高中文科数学一轮复习1.2

合集下载

集合的概念与运算——2021年高考文科数学一轮复习热点题型(附解析)

集合的概念与运算——2021年高考文科数学一轮复习热点题型(附解析)

2021年高考文科数学一轮复习:题型全归纳与高效训练突破专题1.1 集合的概念与运算目录一、题型全归纳 (1)题型一集合的含义与表示 (1)题型二集合的基本关系 (2)题型三集合的基本运算 (3)题型四利用集合的运算求参数 (4)题型五集合中的新定义问题 (5)二、高效训练突破 (6)一、题型全归纳题型一集合的含义与表示【题型要点】与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.【例1】已知集合A={1,2,3,4,5},B={(x,y)|x∈A且y∈A且x-y∈A},则B中所含元素的个数为() A.3B.6C.8D.10【例2】)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.题型二集合的基本关系【题型要点】(1)判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系(要注意区间端点的取舍),进而转化为参数所满足的关系,常用数轴、V enn图等来直观解决这类问题.【例1】已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4【例2】已知集合A={x|-1<x<3},B={x|-m<x<m},若B⊆A,则m的取值范围为______.题型三集合的基本运算【题型要点】集合基本运算的求解策略【例1】(2020·郑州市第一次质量预测)设全集U=R,集合A={x|-3<x<1},B={x|x+1≥0},则∁U(A∪B)=()A.{x|x≤-3或x≥1} B.{x|x<-1或x≥3}C.{x|x≤3} D.{x|x≤-3}【例2】(2020黄冈调研)已知函数f(x)=11-x2的定义域为M,g(x)=ln(1-x)的定义域为N,则M∪(∁R N)=()A .{x |x >-1}B .{x |x ≥1}C .∅D .{x |-1<x <1}题型四 利用集合的运算求参数【题型要点】根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.【例1】已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( )A .(-∞,-2)B .[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞)【例2】集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4【例3】(河南省洛阳市2019-2020学年高三上学期期中数学试题)已知集合{}3log (2)2A x x =-≤,{}20B x x m =->,若A B ⊆,则实数m 的取值范围是( )A .]4∞(-, B .4∞(-,) C .22∞(-,)D .22]∞(-,题型五 集合中的新定义问题【题型要点】(1)紧扣“新”定义:分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在.(2)把握“新”性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.(3)遵守“新”法则:准确把握新定义的运算法则,将其转化为集合的交集、并集与补集的运算即可.【例1】定义集合的商集运算为A B ={x |x =m n ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k 2-1,k ∈A },则集合B A∪B 中的元素个数为( ) A .6B .7C .8D .9【例2】设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【例3】如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x ,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =________.二、高效训练突破1.(2020·武汉调研)设A ,B 是两个非空集合,定义集合A -B ={x |x ∈A ,且x ∉B }.若A ={x ∈N |0≤x ≤5},B ={x |x 2-7x +10<0},则A -B =( )A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5} 2.(2020·巴蜀中学月考)已知集合A ={x |x ∈Z ,且32-x ∈Z },则集合A 中的元素个数为( ) A .2B .3C .4D .53.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.44.设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{-1,2,3} D.{1,2,3,4}5.(2020·宁夏石嘴山三中一模)已知集合A={-1,0,1,2},B={x|x2-1≥0},则下图中阴影部分所表示的集合为()A.{-1} B.{0}C.{-1,0} D.{-1,0,1}6.已知集合A={x|x2-2x-3≤0,x∈N*},则集合A的真子集的个数为()A.7 B.8C.15 D.167.已知全集U=R,函数y=ln(1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)9.已知全集U=R,集合A={x|x<-1或x>1},则∁U A=()A.(-∞,-1)∪(1,+∞) B.(-∞,-1]∪[1,+∞)C.(-1,1) D.[-1,1]10.(2020·辽宁辽阳期末)设集合A={x∈Z|x>4},B={x|x2<100},则A∩B的元素个数为()A.3 B.4C.5 D.611.如图所示的Venn图中,A,B是非空集合,定义集合A⊗B为阴影部分表示的集合.若x,y∈R,A={x|2x -x2≥0},B={y|y=3x,x>0},则A⊗B=()A.{x|0<x<2} B.{x|1<x≤2}C.{x|x≤1或x≥2} D.{x|0≤x≤1或x>2}12.(2020·济南外国语学校月考)集合M={x|2x2-x-1<0},N={x|2x+a>0},U=R.若M∩(∁U N)=∅,则a 的取值范围是()A.(1,+∞) B.[1,+∞)C.(-∞,1) D.(-∞,1]二、填空题1.(2020·江苏南京联合调研改编)已知全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},则A∩B =______,∁U A=______.2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=________.3.已知集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],则a的值是________.4.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.5.已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素数字之和为________.6.已知k为合数,且1<k<100,当k的各数位上的数字之和为质数时,称此质数为k的“衍生质数”.(1)若k的“衍生质数”为2,则k=________;(2)设集合A={P(k)|P(k)为k的“衍生质数”},B={k|P(k)为k的“衍生质数”},则集合A∪B中元素的个数是________.三、解答题1.(2019·衡水中学测试)已知集合A={x∈R|x2-ax+b=0},B={x∈R|x2+cx+15=0},A∩B={3},A∪B={3,5}.(1)求实数a,b,c的值;(2)设集合P={x∈R|ax2+bx+c≤7},求集合P∩Z.2.已知集合A={x|-1<x≤3},B={x|m≤x<1+3m}.(1)当m=1时,求A∪B;(2)当B⊆∁R A时,求实数m的取值范围.3.(2019·江苏盐城一中模拟)已知集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+a2-5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.2021年高考文科数学一轮复习:题型全归纳与高效训练突破专题1.1 集合的概念与运算目录一、题型全归纳 (1)题型一集合的含义与表示 (1)题型二集合的基本关系 (2)题型三集合的基本运算 (3)题型四利用集合的运算求参数 (4)题型五集合中的新定义问题 (5)二、高效训练突破 (6)一、题型全归纳题型一集合的含义与表示【题型要点】与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.【例1】已知集合A={1,2,3,4,5},B={(x,y)|x∈A且y∈A且x-y∈A},则B中所含元素的个数为() A.3B.6C.8D.10【答案】D【解析】(1)由x∈A,y∈A,x-y∈A,得x-y=1或x-y=2或x-y=3或x-y=4,所以集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},所以集合B中有10个元素.【例2】)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【答案】-32【解析】因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去), 当m =-32时,m +2=12≠3,符合题意.所以m =-32. 题型二 集合的基本关系【题型要点】(1)判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系(要注意区间端点的取舍),进而转化为参数所满足的关系,常用数轴、V enn 图等来直观解决这类问题.【例1】已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4【答案】D【解析】 由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.【例2】已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为______.【答案】(-∞,1]【解析】当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].题型三 集合的基本运算【题型要点】集合基本运算的求解策略【例1】(2020·郑州市第一次质量预测)设全集U =R ,集合A ={x |-3<x <1},B ={x |x +1≥0},则∁U (A ∪B )=( )A .{x |x ≤-3或x ≥1}B .{x |x <-1或x ≥3}C .{x |x ≤3}D .{x |x ≤-3}【答案】D【解析】因为B ={x |x ≥-1},A ={x |-3<x <1},所以A ∪B ={x |x >-3},所以∁U (A ∪B )={x |x ≤-3}.故选D.【例2】(2020黄冈调研)已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1-x )的定义域为N ,则M ∪(∁R N )=( )A .{x |x >-1}B .{x |x ≥1}C .∅D .{x |-1<x <1} 【答案】A11 / 19 【解析】由1-x >0得N ={x |x <1},∁R N ={x |x ≥1},而由1-x 2>0得M ={x |-1<x <1},所以M ∪(∁R N )={x |x >-1}.题型四 利用集合的运算求参数【题型要点】根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.【例1】已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( )A .(-∞,-2)B .[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞) 【答案】D.【解析】:因为A ∪B =A ,所以B ⊆A ,即m ∈A ,得m 2≥4,解得m ≥2或m ≤-2.【例2】集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4 【答案】D【解析】根据并集的概念,可知{a ,a 2}={4,16},故a =4.【例3】(河南省洛阳市2019-2020学年高三上学期期中数学试题)已知集合{}3log (2)2A x x =-≤,{}20B x x m =->,若A B ⊆,则实数m 的取值范围是( )A .]4∞(-, B .4∞(-,) C .22∞(-,) D .22]∞(-,。

高中文科数学一轮复习——集合专题

高中文科数学一轮复习——集合专题

第一章 集合第一节 集合的含义、表示及基本关系A 组1.已知A ={1,2},B ={x |x ∈A },则集合A 与B 的关系为________.解析:由集合B ={x |x ∈A }知,B ={1,2}.答案:A =B 2.若∅{x |x 2≤a ,a ∈R },则实数a 的取值范围是________.解析:由题意知,x 2≤a 有解,故a ≥0.答案:a ≥03.已知集合A ={y |y =x 2-2x -1,x ∈R },集合B ={x |-2≤x <8},则集合A 与B 的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2,∴A ={y |y ≥-2},∴B A .答案:B A4.(2009年高考广东卷改编)已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是________.解析:由N={x|x 2+x=0},得N ={-1,0},则N M .答案:②5.(2010年苏、锡、常、镇四市调查)已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件,∴A B ,∴a <5.答案:a <56.(原创题)已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z },B ={x |x =2a +1,a ∈Z },又C ={x |x =4a +1,a ∈Z },判断m +n 属于哪一个集合?解:∵m ∈A ,∴设m =2a 1,a 1∈Z ,又∵n ∈B ,∴设n =2a 2+1,a 2∈Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈Z ,∴m +n ∈B .B 组1.设a ,b 都是非零实数,y =a |a |+b |b |+ab |ab |可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0,讨论得y =3或y =-1.答案:{3,-1}2.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________.解析:∵B ⊆A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2=0,∴m =1.答案:13.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个.解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x |x 2=1},集合N ={x |ax =1},若N M ,那么a 的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.(2010年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.(2009年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x,1,0},B ={0,|x |,1x}. 于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1. 11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围;(2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围;(3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B . 12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2},而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即A B ,则此时B ={x |1≤x ≤ a },故a >2.(2)若B 是A 的子集,即B ⊆A ,由数轴可知1≤a ≤2.(3)若A =B ,则必有a =2第二节 集合的基本运算A 组1.(2009年高考浙江卷改编)设U =R ,A ={x |x >0},B ={x |x >1},则A ∩∁U B =____.解析:∁U B ={x |x ≤1},∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.(2009年高考全国卷Ⅰ改编)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4,7,9},A ∪B ={3,4,5,7,8,9},∁U (A ∩B )={3,5,8}.答案:33.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N =________.解析:由题意知,N ={0,2,4},故M ∩N ={0,2}.答案:{0,2}4.(原创题)设A ,B 是非空集合,定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤2},B ={y |y ≥0},则A ⓐB =________.解析:A ∪B =[0,+∞),A ∩B =[0,2],所以A ⓐB =(2,+∞).答案:(2,+∞)5.(2009年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x ,画出韦恩图得到方程15-x +x +10-x +8=30x =3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A ={x |x >1},集合B ={x |m ≤x ≤m +3}.(1)当m =-1时,求A ∩B ,A ∪B ;(2)若B ⊆A ,求m 的取值范围.解:(1)当m =-1时,B ={x |-1≤x ≤2},∴A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥-1}.(2)若B ⊆A ,则m >1,即m 的取值范围为(1,+∞)B 组1.若集合M ={x ∈R |-3<x <1},N ={x ∈Z |-1≤x ≤2},则M ∩N =________.解析:因为集合N ={-1,0,1,2},所以M ∩N ={-1,0}.答案:{-1,0}2.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________.解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}3.(2010年济南市高三模拟)若全集U =R ,集合M ={x |-2≤x ≤2},N ={x |x 2-3x ≤0},则M ∩(∁U N )=________.解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.答案:{x |-2≤x <0}4.集合A ={3,log 2a },B ={a ,b },若A ∩B ={2},则A ∪B =________.解析:由A ∩B ={2}得log 2a =2,∴a =4,从而b =2,∴A ∪B ={2,3,4}.答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:m -n6.(2009年高考重庆卷)设U ={n |n 是小于9的正整数},A ={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.解析:U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7}, 得∁U (A ∪B )={2,4,8}.答案:{2,4,8}7.定义A ⊗B ={z |z =xy +x y,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=0}{(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧ 1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3. 11.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B . (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意.12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ;(3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意. 若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98. 综上可知,若A =∅,则a 的取值范围应为a >98. (2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意. 当a ≠0时,则Δ=9-8a =0,即a =98时, 方程有两个相等的实数根x =43,则A ={43}. 综上可知,当a =0时,A ={23};当a =98时,A ={43}. (3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根, 则Δ=9-8a ≥0,即a ≤98. 综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}。

