第一章有理数17
第一章 有理数
第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2)有理数的分类: ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 .有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a³10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
第一章有理数全章教案
第一章有理数全章教案有理数教学目标〔知识与技能〕1、了解正数、负数的实际意义,会判断一个数是正数还是负数。
2、掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
3、理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.4、会利用数轴和绝对值比较有理数的大小。
5、理解乘方的意义,会进行乘方的计算。
掌握有理数加减、乘除、乘方的混合运算。
6、通过实例进一步感受大数,并能用科学记数法表示;了解近似数和有效数字的概念。
〔过程与方法〕1、经历探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等思想方法.2、培养学生应用数学知识的意识,提高学生运用知识解决实际问题的能力。
〔情感、态度与价值观〕1、通过教学活动,激励学生学习数学的兴趣;使学生感受数学知识与现实世界的联系。
2、给学生渗透辩证唯物主义思想。
重点难点有理数的运算是重点;准确理解负数、绝对值的意义和运算符号的确定是难点。
课时分配1.1正数和负数2课时1.2有理数5课时1.3有理数的加减法3课时1.4有理数的乘除法5课时1.5有理数的乘方4课时本章小结2课时人教版数学第一章有理数全章教案1.1.1 正数和负数的概念〔教学目标〕1、了解负数产生是生活、生产的需要;2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;3、理解具有相反意义的量的含义。
〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点;正确理解负数、数0表示的量的意义是难点。
〔教学过程〕一、负数的引入我们知道,数产生于人们实际生产和生活的需要。
[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3 ;为了表示“没有”、“空位”引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
[投影4](1)北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?(2)有三个队参加的足球比赛中,红队胜黄队(4U1),黄队胜蓝队(1U0),蓝队胜红队(1U0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?(3)2022年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?上面三个问题中,哪些数的形式与以前学习的数有区别?数-3、-2、-2.7%与以前学习的数有区别。
人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3
第一章《有理数》
第一章有理数一、有理数的有关概念1、正数和负数大于0的数是正数(为了强调正数,前面加上“+”号,也可以省略不写。
),在正数前面加上“-”的数叫做负数(负数前面的“-”号不能省略)。
0既不是正数也不是负数,0是正数与负数的分界。
注意:对于正数与负数,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数。
例如-a不一定是负数,因为字母a代表任何一个有理数,当a是0时,-a是0,当a是负数时,-a是正数。
在同一个问题中,分别用正数和负数表示的量具有相反的意义。
习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
【例1】(1)下降5.5 m记作+5.5 m,则上升10米记作_____m.(2)在食品的包装袋上,标明食品的净质量是80±5 g,这个“80±5”表示的最少是______________.(3)若将50计为0,则可以将49计为__________,+2为__________.【例2】如果向东为正,那么 -50m表示的意义是………………………()A.向东行进50m B.向南行进50m C.向北行进50m D.向西行进50m2、有理数的分类正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
注意:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。
如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a≥0表明a是非负数;a≤0表明a是非正数。
【例3】把下列各数填入相应的大括号内:-13.5,2,0,0.128,-2.236,3.14,+27,-45,-15%,-112,227,2613.正数集合{ …},负数集合{ …},整数集合{ …},分数集合{ …},非负整数集合{ …}3、数轴1、数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
