广西贵港市2015年中考数学试题
2015年广西中考数学真题卷含答案解析
2015年南宁市初中毕业升学考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D四个结论,其中只有一个是正确的.1.3的绝对值是( )A.3B.-3C.13D.-132.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是( )3.南宁快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营.首条BRT西起南宁火车站,东至南宁东站,全长约为11300米.其中数据11300用科学记数法表示为( )A.0.113×105B.1.13×104C.11.3×103D.113×1024.某校男子足球队的年龄分布如条形图所示,则这些队员年龄的众数是( )A.12B.13C.14D.155.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于( )A.30°B.45°C.60°D.90°6.不等式2x-3<1的解集在数轴上表示为( )7.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )A.35°B.40°C.45°D.50° 8.下列运算正确的是( )A.4ab÷2a=2abB.(3x 2)3=9x 6C.a 3·a 4=a 7D.√6÷√3=2 9.一个正多边形的内角和为540°,则这个正多边形的每个外角等于( ) A.60° B.72° C.90° D.108°10.如图,已知经过原点的抛物线y=ax 2+bx+c(a ≠0)的对称轴为直线x=-1.下列结论中:①ab>0;②a+b+c>0;③当-2<x<0时,y<0.正确的个数是( )A.0个B.1个C.2个D.3个11.如图,AB 是☉O 的直径,AB=8,点M 在☉O 上,∠MAB=20°,N 是MB⏜的中点,P 是直径AB 上一动点.若MN=1,则△PMN 周长的最小值为( )A.4B.5C.6D.712.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b 中较大的数,如:max{2,4}=4.按照这个规定,方程max{x,-x}=2x+1x的解为( )A.1-√2B.2-√2C.1-√2或1+√2D.1+√2或-1第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:ax+ay= .14.要使分式1x -1有意义,则字母x 的取值范围是 .15.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸取一个小球,则取出的小球标号是奇数的概率是 .16.如图,在正方形ABCD 的外侧,作等边△ADE,则∠BED 的度数为 °.17.如图,点A 在双曲线y=2√3x(x>0)上,点B 在双曲线y=kx (x>0)上(点B 在点A 的右侧),且AB ∥x轴.若四边形OABC 是菱形,且∠AOC=60°,则k= .18.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第1次点A向左移动3个单位长度到达点A1,第2次从点A1向右移动6个单位长度到达点A2,第3次从点A2向左移动9个单位长度到达点A3,……,按照这种移动规律进行下去,第n次移动到达点A n.如果点A n与原点的距离不小于20,那么n的最小值是.三、解答题(本大题共2小题,每小题满分6分,共12分)19.计算:20150+(-1)2-2tan45°+√4..20.先化简,再求值:(1+x)(1-x)+x(x+2)-1,其中x=12四、解答题(本大题共2小题,每小题满分8分,共16分)21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点B顺时针旋转90°后得到△A2BC2.请在图中画出△A2BC2,并求出线段BC在旋转过程中所扫过的面积.(结果保留π)22.今年5月份,某校九年级学生参加了南宁市中考体育考试.为了了解该校九年级(1)班学生的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班学生人数和m的值;(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分(60分)共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流.请用“列表法”或“画树状图法”,求出恰好选到一男一女的概率.五、解答题(本大题满分8分)23.如图,在▱ABCD中,E,F分别是AB,DC边上的点,且AE=CF.(1)求证:△ADE≌△CBF;(2)若∠DEB=90°,求证:四边形DEBF是矩形.六、解答题(本大题满分10分)24.如图①,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上,修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道的宽为a米.图①(1)用含a的式子表示花圃的面积;,求此时甬道的宽;(2)如果甬道所占面积是整个长方形空地面积的38(3)已知某园林公司修建甬道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图②所示.如果学校决定由该公司承建此项目,并要求修建的甬道宽不少于2米且不超过10米,那么甬道宽为多少米时,修建的甬道和花圃的总造价最低?最低总造价为多少元?图②七、解答题(本大题满分10分)25.如图,AB是☉O的直径,C,G是☉O上两点,且AC⏜=CG⏜.过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连结BC,交OD于点F.(1)求证:CD是☉O的切线;(2)若OFFD =23,求∠E的度数;(3)连结AD,在(2)的条件下,若CD=√3,求AD的长.八、解答题(本大题满分10分)26.在平面直角坐标系中,已知A,B是抛物线y=ax2(a>0)上两个不同的动点,其中A在第二象限,B在第一象限.(1)如图①所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A,B 两点的横坐标的乘积;(2)如图②所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A,B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由;(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P,C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.图①图②答案全解全析:一、选择题1.A因为|3|=3,所以选项A正确.故选A.2.B由题意可知,主视图有两层,上面的一层有一个正方形,在左侧下面的一层有两个正方形.选项B符合.故选B.3.B11300=1.13×104.故选B.4.C14岁的人数最多,所以众数为14.故选C.5.A∵DE∥BC,∴∠CAE=∠C=30°.故选A.6.D∵2x-3<1,∴2x<4,∴x<2.在数轴上表示应为从2画起(空心),向左,选项D符合题意,故选D.7.A∵AB=AD,∴∠ADB=∠B=70°,∵AD=DC,∴∠C=∠DAC.∵∠ADB是△ADC的外∠ADB=35°.故选A.角,∴∠C=128.C4ab÷2a=2b,选项A错误;(3x2)3=27x6,选项B错误;√6÷√3=√2,选项D错误;a3·a4=a7,选项C正确.故选C.9.B由(n-2)·180°=540°,得n=5,所以每一个外角等于360°=72°.故选B.5<0,所以ab>0,所以①正确;当x=1时,y=a+b+c>0,所以②正10.D因为对称轴为直线x=-b2a确;由对称轴可知抛物线与x轴的交点坐标为(-2,0),(0,0),所以-2<x<0时,图象在x轴下方,即y<0,所以③正确.故选D.11.B△PMN的周长为PM、PN、MN的和,其中MN=1,所以只要PM、PN的和最小即可.如图,取N关于AB的对称点C,连结MC交AB于P,此时PM、PN的和最小,PM、PN的和就是MC的长⏜的中点,∴∠NOB=20°.∵直径度.连结OM、ON、OC.∵∠MAB=20°,∴∠MOB=40°.∵N为BMAB⊥CN,∴∠COB=20°.∴∠MOC=60°.∵OM=OC,∴△MOC为等边三角形.∵AB=8,∴MC=OM=4.∴△PMN的周长的最小值为1+4=5.故选B.12.D(1)当x>-x,即x>0时,max{x,-x}=x,2x+1=x,解这个方程可得x=1±√2.经检验,x=1±√2是原方程的解.∵x>0,∴x=1+√2.x(2)当x<-x,即x<0时,max{x,-x}=-x,2x+1=-x,解这个方程可得x=-1.经检验,x=-1是原方程的解.x综上所述,x=1+√2或x=-1.故选D.评析本题是新概念学习题,考查的是分类讨论思想与解一元二次方程.属中档题.二、填空题13.答案a(x+y)解析ax+ay=a(x+y).14.答案x≠1解析若分式1有意义,则分母x-1≠0,即x≠1.x-115.答案0.6解析一共有5个小球,标号是奇数的小球有3个,所以取出的小球标号是奇数的概率是3÷5=0.6.16.答案45解析由题意可知,∠BAE=150°,BA=AE,∴∠AEB=15°.∴∠BED=45°.17.答案 6√3解析 作AD ⊥x 轴交x 轴于点D,∵∠AOC=60°,∴AD=√3OD,∴可设A(x,√3x). ∵点A 在双曲线y=2√3x(x>0)上,∴x ·√3x=2√3. ∴x 2=2.∵x>0,∴x=√2.∴A(√2,√6).∴OA=2√2.∵四边形OABC 是菱形, ∴AB=OA=2√2.∵AB ∥x 轴,∴B(3√2,√6). ∵点B 在双曲线y=k x(x>0)上, ∴k=xy=3√2×√6=6√3.评析 本题考查了反比例函数与菱形的综合应用,需要借助反比例函数关系式求出菱形的边长,再利用菱形的性质求出反比例函数图象上的点的坐标.属中档题. 18.答案 13解析 根据题意,写出移动后各点所表示的数:A 1:-2 A 2:4 A 3:-5 A 4:7 A 5:-8 A 6:10 A 7:-11 A 8:13 A 9:-14 A 10:16 A 11:-17 A 12:19 A 13:-20如果点A n 与原点的距离不小于20,那么n 的最小值是13.三、解答题19.解析 原式=1+1-2×1+2(4分) =2.(6分)20.解析 原式=1-x 2+x 2+2x-1(2分) =2x.(4分)当x=12时,原式=2×12=1.(6分)四、解答题21.解析 (1)△A 1B 1C 1如图所示.(3分,正确作出一点给1分) (2)△A 2BC 2如图所示.(6分,正确作出一点给1分)在Rt △ABC 中,AB=2,AC=3, ∴BC=√22+32=√13.(7分) ∵∠CBC 2=90°,∴S 扇形BCC 2=90π(√13)2360=13π4.(8分)22.解析 (1)全班学生人数:15÷30%=50(人).(2分) m=50-2-5-15-10=18.(3分)(2)51≤x<56.(5分)(3)画树状图或列表如下:或男1男2 女 男1男2男1女男1 男2 男1男2女男2女男1女男2女(7分)由图或表可知,所有可能出现的结果共有6种,并且它们出现的可能性相等,“一男一女”的结果有4种,即:男1女,男2女,女男1,女男2. ∴P(一男一女)=23.(8分) 五、解答题23.证明 (1)∵四边形ABCD 是平行四边形, ∴AD=CB,∠A=∠C.(2分) ∵AE=CF,(3分)∴△ADE ≌△CBF.(4分)(2)证法一:∵△ADE ≌△CBF, ∴DE=BF.(5分)∵四边形ABCD 是平行四边形,∴AB=CD.∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)证法二:∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD.(5分)∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)六、解答题24.解析 (1)花圃的面积为(60-2a)(40-2a)平方米或(4a 2-200a+2 400)平方米.(2分)(2)(60-2a)(40-2a)=60×40×(1-38),(4分)即a 2-50a+225=0,解得a 1=5,a 2=45(不合题意,舍去).∴此时甬道的宽为5米.(5分)(3)∵2≤a ≤10,花圃面积随着甬道宽的增大而减小,∴800≤x 花圃≤2 016.由图象可知,当x ≥800时,设y 2=k 2x+b,因为直线y 2=k 2x+b 经过点(800,48 000)与(1 200,62 000),所以{800k 2+b =48 000,1 200k 2+b =62 000.解得{k 2=35,b =20 000.∴y 2=35x+20 000.(6分)当x ≥0时,设y 1=k 1x,因为直线y 1=k 1x 经过点(1 200,48 000),所以1 200k 1=48 000. 解得k 1=40.∴y 1=40x.(7分)设修建甬道、花圃的总造价为y 元,依题意,得解法一:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000=40(2 400-4a 2+200a-2 400)+35(4a 2-200a+2 400)+20 000(8分)=-20a 2+1 000a+104 000=-20(a-25)2+116 500.∵-20<0,∴当a<25时,y 随a 的增大而增大.(9分)而2≤a ≤10,∴当a=2时,y 最小=105 920.∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105 920元.(10分) 解法二:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000(8分)=-5x 花圃+116 000.∵-5<0,∴y 随x 花圃的增大而减小.(9分)而800≤x 花圃≤2 016,∴当x花圃=2016时,y最小=105920.∴当x花圃=2016时,4a2-200a+2400=2016.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)解法三:y=y甬道+y花圃=40x甬道+35(60×40-x甬道)+20000(8分)=5x甬道+104000.∵5>0,∴y随x甬道的增大而增大.(9分)而800≤x花圃≤2016,∴384≤x甬道≤1600.∴当x甬道=384时,y最小=105920.∴当x甬道=384时,60×40-(4a2-200a+2400)=384.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)评析本题考查的是一元二次方程与函数的实际应用,需要通过实际问题的情境和函数图象列出合理的表达式,属较难题.七、解答题25.解析(1)证法一:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.∴OC∥BD.(2分)∵CD⊥BD,∴OC⊥CD.∴CD是☉O的切线.(3分)证法二:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.(2分)∵CD⊥BD,∴∠DCB+∠CBG=90°.∴∠DCB+∠OCB=90°.∴OC⊥CD.∴CD是☉O的切线.(3分)(2)∵OC ∥BD,∴△OCF ∽△DBF,△EOC ∽△EBD.(4分,至少写出一对三角形相似给1分)∴OC BD =OF DF ,OC BD =OE BE. ∵OF DF =23,∴OE BE =23.(5分)设OC=OB=r,OE=x,则x x+r =23, 解得x=2r.∴OE=2r.(6分)在Rt △OEC 中,sin E=OC OE =r 2r =12,∴∠E=30°.(7分)(3)∵∠E=30°,CD ⊥BD,∴∠ABD=60°,∠ABC=∠CBD=30°.∴BC=2CD=2√3,BD=CD tan30°=3.解法一:∵OC BD =OF DF =23,∴OC=2,AB=4.(8分)连结AG.∵AB 是☉O 的直径,∴∠AGB=90°,∵∠ABD=60°,∴∠BAG=30°.∴BG=12AB=2,AG=2√3.(9分)∴DG=BD -BG=1.∴AD=√AG 2+DG 2=√(2√3)2+12=√13.(10分)解法二:连结AC.∵AB 是☉O 直径,∴∠ACB=90°.∴AB=BC cos ∠ABC =2√3cos30°=4.(8分)过点D 作DM ⊥AB 于点M.∴DM=BD ·sin 60°=3√32,BM=BD ·cos 60°=32. ∴AM=AB -BM=4-32=52.(9分)∴AD=2+AM 2√(3√32)2+(52)2=√13.(10分)八、解答题26.解析 (1)∵抛物线y=ax 2(a>0)关于y 轴对称,AB 与x 轴平行,∴A,B 关于y 轴对称.∵∠AOB=90°,AB=2,∴A(-1,1),B(1,1).(1分)∴1=a(-1)2,解得a=1.∴抛物线的解析式为y=x 2.(2分)∵A(-1,1),B(1,1),∴A,B 两点的横坐标的乘积为-1.(3分)(2)过A,B 分别作AG,BH 垂直x 轴于G,H.由(1)可设A(m,m 2),B(n,n 2),m<0,n>0.(4分)∵∠AOB=∠AGO=∠BHO=90°,∴∠AOG+∠BOH=∠AOG+∠OAG=90°.∴∠BOH=∠OAG.(5分)∴△AGO ∽△OHB.∴AG OG =OH BH.(6分) ∴m 2-m =n n 2,化简得mn=-1.∴A,B 两点的横坐标的乘积是常数-1.(7分)(3)解法一:过A,B 分别作AA 1,BB 1垂直y 轴于A 1,B 1.设A(m,m 2),B(n,n 2),D(0,b),m<0,n>0,b>0.∵AA 1∥BB 1,∴△AA 1D ∽△BB 1D.∴AA 1DA 1=BB 1B 1D ,即-m m 2-b =nb -n 2,化简得mn=-b. ∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=145.∴P (-125,145).(10分)解法二:设直线AB:y=kx+b(k ≠0),A(m,m 2),B(n,n 2),m<0,n>0,b>0.联立得{y =kx +b,y =x 2,得x 2-kx-b=0,依题意可知m,n 是方程x 2-kx-b=0的两根. ∴m 2-km-b=0,n 2-kn-b=0.∴nm 2-kmn-bn=0,mn 2-kmn-bm=0.两式相减,并化简得mn=-b.∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=14.∴P (-125,145).(10分)评析 本题考查的是函数图象与三角形的综合应用,需要借助抛物线表示出点的坐标,并借助相似三角形的性质、勾股定理列出方程.属较难题.。
2015年广西贵港市港南区中考一模数学试卷(解析版)
