ヒューズ限流熔丝限流特性限流特性限流遮断限流遮断コイル抵抗线圈电阻コイル絶縁线圈绝缘コイルばね螺旋弹簧工作技術加工技术工作ゲージ工作量规工作ジグ装配架工作油切削油公差公差,允许差片側公差单面公差両側公差?侧公差高周波焼入高频淬伙高周波溶接高频焊接公称電圧公称电压,标称电压,额定电压公称定格公称额定(输除)公称値标称值,公称值,额定值孔食点腐蚀工場渡し工场交货工数山積表工时累计标高張力ボルト高拉力拴交直両用電動機交直流?用电动机工程間検査工序间检查光度发光强度購入検査买进检查,入厂检查購買仕様采购规格購買契約购货合同後備遮断機备用断路器降伏点屈伏点高速度再投入高速再次接通,高速再闭合高速度再投入責務高速再闭合负责高速度遮断器高速断路器国際電気標準会議国际电工委员会小口電力小额用电?电力個人差人为误差,個人误差擦れ面摩擦面固着固定、粘合、连接、紧固固着剤粘合剂コーティング涂料、包覆、涂覆こて[金曼]刀固定具jia具、工件jia具固定ねじ固定螺钉、锁紧螺钉、定位螺钉固定ピン固定锁固定ベース固定底座固定電極静触头、固定电极コート涂层、[金度]层、套コード[石马]、代[石马]、电[石马]コード塞绳、软线コード・コネクタ软(连接)接头、软线接头コーナーウエルド角(接)焊缝コーナーカット([上/下]片)切角コネクション・スクリュー连接螺钉コネクションボックス分线箱、接线箱コネクタ结合管、对管、连接器、终接器コネクタパイプ连管コネクタピン塞子、插头、插销コネクタプラグ塞子、插头、插销コネクティングフランジ连接用凸缘、连接(用)法兰コネクティングリンク连结杆コネクティングロッド连杆コネクティングロッド・ピン连杆销ゴムオー・リング橡皮O形密封圈ゴムガスケット橡皮填密片個別アセンブリ单独汇编個別原価計算单個品种成本计算、单件成本计算個別生産单件生产ころがり軸受gun动轴承コンパウンド化合物、複合物、混合物、複合、混合コンパウンドコイル複合线圈コンパウンドブッシング充填绝缘物套管コンビネーションスイッチ组合开关災害ポテンシャル发生灾害的可能性裁断(電流の)电流断路、切断裁断値断路值再投入再次接通、再闭再投入時間再闭合时间再起電圧再闪击电压最小熔断電流最小熔断流再点弧再起弧再点弧電圧再起弧电压サイドプレートpang板、侧板サイドギヤ半轴齿轮、侧面齿轮彩度章度(物色度学)、色度、品度最終組立总装(配)最終検査终检、最後检查、完工检查、成品检查、再調整重新调整座座?、?kuai4座金?圈、?片座ぐり锪孔サージ浪涌、冲动、冲击波、电涌サージサブレッサ电压峰值限制器、电压峰值抑制器サージアブソーバ过(电)压吸收器、浪涌吸收器サージ電圧浪涌电压、冲击电压、脉冲电压サージ電流浪涌电流サージインピーダンス浪涌阻抗、波阻抗差替え更换、调换鎖線[金连]节サーマル・リレー热动继电器、热敏继电器皿ネジ埋头螺[木全]皿ボルト埋头螺锪皿ぐり锪锥孔三相四線式三相四线制三相交流三相交流、三相交变电流仕上げ記号精加工符号、光洁度符号仕上げ代加工余量自家用変電所自用变电所、工厂配电zhan四角ナット方螺母四角ボルト方螺[木全]磁気極性磁极性磁気遮断器磁吹([伙息]弧)断路器磁気吹消遮断器磁吹([伙息]弧)断路器磁気碍子瓷绝缘子、电瓷瓶仕業検査日常检查軸スリーブ轴(衬chen4)套軸受轴承、支承軸ブッシュ轴承衬chen4ジグjia具、[金占]模、规尺、导向尺ジグ・プレートjia具板、[金占]模板ジグ・ボーリング・マシン座标镗床シクネス・ゲージ厚薄规、间隙规シーケンス開路时序电路、程序电路シール密封、密封?、气密、油密シール用コンパウンド密封的化合物シールド効果密封的效应試験成績表试验结果表試験番号试验序号資材回転率材料周转率試作機样机支持碍子支承绝缘子支持金止销、定位销支持枠支承[木勾]架支持フレーム支架、支座ジスコン分开、解开、切断、切断下塗り底涂下塗り塗料底涂料始動トルク起动扭(转)[矢巨]しぼり(加工)拉深、深冲加工しまりばめ静配合締め付け金具jia紧机[木勾]、jia紧件締め付け金具jia、jia紧、jia子、紧固、jia[金甘] 締め付け板压板締め付け代过盈量締め付けトルク安装扭[矢巨]、安装力[矢巨]締め付けナットjia紧螺母、紧固螺母締め付けボルトjia紧螺[木全]、紧固螺[木全]締め付けネジjia紧螺[木全]、紧固螺[木全]射出成型注射模塑成形遮断電流断路电流遮断時間切断时间遮断容量断路容量遮断距離(开关接点)断开距离釈放電圧释放电压、断开电压周期検査循环校验出荷検査出厂检查摺動滑动主端子主电路端子、主电路接头主断路器主电路断路器主導体主电路导体従属故障从属故障、相关事故手動トリップ手动解扣、手动跳闸、手动脱扣手動投入操作手动合闸操作、手动接通、手动闭合手動復帰手动复位瞬時超電力瞬时电动势ジョイントカップリング万向接头ジョイントバー连接杆ジョイントパイプ接合管ジョイントピン连接销ジョイントプレート连接板、接合板ジョイントボルト连接螺[木全]仕様書说明书、规格明细仕様値规格值、标准值使用信頼度工作可靠性、使用可靠性照会询问、查询照合校对、核对、对証、对照承認図批准图、承认图消弧消弧、[一/伙]弧、[伙息][一/伙]消磁去磁、退磁焼損烧[土不]焼損防止防烧坏焼鈍退火商用周波数工(业)频(率)正面図正视图,主视图自在スパナ活扳手,万能螺旋扳手自在継手万向接头磁束磁通(量)磁束密度磁通(量)密度実験データ实验资料,实验数据自動連結自动连结自動的に(戸が自動的に閉まる)自动地关闭自動再投入自动再次接通,自动闭合ジブ・クレーン臂架起重机ジャンパー跳线,跨接片,跨接线十字ドライバー十字螺丝刀自己保持自保持自己保持開路自保电路自己潤滑軸受自润滑轴承自己検査自检验事故防止回路防事故电路錠锁,关闭,闭锁,固定上昇(温度)上升,升高上昇(物体)上,升,登常規使用状態正常工作状态定盤平台,平板消費電力电力消耗自立形固定的指令指令指令信号真直度直线度心金心轴,心棒真空コンタクタ真空接触器,真空开关真空バルブ真空灭弧室真空開閉器(柱上)杆上真空开关浸漬塗装浸渍浸漬メッキ浸涂浸炭渗碳浸炭密化渗碳密化浸炭焼入渗碳淬火芯だし定心,找中心,找正芯だし对中心,定心巣(鋳物)气孔図番图号図形图形,图案,图样水準器水平仪,水准仪スイッチボックス配电箱スイッチボード配电盘スイッチレバー开关手柄,开关杆スイッチギア交流电力主电路设备水平引出し水平位移据付要領安装要点すきま游隙,间隙,空隙すきま间隙,余地,宽裕すきま齿隙,侧隙,背隙,间隙すきまゲージ塞尺,厚薄规,间隙规,游隙测量规すきま腐食裂隙(隙间)腐触すきみゲージ塞尺,厚薄规,间隙规スコア角尺,直角尺スケール・アウト超过尺寸范围進み小電流超前小电流スタッド双头螺栓,柱状螺栓スタート・ストップ・ボタン起停按钮スタンプ印记,标记,压花ステー支柱,支板,锁紧片ストッパー制动器,限制器,定程器ストッパーねじ紧定螺钉,止动螺钉ストップ・ボタン停止按钮,止动按钮ストレンゲージ应变仪,应变计,应变规,应变片ストローク冲程,行程ストロークリミット行程极限,行程范围スナップ・スイッチ快速(断开)开关,速断开关スナップ・リング开口环,弹性挡环スパイラル螺旋,螺线,卷线,螺旋管スパン跨度,跨矩,径间,间矩,间隔,期间スピンドル轴,主轴,心轴スピンドルオイル锭油スプライン花键スプリング弹簧,发条,钢板(弹簧)スプリング・コイル簧圈スプリング・ピン弹簧销スプリング・ワッシャー弹簧垫圈スプリング掛弹簧挂钩スプール卷线筒,线轴,卷轴スプロケット链轮,扣链齿,扣齿スペーサー衬垫,衬套,隔板,隔片,调整垫スペース・ヒーター间隔加热器,空间加热器スペア・パーツ备品,备件スペア・パーツリスト备件表滑り滑动,滑移,打滑滑り軸受滑动轴承滑り軸受スリーブ滑动轴承套滑り接触滑动接触スポット溶接点焊隅板角板,角撑板,加固板隅肉角焊缝隅肉溶接角焊スライダック滑动式变压器スラスト推力,轴向力,推进力スラストベアリング推力轴承,止推轴承摺り合せ滑配合,配刮,配研寸法許容差尺寸许用极限寸法補助線尺寸界线寸法測定尺寸测量寸法リミット尺寸范围呼び寸法公称尺寸実寸法实际尺寸全長寸法全长尺寸正応力正应力ぜい化脆化,变脆ぜい性破壊脆性断裂,脆性破坏正規状態正常状态成型成形,造型成型絶縁物摸制绝缘子,摸压绝缘制品成型絶縁材料摸制绝缘材料製作図工作图,施工图,生产图,加工图製作誤差制作误差製造仕様生产规格セカンダリ第二的,二次的,从属的精算カウンター积算计数器,累计计数器絶縁階級绝缘等级絶縁隔壁绝缘隔层絶縁耐力绝缘强度,介电强度絶縁抵抗绝缘电阻絶縁破壊绝缘击穿,绝缘破坏接触スプリング接触压力弹簧接触抵抗接点电阻,接触电阻接触子触头,接点,触点接続连接,接通,接合,接线,接头接続プラグ接线塞子折損折损,折坏接線切线接着粘结,胶接,附着,接合接着剤结合剂,粘着剂,粘结剂接着力粘附力,粘接力,结合力設備保全设备维护保养説明プレート明细标示牌,标牌セメンチング胶接,胶结,粘接せん断剪断,剪切旋盤车床,切削车床閃絡闪络,飞弧槽槽,桶,浴騒音レベル声音级騒音レベル噪声级操業度操作率,运行率,生产能力利用率総組立図总装(配)操作コイル操作线圈操作ハンドル操作把柄操作レバー操作杆装柱电杆安装送電输电,馈电送電系統输电系统,传输系统送電線输电线,馈电线送電容量输电(容)量,输电能力相当品相等物品測定端子测量端子測定具测定工具,量具測定箇所测量点側面フレーム侧面框架ソケット插口,插座,接套底板底板,座板,垫板素子单元,元件,成分,要素,元素そり弯曲,弯度ソレノイド螺线管,圆筒形线圈ソレノイド操作电子操作損耗消耗,磨损損耗費耗损费ダイオード二极管タイプテスト定型试验,形式试验,典型试验タイミング同步,计时,定时タイミングリレー定时继电器,延时继电器タイムアウト超时,时间已过タイムアップ时间已到ダイヤル・ゲージ时滞,时延タイアップ联合,合作代案代替,方案第一角法第一象限投影法第三角法第三象限投影法ダイキャスト压铸,压力铸造,模铸対地絶縁距離对地绝缘距离対地電圧对地电压耐アーク性耐电弧性耐圧防爆型耐压防爆性耐寒性グリース耐寒形润滑脂,低温润滑脂耐候試験耐气候试验耐震抗震耐震構造抗震结构耐塵防尘耐久試験疲劳实验耐電圧試験耐压试验耐燃性耐燃烧性耐薬品性抗化学药品性,耐药品性台基础,底座,基座,基体台台,架,座,辆台台,架,座,台板台台子,桌子,工作台台台(座),根底,基础台形梯形ダクト粉尘,灰尘,尘埃ダストカバー防尘罩出入ネジ取防栓,放入栓出入ハンドル取放把手,放入把手多心ケーブル多心电缆多段積多级推起,多级推积立会試験会同试验タッピング自丝タッピングねじ自攻螺钉タップ丝锥,龙头,〈电〉分接抽头タップあな螺孔ダッシュ・ポット缓冲器ターニング旋转,转,变向タレット旋盤六角车床たわみ弯,弯曲端子接头,端子,接线柱端子台端子台単線結線図单线图,原理图短時間電流短时电流短絡保護短路电流保护断面図断面图,剖视图断路断开,断线,切断,断路断路器隔离开关,切断开关,断路器チェッキング抑制,抑止,校对,校验チェック校对,检验,校验チェックポイント检测点,检查部位チェックマーク检验记号,校验表志遅延リレー延迟继电器力力量,腕力,效力力力量,能力,才能畜勢畜能畜勢ハンドル畜能拉手,畜能把手着脱装卸,离合チャージ装入,充电,电荷,充气,负荷,畜能チャージ・モーター畜能马达チャタリング振动,间歇电震,跳跃限象注記注意释注意注意,当心,仔细注意警告,预告,通告中電圧中间电压中間焼なまし中间退火注脚柱基,注脚,基脚中空空心,中空中空円筒中空圆筒柱上開閉器电杆上开关鋳型(浇)铸(成)型注油箇所加油处,注油处鳥かん図鸟瞰图ちょう型ナット螺形螺母調質调质处理調整调整,调节,调准調整代调整节量調整ハンドル调整柄調整ロッド调整杆調整可能な可调的,可调节的,可校准的直列串联,串行,直列直列抵抗串联电阻直列リアクトル串联扼流圈直流回路直流电路直流電磁石直流电磁铁地絡接地,地线地絡事故接地故障ちょうつがい折叶,合叶,铰链チョッパ切碎机,断续装置,交流变换器対双,偶,对通気穴通气孔,通风孔通気口通气口,通风口つがい铰链,对偶つかれ限度疲劳极限つかれ破壊疲劳破坏,疲劳断裂つかれ変形疲劳变形付き合せ面对接面継手接头,接缝,连接継手连接,耦联,耦合,联轴节,联接器継手联接器,分接器,联轴节,耦合器継手ピン连接销,接合销継目连接部分,接头部分継目接缝,焊缝継目無管无缝管筒型ヒューズ熔丝管,保险丝管つば轴环つば凸缘,凸边,法兰盘つまみ捏手,旋钮つまみ把守,柄,拉手つめ爪,卡爪,棘爪つめ付座金带爪垫圈つめ車棘轮つりあげ装置起重装置つり金具起吊链钩つり手吊钩吊耳吊环つる巻コイル螺旋线图低圧回路低压电路定位制御静定调节,定位控制定格额定定格遮断電流额定断路电流定格遮断時間额定断路时间定格遮断容量额定断路容量,额定遮断功率定格再起電圧额定再闪击电压定格投入電圧额定接通电流定格短時間電流额定短时电流定格開極時間额定断开时间,额定断路时间定格電力额定功率定格投入操作電圧额定合闸操作电压定格力率额定功率因数抵抗阻力,电阻抵抗設置方式电阻接地方式抵抗管管状电阻ディスコン分开,解开,切断ディスチャージ放电,放电的,放出,排出定着固定TIG溶接惰性气体保护金属极弧焊手押し車手推车適合适合,适宜,符合,适应適正クリアランス适宜间隙,合理间隙摘要摘要,提要摘要注目,注视,注意適用業務应用业务てこ杠杆デザイン构思,设计,打样,图案デザイン・レビュー设计评论手順計画工艺计划,加工过程计划テスター试验器,测试器,测定器,电路检验器テストモード试验方法てすり栏杆手続程序,工序,工艺规程,方法,过程デッド・ポイント止点,死点テーパー锥形,圆锥,斜度,锥度テーパーねじ锥纹テーパーピン锥销テーパーリーマー锥形铰刀テーパーシャンク・ドリル锥柄钻头手直し修整,调整,排除错误テープ带,线带,布带,绝缘带デルタ接続三角形接线テフロン特氟隆,聚四乙氟烯点線虚线,点线添付図面附带图,图面添付品附带备品,附件点溶接点焊電圧降下电压降電圧引外し电压解扣電界电场電解研磨电解抛光電気アーク炉电弧炉電気組立品电器部件電気計算機电动计算器電気計測器电气测量仪器電気力学电动力学電気消費量耗电量電気設備电气设备電気導体导电体電気溶接电焊電気的インターロック电锁電磁石电磁铁電磁反撥力电磁推斥力電動機誘導感应电动机電動機同期同步感应电动机電動機三相三相感应电动机電動機単相单相感应电动机電動ばね操作機構电动弹簧操作机构電流計电流表,安培计電流容量容许电流電力計瓦特计,功率计電力ヒューズ电力保险丝,电源保险丝電力量計电度表,瓦时计電力量电能電力需要需要电量電力供給供电電力定格额定功率電力記録計瓦特记录仪投入合闸,接通,闭合,闭路投入コイル闭合线圈,合闸线圈投入時間(無負荷)闭合时间,合闸时间投入状態接通状态投入電流接通电流投入容量合闸容量,接通容量,关合能力投入速度合闸速度胴径圆筒径動作責務动作规范動作回数动作计数動作回数計动作计数器動作試験运转试验動作特性运转特性動作状態运转状态動力投入操作动力接通操作,动力接入运行通しボルト贯穿螺栓,双头连接螺栓トグル肘节,肘板,扭力臂トグル機構肘式机构,连杆机构トグルスイッチ搬扭开关,跳动式小开关,扭型小开关。
非常有趣的30个网站,你上过几个?
非常有趣的30个网站个网站,,你上过几个你上过几个??1,你的脸型我做主-变脸 /属于恶搞型的网站属于恶搞型的网站。
进入后有五种处理方式进入后有五种处理方式,,分别是变形分别是变形、、纹脸纹脸、、合成、心理分析心理分析、、恶搞恶搞,,选择一个点击右边"upload "就可以上传你"仇人"的照片恶搞了的照片恶搞了。
2,现代间谍必备工具-在线暗号生成 / 看《风声风声》》的时候就觉得破译密码很D ,不过他们没碰到这个网站生成的密码成的密码,,如果当时用这个密码的话如果当时用这个密码的话,,相信至少地下工作者们不会死掉。
网站很简单网站很简单,,进入后进入后,,在密码键里输入密在密码键里输入密码码,然后在文字列里输入你要加密的文字入你要加密的文字,,选择暗号化选择暗号化,,点击实行点击实行,,下面就会出现加密后的代码代码,,将这段代码交给"接头人"再到这个网站破译再到这个网站破译,,其它都一样其它都一样,,最后选择复合化就可以了最后选择复合化就可以了!!3,山寨也疯狂-国产美女时钟 /早在去年的时候为大家介绍了日本的一个美女时钟网站早在去年的时候为大家介绍了日本的一个美女时钟网站,,一分钟换一个美女为你拿时间牌个美女为你拿时间牌,,很有意思很有意思。
今天介绍一个国产的美女时钟今天介绍一个国产的美女时钟,,个个都是我们中国的街头美女个都是我们中国的街头美女,,不是刻意打扮安排来拍照不是刻意打扮安排来拍照,,而是在街头征求同意后拍出来的征求同意后拍出来的。
现在还好现在还好,,不知道以后会不会变得有商业铜臭味了得有商业铜臭味了!!4,强大的多语言版本强大的多语言版本在线图片处理网站在线图片处理网站-pixlr / 进入这个网站进入这个网站,,从事多年平面设计的小编我已经被它强大的功能震住了,太牛B 了,界面和功能是仿photoshop 的,连快捷键也是一模一样的一样的,,全屏后就是一个有模有样的图像处理软件全屏后就是一个有模有样的图像处理软件。
插画网址大全
虾米灌水来啦——有趣的网站超级大全( 发表时间:2004-12-8 14:58:27 ) 楼主http://www.cquit.pt.vu/ ;插画摄影等//babyart/ 死亡娃娃/index.html//code/frameset.htm/// 矢量插图//town/walk/aeu91/rowan// 综合艺术网站有许多分类作品与连接/http://www.artengine.ca/elizagriffiths/index.htm 未成年末看http://www.cire.gs/ 自己很喜欢~呵呵/ 商业插画/http://www.gric.at/home_frame.htm 以前在论坛里帖过作品/ 简单别致的欧洲风格/ 综合插画网站/searchf.htm 分类查找艺术站点/illustrations.html 画了比约克、拉登、盖茨等等/index.html 美式卡通综合网站/ 推荐/ 矢量插画/ 未成年末看/menu.htm 推荐/paintings.html 《幻想》杂志做过介绍/ 很棒`/illustration// 大家都看过了,ARON发过里面的画// 矢量//gallery/index.html/main/levy.html 推荐/ 油画作品/ 伤。
/ 幻想骑车的大鸟/main.html A罩杯的LOADING,呵呵/paintings/index.html 沉默、抑郁、变态、流血/public_html/index.html 绘画与平面设计/ 国外传统风格插画/ 推荐/ 色彩艳丽—造型夸张/ 人性化动物/ 推荐/index_editorial.html 推荐/index.html 玩偶娃娃/ 很漂亮~至少看首页就很喜欢了,推荐/ 推荐/ 烟猴看过的吧??/ 综合艺术网站有PDF杂志文件可以下载推荐·!/ 大力推荐/ 插画推荐/ 不是一般的丑~ 好看。
推荐//w/s...ies/index2.html 很多作品推荐/home.html 大力推荐里面的FLASH很经典/index.html/frenchkitty/http://w.ropp.free.fr/# 摄影与绘画极力推荐/ 矢量绘画/ 经典的joesorren 大家肯定都看过。
openjudge答案
openjudge答案【篇一:整理的-----acm题目及答案】a + b problem (4)1001 sum problem (5)1002 a + b problem ii (6)1005 number sequence (8)1008 elevator (9)1009 fatmouse trade (11)1021 fibonacci again (13)1089 a+b for input-output practice (i) (14)1090 a+b for input-output practice (ii) (15)1091 a+b for input-output practice (iii) (16)1092 a+b for input-output practice (iv) (17)1093 a+b for input-output practice (v) (18)1094 a+b for input-output practice (vi) (20)1095 a+b for input-output practice (vii) (21)1096 a+b for input-output practice (viii) (22)1176 免费馅饼 (23)1204 糖果大战 (25)1213 how many tables (26)2000 ascii码排序 (32)2001 计算两点间的距离 (34)2002 计算球体积 (35)2003 求绝对值 (36)2004 成绩转换 (37)2005 第几天? (38)2006 求奇数的乘积 (40)2007 平方和与立方和 (41)2008 数值统计 (42)2009 求数列的和 (43)2010 水仙花数 (44)2011 多项式求和 (46)2012 素数判定 (47)2014 青年歌手大奖赛_评委会打分 (49)2015 偶数求和 (50)2016 数据的交换输出 (52)2017 字符串统计 (54)2019 数列有序! (55)2020 绝对值排序 (56)2021 发工资咯:) (58)2033 人见人爱a+b (59)2037 今年暑假不ac (61)2039 三角形 (63)2040 亲和数 (64)2045 不容易系列之(3)—— lele的rpg难题 (65)2049 不容易系列之(4)——考新郎 (66)2056 rectangles (68)2073 无限的路 (69)2084 数塔 (71)2201 熊猫阿波的故事 (72)2212 dfs (73)2304 electrical outlets (74)2309 icpc score totalizer software (75)2317 nasty hacks (77)2401 baskets of gold coins (78)2500 做一个正气的杭电人 (79)2501 tiling_easy version (80)2502 月之数 (81)2503 a/b + c/d (82)2504 又见gcd (83)2519 新生晚会 (84)2520 我是菜鸟,我怕谁 (85)2521 反素数 (86)2522 a simple problem (88)2523 sort again (89)2524 矩形a + b (90)2535 vote (91)2537 8球胜负 (93)2539 点球大战 (95)2547 无剑无我 (98)2548 两军交锋 .............................................................. 99 2549 壮志难酬 ............................................................. 100 2550 百步穿杨 ............................................................. 101 2551 竹青遍野 ............................................................. 103 2552 三足鼎立 ............................................................. 104 2553 n皇后问题 ............................................................ 105 2554 n对数的排列问题 ...................................................... 106 2555 人人都能参加第30届校田径运动会了 .................................... 107 2560buildings ............................................................ 110 2561 第二小整数 ........................................................... 112 2562 奇偶位互换 ........................................................... 113 2563 统计问题 ............................................................. 114 2564 词组缩写 ............................................................. 115 2565 放大的x .............................................................. 117 2566 统计硬币 ............................................................. 118 2567 寻梦 ................................................................. 119 2568 前进 ................................................................. 121 2569 彼岸 (123)2700 parity ............................................................... 124 2577 how to type . (126)北京大学:1035 spell checker ........................................................ 129 1061 青蛙的约会 ........................................................... 133 1142 smith numbers ........................................................ 136 1200 crazy search ......................................................... 139 1811 primetest ........................................................... 141 2262 goldbachs conjecture ................................................ 146 2407relatives ............................................................ 150 2447rsa .................................................................. 152 2503babelfish ............................................................ 156 2513 colored sticks . (159)acm算法:kurxx最小生成树 (163)prim ....................................................................... 164 堆实现最短路 ............................................................... 166 最短路dij普通版 (167)floyd (168)bell_man ................................................................... 168 拓扑排序 ................................................................... 169 dfs强连通分支 .............................................................. 170 最大匹配 ................................................................... 172 还有两个最大匹配模板 ....................................................... 173 最大权匹配,km算法 .......................................................... 175 两种欧拉路 (177)无向图: ............................................................... 177 有向图: (178)【最大流】edmonds karp (178)dinic (179)【最小费用最大流】edmonds karp对偶算法 (181)acm题目:【题目】排球队员站位问题 (182)【题目】把自然数N分解为若干个自然数之和。