高考数学(文科,北师大版)一轮复习课件:1.2

高考数学(文科,北师大版)一轮复习课件:1.2
1 .2
不等关系及简单不等式的解法
-2知识梳理 双基自测 自测点评

2
3
4
5
1.两个实数比较大小的方法
������-������ > 0⇔������ > (1)作差法 ������-������ = 0⇔������ = ������-������ < 0⇔������ < (2)作商法
������ ������ ������ ������ ������ ������
)
)
(3)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0. (
(4)不等式
������-2 ≤0 的解集是[-1,2]. ������+1
(
)
(5)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的 解集为R. ( )
关闭
(1)× (2)√ (3)√ (4)× (5)×
������, ������, ������. ������(������∈R,������ > 0), ������(������∈R,������ > 0), ������(������∈R,������ > 0).
> 1⇔������ > = 1⇔������ = < 1⇔������ <
-3知识梳理 双基自测 自测点评
b+d.
(6)可开方:a>b>0⇒ ������>
n
n
������ (n∈N,n≥2).
-4知识梳理 双基自测 自测点评
1
2
3

2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第二课时 参数方程

2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第二课时 参数方程

第二课时 参数方程考试要求 1.了解参数方程,了解参数的意义;2.能选择适当的参数写出直线、圆和椭圆的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2⎩⎨⎧x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数)1.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.1.思考辨析(在括号内打“√”或“×”)(1)参数方程⎩⎨⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)方程⎩⎨⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( ) 答案 (1)√ (2)√ (3)√ (4)×解析 (4)当t =π3时,点M 的坐标为(2cos π3,4sin π3),即M (1,23),∴OM 的斜率k =2 3.2.(2019·北京卷)已知直线l 的参数方程为⎩⎨⎧x =1+3t ,y =2+4t (t 为参数),则点(1,0)到直线l 的距离是( ) A.15 B.25C.45D.65答案 D解析 由题意可知直线l 的普通方程为4x -3y +2=0,则点(1,0)到直线l 的距离d =|4×1-3×0+2|42+(-3)2=65.故选D.3.在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值是________. 答案 3解析 直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为x 29+y 24=1, 所以椭圆C 的右顶点坐标为(3,0), 若直线l 过点(3,0),则3-a =0,所以a =3.4.(2019·天津卷)设直线ax -y +2=0和圆⎩⎨⎧x =2+2cos θ,y =1+2sin θ(θ为参数)相切,则实数a =________. 答案 34解析 圆的参数方程消去θ,得 (x -2)2+(y -1)2=4. ∴圆心(2,1),半径r =2. 又直线ax -y +2=0与圆相切. ∴d =|2a -1+2|a 2+1=2,解得a =34.5.已知直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),若l 与圆x 2+y 2-4x +3=0交于A ,B 两点,且|AB |=3,则直线l 的斜率为________. 答案 ±1515解析 由⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),得y =x tan α,设k =tan α,得直线的方程为y =kx ,由x 2+y 2-4x +3=0,得(x -2)2+y 2=1,圆心为(2,0),半径为1, ∴圆心到直线y =kx 的距离为 12-|AB |24=12=|2k |k 2+1,得k =±1515.6.(易错题)设P (x ,y )是曲线C :⎩⎨⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈[0,2π))上任意一点,则yx 的最大值为________.答案 33解析 由曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数),得(x +2)2+y 2=1,表示圆心为(-2,0),半径为1的圆,yx 表示的是圆上的点和原点连线的斜率, 设yx =k ,则原问题转化为y =kx 和圆有交点的问题, 即圆心到直线的距离d ≤r ,所以|-2k |1+k 2≤1,解得-33≤k ≤33, 所以y x 的最大值为33.考点一 参数方程与普通方程的互化1.下列参数方程与方程y 2=x 表示同一曲线的是( ) A.⎩⎨⎧x =t ,y =t 2B.⎩⎨⎧x =sin 2t ,y =sin t C.⎩⎨⎧x =t ,y =|t |D.⎩⎨⎧x =1-cos 2t 1+cos 2t ,y =tan t答案 D解析 对于A ,消去t 后所得方程为x 2=y ,不符合y 2=x ;对于B ,消去t 后所得方程为y 2=x ,但要求0≤x ≤1,也不符合y 2=x ; 对于C ,消去t 得方程为y 2=|x |,且要求y ≥0,x ∈R ,也不符合y 2=x ; 对于D ,x =1-cos 2t1+cos 2t =2sin 2t2cos 2t =tan 2t =y 2,符合y 2=x .故选D.2.把下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数);(2)⎩⎨⎧x =sin θ,y =cos 2θ(θ为参数,θ∈[0,2π)). 解 (1)由已知得t =2x -2,代入y =5+32t 中得y =5+32(2x -2). 即它的普通方程为3x -y +5-3=0.(2)因为sin 2θ+cos 2θ=1,所以x 2+y =1,即y =1-x 2. 又因为|sin θ|≤1,所以其普通方程为y =1-x 2(|x |≤1).3.(2021·全国乙卷)在直角坐标系xOy 中,⊙C 的圆心为C (2,1),半径为1. (1)写出⊙C 的一个参数方程;(2)过点F (4,1)作⊙C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.解 (1)由题意知⊙C 的标准方程为(x -2)2+(y -1)2=1, 则⊙C 的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数).(2)由题意可知,切线的斜率存在,设切线方程为y -1=k (x -4),即kx -y +1-4k =0,所以|2k -1+1-4k |k 2+1=1,解得k =±33,则这两条切线方程分别为y =33x -433+1,y =-33x +433+1, 故这两条切线的极坐标方程分别为 ρsin θ=33ρcos θ-433+1,ρsin θ=-33ρcos θ+433+1.感悟提升 1.化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法.另外,消参时要注意参数的范围.2.普通方程化为参数方程时,先分清普通方程所表示的曲线类型,结合常见曲线的参数方程直接写出. 考点二 参数方程的应用例 1 (2022·兰州模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t(t 为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为cos ⎝ ⎛⎭⎪⎫θ+π3=0.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)已知点P (3,3),曲线C 1和C 2相交于A ,B 两个不同的点,求||P A |-|PB ||的值.解(1)将⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t的参数t 消去得曲线C 1的普通方程为x 2-y 24=1.∵cos ⎝ ⎛⎭⎪⎫θ+π3=0,∴ρcos θ-3ρsin θ=0,由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ可得曲线C 2的直角坐标方程为x -3y =0. (2)由题意得点P (3,3)在曲线C 2上,曲线C 2的参数方程可表示为⎩⎪⎨⎪⎧x =3+32t ′,y =3+12t ′(t ′为参数),将上述参数方程代入x 2-y 24=1得11t ′2+443t ′+4×29=0,① Δ>0,设t ′1,t ′2为方程①的两根, 则t ′1+t ′2=-43,t ′1t ′2=4×2911,∴(|P A |-|PB |)2=(|P A |+|PB |)2-4|P A ||PB |=(t ′1+t ′2)2-4t ′1t ′2=6411,∴||P A |-|PB ||=81111.感悟提升 1.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.2.过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t为参数),t 的几何意义是P 0P →的数量,即|t |表示P 0到P 的距离,t 有正负之分.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.训练1 (2022·晋中模拟)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t ∈R ,t 为参数,α∈⎝ ⎛⎭⎪⎫0,π2).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2sin θ,θ∈⎝ ⎛⎭⎪⎫π4,3π4.(1)求半圆C 的参数方程和直线l 的普通方程;(2)直线l 与x 轴交于点A ,与y 轴交于点B ,点D 在半圆C 上,且直线CD 的倾斜角是直线l 的倾斜角的2倍,△ABD 的面积为1+3,求α的值. 解 (1)由ρ=2sin θ,得ρ2=2ρsin θ,将x 2+y 2=ρ2,y =ρsin θ代入,得半圆C 的直角坐标方程为x 2+y 2=2y , ∵θ∈⎝ ⎛⎭⎪⎫π4,3π4,∴y =ρsin θ=2sin 2θ∈(1,2],x =ρcos θ=2sin θ·cos θ=sin 2θ∈(-1,1), ∴半圆C 的直角坐标方程为x 2+(y -1)2=1(1<y ≤2).由sin φ=y -1∈(0,1],cos φ=x ∈(-1,1)知,可取φ∈(0,π), ∴半圆C 的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(其中φ为参数,φ∈(0,π)).将直线l 的参数方程消去参数t ,得直线l 的普通方程为y =x tan α-2,α∈⎝ ⎛⎭⎪⎫0,π2.(2)由题意可知,A ⎝ ⎛⎭⎪⎫2tan α,0,B (0,-2),根据圆的参数方程中参数的几何意义, 结合已知条件,可得φ=2α, 所以D (cos 2α,1+sin 2α). 则点D 到直线AB 的距离d =|tan α·cos 2α-(1+sin 2α)-2|1+tan 2α=|sin αcos 2α-cos αsin 2α-3cos α| =sin α+3cos α, 又|AB |=(-2)2+⎝ ⎛⎭⎪⎫2tan α2=2sin α.∴△ABD 的面积S =12·|AB |·d =1+3tan α=1+3, ∴tan α= 3.