2015年广西贵港市港南区中考数学一模试卷一、选择题(每小题3分,满分36分)1.(3分)﹣7的倒数()A.﹣B.7C.﹣7D.2.(3分)已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124B.0.0124C.﹣0.00124D.0.00124 3.(3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④4.(3分)下列因式分解中,正确的是()A.x2y2﹣z2=x2(y+z)(y﹣z)B.﹣x2y+4xy﹣5y=﹣y(x2+4x+5)C.(x+2)2﹣9=(x+5)(x﹣1)D.9﹣12a+4a2=﹣(3﹣2a)25.(3分)在平面直角坐标系中,点M(﹣2,1)关于x轴对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)下列命题是假命题的是()A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径7.(3分)已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为()A.B.C.D.18.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=()A.6B.7C.8D.99.(3分)为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是()A.平均数B.中位数C.众数D.方差10.(3分)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α11.(3分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.10π﹣8B.10π﹣16C.10πD.5π12.(3分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x 对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如;当x=1时,y1=0,y2=4,y1<y2,此时M=0,下列判断中正确的是()①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是﹣或.A.①②③B.①④C.②③④D.③④二、填空题(共6小题,每小题3分,满分18分)13.(3分)3a2÷a=.14.(3分)若分式=0,则x的值为.15.(3分)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.16.(3分)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.17.(3分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y =(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,﹣2),则点F的坐标是.18.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF =3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S △DEF=4.其中正确的是(写出所有正确结论的序号).三、解答题(共8小题,满分66分)19.(10分)(1)计算:(﹣)﹣2﹣2sin60°+(3.14﹣π)0﹣|1﹣|;(2)解不等式组,并写出它的非负整数解.20.(7分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)①作出与△ABC关于x轴对称的△A1B1C1;②以原点O为位似中心,在原点的另一侧画出△A2B2C2,使=.(2)判断△A2B2C2的形状,并说明理由.21.(7分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于P(n,2),与x轴交于A(﹣4,0),与y轴交于C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B、C、P、D为顶点的四边形是菱形,求出点D的坐标.22.(7分)重庆市某餐饮文化公司准备承办“重庆火锅美食文化节”,为了解市民对火锅的喜爱程度,该公司设计了一个调查问卷,将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,并派业务员进行市场调查,其中一个业务员小丽在解放碑步行街对市民进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图,请结合统计图所给信息解答下列问题:(1)在扇形统计图中C所占的百分比是;小丽本次抽样调查的人数共有人;请将折线统计图补充完整;(2)为了解少数市民很不喜欢吃火锅的原因,小丽决定在上述调查结果中从“很不喜欢”吃火锅的市民里随机选出两位进行电话回访,请你用列表法或画树状图的方法,求所选出的两位市民恰好都是男性的概率.23.(7分)我市为了鼓励居民节约用水,对居民生活用水的收费实行阶梯式计量水价的方法,具体规定如下:设某户每月用水量为x立方米,应收水费y元(1)分别写出每月用水量在三个不同阶梯时,y与x的函数关系式.(2)已知小明家4月份缴纳水费83元,则他家该月共用水多少立方米?24.(8分)如图,⊙O的直径AC与弦BD交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,已知⊙O的半径为3,CF:AF=1:2.求AE的长.25.(10分)如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标;(3)动点P在x轴上移动,当△P AE是直角三角形时,求点P的坐标.26.(10分)已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD 对角线AC、BD交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值?若是,请求出该定值;若不是,请说明理由.2015年广西贵港市港南区中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,满分36分)1.(3分)﹣7的倒数()A.﹣B.7C.﹣7D.【解答】解:﹣7的倒数是﹣,故选:A.2.(3分)已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124B.0.0124C.﹣0.00124D.0.00124【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.3.(3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.4.(3分)下列因式分解中,正确的是()A.x2y2﹣z2=x2(y+z)(y﹣z)B.﹣x2y+4xy﹣5y=﹣y(x2+4x+5)C.(x+2)2﹣9=(x+5)(x﹣1)D.9﹣12a+4a2=﹣(3﹣2a)2【解答】解:A、用平方差公式,应为x2y2﹣z2=(xy+z)(xy﹣z),故本选项错误;B、提公因式法,符号不对,应为﹣x2y+4xy﹣5y=﹣y(x2﹣4x+5),故本选项错误;C、用平方差公式,(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+5)(x﹣1),正确;D、完全平方公式,不用提取负号,应为9﹣12a+4a2=(3﹣2a)2,故本选项错误.故选:C.5.(3分)在平面直角坐标系中,点M(﹣2,1)关于x轴对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点M(﹣2,1)关于x轴对称的点在(﹣2,﹣1),在第三象限,故选:C.6.(3分)下列命题是假命题的是()A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径【解答】解:A.中心投影下,物高与影长取决于物体距光源的距离,故此选项错误,符合题意;B.平移不改变图形的形状和大小,根据平移的性质,故此选项正确,不符合题意;C.三角形的中位线平行于第三边,根据三角形中位线的性质,故此选项正确,不符合题意;D.圆的切线垂直于过切点的半径,利用切线的判定定理,故此选项正确,不符合题意.故选:A.7.(3分)已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为()A.B.C.D.1【解答】解:∵CD∥AB,∴∠AOC=∠OCD=30°,∠α=180°﹣30°﹣90°=60°,∴cosα=cos60°=.故选:A.8.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=()A.6B.7C.8D.9【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,m2+2m﹣5=0,∴m2=5﹣2m,∴m2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=8.故选:C.9.(3分)为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是()A.平均数B.中位数C.众数D.方差【解答】解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选:C.10.(3分)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.11.(3分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.10π﹣8B.10π﹣16C.10πD.5π【解答】解:设各个部分的面积为:S1、S2、S3、S4、S5,如图所示:∵两个半圆的面积和是:S1+S5+S4+S2+S3+S4,△ABC的面积是S3+S4+S5,阴影部分的面积是:S1+S2+S4,∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积=π×16+π×4﹣×8×4=10π﹣16.故选:B.12.(3分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x 对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如;当x=1时,y1=0,y2=4,y1<y2,此时M=0,下列判断中正确的是()①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是﹣或.A.①②③B.①④C.②③④D.③④【解答】解:当x>0时,一次函数图象位于二次函数上方,∴y2>y1故①错误;∵当x<0,两个函数的函数随着x的增大而增大,∴当x越大时,M越大,故②错误;函数y1=﹣2x2+2有最大值,最大值为y1=2,∴不存在使得M大于2的x的值,故③正确;令y1=1,即:﹣2x2+2=1.解得:x1=,x2=﹣(不题意舍去)令y2=1,得:2x+2=1,解得:x=﹣.故④正确.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)3a2÷a=3a.【解答】解:3a2÷a=3a,故答案为:3a.14.(3分)若分式=0,则x的值为x=0.【解答】解:∵分式=0,∴x2﹣x=0且x﹣1≠0,∴x=0.故答案为:x=0.15.(3分)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是2.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.16.(3分)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.【解答】解:如图所示,作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE 的最小值,∵菱形ABCD的边长为2,E是AD边中点,∴DE=DE′=AD=1,∴△AE′D是直角三角形,∵∠ABC=60°,∴∠PDE′=∠ADC=30°,∴PE′=DE′•tan30°=,∴PC===.故答案为:.17.(3分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,﹣2),则点F的坐标是(,0).【解答】解:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴E点坐标为(3,),设直线GF的解析式为y=ax+b,把E(3,),G(0,﹣2)代入得,解得,∴直线GF的解析式为y=x﹣2,当y=0时,x﹣2=0,解得x=,∴点F的坐标为(,0).18.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S △DEF=4.其中正确的是①②④(写出所有正确结论的序号).【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴=,DG=CG,∴∠ADF=∠AED,∵∠F AD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=;故③错误;④∵DF=DG+FG=6,AD==,∴S=DF•AG=×6×=3,△ADF∵△ADF∽△AED,∴=()2,∴=,∴S△AED=7,∴S△DEF =S△AED﹣S△ADF=4;故④正确.故答案为:①②④.三、解答题(共8小题,满分66分)19.(10分)(1)计算:(﹣)﹣2﹣2sin60°+(3.14﹣π)0﹣|1﹣|;(2)解不等式组,并写出它的非负整数解.【解答】解:(1)原式=4﹣2×+1+1﹣=6﹣2;(2),由①得,x>﹣,由②得,x<,故此不等式组的解集为:﹣<x<,它的非负整数解为:0,1,2,3.20.(7分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)①作出与△ABC关于x轴对称的△A1B1C1;②以原点O为位似中心,在原点的另一侧画出△A2B2C2,使=.(2)判断△A2B2C2的形状,并说明理由.【解答】解:(1)①如图,△A1B1C1是所求;②如图中△A2B2C2是所求;(2)△A2B2C2是等腰直角三形.理由:∵A2B22=62+22=40,A2C22=42+22=20,B2C22=42+22=20,∴A2B22=A2C22+B2C22,故△A2B2C2是等腰直角三形.21.(7分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于P(n,2),与x轴交于A(﹣4,0),与y轴交于C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B、C、P、D为顶点的四边形是菱形,求出点D的坐标.【解答】解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:k=,b=1,∴一次函数解析式为y=x+1,将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y=.(2)如图所示,∵点C(0,1),∴BC=,PC=,∴以BC、PC为边构造菱形,当四边形BCPD为菱形时,∴PB垂直且平分CD,∵PB⊥x轴,P(4,2),∴点D(8,1).把点D(8,1)代入y=,得左边=右边,∴点D在反比例函数图象上.,∵BC≠PB,∴以BC、PB为边不可能构造菱形,同理,以PC、PB为边也不可能构造菱形.综上所述,点D(8,1).22.(7分)重庆市某餐饮文化公司准备承办“重庆火锅美食文化节”,为了解市民对火锅的喜爱程度,该公司设计了一个调查问卷,将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,并派业务员进行市场调查,其中一个业务员小丽在解放碑步行街对市民进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图,请结合统计图所给信息解答下列问题:(1)在扇形统计图中C所占的百分比是22%;小丽本次抽样调查的人数共有50人;请将折线统计图补充完整;(2)为了解少数市民很不喜欢吃火锅的原因,小丽决定在上述调查结果中从“很不喜欢”吃火锅的市民里随机选出两位进行电话回访,请你用列表法或画树状图的方法,求所选出的两位市民恰好都是男性的概率.【解答】解:(1)在扇形统计图中C所占的百分比是:1﹣20%﹣52%﹣6%=22%;小丽本次抽样调查的共有人数是:=50(人);不太喜欢吃火锅的男生有:50×22%﹣5=6(人),很不喜欢吃火锅的男生有:50×6%﹣1=2(人),补图如下:故答案为:22%,50;(2)根据题意画图如下:共有6中情况,选出的两位市民恰好都是男性的概率是=.23.(7分)我市为了鼓励居民节约用水,对居民生活用水的收费实行阶梯式计量水价的方法,具体规定如下:设某户每月用水量为x立方米,应收水费y元(1)分别写出每月用水量在三个不同阶梯时,y与x的函数关系式.(2)已知小明家4月份缴纳水费83元,则他家该月共用水多少立方米?【解答】解:(1)当x≤28时,y=2x;当28<x≤40时,y=2×28+(x﹣28)×2.5=2.5x﹣14当x>40时,y=2×28+(40﹣28)×2.5+(x﹣40)×3=3x﹣34.(2)因为小明家4月份交纳水费为83元,而56<83<86故小明家4月份用水量在第二个阶梯,即当y=83时,2.5x﹣14=83,解得x=38.8.答:他家该月共用水38.8立方米.24.(8分)如图,⊙O的直径AC与弦BD交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,已知⊙O的半径为3,CF:AF=1:2.求AE的长.【解答】(1)证明:如图1所示:连接CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠ADB+∠EDC=90°,∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠EAC=∠EAB+∠BAC=90°,即EA⊥OA,∴EA是⊙O的切线;(2)解:如图2所示:连接BC,∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBA=∠ABC=90°∵∠EAF=90°,B是EF的中点,∴AB=EF=BF,∴∠BAC=∠AFE,∴△EAF∽△CBA,∴,∵⊙O的半径为3,CF:AF=1:2,∴AC=6,AF=4,CF=2,∴,解得:AB=2,∴EF=4,∴AE===4.25.(10分)如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标;(3)动点P在x轴上移动,当△P AE是直角三角形时,求点P的坐标.【解答】解:(1)将A(0,1)、B(1,0)坐标代入y=x2+bx+c得,解得:.∴物线的解折式为y=x2﹣x+1;(2)抛物线的对称轴为x=,B、C关于x=对称,∴MC=MB,要使|AM﹣MC|最大,即是使|AM﹣MB|最大,由三角形两边之差小于第三边得,当A、B、M在同一直线上时|AM﹣MB|的值最大.知直线AB的解析式为y=﹣x+1∴,解得:.则M(,﹣).(3)设点E的横坐标为m,则它的纵坐标为m2﹣m+1,即E点的坐标(m,m2﹣m+1),…(7分)又∵点E在直线y=x+1上,∴m2﹣m+1=m+1解得m1=0(舍去),m2=4,∴E的坐标为(4,3).(Ⅰ)当A为直角顶点时,过A作AP1⊥DE交x轴于P1点,设P1(a,0)易知D点坐标为(﹣2,0),由Rt△AOD∽Rt△P1OA得即,∴a=,a=(舍去),∴P1(,0).(Ⅱ)同理,当E为直角顶点时,过E作EP2⊥DE交x轴于P2点,由Rt△AOD∽Rt△P2ED得,即:,∴EP2=∴DP2==∴a=﹣2=,∴P2点坐标为(,0).(Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3(b、0),由∠OP A+∠FPE=90°,得∠OP A=∠FEP,Rt△AOP∽Rt△PFE,由得:,解得b1=3,b2=1,∴此时的点P3的坐标为(1,0)或(3,0),综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0).26.(10分)已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD 对角线AC、BD交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值?若是,请求出该定值;若不是,请说明理由.【解答】(1)证明:如图1,分别连接OE、0F,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ADC.AD=DC=BC,∴∠COD=∠COB=∠AOD=90°.∠ADO=∠ADC=×60°=30°,又∵E、F分别为DC、CB中点,∴OE=CD,OF=BC,AO=AD,∴0E=OF=OA,∴点O即为△AEF的外心.(2)解:①猜想:外心P一定落在直线DB上.证明:如图2,分别连接PE、P A,过点P分别作PI⊥CD于I,PJ⊥AD于J,∴∠PIE=∠PJD=90°,∵∠ADC=60°,∴∠IPJ=360°﹣∠PIE﹣∠PJD﹣∠JDI=120°,∵点P是等边△AEF的外心,∴∠EP A=120°,PE=P A,∴∠IPJ=∠EP A,∴∠IPE=∠JP A,∴△PIE≌△PJA,∴PI=PJ,∴点P在∠ADC的平分线上,即点P落在直线DB上.②为定值2.当AE⊥DC时.△AEF面积最小,此时点E、F分别为DC、CB中点.连接BD、AC交于点P,由(1)可得点P在BD上,即为△AEF的外心.如图3.设MN交BC于点G,设DM=x,DN=y(x≠0.y≠O),则CN=y﹣1,∵BC∥DA,∴△GBP≌△MDP.∴BG=DM=x.∴CG=1﹣x∵BC∥DA,∴△NCG∽△NDM,∴,∴,∴x+y=2xy,∴+=2,即=2.。
★2015广西中考数学真题_广西中考数学真题
★2015广西中考数学真题_广西中考数学真题
站在新起点,迎接新挑ቤተ መጻሕፍቲ ባይዱ,创造新成绩。中考频道的小编会及时为广大考生提供2015年广西中考数学真题,有需要的考生可以在考题公布后刷新本页面(按ctrl+F5),希望对大家有所帮助。
2015广西数学中考真题发布入口
以下是广西2015年全部科目的试题发布入口:
广西
数学 数学 英语 化学 物理 历史 政治
数学 数学 英语 化学 物理 历史 政治
2015年广西贵港市中考真题数学