improve synthesis of graphene oxide
graphitic material,and indeed,either in thinfilms partial restoration of the graphitic structure accomplished by chemical reduction12,29Ϫ31to converted graphene(CCG).However,thestructure(with its desired properties)is not restored using these conditions,and significant de-introduced.32we reported the scalable preparation of oxide nanoribbons(GONRs)from multiwalled nanotubes by treatment with KMnO4and con-SO430and the discovery that the addition phosphoric acid(H3PO4)to this reaction produced more intact graphitic basal planes.33Re-these second-generation GONRs producedwere comparable in conductivity to thosereduction of thefirst-generation GONRs. hypothesized that this oxidation procedure(KMnO4 mixture of concentrated H SO/H PO,called gas evolution during preparation,and equivalent ductivity upon reduction,make it attractiveing material on a large scale.It may also show performance in materials applications,suchbranes,TEM grids,or temperature-sensitive fabrication.DISCUSSIONThe increased efficiency of the IGO methodpared to the HGO and HGOϩmethods wasafter thefirst purification step for each method. drophilic carbon material produced duringtion passed through the sieve,while the under-oxidized hydrophobic carbon material was retaineddue to its particle size and low water solubility.cantly less under-oxidized material was generatedthe production of IGO(0.7g)compared toor HGOϩ(3.9g)when starting with3g ofRepresentation of the procedures followed starting with graphiteflakes(GF).Under-oxidized hydrophobic recovered during the purification of IGO,HGO,and HGO؉.The increased efficiency of the IGO method small amount of under-oxidized material produced.techniques indicated that the order of HGOϽHGOϩϽIGO.Thermogravi-(TGA)of the materials(Figure4)showed losses between150and300°C,whichCO2,and steam release10from the functional groups.Between400and950°C,a slower mass loss was observed andto the removal of more stable oxygenBy TGA,HGO had the smallest weight and IGO had similar weight losses.Solid-state13C NMR(Figure5)suggests der of overall oxidation is HGOϽHGOspectra recorded using514nm laser excitation and(B)FTIR-ATR spectra of HGO؉Tapping mode AFM topographic images and height profiles of a single layer of(A)HGO؉,(B)HGO,and(C)can be assigned as described previously:10,35,36carbonyls near 190ppm;ester and lactol carbonyls 164ppm;graphitic sp 2carbons near 131ppm;ϪC(sp 3)ϪO near 101ppm;and alcohols at ppm with an upfield intense signal from epoxides 61ppm.The simplest measure of oxidation between the alcohol/epoxide signal and graphitic carbon signal.This ratio is greatest for IGO and HGO.It is also noteworthy that IGO appears to epoxide functionalities than either of the other X-ray diffraction (XRD)spectra (Figure 6)the same order of overall oxidation.For XRD,interlayer spacing of the materials is proportional degree of oxidation.The spacings are 9.5,9.0,and IGO,HGO ϩ,and HGO,respectively.Also,the spectrum had a peak at 3.7Å,indicating that traces starting material (graphite flakes)were present in O,286.2eV),carbonyl (C A O,287.8eV),and carbox-ylates (O ϪC A O,289.0eV).10All percentages of the dized materials were combined such that IGO had oxidized carbon and 31%graphitic carbon;HGO ϩand 37%;HGO contained 61and 39%of the oxi-dized carbon and graphitic carbon,respectively.The XPS spectra were then normalized with respect C A C peak (Figure 7).The degree of oxidation sample is similar to the amount indicated by NMR.IGO is the most oxidized material,HGO ϩisslightly (ϳ10%)less oxidized,and HGO is the least dized.Moreover,the apparent peak at ϳ287eV,corre-sponding to the oxidized carbons for IGO,is sharper the same peak for HGO ϩ.This suggests that,similar levels of overall oxidation,the IGO has a more regular structure than that of HGO ϩ.38Transmission electron microscopy (TEM)images three samples support the assertion that IGO has 4.TGA plots of HGO ؉,HGO,and IGO.Figure 5.13C NMR (50.3MHz)spectra obtained of HGO,HGO ؉and IGO [12kHz magic angle spinning (MAS),a 90°13C pulse,41ms FID,and 20s relaxation delay].Integration areas are shown under each peak.Figure 6.XRD spectra of HGO,HGO ؉,and IGO (1.54059␣1as wavelength).The UV/vis spectra of the three materials suggest the more ordered structure of IGO is due to greater retention of carbon rings in the basal planes.The spectra were recorded for an equal concentration material (Figure 9).The degree of remaining jugation can be determined by the max of each UV/vis spectrum.The more ¡*transitions (conjugation),less energy needs to be used for the electronic which results in a higher max .IGO,HGO ϩ,all have a very similar max ,which is in the231nm range as previously reported for GO.for all three materials,a similar shoulder around nm is observed and can be attributed to n ¡transitions of the carbonyl groups.This suggests materials are grossly similar in structure,as the IR,and AFM data indicated.However,IGO has extinction coefficient than those of HGO ϩsuggesting that,for an equal amount of each sample,the IGO has more aromatic rings or isolated Bulk samples of the oxidized materials were re-duced using hydrazine hydrate and then annealed and 900°C in Ar/H 2.In general,for the hydrazine duction,100mg of the IGO,HGO,or HGO ϩmaterial dispersed in 100mL of DI water,stirred for 30then 1.00mL of hydrazine hydrate was added.mixtures were heated at 95°C using a water min;a black solid precipitated from the reaction mixture.Products were isolated by filtration (PTFE pore size)and washed with DI water (50mL,methanol (20mL,3ϫ),producing 54,57,and of the reduced chemically converted IGO (CCIG),chemically converted HGO ϩ(CCHG ϩ),and chemically converted HGO (CCHG),respectively.After reduction,signal from oxidized carbons could be detected Only a broad aromatic/alkene NMR signal could detected for CCHG,CCHG ϩ,and CCIG.This signal shifted upfield relative to that in the precursor HGO ϩ,and IGO;the peak maximum after reduc-7.C1s XPS spectra of HGO ؉,HGO,and IGO normal-with respect to the C A C peak.images of (A)HGO ؉,(C)HGO,(E)IGO and their diffraction patterns (B),(D),and (F),respectively.electron diffraction (SAED)patterns corresponded to the graphene films in the TEM images.support films (Ted Pella,Inc.)were used to prepare the samples.Figure 9.UV/vis spectra recorded in aqueous solutions mg/mL of HGO ؉,HGO,and IGO.the tuning and matching of the13C and1H channels of the probe.After reduction and annealing in Ar/H2at900°C,no NMR signal could be detected for any of the samples,consistent with their becoming even more graphite-like.35XPS analysis of the black solids showed similar lev-els of reduction for all three materials when they were hydrazine reduced and when they were annealed(Fig-ure10;in Figure10B,C,the annealed materials are des-ignated by the prefix“ann”to differentiate them from standard e-beam lithography(we used PMMA as a posi-tive resist),and then20nm thick Pt contacts were formed by e-beam evaporation and lift-off process.Fig-ure11C shows a SEM image of a typical electronic device.The electrical measurements were performed using a probe station(Desert Cryogenics TT-probe6system) under vacuum with chamber base pressure below10Ϫ5 Torr.Normally,the devices were kept under vacuum for at least2days before the measurements.TheFigure10.C1s XPS spectra of(A)hydrazine reduced,(B)further300°C/H2-annealed materials,(C)900°C/H2-annealed materials. The annealed materials in panels B and C are designated by the prefix“ann”to differentiate them from the materials in A that were only hydrazine reduced.annealed in Ar/H2at300or900°C for0.5h.Forthermally annealed materials,we measured atdevices for each material.We found that,after thermal treatment at300°C,the conductivities ofannCCG materials dramatically increase up to2.1Ϯ(annCCHG),6.8Ϯ4.4S/cm(annCCHGϩ),andS/cm(annCCIG);the scatter plot is shown inThe annCCHG is statistically significantly less conductive than the other two samples(pϽ0.05,t assuming equal variance),but due to the smalldevices for annCCHGϩ,it is difficult to deter-annCCHGϩand annCCIG are significantlyThe statistical significance of the increase in conductivity for annCCHGϩcompared to annCCIG is pϭ0.04,t test assuming equal variance)and completely driven by the outlier point at15.0(remov-point,pϭ0.24,t test assuming equal variance).well as in other cases,the conductivities were calculated assuming the thicknesses of theflakesG materials annealed at even higherture of900°C exhibit further increases in conductivities up to375Ϯ215S/cm(annCCHG),350Ϯ125 (annCCHGϩ),and400Ϯ220S/cm(annCCIG)11F).There is no statistically significant difference tween any of the samples after annealing at900 gesting that high temperature annealing eliminates most of the differences in composition and structure present in the three samples.CONCLUSIONSThe improved method for producing GOcant advantages over Hummers’method.Thefor running the reaction does not involve a large therm and produces no toxic gas.Moreover,proved method yields a higher fraction of well-oxidized hydrophilic carbon material.This IGO is more(A,B)SEM images of CCIGflakes on Si/SiO2substrate.(C)SEM image of a typical electronic device for CCIGflake.(D)Source؊drain current(I sd)؊gate voltage(V g)characteristics of the same electronic device CCIGflake measured in air and in vacuum after3days of evacuation in the probe station chamber at ؊5Torr.(E)Plot of the mean conductivities for the monolayer annCCHG,annCCHG؉,and annCCIGflakesAr/H2at300°C for0.5h.(F)Plot of the mean conductivities for the monolayer annCCHG,annCCHG؉, annealed in Ar/H2at900°C for0.5h.。
国内外经典图片网站
国外经典图库素材下载网站http://www.ipost.co.kr/http://www.logotypes.ru/http://www.logotypes.lv/http://logo.tdd.lt/main.htm//http://www.visual.gi/logoteca/logos.html(sit 格式 )http://www.dtpstudio.cz/logobanka/http://www.dublshar.boom.ru/logos.htmhttp://www.myown.be/fr/index.asphttp://www.logoteka.yupp.pl///nbci.asp/超级图库管理软件:/图库管理、图片管理、图像管理、图形管理、图库管理、CAD图纸管理、图档管理、图形图像管理、照片管理、网络图库管理。