又α∈⎝ ⎛⎭⎪⎫0,π2,∴α=π3.考点三 参数方程与极坐标方程的综合应用例2 (2020·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos k t ,y =sin kt (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为4ρcos θ-16ρsin θ+3=0. (1)当k =1时,C 1是什么曲线?(2)当k =4时,求C 1与C 2的公共点的直角坐标. 解 (1)当k =1时,C 1:⎩⎪⎨⎪⎧x =cos t ,y =sin t ,消去参数t 得x 2+y 2=1,故曲线C 1是以坐标原点为圆心,1为半径的圆.(2)当k =4时,C 1:⎩⎪⎨⎪⎧x =cos 4t ,y =sin 4t ,消去参数t 得C 1的直角坐标方程为x +y =1.C 2的直角坐标方程为4x -16y +3=0. 由⎩⎪⎨⎪⎧x +y =1,4x -16y +3=0,解得⎩⎪⎨⎪⎧x =14,y =14.故C 1与C 2的公共点的直角坐标为⎝ ⎛⎭⎪⎫14,14.感悟提升 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷地解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.训练2 (2022·长春联考)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =t -2,y =t 2-2t (t 为参数),曲线C 上异于原点的两点M ,N 所对应的参数分别为t 1,t 2.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρ=2a sin θ. (1)当t 1=1,t 2=3时,直线MN 平分曲线D ,求a 的值;(2)当a =1时,若t 1+t 2=2+3,直线MN 被曲线D 截得的弦长为3,求直线MN 的方程.解 (1)因为t 1=1,t 2=3, 所以M (-1,-1),N (1,3). 所以直线MN 的方程为y =2x +1. 因为ρ=2a sin θ,所以ρ2=2aρsin θ, 又x 2+y 2=ρ2,y =ρsin θ,所以曲线D 的方程可化为x 2+(y -a )2=a 2,因为直线MN 平分曲线D ,所以直线MN 过点(0,a ),所以a =1.(2)由题意可知k MN =(t 21-2t 1)-(t 22-2t 2)(t 1-2)-(t 2-2)=(t 1-t 2)(t 1+t 2-2)t 1-t 2=3,曲线D 的方程为x 2+(y -1)2=1,设直线MN 的方程为y =3x +m ,圆心D 到直线MN 的距离为d ,则d =|m -1|2, 因为d 2+⎝ ⎛⎭⎪⎫322=12,所以⎝ ⎛⎭⎪⎫m -122+⎝ ⎛⎭⎪⎫322=1, 所以m =0或m =2,所以直线MN 的方程为y =3x 或y =3x +2.1.将下列参数方程化成普通方程.(1)⎩⎨⎧x =t 2-1,y =t 2+1(t 为参数); (2)⎩⎨⎧x =cos θ,y =sin θ⎝⎛⎭⎪⎫θ为参数,θ∈⎣⎢⎡⎦⎥⎤π2,π. 解 (1)消去参数t ,得y =x +2,由于t 2≥0,所以普通方程为y =x +2(x ≥-1),表示一条射线.(2)消去参数θ,得x 2+y 2=1,由于θ∈⎣⎢⎡⎦⎥⎤ π2,π,所以x ∈[-1,0],y ∈[0,1],所以普通方程为x 2+y 2=1(-1≤x ≤0,0≤y ≤1),表示圆的四分之一.2.(2021·全国甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos θ.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),点M 为C 上的动点,点P 满足AP→=2AM →,写出点P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.解 (1)根据ρ=22cos θ,得ρ2=22ρcos θ,因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=22x ,所以曲线C 的直角坐标方程为(x -2)2+y 2=2.(2)设P (x ,y ),M (x ′,y ′),则AP→=(x -1,y ),AM →=(x ′-1,y ′). 因为AP →=2AM →,所以⎩⎪⎨⎪⎧x -1=2(x ′-1),y =2y ′,即⎩⎨⎧x ′=x -12+1,y ′=y 2. 因为点M 为C 上的动点,所以⎝ ⎛⎭⎪⎫x -12+1-22+⎝ ⎛⎭⎪⎫y 22=2, 即(x -3+2)2+y 2=4.所以点P 的轨迹C 1的参数方程为⎩⎪⎨⎪⎧x =3-2+2cos α,y =2sin α(其中α为参数,α∈[0,2π)). 所以|CC 1|=3-22,⊙C 1的半径r 1=2,又⊙C 的半径r =2,所以|CC 1|<r 1-r ,所以C 与C 1没有公共点.3.(2021·银川模拟)在平面直角坐标系xOy 中,直线l 过定点P (3,0),倾斜角为α⎝ ⎛⎭⎪⎫0<α<π2,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 交曲线C 于M ,N 两点,且|PM |·|PN |=103,求l 的参数方程.解 (1)由⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t 得⎩⎪⎨⎪⎧x =t +1t ,2y =t -1t ,∵⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=t 2+2+1t 2-t 2+2-1t 2=4, ∴x 2-(2y )2=4,即x 2-4y 2=4.又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴ρ2cos 2θ-4ρ2sin 2θ=4. 即曲线C 的极坐标方程为ρ2cos 2θ-4ρ2sin 2θ=4.(2)设l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),代入x 2-4y 2=4整理得(cos 2α-4sin 2α)t 2+6t cos α+5=0,设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=5cos 2α-4sin 2α, 则|PM |·|PN |=|t 1t 2|=⎪⎪⎪⎪⎪⎪5cos 2α-4sin 2α=103.解得cos α=±22, ∵0<α<π2,∴cos α=22,∴α=π4.故l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t(t 为参数). 4.(2022·合肥检测)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)(t 为参数).在以原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若曲线C 2与曲线C 1交于点A ,B ,M (-2,2),求1|MA |-1|MB |的值.解 (1)由⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)得⎩⎪⎨⎪⎧2x =t 14-t -14,12y =t 14+t -14, 两式平方相减得12y 2-2x 2=4,即y 28-x 22=1.又y =2(t 14+t -14)≥22(t >0), ∴曲线C 1的普通方程为y 28-x 22=1(y ≥22).曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0,化简,得ρsin θ-ρcos θ-4=0,又x =ρcos θ,y =ρsin θ,∴y -x -4=0,∴曲线C 2的直角坐标方程为x -y +4=0.(2)设曲线C 2的参数方程为⎩⎪⎨⎪⎧x =-2+22t ′,y =2+22t ′(t ′为参数).代入曲线C 1的方程得⎝ ⎛⎭⎪⎫2+22t ′2-4⎝ ⎛⎭⎪⎫-2+22t ′2=8,即3t ′2-202t ′+40=0.Δ=320>0.设方程的两个实数根为t 1,t 2,则t 1+t 2=2023,t 1t 2=403,∴⎪⎪⎪⎪⎪⎪1|MA |-1|MB |=⎪⎪⎪⎪⎪⎪1|t 1|-1|t 2|=||t 2|-|t 1|||t 1|·|t 2|=|t 1-t 2||t 1|·|t 2|=(t 1+t 2)2-4t 1t 2|t 1|·|t 2|=853403=55,∴1|MA |-1|MB |=55或-55.5.(2022·陕西部分学校联考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+sin φ-2cos φ,y =cos φ+2sin φ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ+2=0.(1)求曲线C 1的极坐标方程并判断C 1,C 2的位置关系;(2)设直线θ=α⎝ ⎛⎭⎪⎫-π2<α<π2,ρ∈R 分别与曲线C 1交于A ,B 两点,与曲线C 2交于P 点,若|AB |=3|OA |,求|OP |的值.解 (1)曲线C 1:⎩⎪⎨⎪⎧x -3=sin φ-2cos φ,①y =cos φ+2sin φ,②①2+②2得(x -3)2+y 2=5,即x 2+y 2-6x +4=0,将x 2+y 2=ρ2,x =ρcos θ代入上式,得曲线C 1的极坐标方程为ρ2-6ρcos θ+4=0.由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,ρcos θ+2=0得ρ2+16=0,此方程无解. 所以C 1,C 2相离.(2)由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,θ=α得ρ2-6ρcos α+4=0, 因为直线θ=α与曲线C 1有两个交点A ,B ,所以Δ=36cos 2α-16>0,得cos α>23.设方程ρ2-6ρcos α+4=0的两根分别为ρ1,ρ2,则⎩⎪⎨⎪⎧ρ1+ρ2=6cos α>0,③ρ1ρ2=4,④因为|AB |=3|OA |,所以|OB |=4|OA |,即ρ2=4ρ1,⑤由③④⑤解得ρ1=1,ρ2=4,cos α=56,满足Δ>0,由⎩⎪⎨⎪⎧ρcos α+2=0,θ=α得ρ=-2cos α=-125, 所以|OP |=|ρ|=125.6.(2022·贵阳适应性测试)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =r cos α,y =r sin α(0<r <2,α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2:ρ2=4cos 2θ(如图所示).(1)若r =2,求曲线C 1的极坐标方程,并求曲线C 1与C 2交点的直角坐标;(2)已知曲线C 2既关于原点对称,又关于坐标轴对称,且曲线C 1与C 2交于不同的四点A ,B ,C ,D ,求矩形ABCD 面积的最大值.解 (1)∵r =2,∴x 2+y 2=2,又x 2+y 2=ρ2,∴曲线C 1的极坐标方程为ρ=2,∴⎩⎪⎨⎪⎧ρ2=4cos 2θ,ρ=2,cos 2θ=12⇒cos θ=±32, 当cos θ=32时,sin θ=±12,当cos θ=-32时,sin θ=±12,分别代入⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,可得四个交点的直角坐标分别为⎝ ⎛⎭⎪⎫62,22,⎝ ⎛⎭⎪⎫62,-22,⎝ ⎛⎭⎪⎫-62,22,⎝ ⎛⎭⎪⎫-62,-22. (2)由(1)知曲线C 1的极坐标方程为ρ=r .由⎩⎪⎨⎪⎧ρ=r ,ρ2=4cos 2θ得cos 2θ=r 24. ∵曲线C 2关于原点和坐标轴对称, ∴S 矩形ABCD =4|r cos θ||r sin θ| =4r 2|cos θsin θ|=2r 2|sin 2θ| =2r 21-cos 22θ=2r 21-r 416 =12r 216-r 4=12r 4(16-r 4) ≤12⎝ ⎛⎭⎪⎫r 4+16-r 422=4. 当且仅当r 4=16-r 4,即r 2=22时等号成立. 故矩形ABCD 面积的最大值为4.。