2015年广西贵港市中考真题数学一、选择题(本大题共12小题,每小题3分,共36分,每小题四个选项,其中只有一个是正确的)1. 3的倒数是( )A.3B.-3C.1 3D.1 3解析:考查倒数,乘积是1的两个数互为倒数,可得有理数3的倒数是13.答案:C.2. 的结果是( )答案:B.3. 如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是( )A.B.C.D.解析:考查简单组合体的三视图,俯视图是从上边看得到的图形,原立体图形从上边看第一层一个小正方形,第二层在第一层的正上方一个小正方形,右边一个小正方形,答案:B.4. 下列因式分解错误的是( )A.2a-2b=2(a-b)B.x2-9=(x+3)(x-3)C.a2+4a-4=(a+2)2D.-x2-x+2= -(x-1)(x+2)解析:对各选项进行分析判断:A.2a-2b=2(a-b),提公因式法分解因式,正确;B.x2-9=(x+3)(x-3),公式法分解因式,正确;C.a2+4a-4不能因式分解,错误;D.-x2-x+2=-(x-1)(x+2),十字相乘法分解因式,正确;答案:C.5. 在平面直角坐标系中,若点P(m,m-n)与点Q(-2,3)关于原点对称,则点M(m,n)在( )A.第一象限B.第二象限C.第三象限D.第四象限解析:∵点P(m,m-n)与点Q(-2,3)关于原点对称,根据平面内关于原点对称的两点,横坐标与纵坐标都互为相反数,∴m=2且m-n=-3,∴m=2,n=5,∴点M(m,n)在第一象限,答案:A.6. 若关于x的一元二次方程(a-1)x2-2x+2=0有实数根,则整数a的最大值为( )A.-1B.0C.1D.2解析:考查关于一元二次方程的定义和根的判别式。
∵关于x的一元二次方程(a-1)x2-2x+2=0有实数根,∴△=(-2)2-8(a-1)=12-8a≥0且a-1≠0,∴a≤23且a≠1,∴整数a的最大值为0.答案:B.7. 下列命题中,属于真命题的是( )A.三点确定一个圆B.圆内接四边形对角互余C.若a2=b2,则a=bD.=a=b解析:对各个选项进行分析判断:A.任意不共线的三点确定一个圆,所以错误;B.圆的内接四边形的对角互补,错误;C.若a2=b2,则a=b或a=-b,错误;D.=a=b,正确;答案:D.8. 若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )A.1 5B.2 5C.3 5D.4 5解析:总共有五种图形,根据中心对称图形的定义得到平行四边形、菱形和正六边形是中心对称图形,有3种中心对称图形,所以从这五种图形中随机抽取一种图形,抽到的图形属于中心对称图形的概率是35.答案:C.9. 如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=( )A.64°B.63°C.60°D.54°解析:考查平行线的性质,先根据平行线的性质求出∠BEN的度数,再由角平分线的定义得出∠BEF的度数,根据平行线的性质即可得出∠2的度数:∵AB∥CD,∠1=63°,∴∠BEN=∠1=63°.∵EN平分∠BEF,∴∠BEF=2∠BEN=126°,∴∠2=180°-∠BEF=180°-126°=54°.答案:D.10. 如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是( )A.0B.1C.2D.3解析:设OP与⊙O交于点N,连结MN,OQ,如图∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=12OQ=12×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1. 答案:B.11. 如图,已知二次函数y1=23x2-43x的图象与正比例函数y2=23x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是( )A.0<x<2B.0<x<3C.2<x<3D.x<0或x>3解析:∵二次函数y1=23x2-43x的图象与正比例函数y2=23x的图象交于点A(3,2),与x轴交于点B(2,0),∴由图象得:若0<y1<y2,则x的取值范围是:2<x<3.答案:C.12. 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠;⑤S四边形CDEF=52S△ABF,其中正确的结论有( )A.5个B.4个C.3个D.2个解析:考查相似三角形的判定与性质,矩形的性质。
(历年中考)广西省贵港市中考数学试题 含答案
2016年广西贵港市中考数学试卷一、(共12小题,每小题3分,满分36分)每小题都给出标号为(A)、(B)、(C)、(D)的四个选项,其中只有一个是正确的.请考生用2B铅笔在答题卡上将选定的答案标号涂黑. 1.(3分)(2016•贵港)﹣2的绝对值是()A.2 B.﹣2 C.0 D.12.(3分)(2016•贵港)下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5 D.(ab2)3=ab63.(3分)(2016•贵港)用科学记数法表示的数是1.69×105,则原来的数是()A.169 B.1690 C.16900 D.1690004.(3分)(2016•贵港)在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35°B.40°C.45°D.50°5.(3分)(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥16.(3分)(2016•贵港)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)7.(3分)(2016•贵港)从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A.B.C.D.8.(3分)(2016•贵港)下列命题中错误的是()A.两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形9.(3分)(2016•贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣510.(3分)(2016•贵港)如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A.B.C.D.11.(3分)(2016•贵港)如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P 的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)12.(3分)(2016•贵港)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2016•贵港)8的立方根是.14.(3分)(2016•贵港)分解因式:a2b﹣b=.15.(3分)(2016•贵港)如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是.16.(3分)(2016•贵港)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.17.(3分)(2016•贵港)如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A 逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).18.(3分)(2016•贵港)已知a1=,a2=,a3=,…,a n+1=(n为正整数,且t≠0,1),则a2016=(用含有t的代数式表示).三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(10分)(2016•贵港)(1)计算:()﹣1﹣﹣(π﹣2016)0+9tan30°;(2)解分式方程:+1=.20.(5分)(2016•贵港)如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.21.(7分)(2016•贵港)如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当x+b<时,请直接写出x的取值范围.22.(8分)(2016•贵港)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.23.(8分)(2016•贵港)为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.24.(7分)(2016•贵港)如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.25.(11分)(2016•贵港)如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.26.(10分)(2016•贵港)如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF 交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND 之间有什么数量关系?并说明理由.2016年广西贵港市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分)每小题都给出标号为(A)、(B)、(C)、(D)的四个选项,其中只有一个是正确的.请考生用2B铅笔在答题卡上将选定的答案标号涂黑. 1.(3分)(2016•贵港)﹣2的绝对值是()A.2 B.﹣2 C.0 D.1【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣2的绝对值是2.故选:A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2016•贵港)下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5 D.(ab2)3=ab6【分析】分别利用单项式乘以单项式以及合并同类项法则以及积的乘方运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、3a+2b无法计算,故此选项错误;B、3a•2b=6ab,正确;C、(a3)2=a6,故此选项错误;D、(ab2)3=a3b6,故此选项错误;故选:B.【点评】此题主要考查了单项式乘以单项式以及合并同类项以及积的乘方运算、幂的乘方运算等知识,正确掌握运算法则是解题关键.3.(3分)(2016•贵港)用科学记数法表示的数是1.69×105,则原来的数是()A.169 B.1690 C.16900 D.169000【分析】根据科学记数法的表示方法,n是几小数点向右移动几位,可得答案.【解答】解:1.69×105,则原来的数是169000,故选:D.【点评】本题考查了科学记数法,确定小数点移动的位数是解题关键.4.(3分)(2016•贵港)在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35°B.40°C.45°D.50°【分析】在△ABC中,根据三角形内角和是180度来求∠C的度数.【解答】解:∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.【点评】本题考查了三角形内角和定理,利用三角形内角和定理:三角形内角和是180°是解答此题的关键.5.(3分)(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零.6.(3分)(2016•贵港)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.(3分)(2016•贵港)从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A.B.C.D.【分析】先求出无理数的个数,再根据概率公式即可得出结论.【解答】解:∵﹣,0,,π,3.5这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选:B.【点评】本题考查的是概率公式,熟记随机事件的概率公式是解答此题的关键.8.(3分)(2016•贵港)下列命题中错误的是()A.两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形【分析】直接利用平行四边形以及矩形、菱形、正方形的判定方法分别分析得出答案.【解答】解:A、两组对角分别相等的四边形是平行四边形,正确,不合题意;B、矩形的对角线相等,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、对角线互相垂直平分且相等的四边形是正方形,正确,不合题意.故选:C.【点评】此题主要考查了命题与定理,正确掌握平行四边形以及矩形、菱形、正方形的判定方法是解题关键.9.(3分)(2016•贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【分析】根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+变形成﹣2,代入数据即可得出结论.【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+===﹣2=﹣2=﹣5.故选D.【点评】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.10.(3分)(2016•贵港)如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A.B.C.D.【分析】根据扇形的圆心角的度数和直径BC的长确定扇形的半径,然后确定扇形的弧长,根据圆锥的底面周长等于扇形的弧长列式求解即可.【解答】解:如图,连接AO,∠BAC=120°,∵BC=2,∠OAC=60°,∴OC=,∴AC=2,设圆锥的底面半径为r,则2πr==π,解得:r=,故选B.【点评】本题考查了圆锥的计算,解题的关键是能够了解圆锥的底面周长等于展开扇形的弧长,难度不大.11.(3分)(2016•贵港)如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P 的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)【分析】连接PC、PO、PA,设点P坐标(m,﹣),根据S△PAC=S△PCO+S△POA ﹣S△AOC构建二次函数,利用函数性质即可解决问题.【解答】解:连接PC、PO、PA,设点P坐标(m,﹣)令x=0,则y=,点C坐标(0,),令y=0则﹣x2+x+=0,解得x=﹣2或10,∴点A坐标(10,0),点B坐标(﹣2,0),∴S△PAC=S△PCO+S△POA﹣S△AOC=××m+×10×(﹣)﹣××10=﹣(m﹣5)2+,∴x=5时,△PAC面积最大值为,此时点P坐标(5,).故点P坐标为(5,).【点评】本题考查二次函数的性质、抛物线与x轴交点,解题的关键是构建二次函数,利用二次函数性质解决问题,属于中考常考题型.12.(3分)(2016•贵港)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故②正确,及直角三角形得到AC=BC,根据三角形的中位线的性质得到OE=BC,于是得到OE:AC=:6;故③正确;根据相似三角形的性质得到=,求得S△OCF=2S△OEF;故④正确.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③正确;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=,∴S△OCF:S△OEF==,∴S△OCF=2S△OEF;故④正确;故选D.【点评】此题考查了相似三角形的判定和性质,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE是△ABC的中位线是关键.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2016•贵港)8的立方根是2.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.(3分)(2016•贵港)分解因式:a2b﹣b=b(a+1)(a﹣1).【分析】首先提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用平方差公式是解题关键.15.(3分)(2016•贵港)如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是54°.【分析】过点C作CF∥a,由平行线的性质求出∠ACF的度数,再由余角的定义求出∠BCF 的度数,进而可得出结论.【解答】解:过点C作CF∥a,∵∠1=36°,∴∠1=∠ACF=36°.∵∠C=90°,∴∠BCF=90°﹣36°=54°.∵直线a∥b,∴CF∥b,∴∠2=∠BCF=54°.故答案为:54°.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.16.(3分)(2016•贵港)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.【分析】连接BD,由勾股定理先求出BD的长,再判定△ABD∽△BED,根据对应边成比例列出比例式,可求得DE的长.【解答】解:如图,连接BD,∵AB为⊙O的直径,AB=6,AD=5,∴∠ADB=90°,∴BD==,∵弦AD平分∠BAC,∴,∴∠DBE=∠DAB,在△ABD和△BED中,,∴△ABD∽△BED,∴,即BD2=ED×AD,∴()2=ED×5,解得DE=.故答案为:.【点评】此题主要考查了相似三角形的判定和性质,以及圆周角定理,解答此题的关键是作辅助线,构造出△ABD∽△BED.17.(3分)(2016•贵港)如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A 逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).【分析】根据阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE,分别求得:扇形BAD 的面积、S△ABC以及扇形CAE的面积,即可求解.【解答】解:∵∠C=90°,∠BAC=60°,AC=1,∴AB=2,扇形BAD的面积是:=,在直角△ABC中,BC=AB•sin60°=2×=,AC=1,∴S△ABC=S△ADE=AC•BC=×1×=.扇形CAE的面积是:=,则阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE=﹣=.故答案为:.【点评】本题考查了扇形的面积的计算,正确理解阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE是关键.18.(3分)(2016•贵港)已知a1=,a2=,a3=,…,a n+1=(n为正整数,且t≠0,1),则a2016=(用含有t的代数式表示).【分析】把a1代入确定出a2,把a2代入确定出a3,依此类推,得到一般性规律,即可确定出a2016的值.【解答】解:根据题意得:a1=,a2=,a3=,…,2016÷3=672,∴a2016的值为,故答案为【点评】此题考查了分式的混合运算,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(10分)(2016•贵港)(1)计算:()﹣1﹣﹣(π﹣2016)0+9tan30°;(2)解分式方程:+1=.【分析】(1)原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣3﹣1+9×=2﹣3﹣1+3=1;(2)去分母得:x﹣3+x﹣2=3,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(5分)(2016•贵港)如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.【分析】(1)连接BD,BD与AE交于点F,连接CF并延长到AB,与AB交于点H,则CH为△ABC的高;(2)首先由三线合一,求得AH的长,再由勾股定理求得CH的长,继而求得△ABC的面积,又由AE是△ABC的中线,求得△ACE的面积.【解答】解:(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB 的交点即为H.