网络版下载:/download/superlib_cn_install.zip单机版下载:/download/superlib_cn_personal_install.zip 非常图酷:构图网:矢量LOGO:/find1.htm美图:/s8/搜图网:/cgibin/imagefolio.cgi伊美姬网:桌面城市:中国图片库:/夜叉图库:网页制作大宝库:流星雨矢量图库:中华图库:/photo素材精品屋:热线素材精品:壁纸好莱坞:Wincustomize:/axialis:/Eboy Home:ICON List:/icon/ICON中国:/图标集中营:馨雅壁纸:/cn/index.php海龙文化:/civilization/index.asp中国古代龙纹:/artchina_ ... to/long/page_01.htm最好的图片搜索引擎:/imghp?hl=zh-CN非鸟矢量图库:/ai/index.htm闪吧矢量图库:/index_vector.asp流星雨矢量图库:/梧桐树下矢量图库:/flash/2000slt/index.htm广之源矢量素材:/Subject.asp平面设计与桌面出版--矢量素材区:http://202.103.233.162/cd/downhtml/down-1.htm 素材网:/index.htm猫猫图片酷:/ai/index.htm※※※国外经典矢量标志下载网站吐血推荐※※※http://www.logo.vip.lublin.pl/logo无效s/http://www.logo无效s.ru/http://www.logo无效s.lv/http://logo.tdd.lt/main.htm.pl/bank-menu.htmhttp://logo.nino.ru//logos/(苹果压缩格式的)http://www.visual.gi/logoteca/logos.html(sit格式)http://webchantier.free.fr/logotheque/index2.html.ua/index.html(注册才能下载)http://www.dtpstudio.cz/logobanka/http://www.dublshar.boom.ru/logos.htmhttp://www.doppio.be/DOWNLOAD/LOGOS/index.html.ru/logos.shtmlhttp://priv.twoje-sudety.pl/~logoteka/1.htm世界所有足球俱乐部矢量标志下载:www.hqfl.dk头像/icon/国外一个站点(wmf格式):http://www.clip-art.rucorel公司(cdr格式):/freebies/clipart.htm闪盟矢量图库(swf格式):/home/read.php?qid=vector闪客兵团矢量图库:/index6.htm闪客天地Flash矢量资源(fla格式):/vector.asp闪客浪心:/flash.htm萤窗小语---矢量图库:/siliang.htm闪客堡部分矢量资源:/download.php?sort=1蓝精灵flash互动网矢量资源:/flashfla/flashvl.htm21点工作室矢量资源:/resource/bitmap/bmp.htmlflash爱好者:/ziyuan/shiliang/index.htm桌面城市:/scatalog.asp?scatalog=54海阔天空:/html/material-2.htm闪光玻璃:/index/slt.htm娱乐媒质传播网:/vectors/***************************以上部分转自中国photoshop联盟原作者campoem、哈哈品图片搜索引擎://search.asp/?cfid=6711151&cftoken=81480965图像词典图库:素材精品屋/photo/photo.htm新时代图霸网/许昌信息港---美丽图库/殷都图霸/网页素材精品屋/index.html中国图片网/cn/中国图片库(收费的)/xtf/index1.htm花儿图库/美亚图库/tupian/新乡信息港/猫猫图片酷矢量图库:/cgi-bin/image/imageFolio.cgi?direct=wmf/cusi/Default.asp/ai/以上是个人收藏,未完全整理,贴出来供大家搜索合适的图片之用,请大家多多支持素材精品屋,谢谢!以下是 mecury 收集的图片搜索网站////这是一个多媒体的搜索引擎,目前主要提供网上图像的搜索,已收集了超过200万个图像,并且大多经过人工的筛选,因而搜索结果质量较高。
X-ray diffraction patterns of graphite and turbostratic carbon
X-ray diffraction patterns of graphite and turbostratic carbonZ.Q.Li *,C.J.Lu,Z.P.Xia,Y.Zhou,Z.LuoDepartment of Materials Science and Engineering,Zhejiang University,Hangzhou 310027,Zhejiang,PR ChinaReceived 28October 2005;accepted 22March 2007Available online 31March 2007AbstractTo identify the influence of microstructural variation on the X-ray diffraction intensities,X-ray diffraction patterns of hexagonal graphite (h-graphite)and turbostratic carbon (t-carbon)were simulated by using the general Debye equation.The numeric density of interatomic distance (NDID)is sensitive to the size and microstructure of a crystallite,so that it is used to characterize the structures of h-graphite and t-carbon.The dependence of the diffraction angles and full width at half maximums (FWHMs)of diffraction lines on the crystallite size and distortion factors is examined by computer simulation.The distortion factors for t-carbon,including rotation,translation,curvature,local positive fluctuation of interlayer spacing of graphene layers and fluctuation of atomic positions,have dif-ferent influence on the NDIDs,hence on the X-ray diffraction patterns.The simulation results indicate that the diffraction angles and FWHMs of diffraction lines cannot be simply used to characterize the lattice parameters and crystallite sizes of t-carbon.Ó2007Published by Elsevier Ltd.1.IntroductionHexagonal graphite (h-graphite)has an ABAB ...stack-ing structure,the bonding force between graphene layers is much weaker than that of intra layers,therefore graphite can be easily cleaved along basal planes,and its particle size is readily reduced by mechanical grinding.The struc-tural changes of graphite during ball milling (BM)have attracted great attention due to its scientific importance and potential applications [1–5].It is generally considered that nanocrystalline graphite with an average grain size of 2nm to 10nm is formed in the initial stage of BM,tur-bostratic carbon (t-carbon or disordered graphite called by some researchers)is produced during further milling,and then amorphous carbon is obtained if the milling time is long enough [3,6,7].Distorted microstructures,including disordered stacking of graphene layers [8,9],increased interlayer spacing at the edges of flakes [2],curved graphene layers [10]and other structural defects,are experimentally observed in ball-milled graphite.The defective graphite may be used to pro-duce carbon nanostructures,such as carbon nanotubes and onion-like structure [10,11].The structural changes of graphite during BM have been examined by using high-res-olution transmission electron microscopy (HRTEM)[8,10,12],scanning electron microscopy (SEM)[11,12],Raman spectroscopy [2,13]and other measures.X-ray diffratometry (XRD),however,is commonly used to char-acterize the structures of h-graphite and t-carbon [1,14–16].In this paper we will study the effects of the microstructure on the X-ray diffraction patterns of h-graphite and t-carbon.2.Theoretical considerations 2.1.Structure of turbostratic carbonTurbostratic carbon is generally regarded as a variant of h-graphite,and both the h-graphite and t-carbon are stacked up by graphene layers with a regular spacing but different stacking ordering degree.h-graphite is an ordered AB stacking structure,but the graphene layers of t-carbon may randomly translate to each other and rotate about the normal of graphene layers.Since h-graphite is a stable structure,the translation and rotation of graphene layers0008-6223/$-see front matter Ó2007Published by Elsevier Ltd.doi:10.1016/j.carbon.2007.03.038*Corresponding author.E-mail address:zongquanli@ (Z.Q.Li)./locate/carbonCarbon 45(2007)1686–1695should change the interlayer spacing and/or the shape of atomic layers.So the structural changes of graphite caused by BM may include rotation,translation,curvature,as well as local positivefluctuation of interlayer spacing of graph-ene layers,which have been experimentally observed[8,10–13].The ball-milled graphite is still termed as t-carbon in this paper although t-carbon in usual meaning is only involved with rotation and translation of graphene layers.2.2.Simulation of X-ray diffraction patterns2.2.1.Diffraction intensityThe coherent scattering intensity is obtained by using the general Debye diffraction equation[15,17,18]IðsÞ¼Xp Xi;jf2sin2p sr ijp2p sr pþXp¼qXi;jf2sin2p sr ijpq2p sr pqð1Þwhere s=2sin h/k,f is the atomic scattering factor of car-bon,r ijp the interatomic distance between atoms i and j inlayer p,r ijpq the distance between atom i in layer p and atomj in layer q.Thefirst term in Eq.(1)produces two-dimen-sional diffraction lines such as(10),(11)etc;the second term produces three-dimensional diffraction lines such as (002),(100)etc.The two-dimensional diffraction lines superpose on the corresponding three-dimensional diffrac-tion lines,e.g.(10)on(100),(11)on(110).So it is almost impossible to separate the two-dimensional diffraction lines for coarse-grained h-graphite.Excepting the coherent scattering,incoherent scattering is also involved in XRD.Besides,polarization,absorption, temperature and other effects appear in XRD.After having considered these effects XRD patterns may be obtained by computer simulation[15],the interatomic distances are directly involved in Eq.(1)during simulation.2.2.2.Atomic positions for h-graphiteHexagonal prism-shaped crystallites with Lc%La are considered in present paper,and the schematic drawing is shown in Fig.1a.The size of a crystallite is characterized by La and Lc.Lc¼AINTðLa=c0ÞÃc0ð2Þwhere AINT is a function to truncate(La/c0),AINT(La/ c0)is the cell number along c-axis.The atomic positions in a crystallite are shown in Fig.1b. The large black circles and the small grey ones indicate the positions of carbon atoms in the odd layers and in the even layers,respectively.A graphene layer may be divided into three regions,see Fig.1b.In region I the coordinates of car-bon atoms in the p th layer(p is odd)are given byu1¼mþ1=3;v1¼nþ2=3;w1¼ðpÀ1Þ=2ð3aÞandu1¼mþ2=3;v1¼nþ1=3;w1¼ðpÀ1Þ=2ð3bÞwhere m,n and p are integers with06m6N,06n6N. When p is even u1¼m;v1¼n;w1¼ðpÀ1Þ=2ð16m6N;06n6NÞð4aÞu1¼mþ1=3;v1¼nþ2=3;w1¼ðpÀ1Þ=2ð06m6N;06n6NÞð4bÞThe coordinates of carbon atoms in regions II and III in any layer are related with those in region I in the same layer byu2¼Àv1;v2¼u1Àv1;w2¼w1ð5Þu3¼Àu1þv1;v3¼Àu1;w3¼w1ð6ÞBesides,the coordinates of the carbon atoms located at the joint points of regions I,II and III in the even layers are u0¼0;v0¼0;w0¼ðpÀ1Þ=2ð7ÞThe atomic distances can be easily obtained by using the formula for hexagonal crystals.2.3.Distortion factorsAs mentioned in Section2.1that rotation,translation, curvature and positivefluctuation of interlayer spacing of graphene layers may appear in t-carbon,and the quantities of deviation for different layers or for different atoms may be different.So a random number distributed uniformly in the range of0–1is introduced into calculation.The local deviation equals to the product of a maximum value and a random number.The rotation angle for a layer is given by /¼/mð1À2RNDÞð8Þwhere/m is the maximum rotation angle for the crystallite, RND is a random number,and06RND61.The rota-tion obtained from Eq.(8)may be clockwise(RND< 0.5)or anti-clockwise(RND>0.5).Although/m is ap-plied to the entire crystallite,RND is different for different layers,hence the rotation angle/,varying fromÀ/m to /m,is different for different layers.Z.Q.Li et al./Carbon45(2007)1686–16951687In the same way the translation vector for the whole of a layer may be expressed ast ¼t am ð1À2RND a Þa þt bm ð1À2RND b Þb t x ¼t am ð1À2RND a Þa 0Àt bm ð1À2RND b Þa 0=2t y ¼ffiffiffi3p t bm ð1À2RND b Þa 0=2:ð9Þwhere a and b are the unit vectors along a -and b -axis,t am and t bm are the coefficients of the maximum translations along a and b ,t x and t y are the translation components along x -and y -axis,respectively.The fluctuation of lattice parameter c is positive,the local value of c is given by c local ¼ð1þD c m RND Þc 0ð10Þwhere D c m P 0,a 0and c 0are the lattice parameters of h-graphite.It is supposed that all the curved graphene layers are cylindrical with parallel generatrixes,the interlayer spacing is still d 002at the central part,but is (1+d )d 002(d P 0)at the edges of the crystallite.The schematic drawing of a crystallite with curved graphene layers is shown in Fig.2.2.4.Atomic positions for t-carbonLet the coordinate of the j th carbon atom in the i th layer for h-graphite be ðx i ;j 0,y i ;j 0,z i ;j 0Þ.The positions of carbon atoms for t-carbon produced by rotation,translation and local positive fluctuation of interlayer spacing are given byx i ;j 1¼x i ;j 0cos /Ày i ;j 0sin /þt x y i ;j 1¼x i ;j 0sin /þy i ;j 0cos /þt y z i ;j 1¼z i À1;j 1þc local =2ð11Þwith z 1;j1¼0.The atomic positions in a crystallite with curved graph-ene layers may be obtained from Fig.2b.The angle a and the radius of curvature r are given bycos a ¼1Àd c 0Laa r ¼La 2að12ÞThe atomic positions are obtained from the radius of curvature of the layer b ¼x i ;j 1r x i ;j2¼r sin b y i ;j 2¼y i ;j 1z i ;j2¼z i ;j 1Ær ð1Àcos b Þð13Þa andb in Eqs.(12)and (13)are measured by radian.The sign ±in the expression of z i ;j 2is positive for the atoms in the upper half crystallite,but it is negative for the atoms in the lower half crystallite.2.5.Distribution of interatomic distancesThe radial distribution function (RDF)has been used to characterize the structure of amorphous materials.RDF has also been tried to characterize the structural variation of ball-milled graphite [7].It seems that RDF is not sensi-tive to the microstructural change of distorted crystalline materials.Eq.