新课标2013高考文科一轮复习知识点——高中数学选修1-1、1-2、4-4

新课标2013高考文科一轮复习知识点——高中数学选修1-1、1-2、4-4

选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

高中数学一轮总复习文科基础复习题及解析(二)

高中数学一轮总复习文科基础复习题及解析(二)

高中数学一轮总复习文科基础复习题及解析第二部分 选考部分第十二讲 选考内容第一节 选修4-4 坐标系与参数方程1.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. 解析:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一,(2)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t ≤ 3.2.已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A ,B ,求点P 到A ,B 两点的距离之积.解析:(1)直线的参数方程为⎩⎨⎧x =1+t cos π6,y =1+t sin π6(t 为参数),即⎩⎨⎧x =1+32t ,y =1+12t (t 为参数).(2)把直线的参数方程⎩⎨⎧x =1+32t ,y =1+12t (t 为参数)代入x 2+y 2=4得(1+32t )2+(1+12t )2=4,t 2+(3+1)t -2=0, ∴t 1t 2=-2,则点P 到A ,B 两点的距离之积为2.3.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解析:(1)由ρcos ⎝⎛⎭⎫θ-π3=1 得ρ⎝⎛⎭⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)因为M 点的直角坐标为(2,0), N 点的直角坐标为⎝⎛⎭⎫0,233.所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).4.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2 α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2. (1)将曲线C 的参数方程化为普通方程;(2)曲线C 与曲线D 有无公共点?试说明理由.解析:(1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为x +y +2=0.⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0.解得x =1±132∉[-1,1],故曲线C 与曲线D 无公共点.5.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α是参数),直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π6=2 3. (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值. 解析:(1)∵直线l 的极坐标方程为 ρcos ⎝⎛⎭⎫θ+π6=23, ∴ρ⎝⎛⎭⎫cos θcos π6-sin θsin π6=23, ∴32x -12y =2 3. 即直线l 的直角坐标方程为3x -y -43=0.由⎩⎪⎨⎪⎧x =2cos α,y =3sin α 得x 24+y 23=1. 即曲线C 的普通方程为x 24+y 23=1.(2)设点P (2cos α,3sin α), 则点P 到直线l 的距离 d =|23cos α-3sin α-43|2=|15cos (α+φ-43)|2,其中tan φ=12.当cos(α+φ)=-1时,d max =15+432,即点P 到直线l 的距离的最大值为15+432. 6.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解析:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos(θ-π4)=2,所以ρ2-22ρ(cos θcos π4+sin θ·sin π4)=2.所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin(θ+π4)=22.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1) 求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解析:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得a =-1,b =2.8.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解析:(1)由题意知,M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝⎛⎭⎫1,33,故直线OP 的平面直角坐标方程为y =33x .(2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0.(2)又圆C 的圆心坐标为(2,-3),半径r =2, 圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.第二节 选修4-5 不等式选讲1.已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.(1)若当g (x )≤5时,恒有f (x )≤6,求a 的最大值; (2)若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围. 解析:(1)g (x )≤5⇔|2x -1|≤-5⇔2x -1≤5⇔-2≤x ≤3;f (x )≤6⇔|2x -a |≤6-a ⇔a -6≤2x -a ≤6-a ⇔a -3≤x ≤3. 依题意有,a -3≤-2,a ≤1. 故a 的最大值为1.(2)f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时符号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).2.已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 解析:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a ,得a =2.(2)记h (x )=f (x )-2f (x2),则h (x )=⎩⎨⎧1(x ≤-1),-4x -3⎝⎛⎭⎫-1<x <-12,-1(x ≥-12)所以|h (x )|≤1,因此k ≥1.3.已知函数f (x )=|2x +2|+|2x -3|.(1)若∃x 0∈R ,使得不等式f (x 0)<m 成立,求m 的取值范围; (2)求使得不等式f (x )≤|4x -1|成立的x 的取值范围. 解析:(1)∵f (x )=|2x +2|+|2x -3|≥|(2x +2)-(2x -3)|=5,∴∃x 0∈R ,使得不等式f (x 0)<m 成立的m 的取值范围是(5,+∞). (2)∵f (x )=|2x +2|+|2x -3|≥|2x +2+2x -3|=|4x -1|, ∴|2x +2|+|2x -3|≥|4x -1|,当且仅当(2x +2)(2x -3)≥0时取等号, ∴x 的取值范围是(-∞,-1]∪⎣⎡⎭⎫32,+∞. 4.已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{x |-1≤x ≤5},求实数a ,m 的值; (2)当a =2且t ≥0时,解关于x 的不等式f (x )+t ≥f (x +2t ).解析:(1)由|x -a |≤m ,得a -m ≤x ≤a +m ,所以⎩⎪⎨⎪⎧ a -m =-1,a +m =5,解得⎩⎪⎨⎪⎧a =2,m =3.(2)当a =2时,f (x )=|x -2|,f (x )+t ≥f (x +2t ),即 |x -2+2t |-|x -2|≤t .①当t =0时,不等式①恒成立,即x ∈R ;当t >0时,不等式等价于⎩⎪⎨⎪⎧x <2-2t ,2-2t -x -(2-x )≤t或⎩⎪⎨⎪⎧2-2t ≤x <2,x -2+2t -(2-x )≤t 或⎩⎪⎨⎪⎧x ≥2,x -2+2t -(x -2)≤t ,解得x <2-2t 或2-2t ≤x ≤2-t 2或x ∈∅,即x =2-t 2.综上,当t =0时,原不等式的解集为R ; 当t >0时,原不等式的解集为{x |x ≤2-t2}.5.已知a ,b ,c 为实数,且a +b +c =2m -2,a 2+14b 2+19c 2=1-m .(1)求证:a 2+b 24+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解析:(1)由柯西不等式得:⎣⎡⎦⎤a 2+⎝⎛⎭⎫12b 2+⎝⎛⎭⎫13c 2·(12+22+32)≥(a +b +c )2, 即⎝⎛⎭⎫a 2+14b 2+19c 2·14≥(a +b +c )2,所以a 2+14b 2+19c 2≥(a +b +c )214,当且仅当|a |=14|b |=19|c |时,取等号. (2)由已知得(a +b +c )2=(2m -2)2,结合(1)的结论可得:14(1-m )≥(2m -2)2,即2m 2+3m -5≤0,所以-52≤m≤1,又a2+14b2+19c2=1-m≥0,所以m≤1,故m的取值范围为-52≤m≤1.6.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因为a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b+c+d,②若a+b>c+d则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.7.设f(x)=|x-1|-2|x+1|的最大值为m.(1)求m;(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.解析:(1)当x≤-1时,f(x)=3+x≤2;当-1<x<1时,f(x)=-1-3x<2;当x ≥1时,f (x )=-x -3≤-4. 故当x =-1时,f (x )取得最大值m =2.(2)a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ), 当且仅当a =b =c =22时,等号成立. 此时,ab +bc 取得最大值1.8.已知函数f (x )=|x -2|+|x -4|的最小值为m ,实数a ,b ,c ,n ,p ,q 满足a 2+b 2+c 2=n 2+p 2+q 2=m .(1)求m 的值;(2)求证:n 4a 2+p 4b 2+q 4c2≥2.解析:(1)f (x )=|x -2|+|x -4|≥|(x -2)-(x -4)|=2,当且仅当2≤x ≤4时,等号成立,故m =2.(2)因为[(n 2a )2+(p 2b )2+(q 2c )2]·(a 2+b 2+c 2)≥(n 2a ·a +p 2b ·b +q 2c ·c )2,即(n 4a 2+p 4b 2+q 4c 2)×2≥(n 2+p 2+q 2)2=4, 所以n 4a 2+p 4b 2+q 4c2≥2.9.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. 解析:(1)f (x )=|x +1|+|x -1| =⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1.2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2. ∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.10.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M . (1)试证明|1+b |≤M ; (2)试证明M ≥12;(3)当M =12时,试求出f (x )的解析式.解析:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴M ≥|1+b |.(2)依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2.∴M ≥12.(3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12.①同理-12≤1+a +b ≤12.②-12≤1-a +b ≤12.③ ②+③得-32≤b ≤-12.④由①④得b =-12,当b =-12时,分别代入②③得⎩⎨⎧-1≤a ≤0,0≤a ≤1⇒a =0,因此f (x )=x 2-12. 11.已知函数f (x )=|2x +1|+|2x -3|.(1)若关于x 的不等式f (x )<|1-2a |的解集不是空集,求实数a 的取值范围; (2)若关于t 的一元二次方程t 2+26t +f (m )=0有实根,求实数m 的取值范围. 解析:(1)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|1-2a |>4, ∴a <-32或a >52,∴实数a 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫52,+∞. (2)Δ=24-4(|2m +1|+|2m -3|)≥0.即|2m +1|+|2m -3|≤6,∴不等式等价于⎩⎪⎨⎪⎧ m >32,(2m +1)+(2m -3)≤6或 ⎩⎪⎨⎪⎧ -12≤m ≤32,(2m +1)-(2m -3)≤6或 ⎩⎪⎨⎪⎧m <-12,-(2m +1)-(2m -3)≤6.∴32<m ≤2或-12≤m ≤32或-1≤m <-12, ∴实数m 的取值范围是[-1,2].12.已知函数f (x )=|3x +2|.(1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围. 解析:(1)不等式f (x )<4-|x -1|.即|3x +2|+|x -1|<4.当x <-23时,即-3x -2-x +1<4, 解得-54<x <-23: 当-23≤x ≤1时,即3x +2-x +1<4, 解得-23≤x ≤12; 当x >1时,即3x +1+x -1<4,无解.综上所述,x ∈⎝⎛⎭⎫-54,12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n≥4, 令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎨⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.。

高三文科数学第一轮复习资料汇编

高三文科数学第一轮复习资料汇编

第一章集合与常用逻辑用语第一节集合☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.集合的含义与表示方法(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合。

集合中元素的性质:确定性、无序性、互异性。

(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉。

(3)集合的表示方法:列举法、描述法和图示法。

(4)常用数集的记号:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R。

2.集合间的基本关系A B或B A3.集合的基本运算1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件。

2.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身。

3.运用数轴图示法易忽视端点是实心还是空心。

4.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性\”而导致解题错误。

5.记住以下结论(1)若集合A中有n个元素,则其子集的个数为2n,真子集的个数为2n-1。

(2)A∪B=A⇔B⊆A;A∩B=A⇔A⊆B。

小|题|快|练一、走进教材1.(必修1P12B组T4改编)满足{0,1}⊆A{0,1,2,3}的集合A的个数为()A.1 B.2C.3 D.4【解析】由题意得A可为{0,1},{0,1,2},{0,1,3}。

故选C。

【答案】 C2.(必修1P12B组T1改编)已知集合A={0,1,2},集合B满足A∪B ={0,1,2},则集合B有________个。

【解析】由题意知B⊆A,则集合B有8个。

【答案】8二、双基查验1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}【解析】M∪N表示属于M或属于N的元素构成的集合,故M∪N ={-1,0,1,2}。

故选B。

【答案】 B2.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=() A.[0,1]B.[0,1)C.(0,1] D.(0,1)【解析】∵x2<1,∴-1<x<1。