理由如下:∵BD、AC是▱ABCD的对角线,∴点O是AC的中点,∵AE、BO是等腰△ABC两腰上的中线,∴AE=BO,AO=BE,∵AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=∠BAE,△ABF中,∵∠FAB=∠FBA,∴FA=FB,∵∠BAC=∠ABC,∴∠EAC=∠OBC,由可得△AFC≌BFC(SAS)∴∠ACF=∠BCF,即CH是等腰△ABC顶角平分线,所以CH是△ABC的高;(2)∵AC=BC=5,AB=6,CH⊥AB,∴AH=AB=3,∴CH==4,∴S△ABC=AB•CH=×6×4=12,∵AE是△ABC的中线,∴S△ACE=S△ABC=6.【点评】此题考查了平行四边形的性质、等腰三角形的性质、勾股定理以及三角形中线的性质.注意三角形的中线把三角形分成面积相等的两部分.21.(7分)(2016•贵港)如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当x+b<时,请直接写出x的取值范围.【分析】(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(2)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.【解答】解:(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.∵反比例函数y=(x<0)的图象过点A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣(x<0);∵一次函数y=x+b的图象过点A(﹣1,2),∴2=﹣+b,解得:b=,∴一次函数解析式为y=x+.联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有,解得:,∴直线A′B的解析式为y=x+.令y=x+中x=0,则y=,∴点C的坐标为(0,).(2)观察函数图象,发现:当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,∴当x+<﹣时,x的取值范围为x<﹣4或﹣1<x<0.【点评】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)求出直线A′B的解析式;(2)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.22.(8分)(2016•贵港)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是120;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为30°,m的值为25;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.【分析】(1)根据折线统计图可得出本次接受问卷调查的学生总人数是20+60+30+10,再计算即可;(2)用360°乘以“了解”占的百分比即可求出所对应扇形的圆心角的度数,用基本了解的人数除以接受问卷调查的学生总人数即可求出m的值;(3)用该校总人数乘以对足球的了解程度为“基本了解”的人数所占的百分比即可.【解答】解:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人);故答案为:120;(2)“了解”所对应扇形的圆心角的度数为:360°×=30°;×100%=25%,则m的值是25;故答案为:30°,25;(3)若该校共有学生1500名,则该校学生对足球的了解程度为“基本了解”的人数为:1500×25%=375.【点评】本题考查的是扇形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23.(8分)(2016•贵港)为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.【分析】(1)等量关系为:2014年投入科研经费×(1+增长率)2=2016年投入科研经费,把相关数值代入求解即可;(2)根据:×100%≤15%解不等式求解即可.【解答】解:(1)设2014至2016年该市投入科研经费的年平均增长率为x,根据题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得:×100%≤15%,解得:a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加故a的取值范围为720<a≤828.【点评】考查一元二次方程的应用及不等式的引用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.24.(7分)(2016•贵港)如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.【分析】(1)根据等腰三角形的性质,可得OA,根据角平分线的性质,可得OE,根据切线的判定,可得答案;(2)根据余弦,可得OB的长,根据勾股定理,可得OA的长,根据三角形的面积,可得OE的长.【解答】(1)证明:如图1,作OD⊥AC于D,OE⊥AB于E,∵AB=AC,O为BC的中点,∴∠CAO=∠BAO.∵OD⊥AC于D,OE⊥AB于E,∴OD=OE,∵AB经过圆O半径的外端,∴AB是半圆O所在圆的切线;(2)cos∠ABC=,AB=12,得OB=8.由勾股定理,得AO==4.由三角形的面积,得S△AOB=AB•OE=OB•AO,OE==,半圆O所在圆的半径是.【点评】本题考查了切线的判定与性质,利用切线的判定是解题关键,利用面积相等得出关于OE的长是解题关键.25.(11分)(2016•贵港)如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【分析】(1)把A、B两点的坐标代入,利用待定系数法可求得抛物线的解析式;(2)当S△ABE=S△ABC时,可知E点和C点的纵坐标相同,可求得E点坐标;(3)在△CAE中,过E作ED⊥AC于点D,可求得ED和AD的长度,设出点P坐标,过P作PQ⊥x轴于点Q,由条件可知△EDA∽△PQA,利用相似三角形的对应边可得到关于P 点坐标的方程,可求得P点坐标.【解答】解:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m,m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2﹣5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.【点评】本题主要考查二次函数的综合运用.涉及到的知识点有待定系数法、三角形的面积、相似三角形的判定和性质及分类讨论等.在(3)中利用∠BAP=∠CAE构造三角形相似是解题的关键.本题考查知识点较多,综合性很强,难度适中.26.(10分)(2016•贵港)如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF 交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND 之间有什么数量关系?并说明理由.【分析】(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来在证明∠GAE=∠FAE,然后依据SAS证明△GAE≌△FAE即可;②由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下来,在Rt△EFC中,依据勾股定理列方程求解即可;(2)将△ABM逆时针旋转90°得△ADM′.在△NM′D中依据勾股定理可证明NM′2=ND2+DM′2,接下来证明△AMN≌△ANM′,于的得到MN=NM′,最后再由BM=DM′证明即可.【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.(3)如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2.∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.。
广西贵港市2015届初中毕业班第一次模拟考试数学试题有答案
2015届初中毕业班第一次教学质量监测试题数 学(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间120分钟,赋分120分)注意:答案一律填写在答题卡上,在试题卷上作答无效.考试结束将答题卡交回.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为(A )、(B )、(C )、(D )的四个选项,其中只有一个是正确的.请考生用2B 铅笔在答题卡上将选定的答案标号涂黑.1.数轴上表示 – 5的点到原点的距离为A. 5B. – 5C. 15D. 15- 2x 的取值范围是A.x<7 B .x≤7 C .x>7 D .x≥7 3.下面的计算正确的是A.6a -5a =6=± C. 1122-⎛⎫=- ⎪⎝⎭D.2(a +b)=2a +2b4.如图所示,直线a ∥b ,∠B=22°,∠C=50°,则∠A 的度数为A. 22°B.28°C. 32°D.38° 5.若一个三角形三个内角度数的比为1︰2︰3,那么这个三角形最小角的正切值为 A .13 B . 12 CD6.在盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子A.1颗B.2颗C.3颗D.4颗 7.一个几何体的三视图如右图所示,则这个几何体是8.点M (︒-60sin ,︒60cos )关于x 轴对称的点的坐标是A.12) B.(12-) C.(12) D.(12-,-9.若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是A B C DA .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断 10.如图所示,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接CE .若AB=8,CD=2,则CE 的长为A.8C.11.如图所示,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图 中阴影部分的面积为A.π-10B.π-8C.π-12 D .π-612.如图所示,OAC ∆和BAD ∆都是等腰直角三角形, 90=∠=∠ADB ACO ,反比例函数xky =在第一象限的图象经过点B ,若2218OA AB -=,则k 的值为A. 12B. 9C. 8D. 6第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在 0.000075千克以下.将0.000075用科学记数法表示为 .14.分解因式:=+-x x x 24223 .15.已知一组数据: –3,x ,– 2, 3,1,6的中位数为1,则其方差为 . 16.如图所示,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG , EF 交AD 于点H ,则四边形DHFC 的面积为 .17.如图所示,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半 r=2cm ,扇形的圆心角=θ120°,则该圆锥的母线长l 为 cm .18.如图所示,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三 角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边 上),则剪下的等腰三角形的面积为 cm 2(把下列正确序号填在横线上). ①25cm 2; ②6cm 2;③10cm 2; ④12cm 2;⑤2第10题图 第11题图 第12题图 B 第4题图三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.) 19、(本题满分10分,每小题5分)(1)计算:41280+--+πsin30°; (2)解不等式组:⎩⎨⎧+≥-<-24413x x x .20、(本题满分5分) 如图,四边形ABCD 是矩形:①用直尺和圆规作出∠A 的平分线与BC 边的 垂直平分线的交点Q (不写作法,保留作图痕迹); ②连结QD ,则DQ AQ (填:“>或<或 =”). 21、(本题满分6分)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成下表.(1)根据分布表中的数据,直接写出a ,b ,c 的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.22、(本题满分8分)如图,反比例函数)0(>=x xky 的图象经过点A (32,1), 直线AB 与反比例函数图象交与另一点B (1,a ),射线AC 与y 轴交于点C ,y AD BAC ⊥=∠,75 轴,垂足为D .(1)求反比例函数的解析式;(2)求DAC ∠tan 的值及直线AC 的解析式. 23、(本题满分8分)某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3? 24、(本题满分9分)如图,△ABC 中,E 是AC 上一点,且AE=AB ,BAC EBC ∠=∠21, 以AB 为直径的⊙O 交AC 于点D ,交EB 于点F . (1)求证:BC 与⊙O 相切; (2)若18,sin 4AB EBC =∠=,求AC 的长. 25、(本题满分11分)如图,二次函数c bx x y ++-=241的图像经过点()()4,4,0,4--B A ,且与y 轴交于点C .(1)求此二次函数的解析式;(2)证明:CAO BAO ∠=∠(其中O 是原点); (3)若P 是线段AB 上的一个动点(不与A 、B 重合),过P 作y 轴的平行线,分别交此二次函数图 像及x 轴于Q 、H 两点,试问:是否存在这样的点P , 使QH PH 2=?若存在,请求出点P 的坐标;若不 存在,请说明理由. 26、(本题满分9分)在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时:①如图1,三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2,三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的 结论是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,三角板的两直角边分别交AB ,BC 于E 、F 两点, 若15AO AC =,则OE OF = .BA O CEFCBAO FOA E F2015届初中毕业班第一次教学质量监测数学参考答案与评分标准一、 选择题:(本大题共12小题,每小题3分,共36分) 1、A 2、D 3、D 4、B 5、C 6、B 7、D 8、B 9、A 10、D 11、A 12、B二、填空题:(本大题共6小题,每小题3分,共18分)13、57.510-⨯ 14、22(1)x x - 15、 9 16、 17、6 18、①、③、⑤ 三、解答题:(本大题共8小题,满分66分) 19、(本题满分10分)解:(1)原式=11142-+⨯……4分 (2)由13<-x 得4<x …………2分=…………5分 由244+≥-x x 得2≥x …………4分所以原不等式组的解为42<≤x …5分20、(本题满分5分)解:①如图所示:(画图4分)②DQ=AQ (5分) 21、(本题满分6分)解:(1)a=0.1,b=30,c=0.3;……………………3分(2)设“此人购买的节能灯恰好不是次品”为事件A .由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为:P (A )==0.85……………………6分22、(本题满分8分) 解:(1)由反比例函数)0(>=x xky 的图象经过点A (32,1),得: 32132=⨯=k ……………………………………2分∴反比例函数为)0(32>=x xy ……………………3分 (2)由反比例函数)0(32>=x xy 得点B 的坐标为(1,32),于是有 30,45=∠∴=∠DAC BAD ,33tan =∠DAC ………………………………5分 AD =32,则由33tan =∠DAC 可得CD =2,C 点纵坐标是–1,直线AC 过点A (32,1),C(0, –1)则直线AC 解析式为133-=x y …………………8分O F E D C B A 23、(本题满分8分) 解:(1)由题意得,y=………………………………………………………………1分 把y=120代入y=,得x=3 把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x ≤3, ∴y=(2≤x ≤3)…………………………3分(2)设原计划平均每天运送土石方x 万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:245.0360360=+-x x …………………………………………………5分 解得:x=2.5或x=﹣3……………………………………………………………………6分 经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去 …………7分答:原计划每天运送2.5万米3,实际每天运送3万米3. …………………………8分24、(本题满分9分)(1)证明:连接AF ,∵AB 为直径, ∴∠90AFB =︒. ∵AE AB =, ∴△ABE 为等腰三角形……………1分∴∠12BAF =∠BAC .∵BAC EBC ∠=∠21, ∴∠BAF =∠.EBC ………2分∴∠FAB +∠FBA =∠EBC +∠90FBA =︒.………3分 ∴∠90ABC =︒ . ∴BC 与⊙O 相切. …………………………………………………4分 (2) 解:过E 作EG BC ⊥于点.G∠BAF =∠EBC , ∴1sin sin 4BAF EBC ∠=∠=.在△AFB 中,∠90AFB =︒,∵8AB =,∴BF AB =⋅sin ∠18 2.4BAF =⨯=……5分∴24BE BF ==.…………………………………………6分在△EGB 中,∠90EGB =︒,∴1sin 4 1.4EG BE EBC =⋅∠=⨯=…………………7分∵EG BC ⊥,AB ⊥BC ,∴EG ∥.AB ∴△CEG ∽△.CAB∴CE EGCA AB =. ∴1.88CE CE =+………………………8分 ∴8.7CE = ∴8648.77AC AE CE =+=+=…………………………………………9分 25、(本题满分11分)解:(1)∵点()0,4A 与()4,4--B 在二次函数图像上,∴⎩⎨⎧+--=-++-=c b c b 444440,解得⎪⎩⎪⎨⎧==221c b ,……………………………………………3分∴二次函数解析式为221412++-=x x y .………………………………………4分 (2)过B 作x BD ⊥轴于点D ,由(1)得()2,0C ,…………………………………5分在AOC Rt ∆中,2142tan ===∠AO CO CAO ,在A B D Rt ∆中,2184tan ===∠AD BD BAD ,∵BAD CAO ∠=∠tan tan …………………………………………………………6分 ∴BAO CAO ∠=∠……………………………………………………………………7分(3)由()0,4A 与()4,4--B ,可得直线AB 的解析式为221-=x y ,设1(,2)2P x x -,(4-<x <4),则⎪⎭⎫⎝⎛++-22141,2x x x Q ,∴22141,2122212++-=-=-=x x QH x x PH . …………………………8分∴2214122122++-=-x x x ……………………………………………………9分当4212122++-=-x x x ,解得 4,121=-=x x (舍去),∴⎪⎭⎫ ⎝⎛--25,1P ……10分当4212122--=-x x x ,解得 4,321=-=x x (舍去),∴⎪⎭⎫ ⎝⎛--27,3P ……11分综上所述,存在满足条件的点,它们是⎪⎭⎫ ⎝⎛--25,1与⎪⎭⎫ ⎝⎛--27,3.26、(本题满分9分)(1)①猜想:222AE CF EF +=…………2分②成立. …………………………3分证明:连结OB.∵AB =BC , ∠ABC =90°,O 点为AC 的中点, ∴12OB AC OC ==,∠BOC =90°,∠ABO =∠BCO =45°. ∵∠EOF =90°,∴∠EOB =∠FOC . 又∵∠EBO =∠FCO , ∴△OEB ≌△OFC (ASA ).∴BE =CF ……………………………………………………5分又∵BA=BC , ∴AE =BF . 在RtΔEBF 中,∵∠EBF =90°,222BF BE EF ∴+=.222AE CF EF ∴+=……………………………………………………6分(2)14OE OF =. ………………………………………………………………………………9分 CB AOF。