(1)shows that the X-ray diffraction intensity of a crystallite is strongly related with interatomic dis-tances,the numeric density of interatomic distance (NDID)q (r )may be used to characterize the structure of t-carbon.q (r )is define by q ðr Þ¼N ðr Þ=volð14Þwhere N (r )is the number of atomic pairs with the inter-atomic distance r in the crystallite,vol is the volume of the crystallite.The NDID presents intuitively the accurate distribution of atomic distances in a crystallite.The distance distribu-tion function used in small angle X-ray scattering is based on a continuum model and expresses numerically the dis-tances joining the volume elements within a particle [19],which may be regarded as an envelope curve of the NDID.To calculate q (r )r ’s are counted with an interval of D r =1·10À5nm,all the r ’s in the range of r i 6r <r i +D r are taken as the equals of r i .D r is so small comparing with atomic distances that the accuracy of q (r )is high enough to characterize the structure of t-carbon.Calculation indicates that the q (r )$r diagram of a crystallite,being composed of discrete lines for perfect crystals,is sensitive to the size1688Z.Q.Li et al./Carbon 45(2007)1686–1695and microstructure of the crystallite.The difference between the NDIDs of two crystallites,q A(r)Àq B(r),is related with the structural difference of crystallites A and B.3.Results and discussionThe lattice parameters of h-graphite used in the simula-tions arefixed to a0=0.24612nm,c0=0.67080nm[20]. Cu K a radiation is used in the simulations.All the results are obtained from the hexagonal prism-shaped crystallite with La=7.630nm and Lc=7.379nm,unless specified otherwise.3.1.The effects of crystallite sizeCrystallite size has an obvious influence on the normal-ized diffraction intensity.The full width at half maximums (FWHMs)increase but the diffraction angles decrease with decreasing crystallite size,though all the patterns are simu-lated with the same lattice parameters.The results coincide with those obtained by Fujimoto.The shift of(002)line for smaller crystallites was related with an insufficient can-cellation effect by Fujimoto[15].It is known from Eq.(1)that diffraction intensity is related with interatomic distances r ij.The NDID is not only determined by the distribution of interatomic dis-tances but also the size of the crystallite.A larger crystallite has a larger NDID than those of smaller ones.For exam-ple,crystallites A and B have crystallite sizes of(La= 7.630nm,Lc=7.379nm)and(La=4.184nm,Lc=4.025nm),respectively.The NDIDs of crystallites A andB and their difference,NDID A,NDID B and NDID AÀNDID B,are shown in Fig.3.It is very clear that NDID A is larger than NDID B,especially at larger interatomic dis-tances.Since the XRD pattern strongly depends upon the NDID of a crystallite,the difference between two XRD patterns obtained from two crystallites should be related with the difference of their NDIDs.Simulation on crystal-lites A and B confirmed this suggestion,and the results are shown in Fig.4.The simulated XRD patterns of crystal-lites A and B are shown in Fig.4as(a)and(b),respec-tively.The XRD difference plot obtained from(a)minus (b)is shown as plot(c).The XRD difference plot is also obtained from NDID AÀNDID B by using the general Debye equation,which is shown as(d).The difference plot between plots(c)and(d),showing as(e),is near zero.This simulation indicates that the smaller diffraction angles and broadened FWHMs for smaller crystallites are due to their smaller NDIDs.The effects of crystallite size on the diffrac-tion angles and FWHMs for t-carbon are similar to those of h-graphite.3.2.Rotation and translationFig.5shows the XRD patterns of the t-carbon with dif-ferent maximum rotation angle/m’s.The intensities of the three-dimensional lines,such as(101)and(102),decrease with increasing/m,whereas(00l)and two-dimensional (h k)lines have no obvious variation.Pure rotation(or/and Fig.3.NDIDs obtained from different crystallites and their difference.(a) Crystallite A;(b)Crystallite B;(c)The difference plot between(a)and(b).Z.Q.Li et al./Carbon45(2007)1686–16951689translation)does not change the atomic arrangement in the graphene layers,so (h k )and (00l )lines are not influenced by rotation (or/and translation).But other three-dimen-sional (h k l )lines are completely suppressed due to rotation when the rotation angle is larger than about 10°.The XRD patterns of the t-carbon produced by rotation and translation have no obvious difference with those pro-duced by rotation alone.The XRD patterns shown in Fig.6are obtained from the crystallites with /m =5°and different translations.The difference plots between them are also shown in Fig.6,which indicate that the effects of rotation and rotation–translation on the XRD patterns are roughly identical.The difference between these XRD patterns may be explained by the differences of the NDIDs.The NDID of h-graphite is composed of discrete lines,see Fig.7a,which is denoted as a discrete pattern for conve-nience.But the NDIDs of rotated or rotate–translated t-carbon are composed of a discrete pattern and a contin-uous pattern as those shown in Fig.7b–d.The discrete pat-terns in Fig.7b–d are from the intralayer atomic distances,but the continuous ones are related with the interlayer atomic distances.The discrete patterns of the rotated and rotate–translated t-carbon are identical,which make two-dimensional (h k )lines be not affected by translation and/or rotation.The continuous patterns,however,have a slight difference.Excepting (00l ),other three-dimensional diffraction lines are suppressed due to the random rotation and translation of graphene layers.3.3.Rotation and fluctuation of interlayer spacingh-graphite is a stable structure with a fixed parameter c ,a random fluctuation of interlayer spacing alone cannot appear in h-graphite.A positive fluctuation of interlayer spacing,however,may appear due to rotation and/or translation of the graphene layers.Fig.8shows the XRD patterns of the t-carbon with /m =5°and different D c m ’s.1690Z.Q.Li et al./Carbon 45(2007)1686–1695It is clear that the intensity of(101)line decreases rapidly with increasing D c m,but it does not vanish even D c m reaches0.2.Besides,(002)and(004)lines shift progres-sively towards smaller diffraction angles with increasing D c m,which means that the average parameter c avg increases with increasing D c m.The variation of c avg as a function of D c m is shown in Fig.9,revealing the linear relationship between c avg and D c m.The increment of parameter c is related with(D c mÆRND),see Eq.(8).It has been supposed that RND is a random number distributed uniformly in the range of0–1,the increment of c local should be proportional to D c m.The changes of the XRD patterns caused by the randomfluctuation of interlayer spacing combined with rotation can also be explained by using the variation of NDIDs.Fig.10a is the difference plot between the XRD patterns of h-graphite and the t-carbon with/m=5°and D c m=0.1.The XRD difference plot obtained from NDID h-graphiteÀNDID t-carbon is shown as(b).The differ-ence plot obtained from plot(a)minus plot(b)is shown as(c),which confirms once again that the difference in XRD patterns for two crystallites is always related with the difference in NDIDs of the two crystallites.3.4.Curvature of graphene layersCurved graphene layers make interlayer spacing be not uniform and the NDID be quite different from that of h-graphite,the XRD patterns obtained from the crystallites with curved graphene layers are shown in Fig.11a. Fig.11b shows the variation of the diffraction angle and FWHM of the(002)line as a function of curvature ofZ.Q.Li et al./Carbon45(2007)1686–16951691the graphene layers.The diffraction angle of(002)line decreases and FWHM increases with increasing the curva-ture of the graphene layers.It should be noted that the influence of curved graphene layers on the XRD patterns is related with not only the value of d but also the size of the graphene layer.The variation of XRD patterns caused by curved graphene layers can also be explained by using the variation of the NDIDs.3.5.NDIDs and XRD patterns of t-carbonThe NDIDs of the t-carbon with different distortion fac-tors are shown in Fig.12,revealing the strong dependence of the NDIDs of t-carbon on the distortion factors.When a crystallite is only subjected to a translation the NDID may be considered as a discrete pattern with lines mostly located at about r=nc/2(see Fig.12h),which makes its XRD pattern be quite different from those of rotated or rotate–translated t-carbon.Since random translation alone cannot appear in a stable structure,it will not be discussed here.The influence of different distortion factors on the XRD patterns of t-carbon is shown in Fig.13.It is very clear that different distortion factors have different influence on the XRD pattern.The positivefluctuation of interlayer spacing has a larger influence on the positions of diffractionlines Fig.12.NDIDs of the t-carbon with different distortion factors.(a)/m=5°and D c m=0.05;(b)/m=5°,t am=t bm=0.2and D c m=0.05;(c)d=0.05;(d) /m=5°and d=0.05;(e)/m=5°,t am=t bm=0.2and d=0.05;(f)/m=5°,t am=t bm=0.2,d=0.05and D c m=0.05;(g)D c m=0.2;(h)t am=t bm=0.2. The inserts in(g)and(h)show the enlarged views of the lower NDID regions.1692Z.Q.Li et al./Carbon45(2007)1686–1695than other distortion factors.Rotation,translation and curvature of graphene layers cause diffraction lines to shift towards smaller diffraction angles and the FWHMs to increase.It seems that it is almost impossible to separate quantitatively distortion factors from a XRD pattern if several distortion factors are involved.4.Experimental results and simulation4.1.Sample preparationGraphite powder with an average particle size of5l m was ball-milled for20h using a QM-SB type planetary ball mill with a rotation speed of 300rpm.The ball-to-powder mass ratio was about20:1.The ball-milled powder was then annealed at1700°C for9h.XRD patterns were taken using a Rigaku D/max2550PC X-ray diffractometer with Cu K a radiation.4.2.Experimental XRD patterns and simulationFig.14shows the XRD patterns of the raw and the processed powders. Only(00l)and two-dimensional diffraction lines with greatly increased FWHMs appeared in the XRD patterns of the processed powders.The intensities of(00l)lines obviously decreased with respecting to those of two-dimensional diffraction lines.Once the milled powder was annealed the XRD pattern is still composed of(00l)and two-dimensional diffrac-tion lines.Meanwhile the FWHM of(002)line obviously decreased, and the relative intensity of(002)to(10)had a small increase.Asymmetrical(002)line of ball-milled graphite was divided into two components,which corresponded to two different microstructures[3,21]. The experimental XRD patterns may be simulated by using t-carbon with different distortion factors.Fig.15shows the qualitative simulation results.The simulated XRD patterns of the as-milled sample are shown in Fig.15(a).Pattern(B)in Fig.15a was obtained from two crystallites, one is(La=14.068nm and Lc=3.364nm)with/m=8°,t am=t bm= 0.2,d=0.01,D c m=0.01;the other one is(La=4.689nm and Lc=2.018nm)with/m=8°,t am=t bm=0.2,d=0.05,D c m=0.15.The simulated pattern(B)is quite different in the intensity of(002)line from the experimental pattern(A).A similar result was also obtained for the annealed sample,see pattern(B)in Fig.15b.It seems that the distortion factors mentioned in the subparagraph2.2.3cannot completely describe the microstructure of ball-milled graphite.It is supposed that carbon atoms in graphene layers may deviate along the normal of graphene layers from their regular positions due to serious compaction during ball milling.The decrease of the intensities of(00l) lines may be related with thisfluctuation of atomic positions.Since theZ.Q.Li et al./Carbon45(2007)1686–16951693radii of curvature of graphene layers are generally much larger than the size of graphene layers,we may use thefluctuation along z-direction to replace that along the normal of graphene layers.Let the maximumfluc-tuation value of atomic positions be c m d002,thefluctuation factor c m is applied to the entire crystallite.Similar to Eq.