2023年高考数学(文科)一轮复习——导数的概念及运算

2023年高考数学(文科)一轮复习——导数的概念及运算

第1节导数的概念及运算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)便是x的一个函数,称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln__a f (x )=ln xf ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.思考辨析(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( )(4)曲线y =f (x )在某点处的切线与曲线y =f (x )过某点的切线意义是相同的.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (距离单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( ) A.9.1米/秒 B.6.75米/秒 C.3.1米/秒D.2.75米/秒答案 C解析 h ′(t )=-9.8t +8, ∴h ′(0.5)=-9.8×0.5+8=3.1.3.(2022·银川质检)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≤0,-x 2+ax ,x >0为奇函数,则曲线f (x )在x =2处的切线斜率等于( ) A.6 B.-2C.-6D.-8答案 B解析 f (x )为奇函数,则f (-x )=-f (x ). 取x >0,得x 2-2x =-(-x 2+ax ),则a =2. 当x >0时,f ′(x )=-2x +2.∴f ′(2)=-2.4.(2020·全国Ⅲ卷)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1 解析 由f ′(x )=e x (x +a )-e x(x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.5.(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.答案 5x -y +2=0解析 y ′=⎝ ⎛⎭⎪⎪⎫2x -1x +2′=(2x -1)′(x +2)-(2x -1)(x +2)′(x +2)2=5(x +2)2, 所以k =y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.6.(易错题)设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.答案 - 2解析 由f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,得f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,则f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2·cos π2-sin π2,解得f ′⎝ ⎛⎭⎪⎫π2=-1,所以f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.考点一 导数的运算1.下列求导运算不正确的是( ) A.(sin a )′=cos a (a 为常数)B.(sin 2x )′=2cos 2xC.(x )′=12xD.(e x -ln x +2x 2)′=e x -1x +4x 答案 A解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B 、C 、D 正确.2.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.答案 1-1x -2x 2+2x 3解析 由已知f (x )=x -ln x +2x -1x 2.∴f ′(x )=1-1x -2x 2+2x 3.3.设f ′(x )是函数f (x )=cos xe x +x 的导函数,则f ′(0)的值为________. 答案 0 解析 因为f (x )=cos xe x+x , 所以f ′(x )=(cos x )′e x -(e x )′cos x (e x )2+1=-sin x -cos xe x +1, 所以f ′(0)=-1e 0+1=0.4.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x , ∴f ′(x )=2x +3f ′(2)+1x .令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94. ∴f (1)=1+3×1×⎝ ⎛⎭⎪⎫-94+0=-234.感悟提升 1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 考点二 导数的几何意义 角度1 求切线的方程例1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.答案 (1)3x -y =0 (2)x -y -1=0 解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 角度2 求曲线的切点坐标例2 (2022·皖豫名校联考)若曲线y =e x +2x 在其上一点(x 0,y 0)处的切线的斜率为4,则x 0=( ) A.2 B.ln 4 C.ln 2D.-ln 2答案 C解析 ∵y ′=e x +2,∴e x 0+2=4,∴e x 0=2,x 0=ln 2. 角度3 导数与函数图象问题例3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ), ∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.感悟提升 1.求曲线在点P (x 0,y 0)处的切线,则表明P 点是切点,只需求出函数在P 处的导数,然后利用点斜式写出切线方程,若在该点P 处的导数不存在,则切线垂直于x 轴,切线方程为x =x 0.2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.训练1 (1)(2022·沈阳模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A.y =0 B.y =2x C.y =xD.y =-2x(2)(2021·长沙检测)如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=f(x)x,h′(x)是h(x)的导函数,则h′(1)的值是()A.2B.1C.-1D.-3答案(1)B(2)D解析(1)∵f(x)=2e x sin x,∴f(0)=0,f′(x)=2e x(sin x+cos x),∴f′(0)=2,∴所求切线方程为y=2x.(2)由图象知,直线l经过点(1,2).则k+3=2,k=-1,从而f′(1)=-1,且f(1)=2,由h(x)=f(x)x,得h′(x)=xf′(x)-f(x)x2,所以h′(1)=f′(1)-f(1)=-1-2=-3.考点三导数几何意义的应用例4 (1)已知曲线f(x)=x ln x在点(e,f(e))处的切线与曲线y=x2+a相切,则实数a 的值为________.(2)(2022·河南名校联考)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,则实数a的取值范围是________.答案(1)1-e(2)[2,+∞)解析(1)因为f′(x)=ln x+1,所以曲线f(x)=x ln x在x=e处的切线斜率为k=2,又f(e)=e,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切,故可联立⎩⎪⎨⎪⎧y =x 2+a ,y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. (2)∵直线2x -y =0的斜率为k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0. 又4x +1x ≥24x ·1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞).感悟提升 1.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:(1)切点处的导数是切线的斜率;(2)切点在切线上;(3)切点在曲线上.2.利用导数的几何意义求参数范围时,注意化归与转化思想的应用.训练2 (1)(2021·洛阳检测)函数f (x )=ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =( ) A.-1 B.14 C.12D.1(2)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 (1)B (2)1解析 (1)∵f (x )=ln x -ax ,∴f ′(x )=1x -a .又曲线y =f (x )在x =2处切线的斜率k =f ′(2), 因此12-a =a ,∴a =14.(2)y =x 3+ax +b 的导数为y ′=3x 2+a , 可得在点(1,1)处切线的斜率为k =3+a ,又k +1=3,1+a +b =3,解得k =2,a =-1,b =3,即有2a +b =-2+3=1.公切线问题求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,其中直线与抛物线相切可用判别式法. 一、共切点的公切线问题例1 设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +2b (a >0)的图象的公共点,以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为( ) A.23e 34 B.32e 34 C.43e 23D.34e 23答案 D解析 设P (x 0,y 0),由于P 为公共点, 则12x 20+2ax 0=3a 2ln x 0+2b .又点P 处的切线相同,则f ′(x 0)=g ′(x 0), 即x 0+2a =3a 2x 0,即(x 0+3a )(x 0-a )=0.又a >0,x 0>0,则x 0=a ,于是2b =52a 2-3a 2ln a .设h (x )=52x 2-3x 2ln x ,x >0, 则h ′(x )=2x (1-3ln x ).可知:当x ∈(0,e 13)时,h (x )单调递增;当x ∈(e 13,+∞)时,h (x )单调递减. 故h (x )max =h (e 13)=32e 23, 于是b 的最大值为34e 23,选D. 二、切点不同的公切线问题例2 曲线y =-1x (x <0)与曲线y =ln x 的公切线的条数为________. 答案 1解析 设(x 1,y 1)是公切线和曲线y =-1x 的切点, 则切线斜率k 1=⎝ ⎛⎭⎪⎫-1x ′|x =x 1=1x 21,切线方程为y +1x 1=1x 21(x -x 1),整理得y =1x 21·x -2x 1.设(x 2,y 2)是公切线和曲线y =ln x 的切点, 则切线斜率k 2=(ln x )′|x =x 2=1x 2,切线方程为y -ln x 2=1x 2(x -x 2),整理得y =1x 2·x +ln x 2-1.令1x 21=1x 2,-2x 1=ln x 2-1,消去x 2得-2x 1=ln x 21-1.设t =-x 1>0,即2ln t -2t -1=0,只需探究此方程解的个数.易知函数f (x )=2ln x -2x -1在(0,+∞)上单调递增,f (1)=-3<0,f (e)=1-2e >0,于是f (x )=0有唯一解,于是两曲线的公切线的条数为1.1.函数f (x )=x 2+ln x +sin x +1的导函数f ′(x )=( ) A.2x +1x +cos x +1 B.2x -1x +cos x C.2x +1x -cos xD.2x +1x +cos x答案 D解析 由f (x )=x 2+ln x +sin x +1得f ′(x )=2x +1x +cos x . 2.曲线y =x +1x -1在点(3,2)处的切线的斜率是( )A.2B.-2C.12D.-12答案 D解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在点(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12. 3.(2021·安徽皖江名校联考)已知f (x )=x 3+2xf ′(0),则f ′(1)=( ) A.2 B.3C.4D.5答案 B解析 f ′(x )=3x 2+2f ′(0), ∴f ′(0)=2f ′(0),解得f ′(0)=0, ∴f ′(x )=3x 2,∴f ′(1)=3.4.(2022·豫北十校联考)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为( ) A.y =0 B.4x +y +4=0 C.4x -y +4=0 D.y =0或4x +y +4=0 答案 D解析 易知点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,x 20),由f (x )=x 2可得f ′(x )=2x ,∴切线的斜率k =f ′(x 0)=2x 0. ∵切线过点P (-1,0),∴k =x 20x 0+1=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0.5.(2022·昆明诊断)若直线y =ax 与曲线y =ln x -1相切,则a =( ) A.e B.1C.1eD.1e 2答案 D解析 由y =ln x -1,得y ′=1x ,设切点为(x 0,ln x 0-1),则⎩⎨⎧ax 0=ln x 0-1,a =1x 0,解得a =1e 2. 6.已知函数f (x )在R 上可导,其部分图象如图所示,设f (4)-f (2)4-2=a ,则下列不等式正确的是( )A.a <f ′(2)<f ′(4)B.f ′(2)<a <f ′(4)C.f ′(4)<f ′(2)<aD.f ′(2)<f ′(4)<a 答案 B解析 由函数f (x )的图象可知,在[0,+∞)上,函数值的增长越来越快,故该函数图象在[0,+∞)上的切线斜率也越来越大. 因为f (4)-f (2)4-2=a ,所以f ′(2)<a <f ′(4).7.函数f (x )=(2x -1)e x 的图象在点(0,f (0))处的切线的倾斜角为________. 答案 π4解析 由f (x )=(2x -1)e x , 得f ′(x )=(2x +1)e x ,∴f ′(0)=1,则切线的斜率k =1, 又切线倾斜角θ∈[0,π), 因此切线的倾斜角θ=π4.8.已知曲线f (x )=13x 3-x 2-ax +1存在两条斜率为3的切线,则实数a 的取值范围是________. 答案 (-4,+∞) 解析 f ′(x )=x 2-2x -a ,依题意知x 2-2x -a =3有两个实数解, 即a =x 2-2x -3=(x -1)2-4有两个实数解, ∴y =a 与y =(x -1)2-4的图象有两个交点, ∴a >-4.9.(2021·济南检测)曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=________.答案-2解析∵直线l过点(-2,0)和(0,-2),∴直线l的斜率f′(-1)=0+2-2-0=-1,直线l的方程为y=-x-2.则f(-1)=1-2=-1.故f′(-1)+f(-1)=-1-1=-2.10.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)因为f′(x)=3x2-8x+5,所以f′(2)=1,又f(2)=-2,所以曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y -4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),因为f′(x0)=3x20-8x0+5,所以切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),所以x30-4x20+5x0-2=(3x20-8x0+5)·(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,所以经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.11.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)根据题意,得f′(x)=3x2+1.所以曲线y=f(x)在点(2,-6)处的切线的斜率k=f′(2)=13,所以所求的切线方程为13x-y-32=0.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,所以直线l的方程为y=(3x20+1)(x-x0)+x30+x0-16.又直线l过点(0,0),则(3x20+1)(0-x0)+x30+x0-16=0,整理得x30=-8,解得x0=-2,所以y0=(-2)3+(-2)-16=-26,l的斜率k′=13,所以直线l的方程为y=13x,切点坐标为(-2,-26).12.若函数f(x)=a ln x(a∈R)与函数g(x)=x在公共点处有共同的切线,则实数a 的值为()A.4B.12 C.e2 D.e答案 C解析由已知得f′(x)=ax,g′(x)=12x,设切点横坐标为t,∴⎩⎨⎧a ln t=t,at=12t,解得t=e2,a=e2.13.曲线y=x2-ln x上的点到直线x-y-2=0的最短距离是________. 答案 2解析设曲线在点P(x0,y0)(x0>0)处的切线与直线x-y-2=0平行,则y′|x=x0=⎝⎛⎭⎪⎫2x-1x| x=x0=2x0-1x0=1.∴x0=1,y0=1,则P(1,1),则曲线y=x2-ln x上的点到直线x-y-2=0的最短距离d=|1-1-2|12+(-1)2= 2.14.(2021·宜昌质检)已知函数f(x)=1x+1+x+a-1的图象是以点(-1,-1)为对称中心的中心对称图形,g(x)=e x+ax2+bx,若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,求a+b的值.解由y=x+1x的图象关于点(0,0)对称,且y=f(x)的图象可由y=x+1x的图象平移得到,且函数f(x)=1x+1+x+a-1=1x+1+(x+1)+a-2的图象是以点(-1,-1)为对称中心的中心对称图形,得a-2=-1,即a=1,所以f(x)=1x+1+x.对f(x)求导,得f′(x)=1-1(x+1)2,则曲线y=f(x)在点(1,f(1))处的切线斜率k1=f′(1)=1-14=3 4.对g(x)求导,得g′(x)=e x+2x+b,则曲线y=g(x)在点(0,g(0))处的切线斜率k2=g′(0)=b+1.由两曲线的切线互相垂直,得(b+1)×34=-1,即b=-73,所以a+b=1-73=-43.。

高三数学一轮复习 1.2 函数、基本初等函数的图象与性质学案

高三数学一轮复习 1.2 函数、基本初等函数的图象与性质学案

专题一:集合、常用逻辑用语、不等式、函数与导数第二讲函数、基本初等函数的图象与性质【最新考纲透析】1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

(3)了解简单的分段函数,并能简单应用。

(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

(5)会运用函数图象理解和研究函数的性质。

2.指数函数(1)了解指数函数模型的实际背景。

(2)理解有理指数幂的含义,了解褛指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。

(4)知道指数函数是一类重要的函数模型。

3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。

(3)知道对数函数是一类重要的函数模型。

(4)了解指数函数xy a=与对数函数log ay x=互为反函数(0,1a a>≠且)。

4.幂函数(1)了解幂函数的概念(2)结合函数12321,,,,y x y x y x y y xx=====的图象了解它们的变化情况。

【核心要点突破】要点考向一:基本初等函数问题考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。

2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。

考向链接:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。

2.熟记幂和对数的运算性质并能灵活运用。

例1:(2010·全国高考卷Ⅱ文科·T4)函数y=1+ln(x-1)(x>1)的反函数是(A)y=1xe+-1(x>0) (B) )y=1x e-+1(x>0)(C) y=1x e+-1(x ∈R) (D)y=1x e-+1 (x ∈R)【命题立意】本题考查了反函数的概念及其求法。