广西贵港市的中考数学试题及解析.doc
2015 年广西贵港市中考数学试卷一、选择题(本大题共 12 小题,每小题 是正确的)1.( 3 分)( 2015?贵港) 3 的倒数是( A . 3B .﹣33 分,共 )C .36 分,每小题四个选项,其中只有一个D .﹣2.( 3 分)( 2015?贵港)计算× 的结果是()A .B .C . 3D . 53.( 3 分)(2015?贵港)如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图 是( )A .B .C .D .4.( 3 分)( 2015?贵港)下列因式分解错误的是( )A . 2a ﹣ 2b=2(a ﹣ b )B . x 2﹣9=( x+3)( x ﹣ 3)222﹣( x ﹣ 1)(x+2 )C . a +4a ﹣ 4= ( a+2)D .﹣x ﹣ x+2=5.( 3 分)( 2015?贵港)在平面直角坐标系中,若点 P ( m ,m ﹣ n )与点 Q (﹣ 2, 3)关于原点对称,则点 M ( m , n )在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限6.( 3 分)( 2015?贵港)若关于 x 的一元二次方程(a ﹣ 1)x 2﹣ 2x+2=0 有实数根,则整数 a 的最大值为( )A .﹣ 1B . 0C . 1D . 27.( 3 分)( 2015?贵港)下列命题中,属于真命题的是( )A . 三点确定一个圆B . 圆内接四边形对角互余22D .C . 若 a =b ,则 a=b若= ,则 a=b8.( 3 分)( 2015?贵港)若在 “正三角形、平行四边形、菱形、正五边形、正六边形 ”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )A .B .C .D .9.( 3 分)( 2015?贵港)如图,直线 AB ∥CD ,直线 EF 与 AB ,CD 相交于点 E ,F ,∠ BEF 的平分线与 CD 相交于点 N .若 ∠ 1=63°,则 ∠ 2=( )A . 64°B . 63°C . 60°D . 54°10.( 3 分)( 2015?贵港)如图,已知 P 是 ⊙ O 外一点, Q 是 ⊙ O 上的动点,线段 PQ 的中点 为 M ,连接 OP ,OM .若 ⊙ O 的半径为 2, OP=4,则线段 OM 的最小值是( )A . 0B . 1C . 2D . 311.(3 分)( 2015?贵港)如图,已知二次函数 y 1 =x 2﹣ x 的图象与正比例函数 y 2 = x 的 图象交于点 A ( 3,2),与 x 轴交于点 B (2, 0),若 0< y 1< y 2,则 x 的取值范围是( )A . 0< x < 2B . 0< x < 3C . 2<x < 3D . x < 0 或 x > 312.( 3 分)( 2015?贵港)如图,在矩形 ABCD 中, E 是 AD 边的中点, BE ⊥ AC 于点 F ,连 接 DF ,分析下列五个结论: ① △ AEF ∽ △ CAB ;② CF=2AF ;③ DF=DC ;④ tan ∠ CAD= ; ⑤ S 四边形 CDEF = S △ABF ,其中正确的结论有()A . 5 个B . 4 个C . 3 个D . 2 个二、填空题(本大题共6 小题,每小题 3 分,共 18 分)13.( 3 分)( 2015?贵港)若 在实数范围内有意义,则x 的取值范围是.14.(3 分)( 2015?贵港)一种花瓣的花粉颗粒直径约为0.0000065 米,将数据 0.0000065 用科学记数法表示为 .15.( 3 分)(2015?贵港)在一次数学测试中,某班 50 名学生的成绩分为六组,第一组到第四组的频数分别为 6, 8, 9,12,第五组的频数是 0.2,则第六组的频数是.16.( 3 分)( 2015?贵港)如图,在正方形 ABCD 的外侧,作等边三角形CDE ,连接 AE ,BE ,则 ∠ AEB 的度数为.17.( 3 分)( 2015?贵港)如图,已知圆锥的底面 ⊙ O 的直径 BC=6,高 OA=4 ,则该圆锥的侧面展开图的面积为 .18.( 3 分)( 2015?贵港) 如图,已知点 A 1,A 2, ,A n 均在直线 y=x ﹣ 1 上,点 B 1,B 2, , B 均在双曲线 y= ﹣ 上,并且满足: A B ⊥ x 轴,B A ⊥ y 轴,A B ⊥ x 轴,B A ⊥ y 轴, ,n1 1122 22 3A nB n ⊥x 轴, B n A n+1⊥ y 轴, ,记点 A n 的横坐标为 a n (n 为正整数).若 a 1=﹣ 1,则 a 2015= .三、解答题 (本大题共 8 小题,满分 66 分,解答时应写出文字说明、证明过程或演算步骤)﹣ 1﹣ | ﹣ 2|﹣ 2cos30°;19.( 10 分)( 2015?贵港)( 1)计算:﹣ 2 +( ﹣ π) (2)解不等式组,并在数轴上表示不等式组的解集.20.( 5 分)(2015?贵港)如图,已知 △ ABC 三个顶点坐标分别是A ( 1, 3),B ( 4,1),C( 4, 4).( 1)请按要求画图:① 画出 △ ABC 向左平移 5 个单位长度后得到的 △A 1B 1C 1;② 画出 △ ABC 绕着原点 O 顺时针旋转 90°后得到的 △ A 2B 2C 2. (2)请写出直线 B 1C 1 与直线 B 2C 2 的交点坐标.21.( 7 分)( 2015?贵港)如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B (﹣ 2, n ),与x 轴交于点C (﹣ 1,0),连接OA .(1)求一次函数和反比例函数的解析式;(2)若点 P 在坐标轴上,且满足PA=OA ,求点 P 的坐标.22.( 8 分)( 2015?贵港)某市团委举办 “我的中国梦 ”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为 70 分, 80 分, 90 分, 100 分,并根据统计数据绘制了如下不完整的统计图表: 乙校成绩统计表 分数(分) 人数(人) 70 780 90 1 1008(1)在图 ① 中, “80 分 ”所在扇形的圆心角度数为 ;( 2)请你将图 ② 补充完整;( 3)求乙校成绩的平均分;( 4)经计算知 S 甲 2=135 ,S 乙 2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.23.( 8 分)( 2015?贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产 量为 120 台机器, 今年一月份的生产量比去年月平均生产量增长了 m%,二月份的生产量又比一月份生产量多50 台机器,而且二月份生产60 台机器所需要时间与一月份生产45 台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的 2 倍.问:今年第一季度生产总量是多少台机器?m 的值是多少?24.( 8 分)( 2015?贵港)如图,已知 AB 为 E ,且点 E 是 OD 的中点, ⊙O 的切线是⊙ O 的弦, CD 是 ⊙ O 的直径, CD ⊥ AB ,垂足BM 与 AO 的延长线相交于点 M ,连接 AC ,CM .(1)若 AB=4,求 的长;(结果保留π)(2)求证:四边形 ABMC 是菱形.25.( 10 分)( 2015?贵港)如图,抛物线 y=ax 2+bx+c 与 x 轴交于点 A 和点 B ( 1, 0),与 y轴交于点 C ( 0, 3),其对称轴 I 为 x= ﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点 P 在第二象限内的抛物线上,动点 N 在对称轴 I 上.① 当 PA ⊥ NA ,且 PA=NA 时,求此时点 P 的坐标;② 当四边形 PABC 的面积最大时,求四边形 PABC 面积的最大值及此时点 P 的坐标.26.( 10 分)( 2015?贵港)已知: △ ABC 是等腰三角形,动点 P 在斜边 AB 所在的直线上,以 PC 为直角边作等腰三角形PCQ ,其中 ∠PCQ=90 °,探究并解决下列问题:(1)如图 ① ,若点 P 在线段 AB 上,且 AC=1+ , PA=,则:① 线段 PB= ,PC= ;②猜想: PA 2, PB 2, PQ 2三者之间的数量关系为 ;( 2)如图 ② ,若点 P 在 AB 的延长线上,在( 1)中所猜想的结论仍然成立,请你利用图 ②给出证明过程;(3)若动点 P 满足= ,求 的值.(提示:请利用备用图进行探求)2015 年广西贵港市中考数学试卷参考答案与试题解析一、选择题(本大题共12 小题,每小题3 分,共36 分,每小题四个选项,其中只有一个是正确的)1.( 3 分)( 2015?贵港) 3 的倒数是(A . 3B .﹣3)C .D .﹣考点 :倒数.分析:根据乘积是 1 的两个数互为倒数,可得一个数的倒数.解答:解:有理数 3 的倒数是 .故选: C .点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键. 2.( 3 分)( 2015?贵港)计算 × 的结果是( )A .B .C . 3D . 5考点 :二次根式的乘除法.分析:根据二次根式的乘法计算即可. 解答:解:×=.故选 B .点评:此题考查二次根式的乘法,关键是根据二次根式的乘法法则进行计算.3.( 3 分)(2015?贵港)如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是()A .B .C .D .考点 :简单组合体的三视图.分析:根据俯视图是从上边看得到的图形,可得答案.解答:解:从上边看第一层一个小正方形,第二层在第一层的正上方一个小正方形,右边一个小正方形,故选: B .点评:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.( 3 分)( 2015?贵港)下列因式分解错误的是()2A . 2a ﹣ 2b=2(a ﹣ b )B . x ﹣9=( x+3)( x ﹣ 3)C . a 2+4a ﹣ 4=( a+2) 2D .﹣x 2﹣ x+2= ﹣( x ﹣ 1)(x+2 )考点 :因式分解 -运用公式法;因式分解 -提公因式法;因式分解-十字相乘法等.分析:根据公式法分解因式的特点判断,然后利用排除法求解.解答:解:A 、 2a ﹣2b=2( a ﹣b ),正确;2B 、x ﹣ 9=( x+3)( x ﹣3),正确;2C 、a +4a ﹣ 4 不能因式分解,错误;D 、﹣ x 2﹣ x+2= ﹣( x ﹣ 1)( x+2),正确; 故选 C .点评:本题主要考查了因式分解,关键是对于完全平方公式和平方差公式的理解.5.( 3 分)( 2015?贵港)在平面直角坐标系中,若点 P ( m ,m ﹣ n )与点 Q (﹣ 2, 3)关于原点对称,则点 M ( m , n )在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限考点 :关于原点对称的点的坐标. 分析:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则 m=2 且 n=﹣ 3,从而得出点 M ( m , n )所在的象限.解答:解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴ m=2 且 m ﹣ n=﹣ 3, ∴ m=2, n=5∴ 点 M ( m , n )在第一象限,故选 A .点评:本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.6.( 3 分)( 2015?贵港)若关于x 的一元二次方程( a ﹣ 1)x 2﹣ 2x+2=0 有实数根,则整数 a 的最大值为( )A .﹣ 1B . 0C . 1D . 2考点 :根的判别式;一元二次方程的定义.分析:由关于 x 的一元二次方程( a ﹣ 1) x 2﹣ 2x+2=0 有实数根,则 a ﹣ 1≠0,且 △ ≥0,即 △ =(﹣ 2) 2﹣ 8( a ﹣1) =12 ﹣8a ≥0,解不等式得到 a 的取值范围,最后确定 a 的最大整数值.2解答:解: ∵关于 x 的一元二次方程(a ﹣ 1) x ﹣ 2x+2=0 有实数根,∴ a ≤ 且 a ≠1,∴ 整数 a 的最大值为 0.故选: B .点评:本题考查了一元二次方程ax 2+bx+c=0( a ≠0,a ,b ,c 为常数)根的判别式 △ =b 2﹣4ac .当△ > 0,方程有两个不相等的实数根;当 △=0,方程有两个相等的实数根;当 △ <0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 7.( 3 分)( 2015?贵港)下列命题中,属于真命题的是( )A . 三点确定一个圆B . 圆内接四边形对角互余C . 若 a 2=b 2,则 a=bD . 若=,则 a=b考点 :命题与定理.分析:根据确定圆的条件对 A 进行判断;根据圆内接四边形的性质对B 进行判断;22,得出两数相等或相反对 C 进行判断;根据 a =b 根据立方根对 D 进行判断.解答:解:A 、任意不共线的三点确定一个圆,所以错误;B 、圆的内接四边形的对角互补,错误;C 、若 a 2=b 2,则 a=b 或 a=﹣ b ,错误; D 、若=,则 a=b ,正确;故选 D .点评:本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.8.( 3 分)( 2015?贵港)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A .B .C. D .考点:概率公式;中心对称图形.专题:计算题.分析:根据中心对称图形的定义得到平行四边形、菱形和正六边形是中心对称图形,于是利用概率公式可计算出抽到的图形属于中心对称图形的概率.解答:解:这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率= .故选 C.点评:本题考查了概率公式:随机事件 A 的概率 P( A) =事件 A 可能出现的结果数除以所有可能出现的结果数.也考查了中心对称图形.9.( 3 分)( 2015?贵港)如图,直线AB ∥CD ,直线 EF 与 AB ,CD 相交于点 E,F,∠ BEF 的平分线与 CD 相交于点 N .若∠ 1=63°,则∠ 2=()A . 64°B . 63°C. 60° D . 54°考点:平行线的性质.分析:先根据平行线的性质求出∠ BEN 的度数,再由角平分线的定义得出∠ BEF 的度数,根据平行线的性质即可得出∠ 2 的度数.解答:解:∵AB ∥ CD,∠ 1=63°,∴ ∠BEN= ∠ 1=63°.∵EN 平分∠ BEF ,∴ ∠BEF=2 ∠ BEN=126 °,∴ ∠ 2=180°﹣∠ BEF=180 °﹣126°=54°.故选 D .点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等;两直线平行,同旁内角互补.也考查了角平分线定义.10.( 3 分)( 2015?贵港)如图,已知P 是⊙ O 外一点, Q 是⊙ O 上的动点,线段PQ 的中点为 M ,连接 OP,OM .若⊙ O 的半径为 2, OP=4,则线段 OM 的最小值是()A . 0B . 1 C. 2 D . 3考点:点与圆的位置关系;三角形中位线定理;轨迹.专题:计算题.分析:取 OP 的中点 N,连结 MN ,OQ ,如图可判断 MN 为△ POQ 的中位线,则 MN= OQ=1 ,则点 M 在以 N 为圆心, 1 为半径的圆上,当点M 在 ON 上时, OM 最小,最小值为1.解答:解:取 OP 的中点 N,连结 MN ,OQ ,如图,∵ M 为 PQ 的中点,∴ MN 为△POQ 的中位线,∴ MN= OQ= ×2=1 ,∴ 点 M 在以 N 为圆心, 1 为半径的圆上,在 △OMN 中, 1<OM < 3,当点 M 在 ON 上时, OM 最小,最小值为 1,∴ 线段 OM 的最小值为 1. 故选 B .点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.11.(3 分)( 2015?贵港)如图,已知二次函数y 1= x 2﹣ x 的图象与正比例函数 y 2 =x 的图象交于点 A ( 3,2),与 x 轴交于点 B (2, 0),若 0< y 1< y 2,则 x 的取值范围是( )A . 0< x < 2B . 0< x < 3C . 2<x < 3D . x < 0 或 x > 3考点 :二次函数与不等式(组) .分析: 由二次函数 y 1= x 2﹣ x 的图象与正比例函数 y 2= x 的图象交于点 A ( 3, 2),与 x轴交于点 B (2, 0),然后观察图象,即可求得答案.解答: 解: ∵二次函数 y 1= x 2﹣ x 的图象与正比例函数 y 2 = x 的图象交于点 A ( 3, 2),与 x 轴交于点 B ( 2, 0),∴ 由图象得:若 0< y 1< y 2,则 x 的取值范围是: 2<x < 3.故选 C .点评:此题考查了二次函数与不等式的关系.注意掌握数形结合思想的应用是关键.12.( 3 分)( 2015?贵港)如图,在矩形 ABCD 中, E 是 AD 边的中点, BE ⊥ AC 于点 F ,连 接 DF ,分析下列五个结论: ① △ AEF ∽ △ CAB ;② CF=2AF ;③ DF=DC ;④ tan ∠ CAD= ;⑤ S 四边形 CDEF = S △ABF ,其中正确的结论有( )A . 5 个B . 4 个C . 3 个D . 2 个考点 :相似三角形的判定与性质;矩形的性质.分析: ① 四边形 ABCD 是矩形, BE ⊥ AC ,则 ∠ ABC= ∠ AFB=90 °,又 ∠ BAF= ∠ CAB ,于是 △AEF ∽ △ CAB ,故 ① 正确;② 由 AE=AD= BC ,又 AD ∥ BC ,所以 ,故 ② 正确;③ 过 D 作 DM ∥ BE 交 AC 于 N ,得到四边形 BMDE 是平行四边形, 求出 BM=DE=BC ,得到 CN=NF ,根据线段的垂直平分线的性质可得结论,故③ 正确;④ 而 CD 与 AD 的大小不知道,于是tan ∠ CAD 的值无法判断,故 ④ 错误;⑤ 根据 △AEF ∽ △CBF 得到,求出 S △ AEF = S △ABF ,S △ABF = S 矩形 ABCD S四边形 CDEF=S △ACD ﹣ S △AEF =S 矩形 ABCD ﹣ S 矩形 ABCD =S 矩形 ABCD ,即可得到S 四边形CDEF=S△ABF,故⑤正确.解答:解:过 D 作 DM ∥BE 交 AC 于 N,∵四边形 ABCD 是矩形,∴AD ∥BC ,∠ ABC=90 °, AD=BC ,∵ BE⊥ AC 于点 F,∴∠EAC= ∠ ACB ,∠ ABC= ∠ AFE=90 °,∴△AEF ∽ △ CAB ,故①正确;∵AD ∥BC ,∴ △AEF ∽ △ CBF,∴,∵AE= AD= BC,∴= ,∴CF=2AF ,故②正确,∵ DE∥ BM , BE ∥ DM ,∴四边形 BMDE 是平行四边形,∴BM=DE= BC ,∴BM=CM ,∴CN=NF ,∵BE⊥ AC 于点 F, DM ∥ BE,∴ DN ⊥CF,∴ DF=DC ,故③正确;∵tan∠ CAD=,而 CD 与 AD 的大小不知道,∴tan∠ CAD 的值无法判断,故④错误;∵ △AEF ∽ △ CBF,∴,∴S△AEF= S△ABF, S△ABF = S 矩形ABCD∵ SS 矩形ABCD,△ ABE = S矩形 ABCD ,S△ACD =∴S△AEF= S 四边形ABCD,又∵ S 四边形CDEF=S△ACD﹣ S△AEF= S 矩形ABCD﹣S 矩形ABCD =S 矩形ABCD,∴S 四边形CDEF= S△ABF,故⑤正确;故选 B .点评:本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.二、填空题(本大题共6 小题,每小题 3 分,共 18 分)13.( 3 分)( 2015?贵港)若 在实数范围内有意义,则x 的取值范围是x ≥﹣ 2 .考点 :二次根式有意义的条件.分析:根据二次根式有意义的条件:被开方数为非负数可得 x+2≥0,再解不等式即可.解答:解: ∵二次根式在实数范围内有意义,∴ 被开方数 x+2 为非负数,∴ x+2≥0, 解得: x ≥﹣ 2.故答案为: x ≥﹣2.点评:此题主要考查了二次根式中被开方数的取值范围,关键把握二次根式中的被开方数是非负数.14.(3 分)( 2015?贵港)一种花瓣的花粉颗粒直径约为0.0000065 米,将数据 0.0000065 用科学记数法表示为 6.5×10 ﹣6 .