(8),thefluctuation value for an atom is given by D z=c m d002(1–2RND).The coordinates of car-bon atoms due tofluctuation factor are given byx i;j 3¼x i;j2y i;j 3¼y i;j2ð15Þz i;j 3¼z i;j2þc m d002ð1–2RNDÞwhereðx i;j2;y i;j2,z i;j2Þis the atomic coordinate given by Eq.(14),and RND isdifferent for different atoms.Fig.16shows the XRD patterns obtained from crystallites with/m=5°,t am=t bm=0.1,d=0.01,D c m=0.05and different c m’s.Although the intensities of(00l)lines decrease with increas-ing c m,the line positions and the intensities of two-dimensional diffraction lines have no obvious variation,see the difference plot between plots(a) and(g)in Fig.16.When thefluctuation factor is taken into consideration,the simulated XRD patterns are greatly improved.The pattern(C)in Fig.15a was obtained by introducing afluctuation factor of c m=0.30into the crystal-lites of(B).Pattern(C)is much closer to the experimental one than pattern(B).A similar result was also obtained for the annealed sample,see pattern(C)in Fig.15b.It is known by comparing the patterns(B)and(C)in Fig.15a and b that the crystallite sizes have a little increase,and the distor-tion factors have a small decrease due to annealing.The simulated patterns (C)’s shown in Fig.15a and b confirm that when thefluctuation factor is taken in to simulation the experimental patterns could be simulated.It should be noted again that the simulated XRD patterns in Fig.15 should be regarded as a qualitative show about the influence of the distor-tion factors on the XRD patterns for the ball-milled graphite.Thefluctu-ation factor probably reflects some defective structure of the ball-milled graphite,which should be studied further.5.ConclusionsThe XRD patterns of h-graphite and t-carbon were sim-ulated by using the general Debye equation.The distortion factors of t-carbon may include rotation,translation,cur-vature,local positivefluctuation of interlayer spacing of graphene layers andfluctuation of atomic positions along the normal of graphene layers.These factors have different influence on the XRD patterns.(1)The diffraction angle of(002)line decreases and theFWHM of(002)line increases with decreasing crys-tallite size for both h-graphite and t-carbon.The NDID of a crystallite is decided by its size and mico-structure.The smaller diffraction angles and broad-ened FWHMs for smaller crystallites are due to their smaller NDIDs.(2)The XRD patterns of t-carbon are strongly influ-enced by the distortion factors.Rotation of graphene layers causes the three-dimensional lines,except for (00l)lines,to disappear.The XRD patterns pro-duced by translation–rotation are similar to those produced by rotation alone.(00l)lines shift to lower diffraction angles due to the local positivefluctuation of interlayer spacing,meanwhile the intensities of other three-dimensional(h k l)lines decreased.(3)The NDID is useful to characterize the microstruc-ture of t-carbon.Any variation of the XRD pattern is always related with the variation of the NDID of the crystallite.The difference plot between the XRD patterns of two crystallites coincides with the XRD difference plot obtained from the NDID difference of these two crystallites.(4)Thefluctuation of atomic positions along the normalof graphene layers has a strong influence on the inten-sities of(00l)lines.Thefluctuation factor may be related with some defective structure of ball-milled graphite,which should be studied further.(5)Since the diffraction angles and FWHMs are stronglyinfluenced by the distortion factors,the diffraction angles and FWHMs of diffraction lines cannot be simply used to characterize the lattice parameters and crystallite size of t-carbon. AcknowledgementThis work wasfinancially supported by the national Nature Science Foundation of China under Grant No. 50472060.References[1]Zhou P,Lee R,Claye A,Fischer yer disorder in carbonanodes.Carbon1998;36:1777–81.[2]Welhama NJ,Berbennib V,Chapmanc PG.Effect of extended ballmilling on graphite.J Alloy Compd2003;349:255–63.[3]Shen TD,Ge WQ,Wang KY,Quan MX,Wang JT,Wei WD,et al.Structural disorder and phase transformation in graphite produced by ball milling.Nanostruct Mater1996;7:393–9.[4]Ong TS,Yang H.Effect of atmosphere on the mechanical milling ofnatural graphite.Carbon2000;38:2077–85.[5]Salver-Disma F,Tarascona J-M,Clinard C,Rouzaud J-N.Trans-mission electron microscopy studies on carbon materials prepared by mechanical milling.Carbon1999;37:1941–59.[6]Huang JY,Yasuda H,Mori H.Highly curved carbon nanostructuresproduced by ball-milling.Chem Phys Lett1999;303:130–4.[7]Chen Y,Gerald JF,Chadderton LT,Chaffron L.Nanoporous carbonproduced by ball milling.Appl Phys Lett1999;74:2782–4.[8]Huang JY.HRTEM and EELS studies of defects structure andamorphous-like graphite induced by ball-milling.Acta Mater 1999;47:1801–8.1694Z.Q.Li et al./Carbon45(2007)1686–1695。
Wall and Ground Movements Associated with Deep
Wall and Ground Movements Associated with Deep Excavations Supported by Cast In Situ Wall in MixedGround ConditionsErin H.Y .Leung 1and Charles W.W.Ng,M.ASCE 2Abstract:Field monitoring data on lateral wall deflection and ground settlement from 14deep excavation case histories in Hong Kong involving cast in situ concrete wall were collected and analyzed.Mixed ground conditions consisted of successive layers of fill,marine deposit and/or alluvium,and decomposed geomaterials.The measured data were differentiated into two groups based on the standard penetration test N values of the ground −N Յ30͑Group A ͒and N Ͼ30͑Group B ͒at half of the excavation depth.The mean values of the maximum wall deflection ͑␦hm ͒and ground settlement ͑␦vm ͒in the excavations in Group A are 0.23and 0.12%of the excavation depth ͑H ͒,respectively.For the excavations in Group B,the mean value of ␦hm is 0.13%H which is similar to other excavations in predomi-nantly other stiff soils ͑␦hm /H =0.10–0.16%͒,but ␦vm is only 0.02%H which is small when compared to other similar database ͑␦hm /H =0.1–0.2%͒.The settlement influence zone of the excavations in both groups reaches a distance of 2.5H ,which lies between that observed in other soft clays and sands ͑d =2H ͒and in other stiff clays ͑d =3H ͒.The measured wall deflection and ground settlement are relatively insensitive to the system stiffness of the support system using cast-in-situ concrete wall.DOI:10.1061/͑ASCE ͒1090-0241͑2007͒133:2͑129͒CE Database subject headings:Databases;Excavation;Stiffness;Walls;Deflection;Hong Kong .IntroductionThe performance of deep excavations is governed by the ground conditions such as soil stiffness and the in situ stress conditions,the design including the type of support and the stiffness of the support system,the construction practice such as workman-ship,and the boundary conditions consisting of the geometry of the excavation.Some of these factors are difficult to access or quantify.Thus,it is difficult to consider all the relevant factors in a detailed analysis of the deformation of deep excavations.Semiempirical study of the performance of deep excavations is a viable means to understand the associated deformation.Semi-empirical studies of deformation associated with deep excavations worldwide have been conducted by a number of researchers ͑Peck 1969;Clough and O’Rourke 1990;Long 2001;Moormann 2004;Liu et al.2005;Wang et al.2005͒.In these studies,data on wall and ground deformation were often categorized based on the ground conditions mainly consisting of sedimentary clayey soils and sands.In each category of ground conditions,the data were analyzed to study the effects of excavation depth,type of support and stiffness of the support system on the magnitude of thewall deflection,and ground settlement.However,field monitoring of multipropped deep excavations in naturally decomposed geo-materials such as completely decomposed granite ͑CDG ͒and completely decomposed tuff ͑CDT ͒are relatively limited and in-frequently reported in the literature.In this study,the performance of 14multipropped deep exca-vations in mixed ground conditions including fill,marine depos-its,and decomposed geomaterials ͑CDG and CDT ͒in Hong Kong is investigated.Field monitored data on lateral wall deflection and ground surface settlement of these 14deep excavations were col-lected and analyzed.The magnitude of deformation,the relation-ship between the lateral wall deflection and the ground surface settlement,the pattern of ground surface settlement,and the effect of the stiffness of the support system on lateral wall deflection and ground surface settlement were studied and compared with other relevant case histories worldwide.The definitions of the symbols used in this paper are found in the section,“Notation.”The parameters are shown in Fig.1͑a ͒.Typical profiles of wall and ground movements of braced ex-cavation have been discussed by Clough and O’Rourke ͑1990͒and are shown in Fig.1.In excavations with no lateral support or insufficient stiffness in the support at the top during the ini-tial stage of excavation,the wall deforms as a cantilever and the resulting distribution of ground settlement is triangular ͓Fig.1͑b ͔͒.As excavation proceeds,the upper part of the wall is restrained and the wall deforms inward near the excavation level ͑deep inward movement ͒.The combination of the cantilever and deep inward movement patterns results in the cumulative move-ment pattern ͓Fig.1͑a ͔͒.The distribution of ground settlement is triangular if cantilever wall movement predominates,while it is trapezoidal if deep inward wall movement predominates.In order to study the effects of stiffness of a support system on lateral wall movement,Clough et al.͑1989͒proposed the system stiffness ͑K s ͒and identified relationships between K s and maxi-1Formerly,Ph.D.Student,Dept.of Civil Engineering,Hong Kong Univ.of Science and Technology,Clearwater Bay,HKSAR.2Professor,Dept.of Civil Engineering,Hong Kong Univ.of Science and Technology,Clearwater Bay,HKSAR.Note.Discussion open until July 1,2007.Separate discussions must be submitted for individual papers.To extend the closing date by one month,a written request must be filed with the ASCE Managing Editor.The manuscript for this paper was submitted for review and possible publication on June 1,2005;approved on May 23,2006.This paper is part of the Journal of Geotechnical and Geoenvironmental Engineer-ing ,V ol.133,No.2,February 1,2007.©ASCE,ISSN 1090-0241/2007/2-129–143/$25.00.JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /FEBRUARY 2007/129D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H O N G Q I N G U N I VE R S I T Y o n 09/24/14. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .mum lateral wall movement for soft to medium clays.The system stiffness ͑K s ͒is expressed in the following equation:K s =E w I ␥w h 4͑1͒with no unit in plane strain,where E w ϭYoung’s modulus of the wall;h ϭaverage vertical prop spacing of a multipropped support system;I ϭsecond moment of inertia of the wall section;and ␥w ϭunit weight of water.It can be seen that K s involves both the wall bending stiffness ͑E w I ͒and prop spacing ͑h ͒,which are the two main factors con-trolling the stiffness of a support system.Previous Field Studies of the Magnitude of DeformationThere are two basic approaches to studying the field performance of deep excavations.Individual cases of deep excavation with extensive and comprehensive field monitoring data are studied in great detail ͑Finno et al.1989;Ng 1998͒in order to improve fundamental understanding of the mechanisms involved with these deep excavations.The other approach is to study data of deformation collected from a large number of case histories worldwide ͑Peck 1969;Clough and O’Rourke 1990;Long 2001;Moormann 2004͒and from local areas ͑Wong et al.1997;Yoo 2001͒.The outcomes of the second approach are to form a data-base including charts and figures for engineers to carry out their designs and for numerical modelers to calibrate their models and model procedures.It is the second approach that is adopted in this paper.In an earlier study by Peck ͑1969͒,the magnitude of ground settlement due to excavations supported by temporary braced sheet pile and soldier pile walls was found to be relatively large.For instance,the upper bound of ground settlement near the wall was about 1%of the excavation depth for excavations in sand,stiff clay,and soft clay ͑i.e.,Category I ͒.With advances in the design and construction of support systems,the magnitude of ground settlement induced by the excavation is reduced as illus-trated in later studies in the literature.Recent studies involving a large number of case histories worldwide ͑Clough and O’Rourke 1990;Long 2001;Moormann 2004͒revealed that the average values of both the maximum lateral wall deflection and ground settlement range from 0.1to 0.3%of the depth of excavation in stiff soils ͑stiff clay,sand,and residual soil ͒.A limited number of studies have investigated the magnitude of deformation associated with excavations in mixed grounds including decomposed mate-rials in Singapore and Korea by Wong et al.͑1997͒and Yoo ͑2001͒,respectively.The soil profiles consist of successive layers of fill,residual soil,and soft to hard rock.The maximum lateral wall movement and maximum ground settlement of a majority of the cases were less than 0.2%of the excavation depth.In general,the magnitudes of wall and ground movements are relatively small for excavations in stiff soils and decomposed materials.Previous Studies on the Relationship between Stiffness of Support System and Movements Clough et al.͑1989͒introduced a design chart for estimating the magnitude of the maximum lateral wall movement based on the system stiffness ͑K s ͒and the factor of safety against basal heave ͑FOS heave ͒in soft to medium clays.For excavations in soft to medium clays where the basal stability is a concern ͑FOS heave Ͻ1.5͒,the effect of the stiffness of support system on the magnitude of wall movement is important.For excavations in stiff soils where FOS heave is greater than 2.0,the magnitude of wall movement is smaller and the influence of the stiffness of the support system is relatively minor.Addenbrooke et al.͑2000͒demonstrated via finite-element analyses that the displacement flexibility number ͑⌬͒can be used to define wall and ground movements in undrained deep excava-tions in stiff clay.They suggested that this parameter can be utilized to derive an economical support system in retaining wall designs.The results of the finite-element analyses illustrate a clear relationship between the stiffness of the support system and movements ͑lateral wall deflection,vertical,and horizontal ground movements ͒.Although it has been suggested in design chart and finite-element analysis that movements are related to the stiffness of support system ͑Clough et al.1989;Addenbrooke et al.2000͒,databases compiled from a large number of deep excavation case histories indicate that there is no obvious relationship between the maximum lateral wall deflection and the stiffness of the support system ͑Long 2001;Moormann 2004͒.It should be noted that as far as the authors are aware,there is no data reported in the literature showing the relationship between the maximum ground settlement and the stiffness of the support system.Typical Details concerning Deep Excavations in Hong KongGeology and Ground Conditions in Urban Areas V olcanic and granitic rocks of the Late Mesozoic are the domi-nant lithologies in Hong Kong,as a result of widespreadvolcan-Fig.1.Typical profiles of wall and ground movement for braced excavation ͑Clough and O’Rourke 1990,ASCE ͒:͑a ͒cumulative movement and definition of parameters used in the study;͑b ͒cantilever movement130/JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /FEBRUARY 2007D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H O N G Q I N G U N I VE R S I T Y o n 09/24/14. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .ism and plutonism during the period ͑Sewell et al.2000͒.The warm and humid climate in Hong Kong has promoted weathering processes in these rocks.Weathered profiles are typically a few meters to several tens of meters in thickness ͑Fyfe et al.2000͒.They are overlaid with quaternary superficial deposits varying from thin patches to several tens of meters in thickness.Quater-nary superficial deposits include locally substantial colluvium and widespread alluvium.Marine deposits may exist in some areas lying above the alluvium.In urban areas,a layer of fill,which is a few meters in thickness lies above the superficial deposits.The groundwater table is generally high and located a few meters below the ground surface.Due to the lack of flat land for urban development,extensive reclamations were carried out especially along the shoreline of Kowloon Peninsula and the northern part of Hong Kong Island in the past century ͑Fyfe et al.2000͒.Six decomposition grades ͑refer to Table 1͒are used for two commonly found volcanic and granitic materials in Hong Kong ͑GCO 1988͒.Geotechnically,the term “rock”refers only to ma-terial of decomposition Grades I to III with I being fresh rock.Grades IV ,V ,and VI material are referred to as “soil.”Saprolites are equivalent to “rock”of decomposition Grades IV and V ͑or,respectively,called highly decomposed and completely decom-posed materials ͒.The physical properties of Grades IV and V material are closer to those of soil than rock.The occurrence of rock of weathering Grade VI,referred to as “residual soil,”which is uncommon in Hong Kong and is usually found only in thin layers.Since obtaining high quality samples of granular granitic and volcanic saprolites from great depths ͑more than 20m ͒is extremely difficult if not impossible for laboratory testing,the standard penetration test ͑SPT ͒is the most commonly method adopted in Hong Kong to characterize their geotechnical proper-ties empirically.Recently it has been found that shear modulus of granitic saprolites is highly nonlinear even at very small strains.Based on field measurements of shear modulus of granite sapro-lites at very small strains ͑G o ͒by compression wave and shear wave ͑P-S ͒velocity logging tests at Kowloon Bay ͑Ng et al.2000͒,it is found generally that14.4ͩN 2ͪ0.68ՅG o Յ14.4N 0.68͑MPa ͒͑2͒where N is blow count from SPTs.Other details and more labo-ratory and field test results are given by Ng et al.͑2000͒,Ng and Wang ͑2001͒,and Wang and Ng ͑2005͒.For simplified design purposes,a wide range of empirical correlation of Young’s modu-lus with SPT N values such as E =200to 3000N ͑kPa ͒have been proposed ͑GEO 1996͒.Moreover,empirical relationships of shear strength parameters ͑i.e.,effective cohesion,c Јand angle of fric-tion,Ј͒with SPT N values and fine contents are given by Pun and Ho ͑1996͒.Typically Јvaries between 33°and 44°and c Јchanges from 0to 6kPa,depending on SPT N values and fine contents.Construction MethodsExcavations are commonly carried out in congested areas to in-crease underground usable spaces in Hong Kong.As construction space is generally limited and ground movement control is impor-tant,embedded walls are constructed to support the ground.In deep excavations that provide underground space,commonly adopted wall types include diaphragm wall and secant pile wall.During the construction of diaphragm wall,slurry trenches may be excavated using a cable-operated grab and the stability of the trenches is maintained by bentonite which has unit weight typi-cally varying from 10.5to 10.8kN/m 3in Hong Kong.Obstruc-tions such as boulders may be encountered during the excavation of a slurry trench and so chiseling may be required to break loose the hard material,which may in turn cause additional settlement.Table 1.Classification of Rock Material Decomposition Grades ͑Adapted from GCO 1988͒Descriptive term Grade symbol General characteristics for granitic and volcanic rocksResidual soilVI •Original rock texture completely destroyed•Can be crumbled by hand and finger pressure into constituent grains Completely decomposedV•Original rock texture preserved•Can be crumbled by hand and finger pressure into constituent grains •Easily indented by point of geological pick •Slakes when immersed in water•Completely discolored compared with fresh rock Highly decomposedIV•Can be broken by hand into smaller pieces•Makes a dull sound when struck by geological hammer •Not easily indented by point of geological pick •Does not slake when immersed in water•Completely discolored compared with fresh rockModerately decomposed III•Cannot usually be broken by hand;easily broken by geological hammer •Makes a dull or slight ringing sound when struck by geological hammer •Completely stained throughoutSlightly decomposed II•Not broken easily by geological hammer•Makes a ringing sound when struck by geological hammer•Fresh rock colors generally retained but stained near joint surfaces Fresh I•Not broken easily by geological hammer•Makes a ringing sound when struck by geological hammer •No visible signs of decomposition ͑i.e.,no discoloration ͒JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /FEBRUARY 2007/131D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H O N G Q I N G U N I VE R S I T Y o n 09/24/14. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .Based on the results from a comprehensive field monitoring of the excavation a diaphragm wall panel in Hong Kong ͑Ng et al.1999͒,however,it was found that chiseling at 40m below ground in fact did not result in any significant ground movements both vertically and horizontally.Walls are usually supported by permanent props at various levels ͑e.g.,concrete floor slabs in top-down systems ͒or tempo-rary props ͑e.g.,steel struts in both top-down and bottom-up systems ͒.Ground anchors may be used in some instances.The top-down construction method is often employed with the inten-tion to minimize ground movements and to speed up construction,while in some cases the bottom-up method is used.According to Long ͑2001͒,however,the averaged normalized wall deflection observed in excavations using the top-down method is not obvi-ously smaller than that using the bottom-up method.On the con-trary,the induced wall deflection using the top-down method is slightly higher than that using the bottom-up method.Installing grout curtain at the toe of the diaphragm wall is a common practice in Hong Kong to control seepage of ground-water into an excavation site and hence to limit groundwater drawdown and ground settlement outside the site.A pumping test is often carried out to ensure water tightness of diaphragm wall.Details of the Collected Case HistoriesData from 14deep excavation case histories in Hong Kong were collected and analyzed in this study.Tables 2and 3summarize details of the case histories,including wall type,support system,method of construction,soil profile,location of the groundwater table,excavation depth and width,wall embedment depth and stiffness,average support spacing,factors of safety against basal heave and toe kicking,and maximum lateral wall deflection and ground settlement.The