初一上期数学第一章 有理数 知识归纳
第一章有理数1.1正数和负数1.正负数正数:大于0的数叫做正数.负数:小于0的数叫做负数.0:非正非负【注】①符号:一个数前面的“+”“-”号叫做它的符号.②正数前面的“+”号可以省略,负数前面的“-”号不可以省略.2.相反意义的量用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.【注】“相反意义的量”包括两个方面的含义:一是相反意义;二是要有量.3.“O”的特征(1)0既不是正数,也不是负数,是正数与负数的分界;(2)0是自然数;(3)0的意义:①有时表示没有,如文具盒中有0支铅笔,表示没有铅笔;②有时是一个数,如0度是一个确定的温度;③有时也作为基准,如零上3度.1.2有理数知识点一有理数1、有理数的定义:整数和分数统称为有理数(小数可以化为分数,所以看为为分数)2、有理数的分类:1):按定义⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫数有限小数或无限循环小负分数正分数分数负整数自然数正整数整数有理数0 2):按正负分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数04、四非正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数(自然数);负整数和零统称为非正整数;【技巧】读的时候,在非正、非负后面加一个“的”知识点二 数轴1、数轴的定义:用一条直线上的点表示数,这条直线叫做数轴。
2、数轴三要素原点、正方向、单位长度称为数轴的三要素,三者缺一不可.【注】单位长度:指所取度量单位的名称,是一条人为规定的代表"1"的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,不能再改变.3、数轴画法首先:画一条水平的直线;其次:在直线上选取一点为原点;再次:确定向右为正方向,用箭头表示出来;最后:根据实际情况,选取适当的长度作为单位长度.4、与有理数的关系(1)有理数和无理数都可以用数轴上的点表示出来.(2)正有理数表示的点位于原点的右边,负有理数表示的点位于原点的左边5、利用数轴比较大小数轴可以用来比较大小,左<右﹔负数<0<正数.知识点三相反数1、定义只有符号不同的两个数叫做互为相反数.【注】①一般地,a和a-互为相反数,a表示任意一个数,可以是正数、负数,也可以是0.②0的相反数是0③“只有符号不同”应与“只要符号不同”区分开﹒④相反数必须成对出现,不能单独存在.2、几何意义一对相反数表示的点在数轴上应分别位于原点两侧;到原点的距离相等;这两点是关于原点对称的.3、求法求任意一个数的相反数,只要在这个数的前面添上“—”号即可.4、相反数的性质(1)若a与b互为相反数,则0=a,则a与b互为相反数.+b=+ba;反之,若0(2)任何一个数都有相反数,而且只有一个.正数的相反数是负数;负数的相反数是正数; 0的相反数仍是0.五、多重符号化简一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“―”号,也可以把“―”号全部去掉;一个正数前面有奇数个"―"号,则化简后只保留一个"―"号,即“奇负偶正”(其中“奇偶”是指正数前面的“―"号的个数的奇偶数,“负正"是指化简的最后结果的符号).知识点四 绝对值1、绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a (a 可以是正数、负数和0)2、绝对值性质:()()()⎪⎩⎪⎨⎧<-=>=0000a a a a a a3、绝对值具有非负性(1)若有几个非负数的和为0,则这几个非负数均为0。
人教版数学七年级上册(新) 单元复习课件:第一章《有理数》(共15张PPT)
2 7 5
㈠正数与负数 1、正数与负数的概念: ①正数:大于0的数。 ②负数:小于0的数。带“-”号的数并不都是负数 ③0既不是正数,也不是负数。 2、正数与负数的意义:在实际中表示意义相反的量。
知识要点
(1)相反意义的量包含两个要素:一是它们的意义要相反;二 是它们都具有数量。如前进8m与前进5m,上升与下降不是相反 意义的量;因为前者意义相同,后者缺少数量。 (2)与一个量成相反意义的量不止一个,如与上升2m成相反意 义的量就很多,如:下降1m,下降0.2m,…… (3)在同一问题中,用正、负数表示具有相反意义的量。对于 两个具有相反意义的量,把哪一种意义规定为正,带有任意性, 不过习惯上把向东、上升、盈利、运进、增加、收入等规定为正, 把它们的相反量规定为负的。
负数的绝对值是它的相反数; 0的绝对值是0. ③互为相反数的两个数的绝对值相等。 即︱a︱=︱-a︱且︱a-b︱=︱b-a︱ ④利用绝对值比较大小:两个负数,绝对值大的反而小。其步骤 如下:第一步分别求出两个负数的绝对值,第二步比较这两个绝 对值的大小,第三步根据性质比较。
6、倒数: 1 ①乘积是1的两个数叫作互为倒数。a的倒数是 a (a≠0),0没 有倒数。 ②如果a与b互为倒数,那么ab=1. 例:求下列各数的倒数:2,-2.5,-5 7、实数比大小: ①利用数轴:数轴上两个点表示的数,右边的总比左边的大; 正数大于0,负数小于0,正数大于负数。 ②利用绝对值比较负数大小:两个负数大小,绝对值大的反而小.