考点 :科学记数法 —表示较小的数.分析:根据科学记数法和负整数指数的意义求解.﹣ 6.解答:解: 0.0000065=6.5×10故答案为 6.5×10﹣ 6.点评:本题考查了科学记数法﹣表示较小的数,关键是用a ×10n( 1≤a < 10, n 为负整数)表示较小的数.15.( 3 分)(2015?贵港)在一次数学测试中,某班 50 名学生的成绩分为六组,第一组到第四组的频数分别为 6, 8, 9,12,第五组的频数是 0.2,则第六组的频数是 5 .考点 :频数与频率.分析:一个容量为 50 的样本,把它分成 6 组,第一组到第四组的频数分别为6,8, 9, 12,根据第五组的频率是 0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.解答:解: ∵一个容量为 50 的样本,把它分成 6 组,第一组到第四组的频数分别为 6, 8, 9, 12,第五组的频率是 0.2,则第五组的频数是 0.2×50=10 ,∴ 第六组的频数是 50﹣ 6﹣8﹣ 9﹣ 10﹣ 12=5.故答案为: 5.点评:此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析.16.( 3 分)( 2015?贵港)如图,在正方形 ABCD 的外侧,作等边三角形 CDE ,连接 AE ,BE ,则 ∠ AEB 的度数为30° .考点 :全等三角形的判定与性质;等腰三角形的性质;正方形的性质. 分析:由正方形和等边三角形的性质得出∠ADE= ∠BCE=150 °, AD=DE=BC=CE ,得出∠ DEA= ∠ CEB=15 °,即可得出 ∠ AEB 的度数.解答:解: ∵四边形 ABCD 是正方形,∴ ∠ BCD= ∠ ADC=90 °, AD=BC=DC , ∵ △ CDE 是等边三角形,∴ ∠ EDC= ∠ ECD= ∠ DEC=60 °, DE=DC=CE ,∴ ∠ ADE= ∠ BCE=90 °+60 °=150 °, AD=DE=BC=CE ,∴ ∠ DEA= ∠ CEB=(180°﹣150°)=15°,∴ ∠ AEB=60 °﹣ 15°﹣ 15°=30°;故答案为: 30°.点评:本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.17.( 3 分)( 2015?贵港)如图,已知圆锥的底面⊙ O 的直径 BC=6,高 OA=4 ,则该圆锥的侧面展开图的面积为15π .考点:圆锥的计算.分析:根据已知和勾股定理求出 AB 的长,根据扇形面积公式求出侧面展开图的面积.解答:解:∵OB= BC=3 , OA=4 ,由勾股定理,AB=5 ,侧面展开图的面积为:×6π×5=15π.故答案为: 15π.点评:本题考查的是圆锥的计算,理解圆锥的侧面展开图是扇形,掌握扇形的面积的计算公式是解题的关键.18.( 3 分)( 2015?贵港)如图,已知点 A 1,A 2,,A n均在直线y=x﹣ 1 上,点 B 1,B2,,B n均在双曲线y= ﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,,A nB n⊥x 轴, B n A n+1⊥ y 轴,,记点 A n的横坐标为a n(n 为正整数).若 a1=﹣ 1,则 a2015=2.考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.专题:规律型.分析:首先根据 a1=﹣ 1,求出 a2=2 ,a3= ,a4=﹣1,a5=2 ,,所以 a1,a2,a3,a4,a5,,每 3 个数一个循环,分别是﹣1、、 2;然后用 2015 除以 3,根据商和余数的情况,判断出 a2015是第几个循环的第几个数,进而求出它的值是多少即可.解答:解:∵a1=﹣ 1,∴B1的坐标是(﹣ 1, 1),∴A2的坐标是( 2,1),即 a2=2,∵ a2=2,∴B2的坐标是( 2,﹣),∴ A3的坐标是(,﹣),即 a3=,∵a3= ,∴ B3的坐标是(,﹣ 2),∴A4的坐标是(﹣ 1,﹣ 2),即 a4=﹣ 1,∵ a4=﹣ 1,∴B4的坐标是(﹣ 1, 1),∴A5的坐标是( 2, 1),即a5=2,,∴ a , a , a , a , a ,,每 3 个数一个循环,分别是﹣1、、 2,1 2 3 4 5∵2015÷3=671 2,∴a2015是第 672 个循环的第 2 个数,∴a 2015=2.故答案为: 2.点评:( 1)此题主要考查了反比例函数图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点( x, y)的横纵坐标的积是定值k,即 xy=k ;② 双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在 xk 图象中任取一点,过这一个点向 x 轴和 y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.( 2)此题还考查了一次函数图象上的点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b ,(k≠0,且 k, b 为常数)的图象是一条直线.它与x 轴的交点坐标是(﹣,0);与 y 轴的交点坐标是( 0,b).直线上任意一点的坐标都满足函数关系式 y=kx+b .三、解答题(本大题共 8 小题,满分 66 分,解答时应写出文字说明、证明过程或演算步骤)﹣1 0﹣ | ﹣ 2|﹣ 2cos30°;19.( 10 分)( 2015?贵港)( 1)计算:﹣ 2 +(﹣π)(2)解不等式组,并在数轴上表示不等式组的解集.考点:实数的运算;零指数幂;负整数指数幂;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.分析:( 1)根据负整数指数幂、零指数幂、绝对值、特殊角的三角函数值四个考点进行计算结果即可;( 2)先解每一个不等式,再把解集画在数轴上即可.解答:﹣ 2﹣ 2×解:( 1)原式 =﹣ +1+= + ﹣ 2﹣=﹣;( 2),解①得 x< 1,解②得 x≥﹣ 1,把解集表示在数轴上为:,不等式组的解集为﹣1≤x<1.点评:本题考查实数的综合运算能力,以及不等式组的解集,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.( 5 分)(2015?贵港)如图,已知△ ABC三个顶点坐标分别是 A ( 1, 3),B( 4,1),C (4, 4).(1)请按要求画图:①画出△ ABC 向左平移 5 个单位长度后得到的△A B C ;1 1 1②画出△ ABC 绕着原点 O 顺时针旋转 90°后得到的△ A 2B 2C2.(2)请写出直线 B1C1与直线 B2C2的交点坐标.考点:作图 -旋转变换;两条直线相交或平行问题;作图-平移变换.分析:( 1)根据网格结构找出点 A 、B 、 C 平移后的对应点 A 1、 B1、 C1的位置,然后顺次连接即可;(2)根据旋转角度,旋转方向,分别找到 A 、B 、C 的对应点,顺次连接可得△A 2B2C2;(3)由图形可知交点坐标;解答:解:( 1)如图所示:△ A1B1C1即为所求;( 2)如图所示:△ A 2 B2C2,即为所求;( 3)由图形可知:交点坐标为(﹣1,﹣ 4).点评:此题主要考查了平移变换以及旋转变换,得出对应点位置是解题关键.21.( 7 分)( 2015?贵港)如图,一次函数y=x+b 的图象与反比例函数y= 的图象交于点 A和点 B (﹣ 2, n),与 x 轴交于点C(﹣ 1,0),连接 OA .(1)求一次函数和反比例函数的解析式;(2)若点 P 在坐标轴上,且满足PA=OA ,求点 P 的坐标.考点:反比例函数与一次函数的交点问题.分析:( 1)把 C(﹣ 1, 0)代入 y=x+b ,求出 b 的值,得到一次函数的解析式;再求出 B 点坐标,然后将 B 点坐标代入y= ,利用待定系数法即可求出反比例函数的解析式;( 2)先将反比例函数与一次函数的解析式联立,求出 A 点坐标,再分①点P 在x 轴上;②点 P 在 y 轴上;两种情况进行讨论.解答:解:( 1)∵一次函数y=x+b 的图象与x 轴交于点C(﹣ 1, 0),∴ ﹣ 1+b=0,解得 b=1 ,∴一次函数的解析式为y=x+1 ,∵一次函数y=x+1 的图象过点 B (﹣ 2, n),∴n=﹣ 2+1=﹣ 1,∴ B(﹣ 2,﹣ 1).∵反比例函数y=的图象过点B(﹣ 2,﹣ 1),∴k= ﹣ 2×(﹣ 1)=2,∴反比例函数的解析式为 y= ;( 2)由,解得,或,∵B(﹣ 2,﹣1),∴ A( 1,2).分两种情况:①如果点 P 在 x 轴上,设点P 的坐标为( x,0),∵PA=OA ,∴( x﹣1)2+22=12+22,解得 x1=2, x2=0 (不合题意舍去),∴点 P 的坐标为( 2, 0);②如果点 P 在 y 轴上,设点P 的坐标为( 0,y),∵PA=OA ,∴12+(y﹣ 2)2=12+22,解得 y1=4, y2=0 (不合题意舍去),∴点 P 的坐标为( 0, 4);综上所述,所求点P 的坐标为( 2, 0)或( 0, 4).点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.利用待定系数法正确求出反比例函数与一次函数的解析式是解题的关键.22.( 8 分)( 2015?贵港)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70 分, 80 分, 90 分, 100 分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)7080790 100 1 8(1)在图①中,“80 分”所在扇形的圆心角度数为54°;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知 S 甲2=135 ,S 乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.考点:条形统计图;扇形统计图;加权平均数;方差.分析:( 1)根据统计图可知甲班70 分的有 6 人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;( 2)用总人数减去成绩为70 分、 80 分、 90 分的人数即可求得成绩为100 分的人数,从而可补全统计图;(3)先求得乙班成绩为 80 分的人数,然后利用加权平均数公式计算平均数;(4)根据方差的意义即可做出评价.解答:解:( 1) 6÷30%=20 ,3÷20=15%,360°×15%=54 °;( 2) 20﹣ 6﹣ 3﹣6=5 ,统计图补充如下:( 3) 20﹣ 1﹣ 7﹣8=4 ,=85 ;( 4)∵S 甲2< S 乙2,∴甲班 20 同名同学的成绩比较整齐.点评:本题主要考查的是统计图和统计表的应用,属于基础题目,解答本题需要同学们,数量掌握方差的意义、加权平均数的计算公式以及频数、百分比、数据总数之间的关系.23.( 8 分)( 2015?贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为 120 台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50 台机器,而且二月份生产60 台机器所需要时间与一月份生产45 台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的 2 倍.问:今年第一季度生产总量是多少台机器?m 的值是多少?考点:分式方程的应用.分析:今年一月份生产量为:120( 1+m% );二月份生产量:120( 1+m% ) +50;根据“二月份生产 60 台机器所需要时间与一月份生产45 台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的 2 倍”列出方程并解答.解答:解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m% ),二月份的生产效率为1+m%+.根据题意得:,解得: m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量 =120×1.25+120×1.25+50+120 ×2=590.答:今年第一季度生产总量是590 台, m 的值是 25.点评:本题主要考查的是分式方程的应用,表示出一月份和二月份的生产效率是解题的关键.24.( 8 分)( 2015?贵港)如图,已知 AB 是⊙ O 的弦, CD 是⊙ O 的直径, CD⊥ AB ,垂足为 E,且点 E 是 OD 的中点,⊙O 的切线 BM 与 AO 的延长线相交于点M ,连接 AC ,CM .(1)若 AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.考点:切线的性质;菱形的判定;弧长的计算.专题:计算题.分析:( 1)连接 OB,由 E 为 OD 中点,得到OE 等于 OA 的一半,在直角三角形AOE 中,得出∠OAB=30 °,进而求出∠ AOE 与∠ AOB 的度数,设 OA=x ,利用勾股定理求出x的值,确定出圆的半径,利用弧长公式即可求出的长;( 2)由第一问得到∠ BAM=∠BMA,利用等角对等边得到AB=MB ,利用 SAS 得到三角形 OCM 与三角形OBM 全等,利用全等三角形对应边相等得到CM=BM ,等量代换得到CM=AB ,再利用全等三角形对应角相等及等量代换得到一对内错角相等,进而确定出CM 与AB 平行,利用一组对边平行且相等的四边形为平行四边形得到ABMC 为平行四边形,最后由邻边相等的平行四边形为菱形即可得证.解答:( 1)解:∵ OA=OB , E 为 AB 的中点,∴ ∠ AOE= ∠ BOE, OE⊥ AB ,∵OE⊥ AB ,E 为 OD 中点,∴ OE= OD= OA ,∴在 Rt△ AOE 中,∠ OAB=30 °,∠ AOE=60 °,∠AOB=120 °,设 OA=x ,则 OE= x, AE= x,∵ AB=4,∴ AB=2AE=x=4 ,解得: x=4 ,则的长 l= = ;(2)证明:由( 1)得∠OAB= ∠OBA=30 °,∠ BOM= ∠ COM=60 °,∠AMB=30 °,∴ ∠ BAM= ∠ BMA=30 °,∴AB=BM ,∵ BM 为圆 O 的切线,∴OB⊥ BM ,在△ COM 和△ BOM 中,,∴ △ COM ≌ △ BOM ( SAS ),∴CM=BM ,∠CMO= ∠ BMO=30 °,∴CM=AB ,∠ CMO= ∠MAB ,∴CM ∥ AB ,∴四边形 ABMC 为菱形.点评:此题考查了切线的性质,菱形的判断,全等三角形的判定与性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.25.( 10 分)( 2015?贵港)如图,抛物线 y=ax 2+bx+c 与 x 轴交于点 A 和点 B( 1, 0),与 y轴交于点 C( 0, 3),其对称轴 I 为 x= ﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴I 上.① 当 PA ⊥ NA ,且 PA=NA 时,求此时点 P 的坐标;② 当四边形 PABC 的面积最大时,求四边形 PABC 面积的最大值及此时点P 的坐标.考点 :二次函数综合题.分析:( 1)将已知点的坐标代入已知的抛物线的解析式,利用待定系数法确定抛物线的解析式即可;( 2)① 首先求得抛物线与 x 轴的交点坐标, 然后根据已知条件得到 PE=OA ,从而得到方程求得 x 的值即可求得点 P 的坐标;② 用分割法将四边形的面积 S 四边形 BCPA =S △OBC +S △OAC ,得到二次函数, 求得最值即可.解答:解:( 1)∵ 抛物线 y=ax 2+bx+c 与 x 轴交于点 A 和点 B ( 1,0),与 y 轴交于点 C ( 0,3),其对称轴 I 为 x=﹣ 1,∴,解得:.∴ 二次函数的解析式为y=﹣ x 2﹣ 2x+3= ﹣( x+1) 2+4 ,∴ 顶点坐标为(﹣ 1, 4);( 2)令 y= ﹣ x 2﹣2x+3=0 ,解得 x= ﹣3 或 x=1, ∴ 点 A (﹣ 3, 0), B ( 1, 0), 作 PD ⊥ x 轴于点 D ,∵ 点 P 在 y= ﹣ x 2﹣ 2x+3 上,2∴ 设点 P ( x ,﹣ x ﹣ 2x+3) ① ∵ PA ⊥NA ,且 PA=NA , ∴ △ PAD ≌△ AND , ∴ OA=PD即 y=﹣ x 2﹣ 2x+3=2 ,解得 x=﹣ 1(舍去)或 x= ﹣﹣ 1,∴ 点 P (﹣ ﹣ 1, 2);② ∵ S 四边形 BCPA =S △OBC +S △OAC =2+S △APC∵ S △AOC = , S △OCP = x , S △OAP = ?3?|y P |=﹣ x 2﹣ 3x+∴ S △APC =S △OAP +S △OCP ﹣S △AOC = x+(﹣ x 2﹣ 3x+ )﹣ =﹣ x 2﹣ x= ﹣ ( x ﹣ )2+ ,∴ 当 x=﹣ 时, S △ACP 最大值 = ,此时 M (﹣ ,﹣),。
广西贵港市2015年中考数学真题试题(含解析)
2015年广西贵港市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题四个选项,其中只有一个是正确的)1.(3分)(2015•贵港)3的倒数是( ) A. 3 B.﹣3 C. D.﹣2.(3分)(2015•贵港)计算×的结果是( ) A. B. C. 3 D. 53.(3分)(2015•贵港)如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是( ) A. B. C. D.4.(3分)(2015•贵港)下列因式分解错误的是( ) A.2a﹣2b=2(a﹣b) B. x2﹣9=(x+3)(x﹣3) C. a2+4a﹣4=(a+2)2 D.﹣x2﹣x+2=﹣(x﹣1)(x+2)5.(3分)(2015•贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.(3分)(2015•贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为( ) A.﹣1 B. 0 C. 1 D. 27.(3分)(2015•贵港)下列命题中,属于真命题的是( ) A.三点确定一个圆 B.圆内接四边形对角互余 C.若a2=b2,则a=b D.若=,则a=b8.(3分)(2015•贵港)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( ) A. B. C. D.9.(3分)(2015•贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=( ) A. 64° B. 63° C. 60° D. 54°10.(3分)(2015•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是( ) A. 0 B. 1 C. 2 D. 311.(3分)(2015•贵港)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是( ) A. 0<x<2 B. 0<x<3 C. 2<x<3 D. x<0或x>312.(3分)(2015•贵港)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF,其中正确的结论有( ) A. 5个 B. 4个 C. 3个 D. 2个二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015•贵港)若在实数范围内有意义,则x的取值范围是 .14.(3分)(2015•贵港)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 .15.(3分)(2015•贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频数是0.2,则第六组的频数是 .16.(3分)(2015•贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为 .17.(3分)(2015•贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为 .18.(3分)(2015•贵港)如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2015= .三、解答题(本大题共8小题,满分66分,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2015•贵港)(1)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°;(2)解不等式组,并在数轴上表示不等式组的解集.20.