wall stiffness ͑E w I ͒was calculated from an assumed value of Young’s modulus of an uncracked concrete section without reinforcement ͑E w =32GPa ͒and a sec-ond moment of inertia ͑I ͒calculated from the wall thickness ͑t ͒͑I =t 3/12͒.For calculating the factor of safety against basal heave ͑FOS base ͒,the method proposed by Terzaghi ͑1943͒was adopted and undrained shear strength ͑c u ͒of soil was obtained by corre-lating it to SPT N value by c u =4.4N ͑Stroud 1988͒.The factor of safety against toe kicking was calculated as the ratio of restoring moment to overturning moment of a free-ended span below the lowest strut ͑GCO 1990͒.The collected data on the measured maximum lateral wall deflection and ground settlement are due solely to the main excavation activities.This ensures consistent comparisons of ground deformations and wall deflections in the case histories collected in Hong Kong and in the case histories reported in the literature.Only the wall deflection and ground settlement measured at sections away from the corner of an ex-cavation are considered in this paper and thus the deflections and ground settlements can be taken under the plane strain conditions.It is generally recognized that ground settlement measurement is not very accurate in practice.Based on local experience,the po-tential error in settlement measurement may be up to ±5mm.The groundwater drawdown outside the site was minimal in all the reported cases.Layered soil profiles were encountered in all the case histories in Hong Kong as summarized in Tables 2and 3.The soil profiles generally include layers of fill,marine deposits and/or alluvium,and completely decomposed ͑Grade V;GCO 1988͒granite or volcanic rock.At greater depths,the ground consists of materials decomposed to lesser extents and fresh rock.The decomposedmaterials in the soil profiles of most of the cases are those weath-ered from granitic rocks because these are the materials mostly encountered in the urban area.Only two case histories reported are in the presence of materials derived from volcanic rocks ͑i.e.,Luen Wo Hui and TKO Station ͒.All of the 14reported case histories,except for one case where secant pile wall was used ͑i.e.,Argyle Station ͒,utilized dia-phragm wall as the retaining wall.The top-down construction method was employed in all excavations,except for two cases where the bottom-up method and steel strut support system were employed ͑i.e.,TKO Station,TWW Station ͒.All the 12top-down cases collected in this study followed the conventional top-down sequence where the first basement slab or a ground floor slab was cast first before an excavation was carried out to a lower base-ment level.The propping sequence among the cases was similar.Based on the measured SPT N values at about half depth of each excavation ͑see Fig.2͒,the case histories are differenti-ated and separated in two groups,i.e.,for N Յ30͑Group A ͒and N Ͼ30͑Group B ͒.The normalized depth shown in Fig.2refers to depth normalized by the depth of excavation of each corre-sponding site.The SPT N values generally increase with an in-crease in depth for all the sites.For the sites classified in Group A ͓Fig.2͑a ͔͒,the upper part of the ground consists of relatively soft materials;and at half of the depth of excavations ͑y /H =0.5͒,the SPT N value is less than 30.It should be noted that the case histories in this group involve excavation sites mainly in re-claimed lands.For the sites in Group B ͓Fig.2͑b ͔͒,the SPT N values at y /H =0.5is larger than 30.The SPT N values at the upper strata of the grounds are generally larger than those of the sites in Group A.Relationship between Deformation and Excavation DepthMaximum Lateral Wall Deflection and Location of the Maximum DeflectionFig.3͑a ͒shows the relationship between the maximum lateral wall deflection ͑␦hm ͒͑Table 2͒and the depth of the excavation ͑H ͒for the sites in Group A ͑N Յ30at y /H =0.5͒.A trend of an increasing magnitude of ␦hm with increasing H is observed.Two cases show exceptionally small wall deflection ͑CSW Govern-ment Office and Sheung Wan Crossover ͒.The small lateral wall deflection in the case of CSW Government Office is due to the enhanced soil stiffness by grouting to minimize deformation of a nearby railway tunnel ͑Chu et al.2001͒.The exceptionally small wall deflection in the case of Sheung Wan Crossover is possibly due to the high stiffness of the support system associated with its close prop spacing and large thickness of concrete slabs ͑1.2–1.5m ͒which increases the prop stiffness ͑Table 2;Fraser 1992͒.Disregarding the two cases,the values of ␦hm range from 0.19to 0.29%H with a mean value of 0.23%H .There appears to be no discernible difference in the magnitude of wall deflection between cases using bottom-up ͑TKO Station and TWW Station ͒and top-down construction methods.Table 4compares the nor-malized maximum wall deflection ͑␦hm /H ͒observed in world-wide case histories.The data of Group A show similar magnitude of ␦hm /H compared to that observed in worldwide case histories in stiff clays,residual soils,and sands ͑Clough and O’Rourke 1990͒and in significant thickness of soft soils with stiff material at dredge level ͑Long 2001͒,where ␦hm /H Ϸ0.2%.Less wall movement is observed in the study conducted by Wong et al.132/JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /FEBRUARY 2007D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H O N G Q I N G U N I VE R S I T Y o n 09/24/14. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .͑1997͒,where ␦hm /H is about 0.15%in excavations in significant thickness of soft soils overlying decomposed rock and supported by props preloaded to 30to 70%of the design load.Fig.3͑b ͒shows the relationship between ␦hm and H for the cases in Group B ͑N Ͼ30at y /H =0.5͒.The magnitude of ␦hm increases with increasing values of H .The values of ␦hm range from 0.09to 0.20%H with a mean value of 0.13%H ,which are smaller than that observed in the cases in Group A ͑N Յ30at y /H =0.5͒.The magnitude of wall deformation is similar to that of excavations in predominantly stiff soils ͑Wong et al.1997;Long 2001͒͑Table 4͒.The maximum wall deflection in excava-tions in stiff clays,residual soils,and sands suggested in the study by Clough and O’Rourke ͑1990͒͑␦hm =0.2%H ͒forms the upper bound of the data in this study ͓Fig.3͑b ͔͒.The data of Group B show larger wall deflection compared with that observed in the study of Yoo ͑2001͒where excavations in stiff ground profile with one-third of the excavation depth comprises hard rock are studied.In Hong Kong,13out of 14case histories reported in this study have shown similar types of wall deformation pattern as illustrated in Fig.1͑a ͒,even though a large portion of the dia-phragm wall is embedded in hard stratum.The normalized loca-tion of measured maximum wall deflection by excavation depth ͑␦hm /H ͒for each case history collected is summarized in Tables 2and 3for nine and five excavations in Groups A and B,respec-tively.The measured ranges of ␦hm /H vary from 0.61to 1.07and 0.52to 0.96for cases in Groups A and B,respectively,except the excavation at Festival Walk at which a cantilever mode of wall deflection was observed.It can be seen from the two tables that 13out of 14case histories of multipropped excavations in Hong Kong have shown similar types of wall movement pattern as il-lustrated in Fig.1͑a ͒,even though in some cases a large portion of the diaphragm wall is embedded in hard stratum.The observa-tions made in Hong Kong are consistent with those reported worldwide ͑Ng 1998;Yoo 2001͒.On the other hand,based on back-analyzed results at Festival Walk,it is believed that the ob-served cantilever mode of wall deformation near the top was likely caused by insufficient support stiffness provided during theFig.2.SPT N profile for sites in ͑a ͒Group A ͑N Յ30at y /H =0.5͒;͑b ͒Group B ͑N Ͼ30at y /H =0.5͒Fig.3.Maximum lateral wall deflection versus excavation depth:͑a ͒Group A ͑N Յ30at y /H =0.5͒;͑b ͒Group B ͑N Ͼ30at y /H =0.5͒D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H O N G Q I N G U N I VE R S I T Y o n 09/24/14. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .Maximum Ground Surface SettlementFig.4͑a ͒shows the relationship between the maximum ground surface settlement ͑␦v m ͒͑Table 2͒and the depth of excavation ͑H ͒for the cases in Group A ͑N Յ30at y /H =0.5͒.The magnitude of ␦v m generally increases with an increasing value of H .Except the case of CSW Government Office,the maximum ground sur-face settlement ranges from 0.06to 0.22%H with a mean value of 0.12%H .The exceptionally small ground settlement in the case of CSW Government Office is due to the grout treatment as discussed previously.The case of TWW Station shows relatively large ground settlement possibly due to the continuation of consolidation settlement of the newly reclaimed land.The magnitude of maximum ground settlement is similar to that observed in other case histories involving stiff clays,residual soils,and sands ͑Clough and O’Rourke 1990͒and in significant soft soils overlying decomposed rock ͑Wong et al.1997͒͑Table 4͒,which is in the range of 0.1to 0.15%H .The database for maximum ground settlement of top-down systems in stiff or medium dense soils overlaid with soft soils of thickness greater than 0.6H ͑Long 2001͒,however,shows larger ground settlement ͑␦v m /H =0.39%͒.Fig.4͑b ͒shows the relationship between ␦v m and H for the cases in Group B ͑N Ͼ30at y /H =0.5͒.The value of ␦v m varies from 0.01to 0.04%H .The average value of ␦v m is 0.02%H ,which is small compared with that observed in the cases in Group A ͑N Յ30at y /H =0.5͒.Stiffer ground profile as suggested in the higher SPT N values in the cases in Group B ͑Fig.2͒contributed to the small ground settlement.The magnitude of ␦v m is small compared with the magnitude suggested in worldwide case histo-ries where ␦v m varies from 0.1to 0.2%H ͑Table 4;Clough and O’Rourke 1990;Wong et al.1997;Long 2001͒.Relationship between Maximum Lateral Wall Deflection and Ground Surface SettlementFig.5͑a ͒shows the relationship between the maximum lateral Table parison of Wall and Ground Movements Observed in Worldwide Case Histories Study Ground conditionsSupport system/construction method␦hm /H ͑%͒␦vm /H ͑%͒Clough and O’Rourke ͑1990͒Stiff clays,residual soils and sandsVarious including soldier pile,sheetpile and diaphragm walls 0.20.15Wong et al.͑1997͒Decomposed rock overlaid with soft deposits of thickness of 0.6–0.9H Contiguous bored pile wall anddiaphragm wall with preloaded propsϳ0.15ϳ0.1Decomposed rock overlaid with soft deposits of thickness Ͻ0.6Hϳ0.1ϳ0.1Long ͑2001͒Stiff or medium dense soils overlaid with soft soils of thickness Ͼ0.6H Top down 0.210.39Stiff or medium dense soils overlaid with soft soils of thickness Ͻ0.6H 0.160.2Yoo ͑2001͒Fill overlying residual soils,soft and hard rocks ͑Thickness of hard rock Ϸ0.3H ͒Diaphragm wall 0.05N/AThis studyGroup A ͑N Յ30at y /H =0.5͒Diaphragm wall ͑all cases ͒;Top down ͑seven cases ͒,Bottom up ͑two cases ͒0.230.12Group B ͑N Ͼ30at y /H =0.5͒Diaphragm wall ͑four cases ͒,Secant pile wall ͑one case ͒Top down ͑all cases ͒0.130.02Fig.4.Maximum ground settlement versus excavation depth:͑a ͒Group A ͑N Յ30at y /H =0.5͒;͑b ͒Group B ͑N Ͼ30at y /H =0.5͒D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H O N G Q I N G U N I VE R S I T Y o n 09/24/14. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .。
REF195ESZ中文资料
TP 1 REF19x 8 NC VS 2 SERIES 7 NC
SLEEP 3 TOP VIEW 6 OUTPUT GND 4 (Not to Scale) 5 TP
NOTES 1. NC = NO CONNECT. 2. TP PINS ARE FACTORY TEST
POINTS, NO USER CONNECTION.