2023年高考数学(文科)一轮复习——基本不等式及其应用

2023年高考数学(文科)一轮复习——基本不等式及其应用

第3节 基本不等式及其应用考试要求 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.1.思考辨析(在括号内打“√”或“×”)(1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(2)函数y=x+1x的最小值是2.()(3)函数f(x)=sin x+4sin x的最小值为-5.()(4)x>0且y>0是xy+yx≥2的充要条件.()答案(1)×(2)×(3)√(4)×解析(1)不等式a2+b2≥2ab成立的条件是a,b∈R;不等式a+b2≥ab成立的条件是a≥0,b≥0.(2)函数y=x+1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(4)x>0且y>0是xy+yx≥2的充分不必要条件.2.(易错题)已知x>2,则x+1x-2的最小值是()A.1B.2C.2 2D.4 答案 D解析∵x>2,∴x-2>0,∴x+1x-2=x-2+1x-2+2≥2(x-2)1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立.3.若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2 答案 D解析因为x<0,所以-x>0,x+1x=-⎣⎢⎡⎦⎥⎤-x+⎝⎛⎭⎪⎫-1x≤-2(-x)·⎝⎛⎭⎪⎫-1x=-2,当且仅当x=-1时,等号成立,所以x+1x≤-2.4.若x>0,y>0,且x+y=18,则xy的最大值为()A.9B.18C.36D.81 答案 A解析因为x+y=18,所以xy≤x+y2=9,当且仅当x=y=9时,等号成立.5.一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.答案1515 2解析设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=12x·(2y)≤12⎝⎛⎭⎪⎫x+2y22=2252,当且仅当x=2y,即x=15,y=152时取等号.6.已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2×2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.考点一 利用基本不等式求最值 角度1 配凑法求最值例1 (1)已知0<x <1,则x (3-2x )的最大值为________. (2)已知x >54,则f (x )=4x -2+14x -5的最小值为________.(3)(2021·沈阳模拟)若0<x <12,则y =x 1-4x 2的最大值为________. 答案 (1)98 (2)5 (3)14解析 (1)x (3-2x )=12·2x (3-2x )≤12·⎝ ⎛⎭⎪⎫2x +3-2x 22=98, 当且仅当2x =3-2x ,即x =34时取等号. (2)∵x >54,∴4x -5>0, ∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5. 当且仅当4x -5=14x -5,即x =32时取等号. (3)∵0<x <12, ∴y =x1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12·4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2,即x =24时取等号,则y =x1-4x 2的最大值为14.角度2 常数代换法求最值例 2 (2022·江西九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为________. 答案 5解析 因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b +3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立, 即b 3a +3b 的最小值为5. 角度3 消元法求最值例3 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法) 由已知得x +3y =9-xy , 因为x >0,y >0, 所以x +3y ≥23xy , 所以3xy ≤⎝⎛⎭⎪⎫x +3y 22, 所以13×⎝⎛⎭⎪⎫x +3y 22≥9-(x +3y ), 即(x +3y )2+12(x +3y )-108≥0,则x +3y ≤-18(舍去)或x +3y ≥6(当且仅当x =3y ,即x =3,y =1时取等号),故x+3y的最小值为6. 法二(代入消元法)由x+3y+xy=9,得x=9-3y 1+y,所以x+3y=9-3y1+y+3y=9+3y21+y=3(1+y)2-6(1+y)+121+y=3(1+y)+121+y-6≥23(1+y)·121+y-6=12-6=6,当且仅当3(1+y)=121+y,即y=1,x=3时取等号,所以x+3y的最小值为6.感悟提升利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1 (1)已知函数f(x)=-x2x+1(x<-1),则()A.f(x)有最小值4B.f(x)有最小值-4C.f (x )有最大值4D.f (x )有最大值-4(2)正数a ,b 满足ab =a +b +3,则a +b 的最小值为________. 答案 (1)A (2)6解析 (1)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.(2)∵a >0,b >0,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b +3≤⎝ ⎛⎭⎪⎫a +b 22, 整理得(a +b )2-4(a +b )-12≥0,解得a +b ≤-2(舍)或a +b ≥6(当且仅当a =b =3时取等号). 故a +b 的最小值为6.考点二 基本不等式的综合应用例4 (1)(2022·河南名校联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( ) A.14B.12C.22D.1(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)A (2)B解析 (1)圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b 2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b ,即a =22,b =24时等号成立,故ab 的最大值是14.(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只需求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥a +2a +1=(a +1)2, 当且仅当y =ax 时,等号成立, ∴(a +1)2≥9,∴a ≥4, 即正实数a 的最小值为4.感悟提升 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.训练2 (1)若△ABC 的内角满足3sin A =sin B +sin C ,则cos A 的最小值是( ) A.23B.79C.13D.59(2)当x ∈(0,+∞)时,ax 2-3x +a ≥0恒成立,则实数a 的取值范围是________. 答案 (1)B (2)⎣⎢⎡⎭⎪⎫32,+∞解析(1)由题意结合正弦定理有3a=b+c,结合余弦定理可得:cos A=b2+c2-a22bc=b2+c2-⎝⎛⎭⎪⎫b+c322bc=89b2+89c2-29bc2bc=89b2+89c22bc-19≥2×89b×89c2bc-19=79.当且仅当b=c时等号成立.综上可得,cos A的最小值是79.(2)ax2-3x+a≥0,则a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当且仅当x=1时等号成立,故y=3x+1x≤32,故a≥32.考点三基本不等式的实际应用例5 为了美化校园环境,园艺师在花园中规划出一个平行四边形,建成一个小花圃,如图,计划以相距6米的M,N两点为AMBN一组相对的顶点,当AMBN 的周长恒为20米时,小花圃占地面积(单位:平方米)最大为()A.6B.12C.18D.24答案 D解析设AM=x,AN=y,则由已知可得x+y=10,在△MAN中,MN=6,由余弦定理可得,cos A =x 2+y 2-622xy =(x +y )2-362xy -1=32xy -1≥32⎝ ⎛⎭⎪⎫x +y 22-1=3225-1=725, 当且仅当x =y =5时等号成立, 此时(cos A )min =725, 所以(sin A )max =1-⎝ ⎛⎭⎪⎫7252=2425,所以四边形AMBN 的最大面积为2×12×5×5×2425=24,此时四边形AMBN 是边长为5的菱形.感悟提升 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.训练3 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨. 答案 20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x 次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用为之和为⎝ ⎛⎭⎪⎫400x ·4+4x 万元,400x ·4+4x ≥160,当且仅当1 600x =4x ,即x =20时,一年的总运费与总存储费用之和最小.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A.a +b ≥2ab B.a b +ba ≥2 C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2.2.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.4 2 C.2 D.2 2答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.3.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.8 B.6 C.4 D.2答案 C解析 依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22,即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b =2时取等号, ∴a +b 的最小值为4.4.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.5.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件 D.120件答案 B解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝ ⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x ·x 8=20,当且仅当800x=x8,即x =80时取等号.6.对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A. 2 B.2 2C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2nm 恒成立, ∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为2 2.7.(2022·河南顶级名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n 的最小值为( ) A.4 B.9C.23D.32答案 D解析 设各项均为正数的等比数列{a n }的公比为q ,q >0,由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7,即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号. 8.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3 B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y ) =2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号, ∴x +y ≥7,故x +y 的最小值为7.9.(2021·宜昌期末)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (单位:元)与月处理量x (单位:吨)之间的函数关系可近似表示为y =12x 2-300x +80 000,为使每吨的平均处理成本最低,该厂每月的垃圾处理量应为________吨.答案 400解析 由题意知,每吨垃圾的平均处理成本为y x =12x 2-300x +80 000x =x 2+80 000x -300,其中300≤x ≤600,又x 2+80 000x -300≥2x 2·80 000x -300=400-300=100,所以当且仅当x 2=80 000x ,即x =400吨时,每吨垃圾的平均处理成本最低. 10.(2022·兰州诊断)设a ,b ,c 均为正实数,若a +b +c =1,则1a +1b +1c ≥________. 答案 9解析 ∵a ,b ,c 均为正数,a +b +c =1, ∴1a +1b +1c =(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫a c +c a +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.11.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.12.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________. 答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b=4,当且仅当a +b2=8a +b,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4.13.(2022·宜春调研)已知x >0,y >0,x +2y =3,则x 2+3yxy 的最小值为( )A.3-2 2B.22+1C.2-1D.2+1答案 B解析 x >0,y >0,x +2y =3, 则x 2+3y xy =x 2+y (x +2y )xy=x y +2yx +1≥2x y ·2yx +1=22+1. 当且仅当x =2y 时,上式取得等号, 则x 2+3yxy 的最小值为22+1.14.(2022·西安一模)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成为后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B.a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知OF =12AB =12(a +b ),OC =⎪⎪⎪⎪⎪⎪12(a +b )-b =⎪⎪⎪⎪⎪⎪12(a -b ),在Rt △OCF 中,由勾股定理可得 CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).故选D.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫-83,+∞解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N *, 则g (x )=x +8x ≥42, 当且仅当x =22时等号成立, 又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173. ∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。