-4 2 -2 -4 -3 –2 –1 0 1 2
4 3 4
5、绝对值: ①数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 叫做a的绝对值。 a的绝对值就是数a所表示点到原点的距离。表示成︱a︱。 (︱a︱≥0,一个数的绝对值是非负数) a a
第一章 有理数
第一章有理数第一章有理数【课标要求】考点知识点知识与技能目标了解理解掌握灵活应用有理数有理数及有理数的意义∨相反数和绝对值∨有理数的运算∨解释大数∨【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数【能力训练】一、选择题。
1.下列说法正确的个数是()①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A1B2C3D42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列()A-b<-a<a<bB-a<-b<a<bC-b<a<-a<bD-b<b<-a <a3.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A①②B①③C①②③D①②③④4.下列运算正确的是()AB-7-2×5=-9×5=-45C3÷D-(-3)2=-95.若a+b<0,ab<0,则()Aa>0,b>0Ba<0,b<0Ca,b两数一正一负,且正数的绝对值大于负数的绝对值Da,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A0.8kgB0.6kgC0.5kgD0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A()5mB[1-()5]mC()5mD[1-()5]m8.若ab≠0,则的取值不可能是()A0B1C2D-2二、填空题。
9.比大而比小的所有整数的和为。
10.若那么2a一定是。
11.若0<a<1,则a,a2,的大小关系是。
人教版数学七年级上册 第一章 有理数 1.1正数、负数以及0的意义 第二课时课件(共17张PPT)
探究新知
下面图中的正探究新知
2.在地形图上表示某地的高度时,需要以海 平面为基准(规定海平面的海拔高度为0 m). 通常用正数表示高于海平面的某地的海拔高 度,用负数表示低于海平面的的某地的海拔 高度,珠穆朗玛峰的海拔高度为8 844.43 m, 它表示什么含义?吐鲁番盆地的海拔高度为 -155 m,它表示什么含义?
课堂小结
谈谈你对正、负数及0的认识. 1.正、负数表示具有相反意义的量, 一是它们的意义相反,
二是它们都是数量,且是同类量.
2.0的意义已不仅表示“没有”, 在实际问题中它有着特有的意义.
布置作业
习题1.1第1、2、3、7题.
探究新知
(1)那么当温度是零摄氏度时,我们应该怎样表
示呢? 表示为0℃.
(2)温度是零摄氏度表示没有温度,对吗? 不对,它是一个确定的温度.
(3)它是正数还是负数呢? 由于零摄氏度既不是零上温度也不是零下
温度,所以0既不是正数也不是负数,它是正数与
负数的分界,它的意义已不仅是表示“没有”.
探究新知
探究新知
问题1:既然0是一种既不是正数又不是负数的 数,那么它的意义仅表示没有吗?
例如:在温度的表示中,零上温度和零 下温度是两种不同意义的量,通常规定零上 温度用正数来表示,零下温度用负数来表示, 那么某一天某地的最高温度是零上7℃,最低 温度为零下5℃时,就应该表示为+7℃和-5℃, 这里+7℃和-5℃就分别称为正数和负数.