TEST PINS
Test Pin 1 and Test Pin 5 are reserved for in-package Zener zap. To achieve the highest level of accuracy at the output, the Zener zapping technique is used to trim the output voltage. Since each unit may require a different amount of adjustment, the resistance value at the test pins varies widely from pin to pin and from part to part. The user should leave Pin 1 and Pin 5 unconnected.
All electrical grades are available in an 8-lead SOIC_N package; the PDIP and TSSOP packages are available only in the lowest electrical grade. Products are also available in die form.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
经典GIF动态图出处大集合第一期出处表
第一首音乐Group love- Ton gue Tied 00:00:00-00:03:33第二首音乐Vox A ngeli - Ne w Sou l 00:03:36-00:06:45第三首音乐KatyPerry - Ro ar 00:06:45-00:10:26第四首音乐Clean Band it -Rathe r Be(feat. Jes s Gly nne) 00:10:28-00:14:23第五首音乐Audio machi ne -Breat h and Life 00:14:25-00:16:06第六首音乐OneRe publi c - C ounti ng St ars 00:16:08-00:20:22第七首音乐Sisse l Kyr kjebo - So meone Like You 00:20:25-00:22:42结尾片段出自电影座头市(2003)001:超凡蜘蛛侠 TheAmazi ng Sp ider-Man (2012)002:珠光宝气 TheBling Ring (2013)003:伴娘 Brid esmai ds (2011)004:勇敢的心Brave heart (1995)005:游戏巫师3宣传视频006:超人高校 Sk y Hig h (2005) 007:韩国电影向日葵(2006)008:勇士Magad heera (2009)009:A utoer otiqu e - A sphyx iatio n010:不惧风暴 Int o the Stor m (2014) 011:LYNXExcit e Fal len A ngels Funn y AdsL ynx E xcite香水广告天使坠落012:天国王朝 King dom o f Hea ven (2005)013:信号The S ignal (2014)014:网游《突击风暴》宣传广告片015:宿醉 TheHango ver (2009)016:加勒比海盗4:惊涛怪浪P irate s ofthe C aribb ean:On St range r Tid es (2011)017:陈静S pa Co llect ion 愛享瘦活动视频018:钢铁侠3 Ir on Ma n 3 (2013)019:世界之战 War of t he Wo rlds(2005)020:美剧废柴联盟s03e22021:复仇者联盟 The Aven gers(2012)022:神奇四侠2 F antas tic 4: Ris e ofthe S ilver Surf er (2007)023:长大成人2 Gro wn Up s 2 (2013)024:AOA MINI SKIRT025:单亲度假村 Ble nded(2014)026:神奇四侠2 F antas tic 4: Ris e ofthe S ilver Surf er (2007)027:X战警:逆转未来X-Men: Day s ofFutur e Pas t (2014) 028:分歧者:异类觉醒D iverg ent (2014)029:金刚KingKong(2005)030:沉睡魔咒 Ma lefic ent (2014)031:哥斯拉 Godz illa(2014)032:割喉岛 Cut throa t Isl and (1995)033:ava lanch e sha rks (2013)034:杀死比尔2 Ki ll Bi ll: V ol. 2 (2004)035:复仇忍者R eveng e ofthe N inja(1983)036:我,机器人I, Rob ot (2004)037:无敌浩克 TheIncre dible Hulk (2008)038:星际迷航:暗黑无界S tar T rek I nto D arkne ss (2013)039:极速60秒 Gon e in60 Se conds (2000)040:绿巨人浩克Hulk(2003)041:飙风战警 Wi ld Wi ld We st (1999)042:绝命反击 TheLoser s (2010) 043:特种部队:眼镜蛇的崛起 G.I. Joe: The Rise of C obra(2009) 044:异星战场 Joh n Car ter (2012)045:美国队长2 Cap tainAmeri ca: T he Wi nterSoldi er (2014)046:针脚 St itche s (2012)047:守望者 Wa tchme n (2009) 048:突袭2:暴徒 The Raid 2: B erand al (2014)049:白日梦想家 The Secr et Li fe of Walt er Mi tty (2013)050:惊天危机 Whi te Ho use D own (2013)051:木乃伊3 The Mumm y: To mb of theDrago n Emp eror(2008)052:美国队长2 C aptai n Ame rica: TheWinte r Sol dier(2014)053:我的超级前女友 My S uperEx-Gi rlfri end (2006)054:赏金杀手 Bou nty K iller (2013)055:斯大林格勒 (2013) 056:全面回忆Total Reca ll (2012)057:生化危机4:战神再生 Res ident Evil: Aft erlif e (2010) 058:守望者W atchm en (2009)059:三个火枪手 The Thre e Mus ketee rs (2011)060:七个神经病 Sev en Ps ychop aths(2012)061:天龙特攻队T he A-Team(2010)062:金刚不坏 De ath P roof(2007)063:长大成人2 G rownUps 2 (2013)064:蠢蛋搞怪秀3.5 Ja ckass 3.5(2011)065:佛莱迪大战杰森 Fred dy vs. Jas on (2003)066:星际迷航 Star Trek (2009)067:绝密飞行S tealt h (2005) 068:超人:钢铁之躯 Ma n ofSteel (2013)069:变形金刚4:绝迹重生Trans forme rs: A ge of Exti nctio n (2014) 070:遗落战境Obliv ion (2013)071:红色机尾 Red Tail s (2012) 072:冥界警局R.I.P.D. (2013)073:明日边缘 Edg e ofTomor row (2014)074:游戏T he.Cr ew法外之徒宣传视频075:惊天魔盗团 No w You SeeMe (2013)076:碟中谍4 Miss ion:Impos sible - Gh ost P rotoc ol (2011)077:惊天战神 Immo rtals (2011)078:敢死队3 T he Ex penda bles3 (2014) 079:加勒比海盗3:世界的尽头 Pi rates of t he Ca ribbe an: A t Wor ld'sEnd (2007) 080:弯刀杀戮 Mac heteKills (2013)081:复仇者联盟The A venge rs (2012)082:波西·杰克逊与魔兽之海 Pe rcy J ackso n: Se a ofMonst ers (2013)083:致命武器4 Le thalWeapo n 4 (1998)084:星际迷航 Sta r Tre k (2009) 085:游戏Wat ch Do gs看门狗宣传视频086:夏日福星 (1985)087:嗜血破晓D aybre akers (2009)088:惊变28周28 We eks L ater(2007)089:极品飞车 Ne ed fo r Spe ed (2014)090:死神来了5 Fin al De stina tion5 (2011) 091:木乃伊3The M ummy: Tomb of t he Dr agonEmper or (2008)092:致我们终将逝去的青春 (2013) 093:霍比特人2:史矛革之战 The Hobb it: T he De solat ion o f Sma ug (2013)094:GC13:《丧尸围城3》宣传视频095:猪头逛大街3 A Very Haro ld &Kumar 3D C hrist mas (2011)096:游戏合金装备5幻痛宣传视频097:第三类外星人Xtro(1983)098:超验骇客 Tr ansce ndenc e (2014) 099:第一滴血4 Ramb o (2008) 100:金玉良缘38集。
一百多个精心收藏的经典网址
一百多个精心收藏的经典网址2009-10-31 02:041,看看自己具有哪个大明星的脸型/cgi-bin/index/2,超有意思的Flash网站,虚拟办公3,亲自动手给美女画纹身/UK/tattoo_parlour/index.html 推荐一个极品的签名制作站可免费获得签名一款/?u=94664,输入文字就发出声音!只支持繁体中文,同时也是学习普通话和粤语的好地方5,在线做个通缉令/wanted/6,制作属于自己的卡通大头像吧7,在你的照片上添加有趣对话8,这个网站提供各种有趣的在线拼图9,很逼真!模仿XP系统操作的网站10,原来制作带阴影的LOGO如此容易/web2.php11,教你打领带/dalingdai.html12,系鞋带的N种方法/shoelace/lacingmethods.htm#2trillion13,咱也弄个自己的徽章玩玩/seal/index.php14,在线素描http://flashface.ctapt.de15,各种动画图标制做16,各种字体图片制做17,/index8.php超牛的语音翻译,输入文字里面的人自动给你以语音的形式翻译出来,有趣的是他眼睛跟你你鼠标转,遗憾的是不是免费的!18,你今天印书了么?免费将你的博客翻印成书/?UN=f1208b59454a9a744055&ShowType=0 19,做个德国身份证玩玩http://onlinewahn.de/generator/20,自己做个图来让别人拼/puzzle/21,在线媒体提取工具22,DiY网络拼图23,2G网络硬盘,仿windows操作系统24.在线媒体转换工具它支持大量的文件格式之间的互相转换,包括视频、音频、PPT文档、Word文档、表格文档、图片等等数十种之多。
比如你可以把mp3转换成wav,把png转换成gif,把word文件转换成txt文件25.在线保存,分享和交流网页,博客,新闻为您的一篇文章嵌入Hinale按钮,更方便用户保存和交流您的文章26.blog 搜索引擎.au27.[ ImageCrop ] 功能相对简单,它其实是一款为MSN、Yahoo Messager等制作头像的剪裁工具,因此,它的特色在于内置了专用尺寸模板,比如MSN、论坛头像75×75或85×85的尺寸等等。