2023年高考数学(文科)一轮复习——等差数列及其前n项和

2023年高考数学(文科)一轮复习——等差数列及其前n项和

第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).1.思考辨析(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0且关于n 的二次函数.( ) 答案 (1)√ (2)√ (3)× (4)×解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是n 的二次函数.2.(2022·南宁一模)记S n 为等差数列{a n }的前n 项和,若a 1=1,S 3=92,则数列{a n }的通项公式a n =( )A.nB.n +12C.2n -1D.3n -12答案 B解析 设等差数列{a n }的公差为d ,则S 3=3a 1+3×22d =3+3d =92,解得d =12,∴a n =1+(n -1)×12=n +12.3.(2021·宝鸡二模)已知{a n }是等差数列,满足3(a 1+a 5)+2(a 3+a 6+a 9)=18,则该数列的前8项和为( )A.36B.24C.16D.12答案 D解析 由等差数列性质可得a 1+a 5=2a 3,a 3+a 6+a 9=3a 6,所以3×2a 3+2×3a 6=18,即a 3+a 6=3,所以S 8=8(a 1+a 8)2=8(a 3+a 6)2=12. 4.在等差数列{a n }中,若a 1+a 2=5,a 3+a 4=15,则a 5+a 6=( )A.10B.20C.25D.30答案 C解析 等差数列{a n }中,每相邻2项的和仍然构成等差数列,设其公差为d ,若a 1+a 2=5,a 3+a 4=15,则d =15-5=10,因此a 5+a 6=(a 3+a 4)+d =15+10=25.5.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.答案 20解析 设物体经过t 秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t +12t (t -1)×9.80=1 960,即4.90t 2=1 960,解得t =20.6.(易错题)在等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使数列{a n }的前n 项和S n 取最大值的正整数n 的值是________.答案 5或6解析 ∵|a 3|=|a 9|,∴|a 1+2d |=|a 1+8d |,可得a 1=-5d ,∴a 6=a 1+5d =0,且a 1>0,∴a 5>0,故S n 取最大值时n 的值为5或6.考点一 等差数列的基本运算1.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n答案 A解析 设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n . 2.(2022·太原调研)已知等差数列{a n }的前n 项和为S n ,若S 8=a 8=8,则公差d =( )A.14B.12C.1D.2 答案 D解析 ∵S 8=a 8=8,∴a 1+a 2+…+a 8=a 8,∴S 7=7a 4=0,则a 4=0.∴d =a 8-a 48-4=2. 3.(2020·全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,则a 2+a 6=2a 1+6d =2×(-2)+6d =2.解得d =1.所以S 10=10×(-2)+10×92×1=25.4.(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a5.(1)若 a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.解 (1)设{a n }的公差为d .由S 9=-a 5可知9a 5=-a 5,所以a 5=0.因为a 3=4,所以d =a 5-a 32=0-42=-2,所以a n =a 3+(n -3)×(-2)=10-2n ,因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 5=0,因为a 1>0,所以等差数列{a n }单调递减,即d <0,a 1=a 5-4d =-4d ,S n =n (n -9)d 2, a n =-4d +d (n -1)=dn -5d ,因为S n ≥a n ,所以nd (n -9)2≥dn -5d , 又因为d <0,所以1≤n ≤10.感悟提升 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.考点二 等差数列的判定与证明例1 (2021·全国甲卷)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1.注:若选择不同的组合分别解答,则按第一个解答计分.解 ①③⇒②.已知{a n }是等差数列,a 2=3a 1.设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1,所以S n =na 1+n (n -1)2d =n 2a 1. 因为数列{a n }的各项均为正数, 所以S n =n a 1, 所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列.设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =12n 2d +⎝ ⎛⎭⎪⎫a 1-d 2n . 因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a1-d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{S n}的公差为d,d>0,则S2-S1=4a1-a1=d,得a1=d2,所以S n=S1+(n -1)d=nd,所以S n=n2d2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.感悟提升 1.证明数列是等差数列的主要方法:(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数.即作差法,将关于a n-1的a n代入a n-a n-1,再化简得到定值.(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立.2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(2)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.问题的最终判定还是利用定义.训练1 (2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n ≥2时,S n =b n b n -1, 代入2S n +1b n =2可得,2b n -1b n +1b n=2, 整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1). 故a n =⎩⎪⎨⎪⎧32,n =1,-1n (n +1),n ≥2. 考点三 等差数列的性质及应用角度1 等差数列项的性质例2 (1)设S n 为等差数列{a n }的前n 项和,且4+a 5=a 6+a 4,则S 9等于( )A.72B.36C.18D.9 (2)在等差数列{a n }中,若a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A.10B.20C.40D.2+log 25答案 (1)B (2)B解析 (1)∵a 6+a 4=2a 5,∴a 5=4,∴S 9=9(a 1+a 9)2=9a 5=36. (2)由等差数列的性质知a 1+a 10=a 2+a 9=a 3+a 8=a 4+a 7=a 5+a 6=a 4,则2a 1···2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4,所以log 2(2a 1·2a 2·…·2a 10)=log 225×4=20. 角度2 等差数列前n 项和的性质例3 (1)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A.35B.42C.49D.63(2)(2020·全国Ⅱ卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块答案 (1)B (2)C解析 (1)在等差数列{a n }中,S 5,S 10-S 5,S 15-S 10成等差数列,即7,14,S 15-21成等差数列,所以7+(S 15-21)=2×14,解得S 15=42.(2)设每一层有n 环,由题可知从内到外每环之间构成公差d =9,a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3 402(块).角度3 等差数列前n 项和的最值例4 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 法一 设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.法二 易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称. 由解法一可知A =-a 113<0,故当n =7时,S n 最大.法三 设公差为d .由解法一可知d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0, 解得6.5≤n ≤7.5,故当n =7时,S n 最大.法四 设公差为d .由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0, 又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.感悟提升 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .(3)依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.3.求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n 项和S n =An 2+Bn (A ,B 为常数,A ≠0)为二次函数,通过二次函数的性质求最值.训练2 (1)(2021·洛阳质检)记等差数列{a n }的前n 项和为S n ,若S 17=272,则a 3+a 9+a 15=( )A.24B.36C.48D.64(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 020,S 2 0202 020-S 2 0142 014=6,则S 2 023等于( )A.2 023B.-2 023C.4 046D.-4 046(3)设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是________. 答案 (1)C (2)C (3)121解析 (1)因为数列{a n }是等差数列,其前n 项和为S n ,所以S 17=272=a 1+a 172×17=2a 92×17=17a 9,∴a 9=16,所以a 3+a 9+a 15=3a 9=48.(2)∵⎩⎨⎧⎭⎬⎫S n n 为等差数列,设公差为d ′, 则S 2 020 2 020-S 2 0142 014=6d ′=6,∴d ′=1,首项为S 11=-2 020,∴S 2 0232 023=-2 020+(2 023-1)×1=2,∴S 2 023=2 023×2=4 046,故选C.(3)设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,∴22a 1+d =a 1+3a 1+3d ,把a 1=1代入求得d =2,∴a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,∴S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎪⎫n +102n -12=⎣⎢⎡⎦⎥⎤12(2n -1)+2122n -12=14⎝ ⎛⎭⎪⎫1+212n -12≤121.∴S n +10a 2n 的最大值是121.1.在等差数列{a n }中,3a 5=2a 7,则此数列中一定为0的是() A.a 1 B.a 3 C.a 8 D.a 10答案 A解析 设{a n }的公差为d (d ≠0),∵3a 5=2a 7,∴3(a 1+4d )=2(a 1+6d ),得a 1=0.2.(2021·重庆二模)已知公差不为0的等差数列{a n }中,a 2+a 4=a 6,a 9=a 26,则a 10=( )A.52B.5C.10D.40答案 A解析 设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d +a 1+3d =a 1+5d ,a 1+8d =(a 1+5d )2,由于d ≠0,故a 1=d =14,所以a 10=14+14×9=52.3.已知数列{a n }满足5an +1=25·5an ,且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=() A.-3 B.3 C.-13 D.13答案 A解析 数列{a n }满足5an +1=25·5an ,∴a n +1=a n +2,即a n +1-a n =2,∴数列{a n }是等差数列,公差为2.∵a 2+a 4+a 6=9,∴3a 4=9,a 4=3.∴a 1+3×2=3,解得a 1=-3.∴a 5+a 7+a 9=3a 7=3×(-3+6×2)=27,则log 13(a 5+a 7+a 9)=log 1333=-3.故选A.4.(2022·太原一模)在数列{a n }中,a 1=3,a m +n =a m +a n (m ,n ∈N *),若a 1+a 2+a 3+…+a k =135,则k =( )A.10B.9C.8D.7 答案 B解析 令m =1,由a m +n =a m +a n 可得a n +1=a 1+a n ,所以a n +1-a n =3, 所以{a n }是首项为a 1=3,公差为3的等差数列,a n =3+3(n -1)=3n ,所以a 1+a 2+a 3+…+a k =k (a 1+a k )2=k (3+3k )2=135. 整理可得k 2+k -90=0,解得k =9或k =-10(舍).5.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A.65B.176C.183D.184答案 D解析 根据题意可知每个孩子所得棉花的斤数构成一个等差数列{a n },其中d =17,n =8,S 8=996.由等差数列前n 项和公式可得8a 1+8×72×17=996,解得a 1=65.由等差数列通项公式得a 8=65+(8-1)×17=184.则第八个孩子分得斤数为184.6.(2021·全国大联考)在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n 的最大值是( )A.15B.16C.17D.14答案 C解析 ∵等差数列{a n }的前n 项和有最大值,∴等差数列{a n }为递减数列, 又a 10a 9<-1,∴a 9>0,a 10<0, ∴a 9+a 10<0,又S 18=18(a 1+a 18)2=9(a 9+a 10)<0, 且S 17=17(a 1+a 17)2=17a 9>0. 故使得S n >0成立的正整数n 的最大值为17.7.设S n 为等差数列{a n }的前n 项和,若S 6=1,S 12=4,则S 18=________. 答案 9解析 在等差数列中,S 6,S 12-S 6,S 18-S 12成等差数列,∵S 6=1,S 12=4,∴1,3,S 18-4成公差为2的等差数列,即S 18-4=5,S 18=9.8.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于________. 答案 3727解析 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 9.(2021·西安一模)已知数列{a n }的前n 项和为S n ,满足a 1=32,a 2=2,2(S n +2+S n )=4S n +1+1,则数列{a n }的前16项和S 16=________.答案 84解析 将2(S n +2+S n )=4S n +1+1变形为(S n +2-S n +1)-(S n +1-S n )=12,即a n +2-a n+1=12,又a 1=32,a 2=2,∴a 2-a 1=12符合上式,∴{a n }是首项a 1=32,公差d =12的等差数列,∴S 16=16×32+16×152×12=84.10.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解 (1)设公差为d .∵{a n }为等差数列,∴a 1+a 5=a 2+a 4=18,又a 2a 4=65,∴a 2,a 4是方程x 2-18x +65=0的两个根,又公差d >0,∴a 2<a 4,∴a 2=5,a 4=13.∴⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k , 得1+k +15+3k =26+2k ,解得k =1. ∴S n +kn =2n 2=2n ,当n ≥2时,2n -2(n -1)=2,为常数,∴数列{S n +kn }为等差数列.故存在常数k =1,使得数列{S n +kn }为等差数列. 11.设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项.(1)证明:数列{a n }为等差数列;(2)若b n =-n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值.(1)证明 由已知可得2S n =a 2n +a n ,且a n >0,当n =1时,2a 1=a 21+a 1,解得a 1=1.当n ≥2时,有2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n -a 2n -1+a n -a n -1,所以a 2n -a 2n -1=a n +a n -1,即(a n +a n -1)(a n -a n -1)=a n +a n -1,因为a n +a n -1>0,所以a n -a n -1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列.(2)解 由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (-n +5)=-n 2+5n=-⎝ ⎛⎭⎪⎫n -522+254, 因为n ∈N *,所以n =2或3,c 2=c 3=6,因此当n =2或n =3时,{a n ·b n }取最大项,且最大项的值为6.12.(2020·新高考山东卷)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为__________.答案 3n 2-2n解析 法一(观察归纳法) 数列{}2n -1的各项为1,3,5,7,9,11,13,…;数列{3n -2}的各项为1,4,7,10,13,….现观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列, 则a n =1+6(n -1)=6n -5.故其前n 项和为S n =n (a 1+a n )2=n (1+6n -5)2=3n 2-2n . 法二(引入参变量法) 令b n =2n -1,c m =3m -2,b n =c m ,则2n -1=3m -2,即3m =2n +1,m 必为奇数.令m =2t -1,则n =3t -2(t =1,2,3,…).a t =b 3t -2=c 2t -1=6t -5,即a n =6n -5.以下同法一.13.(2022·衡水模拟)已知在数列{a n }中,a 6=11,且na n -(n -1)a n +1=1,则a n =______;a 2n +143n 的最小值为________.答案 2n -1 44解析 na n -(n -1)a n +1=1,∴(n +1)a n +1-na n +2=1,两式相减得na n -2na n +1+na n +2=0,∴a n +a n +2=2a n +1,∴数列{a n }为等差数列.当n =1时,由na n -(n -1)a n +1=1得a 1=1,由a 6=11,得公差d =2,∴a n =1+2(n -1)=2n -1,∴a 2n +143n =(2n -1)2+143n=4n +144n -4≥24n ·144n -4=44, 当且仅当4n =144n ,即n =6时等号成立.14.等差数列{a n }中,公差d <0,a 2+a 6=-8,a 3a 5=7.(1)求{a n }的通项公式;(2)记T n 为数列{b n }前n 项的和,其中b n =|a n |,n ∈N *,若T n ≥1 464,求n 的最小值.解 (1)∵等差数列{a n }中,公差d <0,a 2+a 6=-8, ∴a 2+a 6=a 3+a 5=-8,又∵a 3a 5=7,∴a 3,a 5是一元二次方程x 2+8x +7=0的两个根,且a 3>a 5, 解方程x 2+8x +7=0,得a 3=-1,a 5=-7,∴⎩⎪⎨⎪⎧a 1+2d =-1,a 1+4d =-7,解得a 1=5,d =-3. ∴a n =5+(n -1)×(-3)=-3n +8.(2)由(1)知{a n }的前n 项和S n =5n +n (n -1)2×(-3)=-32n 2+132n . ∵b n =|a n |,∴b 1=5,b 2=2,b 3=|-1|=1,b 4=|-4|=4, 当n ≥3时,b n =|a n |=3n -8.当n <3时,T 1=5,T 2=7;当n ≥3时,T n =-S n +2S 2=3n 22-13n 2+14.∵T n ≥1 464,∴T n =3n 22-13n 2+14≥1 464,即(3n-100)(n+29)≥0,解得n≥100,3∴n的最小值为34.。