4 3
,0,-3.14,120,-1.732,
第一章 有理数
第一章 有理数一、有理数的基础知识1、三个重要的定义(1)正数: ;(2)负数: ;(3)0即不是 也不是 ,0是 和 的分界.2、有理数的概念及分类(1) 和 统称为有理数.(2)有理数的分类如下:按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 3、数轴(1)标有 、 和 的直线叫做数轴.(2)在数轴上所表示的数, 的数总比 的数大.(3)数轴上表示数a 的点与原点的距离是 个单位长度.(4)在数轴上求任意两点a 、b 的距离L,则有公式L= .4、相反数(1)如果两个数只有 不同,那么其中一个数就叫另一个数的相反数。
(2)0的相反数是 ,数a 的相反数是 .,b a -的相反数是 .(3)在数轴上位于原点的 ,并且与原点的距离 .(4)如果数a 和数b 互为相反数,则a +b = ;a b= (0ab ≠). 5、绝对值(1)数轴上表示数a 的点与原点的 叫做数a 的绝对值.(2)一个正数的绝对值是 ;0的绝对值是 ;一个负数的绝对值是 .可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a(3)两个负数比较大小,绝对值大的 .(4)任何一个数的绝对值都是 ,即a 0.二、有理数的运算1、有理数的加法(1)有理数的加法法则:同号两数相加, ,并把绝对值相加;绝对值不等的异号两数相加, ,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得 ;一个数同0相加, .(2)有理数加法的运算律:加法的交换律 : ;加法的结合律: .方法:用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
2、有理数的减法(1)有理数减法法则:减去一个数等于 这个数的 .(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
2023年沪科版数学七年级上册第一章有理数教案
2023年沪科版数学七年级上册第一章有理数教案一. 教材分析《2023年沪科版数学七年级上册第一章有理数》是学生在初入初中阶段遇到的第一章数学课程,对学生来说具有基础性和引导性的作用。
本章主要介绍了有理数的概念、分类、运算及其性质,为学生今后的数学学习奠定基础。
教材通过丰富的实例和生活中的问题,引导学生认识和理解有理数,并通过大量的练习,使学生熟练掌握有理数的运算和性质。
二. 学情分析学生在进入七年级之前,已经掌握了整数和小数的基本知识,但对有理数的概念、分类和性质了解不多。
因此,在教学过程中,需要关注学生的认知基础,通过实例和问题,激发学生的兴趣,引导学生主动探究有理数的知识。
三. 教学目标1.了解有理数的概念、分类和性质,理解有理数在数学中的地位和作用。
2.掌握有理数的运算方法,能熟练进行有理数的四则运算。
3.培养学生的逻辑思维能力、运算能力和解决问题的能力。
四. 教学重难点1.有理数的概念和分类2.有理数的性质3.有理数的运算方法五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决问题,探究有理数的知识。
2.运用实例教学,让学生在实际问题中感受和理解有理数的概念和性质。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
4.注重练习,让学生在实践中掌握有理数的运算方法。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备练习题,包括基础题、提高题和拓展题。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度、海拔等,引出有理数的概念。
让学生初步了解有理数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(15分钟)介绍有理数的概念、分类和性质。
通过PPT展示相关的内容,并用具体的例子进行解释,让学生理解和掌握有理数的基本知识。
3.操练(20分钟)让学生进行有理数的运算练习。
先让学生独立完成基础题,然后进行提高题和拓展题的练习。
教师在过程中给予指导和解答,确保学生掌握有理数的运算方法。
第一章 有理数
第一章有理数1正数、负数、有理数、相反数、科学记数法、近似数2数轴:用数轴来表示数3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小。
5有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;互为相反数的两数相加为零;一个数加上零,仍得这个数。
6有理数的减法(把减法转换为加法)减去一个数,等于加上这个数的相反数。
7有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零。
乘积是一的两个数互为倒数。
8有理数的除法(转换为乘法)除以一个不为零的数,等于乘这个数的倒数。
9有理数的乘方正数的任何次幂都是正数;零的任何次幂都是负数;负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。
第二章整式的加减1 整式:单项式和多项式的统称;2整式的加减(1)合并同类项(2)去括号第三章一元一次方程1 一元一次方程的认识2 等式的性质等式两边加上或减去同一个数或者式子,结果仍然相等;等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
3 解一元一次方程一般步骤:去分母、去括号、移项、合并同类项、系数化为一第四章图形认识初步1 几何图形:平面图和立体图2 点、线、面、体3 直线、射线、线段两点确定一条直线;两点之间,线段最短4 角角的度量度数角的比较和运算补角和余角:等角的补角和余角相等初一下册第五章相交线和平行线1 相交线:对顶角相等2 垂线经过一点有且只有一条直线和已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短(垂线段最短)3 平行线平行公理:经过直线外一点,有且只有一条直线与已知直线平行;若两直线都与第三条直线平行,那么这两条直线也相互平行;判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
第一章 有理数(单元解读课件)七年级数学上册(人教版)
(二)聚焦核心素养,整体建构知识体系;
◆其次要发挥“转化思想”的统领应用。有理数运算的基本方法将正数与负数 之间的运算转化为正数之间的运算;加法与乘法运算法则都是“先定符号,再 算绝对值”,当符号确定后,就转化为已学过的运算;减法与除法运算转化为 加法与乘法运算;乘方转化为乘法运算等.这种由未知转化为已知的思 想是数学学习中解决问题的基本思维方式.