(5分)(2015•贵港)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.21.(7分)(2015•贵港)如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.(1)求一次函数和反比例函数的解析式;(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.22.(8分)(2015•贵港)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为 ;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.23.(8分)(2015•贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?24.(8分)(2015•贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.25.(10分)(2015•贵港)如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.26.(10分)(2015•贵港)已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为 ;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)2015年广西贵港市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题四个选项,其中只有一个是正确的)1.(3分)(2015•贵港)3的倒数是( ) A. 3 B.﹣3 C. D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数3的倒数是.故选:C.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2015•贵港)计算×的结果是( )A .B .C . 3D . 5考点: 二次根式的乘除法.分析: 根据二次根式的乘法计算即可.解答: 解:×=.故选B .点评: 此题考查二次根式的乘法,关键是根据二次根式的乘法法则进行计算.3.(3分)(2015•贵港)如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是( )A .B .C .D .考点: 简单组合体的三视图.分析: 根据俯视图是从上边看得到的图形,可得答案.解答: 解:从上边看第一层一个小正方形,第二层在第一层的正上方一个小正方形,右边一个小正方形,故选:B .点评: 本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.(3分)(2015•贵港)下列因式分解错误的是( )A . 2a﹣2b=2(a﹣b)B . x 2﹣9=(x+3)(x﹣3)C . a 2+4a﹣4=(a+2)2D . ﹣x 2﹣x+2=﹣(x﹣1)(x+2)考点: 因式分解-运用公式法;因式分解-提公因式法;因式分解-十字相乘法等.分析: 根据公式法分解因式的特点判断,然后利用排除法求解.解答: 解:A 、2a﹣2b=2(a﹣b),正确;B 、x 2﹣9=(x+3)(x﹣3),正确;C 、a 2+4a﹣4不能因式分解,错误;D 、﹣x 2﹣x+2=﹣(x﹣1)(x+2),正确;故选C .点评: 本题主要考查了因式分解,关键是对于完全平方公式和平方差公式的理解.5.(3分)(2015•贵港)在平面直角坐标系中,若点P (m ,m﹣n)与点Q (﹣2,3)关于原点对称,则点M (m ,n )在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限考点:关于原点对称的点的坐标.分析:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.解答:解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5∴点M(m,n)在第一象限,故选A.点评:本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.6.(3分)(2015•贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为( ) A.﹣1 B. 0 C. 1 D. 2考点:根的判别式;一元二次方程的定义.分析:由关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则a﹣1≠0,且△≥0,即△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0,解不等式得到a的取值范围,最后确定a的最大整数值.解答:解:∵关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,∴△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0且a﹣1≠0,∴a≤且a≠1,∴整数a的最大值为0.故选:B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解.7.(3分)(2015•贵港)下列命题中,属于真命题的是( ) A.三点确定一个圆 B.圆内接四边形对角互余 C.若a2=b2,则a=b D.若=,则a=b考点:命题与定理.分析:根据确定圆的条件对A进行判断;根据圆内接四边形的性质对B进行判断;根据a2=b2,得出两数相等或相反对C进行判断;根据立方根对D进行判断.解答:解:A、任意不共线的三点确定一个圆,所以错误;B、圆的内接四边形的对角互补,错误;C、若a2=b2,则a=b或a=﹣b,错误;D、若=,则a=b,正确;故选D.点评:本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.8.(3分)(2015•贵港)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( ) A. B. C. D.考点:概率公式;中心对称图形.专题:计算题.分析:根据中心对称图形的定义得到平行四边形、菱形和正六边形是中心对称图形,于是利用概率公式可计算出抽到的图形属于中心对称图形的概率.解答:解:这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=.故选C.点评:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了中心对称图形.9.(3分)(2015•贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=( ) A. 64° B. 63° C. 60° D. 54°考点:平行线的性质.分析:先根据平行线的性质求出∠BEN的度数,再由角平分线的定义得出∠BEF的度数,根据平行线的性质即可得出∠2的度数.解答:解:∵AB∥CD,∠1=63°,∴∠BEN=∠1=63°.∵EN平分∠BEF,∴∠BEF=2∠BEN=126°,∴∠2=180°﹣∠BEF=180°﹣126°=54°.故选D.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等;两直线平行,同旁内角互补.也考查了角平分线定义.10.(3分)(2015•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是( ) A. 0 B. 1 C. 2 D. 3考点:点与圆的位置关系;三角形中位线定理;轨迹.专题:计算题.分析:取OP的中点N,连结MN,OQ,如图可判断MN为△POQ的中位线,则MN=OQ=1,则点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1.解答:解:取OP的中点N,连结MN,OQ,如图,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,在△OMN中,1<OM<3,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.11.(3分)(2015•贵港)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是( ) A. 0<x<2 B. 0<x<3 C. 2<x<3 D. x<0或x>3考点:二次函数与不等式(组).分析:由二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),然后观察图象,即可求得答案.解答:解:∵二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),∴由图象得:若0<y1<y2,则x的取值范围是:2<x<3.故选C.点评:此题考查了二次函数与不等式的关系.注意掌握数形结合思想的应用是关键.12.(3分)(2015•贵港)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF,其中正确的结论有( ) A. 5个 B. 4个 C. 3个 D. 2个考点:相似三角形的判定与性质;矩形的性质.分析:①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④而CD与AD的大小不知道,于是tan∠CAD的值无法判断,故④错误;⑤根据△AEF∽△CBF得到,求出S△AEF=S△ABF,S△ABF=S矩形ABCD S四边形CDEF=S△ACD﹣S△=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,即可得到S四边形CDEF=S△ABF,故⑤正确.AEF解答:解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴=,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;∵tan∠CAD=,而CD与AD的大小不知道,∴tan∠CAD的值无法判断,故④错误;∵△AEF∽△CBF,∴,∴S△AEF=S△ABF,S△ABF=S矩形ABCD∵S△ABE=S矩形ABCD,S△ACD=S矩形ABCD,∴S△AEF=S四边形ABCD,又∵S四边形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,∴S四边形CDEF=S△ABF,故⑤正确;故选B.点评:本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015•贵港)若在实数范围内有意义,则x的取值范围是 x≥﹣2 .考点:二次根式有意义的条件.分析:根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.解答:解:∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.点评:此题主要考查了二次根式中被开方数的取值范围,关键把握二次根式中的被开方数是非负数.14.(3分)(2015•贵港)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 6.5×10﹣6 .考点:科学记数法—表示较小的数.分析:根据科学记数法和负整数指数的意义求解.解答:解:0.0000065=6.5×10﹣6.故答案为6.5×10﹣6.点评:本题考查了科学记数法﹣表示较小的数,关键是用a×10n(1≤a<10,n为负整数)表示较小的数.15.(3分)(2015•贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频数是0.2,则第六组的频数是 5 .考点:频数与频率.分析:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.解答:解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.点评:此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析. 16.(3分)(2015•贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为 30° .考点:全等三角形的判定与性质;等腰三角形的性质;正方形的性质.分析:由正方形和等边三角形的性质得出∠ADE=∠BCE=150°,AD=DE=BC=CE,得出∠DEA=∠CEB=15°,即可得出∠AEB的度数.解答:解:∵四边形ABCD是正方形,∴∠BCD=∠ADC=90°,AD=BC=DC,∵△CDE是等边三角形,∴∠EDC=∠ECD=∠DEC=60°,DE=DC=CE,∴∠ADE=∠BCE=90°+60°=150°,AD=DE=BC=CE,∴∠DEA=∠CEB=(180°﹣150°)=15°,∴∠AEB=60°﹣15°﹣15°=30°;故答案为:30°.点评:本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.17.(3分)(2015•贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为 15π .考点:圆锥的计算.分析:根据已知和勾股定理求出AB的长,根据扇形面积公式求出侧面展开图的面积.解答:解:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为:15π.点评:本题考查的是圆锥的计算,理解圆锥的侧面展开图是扇形,掌握扇形的面积的计算公式是解题的关键.18.(3分)(2015•贵港)如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2015= 2 .考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.专题:规律型.分析:首先根据a1=﹣1,求出a2=2,a3=,a4=﹣1,a5=2,…,所以a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、、2;然后用2015除以3,根据商和余数的情况,判断出a2015是第几个循环的第几个数,进而求出它的值是多少即可.解答:解:∵a1=﹣1,∴B1的坐标是(﹣1,1),∴A2的坐标是(2,1),即a2=2,∵a2=2,∴B2的坐标是(2,﹣),∴A3的坐标是(,﹣),即a3=,∵a3=,∴B3的坐标是(,﹣2),∴A4的坐标是(﹣1,﹣2),即a4=﹣1,∵a4=﹣1,∴B4的坐标是(﹣1,1),∴A5的坐标是(2,1),即a5=2,…,∴a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、、2,∵2015÷3=671…2,∴a2015是第672个循环的第2个数,∴a2015=2.故答案为:2.点评:(1)此题主要考查了反比例函数图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.(2)此题还考查了一次函数图象上的点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(本大题共8小题,满分66分,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2015•贵港)(1)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°;(2)解不等式组,并在数轴上表示不等式组的解集.考点:实数的运算;零指数幂;负整数指数幂;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.分析:(1)根据负整数指数幂、零指数幂、绝对值、特殊角的三角函数值四个考点进行计算结果即可;(2)先解每一个不等式,再把解集画在数轴上即可.解答:解:(1)原式=﹣+1+﹣2﹣2×=+﹣2﹣=﹣;(2),解①得x<1,解②得x≥﹣1,把解集表示在数轴上为:,不等式组的解集为﹣1≤x<1.点评:本题考查实数的综合运算能力,以及不等式组的解集,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 20.(5分)(2015•贵港)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.考点:作图-旋转变换;两条直线相交或平行问题;作图-平移变换.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据旋转角度,旋转方向,分别找到A、B、C的对应点,顺次连接可得△A2B2C2;(3)由图形可知交点坐标;解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由图形可知:交点坐标为(﹣1,﹣4).点评:此题主要考查了平移变换以及旋转变换,得出对应点位置是解题关键.21.(7分)(2015•贵港)如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.(1)求一次函数和反比例函数的解析式;(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)把C(﹣1,0)代入y=x+b,求出b的值,得到一次函数的解析式;再求出B点坐标,然后将B点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)先将反比例函数与一次函数的解析式联立,求出A点坐标,再分①点P在x轴上;②点P在y轴上;两种情况进行讨论.解答:解:(1)∵一次函数y=x+b的图象与x轴交于点C(﹣1,0),∴﹣1+b=0,解得b=1,∴一次函数的解析式为y=x+1,∵一次函数y=x+1的图象过点B(﹣2,n),∴n=﹣2+1=﹣1,∴B(﹣2,﹣1).∵反比例函数y=的图象过点B(﹣2,﹣1),∴k=﹣2×(﹣1)=2,∴反比例函数的解析式为y=;(2)由,解得,或,∵B(﹣2,﹣1),∴A(1,2).分两种情况:①如果点P在x轴上,设点P的坐标为(x,0),∵PA=OA,∴(x﹣1)2+22=12+22,解得x1=2,x2=0(不合题意舍去),∴点P的坐标为(2,0);②如果点P在y轴上,设点P的坐标为(0,y),∵PA=OA,∴12+(y﹣2)2=12+22,解得y1=4,y2=0(不合题意舍去),∴点P的坐标为(0,4);综上所述,所求点P的坐标为(2,0)或(0,4).点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.利用待定系数法正确求出反比例函数与一次函数的解析式是解题的关键.22.(8分)(2015•贵港)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为 54° ;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.考点:条形统计图;扇形统计图;加权平均数;方差.分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;(4)根据方差的意义即可做出评价.解答:解:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,=85;(4)∵S甲2<S乙2,∴甲班20同名同学的成绩比较整齐.点评:本题主要考查的是统计图和统计表的应用,属于基础题目,解答本题需要同学们,数量掌握方差的意义、加权平均数的计算公式以及频数、百分比、数据总数之间的关系.23.(8分)(2015•贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?考点:分式方程的应用.分析:今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.解答:解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.点评:本题主要考查的是分式方程的应用,表示出一月份和二月份的生产效率是解题的关键.24.(8分)(2015•贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.考点:切线的性质;菱形的判定;弧长的计算.专题:计算题.分析:(1)连接OB,由E为OD中点,得到OE等于OA的一半,在直角三角形AOE中,得出∠OAB=30°,进而求出∠AOE与∠AOB的度数,设OA=x,利用勾股定理求出x的值,确定出圆的半径,利用弧长公式即可求出的长;(2)由第一问得到∠BAM=∠BMA,利用等角对等边得到AB=MB,利用SAS得到三角形OCM与三角形OBM全等,利用全等三角形对应边相等得到CM=BM,等量代换得到CM=AB,再利用全等三角形对应角相等及等量代换得到一对内错角相等,进而确定出CM与AB平行,利用一组对边平行且相等的四边形为平行四边形得到ABMC为平行四边形,最后由邻边相等的平行四边形为菱形即可得证.解答:(1)解:∵OA=OB,E为AB的中点,∴∠AOE=∠BOE,OE⊥AB,∵OE⊥AB,E为OD中点,∴OE=OD=OA,∴在Rt△AOE中,∠OAB=30°,∠AOE=60°,∠AOB=120°,设OA=x,则OE=x,AE=x,∵AB=4,∴AB=2AE=x=4,解得:x=4,则的长l==;(2)证明:由(1)得∠OAB=∠OBA=30°,∠BOM=∠COM=60°,∠AMB=30°,∴∠BAM=∠BMA=30°,∴AB=BM,∵BM为圆O的切线,∴OB⊥BM,在△COM和△BOM中,,∴△COM≌△BOM(SAS),∴CM=BM,∠CMO=∠BMO=30°,∴CM=AB,∠CMO=∠MAB,∴CM∥AB,∴四边形ABMC为菱形.点评:此题考查了切线的性质,菱形的判断,全等三角形的判定与性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.25.(10分)(2015•贵港)如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.考点:二次函数综合题.分析:(1)将已知点的坐标代入已知的抛物线的解析式,利用待定系数法确定抛物线的解析式即可;(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PE=OA,从而得到方程求得x的值即可求得点P的坐标;②用分割法将四边形的面积S四边形BCPA=S△OBC+S△OAC,得到二次函数,求得最值即可.解答:解:(1)∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1,∴,解得:.∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4);(2)令y=﹣x2﹣2x+3=0,解得x=﹣3或x=1,。