高三文科数学第一轮复习资料

高三文科数学第一轮复习资料

第一章集合与常用逻辑用语第一节集合☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.集合的含义与表示方法(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合。

集合中元素的性质:确定性、无序性、互异性。

(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉。

(3)集合的表示方法:列举法、描述法和图示法。

(4)常用数集的记号:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R。

2.集合间的基本关系A B或B A3.集合的基本运算1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件。

2.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身。

3.运用数轴图示法易忽视端点是实心还是空心。

4.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性\”而导致解题错误。

5.记住以下结论(1)若集合A中有n个元素,则其子集的个数为2n,真子集的个数为2n-1。

(2)A∪B=A⇔B⊆A;A∩B=A⇔A⊆B。

小|题|快|练一、走进教材1.(必修1P12B组T4改编)满足{0,1}⊆A{0,1,2,3}的集合A的个数为()A.1 B.2C.3 D.4【解析】由题意得A可为{0,1},{0,1,2},{0,1,3}。

故选C。

【答案】 C2.(必修1P12B组T1改编)已知集合A={0,1,2},集合B满足A∪B ={0,1,2},则集合B有个。

【解析】由题意知B⊆A,则集合B有8个。

【答案】8二、双基查验1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}【解析】M∪N表示属于M或属于N的元素构成的集合,故M∪N={-1,0,1,2}。

故选B。

【答案】 B2.设集合M={≥0,x∈R},N={2<1,x∈R},则M∩N=() A.[0,1]B.[0,1)C.(0,1] D.(0,1)【解析】∵x2<1,∴-1<x<1。

新课标高考文科一轮复习知识点——高中数学-1、1-2、4-4

新课标高考文科一轮复习知识点——高中数学-1、1-2、4-4

选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

步步高文科高考数学一轮复习1

步步高文科高考数学一轮复习1
第一章 集合与常用逻辑用语
§1.1 集合旳概念及其基本运算
基础知识 自主学习
要点梳理
1.集合与元素 (1)集合元素旳三个特征:__拟__定__性___、_互__异__性___、
__无__序__性___. (2)元素与集合旳关系是__属__于__或_不__属__于___关系,
用符号____或_____表达.
2 .
2
a
2.
综上知,当A B 时,a<-8或a≥2.
6分
(2)当a=0时,显然B A;
当a<0时,若B A,如图,
4 则 a
1 a
1 2, 2
a a
8 1.
2
1 2
a
0;
当a>0时,若B A,如图,
则4 a
1 a
2
1 2 ,
a a
2 . 2
0
a
2.
综上知,当B A时, 1 a 2
4.韦恩图示法和数轴图示法是进行集合交、并、补运 算旳常用措施,其中利用数轴图示法要尤其注意端点 是实心还是空心.
5.要注意A B、A∩B=A、A∪B=B、 这五个关系式旳等价性.
返回
B.{1,4,5}
(B )
C.{4,5}
D.{1,5}
解析 ∵A={1,2,3},B={2,3,4},
∴A∩B={2,3}.
又U={1,2,3,4,5},
∴ U(A∩B)={1,4,5}.
2.已知三个集合U,A,B及元素间旳关系如图所示,
则( UA)∩B等于
(A )
A.{5,6}
B.{3,5,6}
思想措施 感悟提升
措施与技巧
1.集合中旳元素旳三个性质,尤其是无序性和互异性 在解题时经常用到.解题后要进行检验,要注重符号 语言与文字语言之间旳相互转化.

高三总复习步步高数学文科1.2简易逻辑

高三总复习步步高数学文科1.2简易逻辑

证明 ∵a+b=1,∴a+b-1=0, ∴a3+b3+ab-a2-b2 =(a+b)(a2-ab+b2)-(a2-ab+b2) =(a+b-1)(a2-ab+b2)=0.
∵a3+b3+ab-a2-b2=0 即(a+b-1)(a2-ab+b2)=0, 又ab≠0,∴a≠0且b≠0, ∴∴aa2+-ba-b1+=b0,2=即(aa-+b2b)=21+,43 b2>0, 综上可知,当ab≠0时,a+b=1 a3+b3+ab-a2-b2=0.
c a
<0,∴ac<0.
综上所述,一元二次方程ax2+bx+c=0有一正根和一负根
的充要条件是ac<0.
4.已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式
x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真
命题,求a的取值范围.
解 由函数y=ax在R上单调递减知0<a<1,所以命题p为
词语 上

某些 一定 … 不
另外:p或q的否定为:非p且非q;p且q的否定为:非p或非 q.
1.写出下列命题的否命题,并判断原命题及否命题的真假: (1)如果一个三角形的三条边都相等,那么这个三角形的
(2) (3)相似三角形一定是全等三角形. 解 (1)否命题是:“如果一个三角形的三条边不都相 等,那么这个三角形的三个角也不都相等”. 原命题为真命题,否命题也为真命题. (2)否命题是:“如果四边形不是矩形,那么对角线不互 相平分或不相等”. 原命题是真命题,否命题是假命题. (3)否命题是:“不相似的三角形一定不是全等三角形”. 原命题是假命题,否命题是真命题.

高考文科数学第一轮复习课件1 (2).ppt

高考文科数学第一轮复习课件1 (2).ppt

(1)理解集合之间包含与相等的含义,能识别给定 集合的子集.
(2)在具体情境中,了解全集与空集的含义.
(1)理解两个集合的并集与交集的含义,会求两个
3.集合合中一个子集的补集的含义,会
求给定子集的补集.
(3)能使用韦恩图(Venn)表示集合的关系及运算.
.
(1)当a=0时,若A B,
此种情况不存在.
当a<0时,若AB,如图,

4 a
>-
1 2
- 1 ≤2,
a
a<-8

1
a≤- ,2
∴a<-8.
返回目录
当a>0时,若A B,如图,
- 1 ≥- 1

a2
4 ≤2,
a
∴a≥2.
a≥2
∴ a≥2.
综上知,此时a的取值范围是a<-8或a≥2.
返回目录
返回目录
x
|
-
1 2
x
2.
已 知集合
A={x|0<ax
+1≤5},集
合B=
(1)若A B,
求实数a的
取值范围;
(2)若B A,
求实数a的 返回目录
【解析】A中不等式的解集应分三种情况讨论:
①若a=0,则A=R;
②若a<0,则A=x
|
4 a
x
-
1 a
;
③若a>0,则A= x
|
-
1 a
x
4 a
将1代入B的方程得a2+2a-2=03 a=-31± .
∴a≠-1且a≠3-3且a≠-13± .
综上,a的取值范围是a<-3或-3<a<-1- 或

高中数学文科一轮复习整理

高中数学文科一轮复习整理

高中数学文科一轮复习整理在一轮复习中要坚持以课本为主,在对一些观点上,工具性学问集中提前复习的基础上,顺次复习、重在基础,查漏补缺。

下面是我整理共享的高中数学文科一轮复习,欢迎阅读与借鉴,盼望对你们有关心!1高中数学文科一轮复习提高复习课解题教学的情趣性爱好是最好的老师。

许多同学觉得数学是一门枯燥的学科,在数学的学习当中没有爱好可言,只是为了做题而做题。

长期在这种状态下学习,爱好会日渐削减。

在上复习课时,由于基础学问多,解题的量也很大,我们就更要将解题活动组织得生动活泼、情趣盎然,让同学领会到数学的美丽和魅力,这样才能使他们变苦役为享受,有效地防止智力疲惫。

一道好的数学题,像一段引人入胜的(故事),当困惑被喜悦取代之后,同学又怎能不赞美自己的力量?我们要使同学由“要我学”转化为“我要学”,课堂上要想方设法调动同学的学习乐观性,创设情境,激发热忱。

因此我们要让同学从简单下手的题目动身,由浅入深,狠抓基础,留意力量。

从学问的把握来说,必需从基本的学问练起。

假如操之过急,一开头便做大题难题,势必造成一些同学的畏惧和厌学心理。

因此,训练应夯实基础,多做中小型的基础题,且贯穿于教学的全过程,扎扎实实地搞好量的积累,为质的飞跃铺平道路。

实际上高考题中也经常消失由基础题组合而成的试题。

为此,我们可以在训练中小基础题的基础上把几个相关的基础题进行合理组合。

对这些基础题同学比较熟识,在此基础上答较难一些的大题自然比较顺手,进而能增加学习数学的信念。

在练习方面,要注意练习形式多样化。

除作业练习和课堂问题之外,老师还应注意训练同学的动手力量和解题思路。

在专题训练或平常训练中,把一些重点专题归类任务安排给同学,让同学自己动手整理。

这种做法,既能完成繁杂的专题复习任务,又能节约时间,取得较好的复习效果。

每日除此之外,老师应每天给同学布置一道较好的题,由同学轮番抄于黑板上,以训练同学答题思路。

其次天答案上墙,依据反馈状况进行适当点评。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2命题及其关系、充分条件与必要条件
1.命题的概念
在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.
2.四种命题及相互关系
3.四种命题的真假关系
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.
4.充分条件与必要条件
(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;
(2)如果p⇒q,q⇒p,则p是q的充要条件.
1.判断下面结论是否正确(请在括号中打“√”或“×”)
(1)“x2+2x-3<0”是命题.(×)
(2)“sin 45°=1”是真命题.(×)
(3)命题“三角形的内角和是180°”的否命题是三角形的内角和不是180°. (×)
(4)若一个命题是真命题,则其逆否命题是真命题.(√)
(5)“a=2”是“(a-1)(a-2)=0”的必要不充分条件.(×)
(6)若α∈(0,2π),则“sin α=-1”的充要条件是“α=3
2
π”.(√)
2.设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是() A.若a≠-b,则|a|≠|b|
B.若a=-b,则|a|≠|b|
C .若|a |≠|b |,则a ≠-b
D .若|a |=|b |,则a =-b 答案 D
解析 命题“若a =-b ,则|a |=|b |”的逆命题为“若|a |=|b |,则a =-b ”,故选D.
3.命题“若α=π
4,则tan α=1”的逆否命题是 ( )
A .若α≠π
4,则tan α≠1
B .若α=π
4
,则tan α≠1
C .若tan α≠1,则α≠π
4
D .若tan α≠1,则α=π
4
答案 C
解析 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π
4”,故选C.
4.(2013·福建)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件
D .既不充分也不必要条件
答案 A
解析 a =3时A ={1,3},显然A ⊆B . 但A ⊆B 时,a =2或3.所以A 正确.
5.(2012·天津)设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R)为偶函数”的 ( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
答案 A
解析 由条件推结论和结论推条件后再判断. 若φ=0,则f (x )=cos x 是偶函数, 但是若f (x )=cos(x +φ) (x ∈R)是偶函数,
则φ=π也成立.故“φ=0”是“f (x )=cos(x +φ)(x ∈R)为偶函数”的充分而不必要条件.
题型一 四种命题及真假判断 例1 (1)下面是关于复数z =2
-1+i
的四个命题: p 1:|z |=2, p 2:z 2=2i ,
p 3:z 的共轭复数为1+i ,。

相关文档
最新文档