广西贵港市2015届初中数学毕业班第三次教学质量监测(三模)试题(扫描版)
广西贵港市2015届初中数学毕业班第三次教学质量监测(三模)试题2015届初中毕业班第三次教学质量监测数学参考答案与评分标准一、选择题:(本大题共12小题,每小题3分,共36分)1、C2、C3、C4、D5、D6、B7、A8、A9、B 10、B 11、D 12、C二、填空题:(本大题共6小题,每小题3分,共18分)13、< 14、)2)(2(b a b a a -+ 15、3- 16、3或6 17、2- 18、①②④三、解答题:(本大题共8小题,满分66分)19、(本题满分10分)解:(1)原式=3133331-+⨯++ ............................................................4分 =5 (5)分 (2)原式=xx x x x x x 12)1()1)(1(2++÷--+ ……………………………………………………2分 2)1(1+•+=x x x x ………………………………………………………………3分11+=x ………………………………………………………………………4分 当12-=x 时,原式=2221= ……………………………………………5分 20、(本题满分5分)解:如图所示:(作出角平分线2分,作出⊙O 3分)…5分21、(本题满分8分) 解:(1)将点A (2,3)代入解析式xk y =,得:k=6 ......1分 (2)将D (3,m )代入反比例解析式x y 6=,得:m=36=2, ∴点D 坐标为(3,2), (2)分设直线AD 解析式为y=nx+b , 将A (2,3)与D (3,2)代入得:⎩⎨⎧=+=+2332b n b n , ……………………………………3分解得:n=﹣1,b=5,∴直线AD 解析式为y=﹣x+5; ………………………………4分(3)过点C 作CN ⊥y 轴,垂足为N ,延长BA ,交y 轴于点M ,∵AB ∥x 轴,∴BM ⊥y 轴,∴MB ∥CN ,∴△OCN ∽△OBM ,……………………………………………………………5分 OD C A∵C 为OB 的中点,即21=OB OC …………6分∴2)21(=∆∆OBM OCN S S , ∵A ,C 都在双曲线xy 6=上, ∴3==∆∆AOM CON S S ,…………………7分由4133=+∆AOB S ,得到9=∆AOB S ,∴△AOB 面积为9………………………………8分 22、(本题满分5分)解:(1)小强; ……………………………………………………………………2分(2)公平,如下表所示 ……………………………………………………………3分…………………………………………………4分由表中数据可知,组成两位数共12个,其中奇数、偶数各6个,两人胜负的概率都是21, 所以这个游戏对小明和小强公平 ………………………………………………………5分23、(本题满分8分)解:(1)∵AB=x ,则BC=28﹣x ,∴x (28﹣x )=192,………………………………………………………………………2分 解得:x 1=12,x 2=16 ………………………………………………………………………3分 答:x 的值为12米或16米; ……………………………………………………………4分(2)由题意可得出:196)14(28)28(22+--=+-=-=x x x x x S ,…………………6分由在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,得 ⎩⎨⎧≥-≥15286x x 解得136≤≤x …………………………………………………………7分由二次函数的性质得,当x=13时,S 取到最大值为:195196)1413(2=+--=S , 答:花园面积S 的最大值为195平方米…………………………………………………8分24、(本题满分10分) 43342423423241312114131234214321两位数小明小强证明:(1)连接OA 、OB ,OA 交BC 于点D ……………………………………………1分 ∵BE 是⊙O 的切线∴∠OBE=90°即∠EBC+∠1=90°……………………2分∵ ∠EBC=2∠C , ∠AOB=2∠C ∴∠EBC=∠AOB ………………………………………3分∴∠AOB+∠1=90°∴∠ODB=90°即OA ⊥BC ∴AB=AC …………………………………………4分 ∴AB=AC ……………………………………………5分(2)由OA ⊥BC,∴BD=CD=BC 2145=BC AB Θ 25=∴BD AB21=∆BD AD ABD Rt 中,有则在 …………………7分∵ AB=AC ∴∠C=∠2∵∠EBC=2∠C=2∠2,∠EBC=∠ABE+∠2……………………………………………………8分∴∠ABE=∠2=∠C ………………………………………………………………………9分∴tan ∠ABE=tan ∠2=21=BD AD……………………………………………………………10分25、(本题满分11分)解:(1)∵抛物线y=-x 2+bx+c 与x 轴交于A (-1,0) , B(5,0)两点,∴⎩⎨⎧++-=+---=cb b 550c )1(022 ∴⎩⎨⎧==54c b ∴抛物线的解析式为y=-x 2+4x+5. …………………………………………………3分(2)点P 横坐标为m ,则)54,(2++-m m m P ,)343,(+-m m E ,F(m,0), ∵点P 在x 轴上方,要使PE=5EF,点P 应在y 轴右侧,∴ 0<m <5.PE=)343(542+--++-m m m =24192++-m m …………………………………4分 分两种情况讨论:①当点E 在点F 上方时,EF 343+-=m . ∵PE=5EF ,∴24192++-m m =)343(5+-m …………………………………………5分 即0261722=+-m m ,解得)(213,221舍去==m m ………………………………6分 ②当点E 在点F 下方时,EF 343-=m . ∵PE=5EF ,∴24192++-m m =)343(5-m ,……………………………………………7分 即0172=--m m ,21D E A OB C ……………………………………………………2分解得)(2691,269143舍去-=+=m m , ∴m 的值为2或2691+……………………………………………………………………8分(3)存在,9(2,)5Q ………………………………………………………………………11分26、(本题满分9分)(1)证明:∵△ABD 和△ACE 都是等边三角形,∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD 和△EAB 中,,∴△CAD≌△EAB(SAS )……………………………………………………………2分 ∴BE=CD; ………………………………………………………………………3分(2)BE=CD , ………………………………………………………………………5分(3)由(1)(2)的解题经验可知,过A 作等腰Rt ⊿ABD, ∠BAD=90°,………………6分则AD=AB=100米,∠ABD=45°,∴BD=100米, ………………………………………………………………………7分 连接CD ,则由(2)可得BE=CD ,Θ∠ABC=45°,∴∠DBC=90°,在R t△DBC 中,BC=100米,BD=100米, 根据勾股定理得:3100)2100(10022=+=CD 米,…………………………8分则BE=CD=100米.……………………………………………………………………9分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年广西贵港市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题四个选项,其中只有一个是正确的)1.(3分)3的倒数是()A.3 B.﹣3 C.D.﹣2.(3分)计算×的结果是()A.B.C.3D.53.(3分)如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是()A.B.C.D.4.(3分)下列因式分解错误的是()A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2D.﹣x2﹣x+2=﹣(x﹣1)(x+2)5.(3分)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.27.(3分)下列命题中,属于真命题的是()A.三点确定一个圆B.圆内接四边形对角互余C.若a2=b2,则a=b D.若=,则a=b8.(3分)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.B.C.D.9.(3分)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°10.(3分)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.311.(3分)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x 轴交于点B(2,0),若0<y1<y2,则x的取值范围是()A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>3 12.(3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF,其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若在实数范围内有意义,则x的取值范围是.14.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为.15.(3分)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频数是0.2,则第六组的频数是.16.(3分)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为.17.(3分)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.18.(3分)如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2015=.三、解答题(本大题共8小题,满分66分,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°;(2)解不等式组,并在数轴上表示不等式组的解集.20.(5分)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.21.(7分)如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.(1)求一次函数和反比例函数的解析式;(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.22.(8分)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:( 1 ) 今年第一季度生产总量是多少台机器?( 2 ) m的值是多少?24.(8分)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.25.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.10.(3分)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B. 1 C.2 D. 3解答:解:取OP的中点N,连结MN,OQ,如图,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,在△OMN中,1<OM<3,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.11.(3分)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x 轴交于点B(2,0),若0<y1<y2,则x的取值范围是()A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>3解:∵二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),∴由图象得:若0<y1<y2,则x的取值范围是:2<x<3.12.(3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF,其中正确的结论A.5个B.4个C.3个D.2个分析:①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④而CD与AD的大小不知道,于是tan∠CAD的值无法判断,故④错误;⑤根据△AEF∽△CBF得到,求出S△AEF=S△ABF,S△ABF=S矩形ABCD S四边形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,即可得到S四边形CDEF=S△ABF,故⑤正确.16.(3分)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为30°.解答:解:∵四边形ABCD是正方形,∴∠BCD=∠ADC=90°,AD=BC=DC,∵△CDE是等边三角形,∴∠EDC=∠ECD=∠DEC=60°,DE=DC=CE,∴∠ADE=∠BCE=90°+60°=150°,AD=DE=BC=CE,∴∠DEA=∠CEB=(180°﹣150°)=15°,∴∠AEB=60°﹣15°﹣15°=30°;17.(3分)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为15π.解答:解:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.18.(3分)如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2015=2.解答:解:∵a1=﹣1,∴B1的坐标是(﹣1,1),∴A2的坐标是(2,1),即a2=2,∵a2=2,∴B2的坐标是(2,﹣),∴A3的坐标是(,﹣),即a3=,∵a3=,∴B3的坐标是(,﹣2),∴A4的坐标是(﹣1,﹣2),即a4=﹣1,∵a4=﹣1,∴B4的坐标是(﹣1,1),∴A5的坐标是(2,1),即a5=2,…,∴a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、、2,∵2015÷3=671…2,∴a2015是第672个循环的第2个数,20.(5分)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).21.(7分)如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.(1)求一次函数和反比例函数的解析式;(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.解答:解:(1)∵一次函数y=x+b的图象与x轴交于点C(﹣1,0),∴﹣1+b=0,解得b=1,∴一次函数的解析式为y=x+1,∵一次函数y=x+1的图象过点B(﹣2,n),∴n=﹣2+1=﹣1,∴B(﹣2,﹣1).∵反比例函数y=的图象过点B(﹣2,﹣1),∴k=﹣2×(﹣1)=2,∴反比例函数的解析式为y=;(2)由,解得,或,∵B(﹣2,﹣1),∴A(1,2).分两种情况:①如果点P在x轴上,设点P的坐标为(x,0),∵PA=OA,∴(x﹣1)2+22=12+22,解得x1=2,x2=0(不合题意舍去),∴点P的坐标为(2,0);②如果点P在y轴上,设点P的坐标为(0,y),∵PA=OA,∴12+(y﹣2)2=12+22,解得y1=4,y2=0(不合题意舍去),∴点P的坐标为(0,4);综上所述,所求点P的坐标为(2,0)或(0,4).23.(8分)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?分析:今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.解答:解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.24.(8分)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.解答:(1)解:∵OA=OB,E为AB的中点,∴∠AOE=∠BOE,OE⊥AB,∵OE⊥AB,E为OD中点,∴OE=OD=OA,∴在Rt△AOE中,∠OAB=30°,∠AOE=60°,∠AOB=120°,设OA=x,则OE=x,AE=x,∵AB=4,∴AB=2AE=x=4,解得:x=4,则的长l==;(2)证明:由(1)得∠OAB=∠OBA=30°,∠BOM=∠COM=60°,∠AMB=30°,∴∠BAM=∠BMA=30°,∴AB=BM,∵BM为圆O的切线,∴OB⊥BM,在△COM和△BOM中,,∴△COM≌△BOM(SAS),∴CM=BM,∠CMO=∠BMO=30°,∴CM=AB,∠CMO=∠MAB,∴CM∥AB,∴四边形ABMC为菱形.25.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.解答:解:(1)∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1,∴,解得:.∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4);(2)令y=﹣x2﹣2x+3=0,解得x=﹣3或x=1,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在y=﹣x2﹣2x+3上,∴设点P(x,﹣x2﹣2x+3)①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD即y=﹣x2﹣2x+3=2,解得x=﹣1(舍去)或x=﹣﹣1,∴点P(﹣﹣1,2);②∵S四边形BCPA=S△OBC+S△OAC=2+S△APC∵S△AOC=,S△OCP=x,S△OAP=•3•|y P|=﹣x2﹣3x+∴S△APC=S△OAP+S△OCP﹣S△AOC=x+(﹣x2﹣3x+)﹣=﹣x2﹣x=﹣(x﹣)2+,∴当x=﹣时,S△ACP最大值=,此时M(﹣,﹣),S四边形PABC最大=.。