建议课时 2课时 4课时 4课时 4课时 3课时
实践作业 2课时
教学建议
(一)对标课程标准,把握好教学要求; (二)聚焦核心素养,整体建构知识体系; (三)立足学生实际,站在未知者的角度看问题; (四)抓住核心内容,突出培养运算能力.
(一)对标课程标准,把握好教学要求;
◆首先,负数是从现实生活到数学的一个提炼过程,本质上是一个数学抽象的 过程因此负数的教学必须发挥学生生活经验的作用,让学生有机会通过自己的 举例、思考探究,借助这些经验体会负数的概念。现阶段,不要过分地追求有 理数概念的逻辑严谨性,只要学生知道有理数集包含哪几类数就可以。 ◆其 次,绝对值概念的学习也要有一个循序渐进的过程。本章安排绝对值概念,目 的是为有理数运算做准备,会求一个数的绝对值就达到了本章的要求。数轴上 两点之间距离的表示、绝对值不等式、绝对值中出现字母的情况暂时不要增加。
(三)立足学生实际,站在未知者的角度看问题;
◆教学的出发点不是“我怎么认为”而是“学生怎么认为”.站在已知者 (教师)的角度看待问题,思维的路线是直线的;站在未知者(学生)的角 度看待问题,思维的路线是曲线的.好老师就是要将自己变身为学生,变 身为差学生,从这个角度去寻找思维的真实路线.
(四)抓住核心内容,凸出培养运算能力.
◆“数与代数”中,运算是核心内容.引进一种新的数,就要研究相应的运算,定义 种运算,就要研究相应的运算律,这是代数的核心思想.怎样培养运算能力呢? ◆要深刻理解算理.算理是算法的理论依据,必须精耕细作.运算能力不仅是一种数 学操作能力,而是运算技能与逻辑思维的有机整合.学生要理解跟运算相关的基本概 念、法则、性质、公式产生的背景,经历它们形成的过程,在计算时明确“为什么 这样算”,体会计算过程的合理性. ◆要坚持准确运算优于运算速度的原则.初学运算时,“按部就班”执行程序非常重 要,教师要刻意回避速度的评价维度,在对程序没有达到内化时,切不可盲目求快.
人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
第一章有理数
第一章 有理数知识框架知识要点1.正数和负数正数:像3、1、+0.33等的数,叫做正数。
负数:像-1、-3.12、-2008等在正数前加上“ - ”(读作负)号的数,叫做负数。
0既不是正数,也不是负数。
生活中到处都存在具有相反意义的量,我们把某一意义的量规定为正,那么其相反意 义的量就是负。
2.有理数:整数和分数统称有理数。
()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数负数 <0 <正数3.数轴:规定了原点、正方向和单位长度的直线叫做数轴。
作用:(1)用数轴上的点表示数; (2)用数轴来比较两个数的大小;(3)用数轴表示相反数和绝对值的几何意义。
4.相反数:像2和2-,4和4-这样,只有符号不同的两个数叫作互为相反数。
一般来说,a 的相反 数是a -,0的相反数是0。
数轴上互为相反数的两个点关于原点对称。
当0>a 时,0<-a (正数的相反数是负数); 当0<a 时,0>-a (负数的相反数是正数); 当0=a 时,0=-a (0的相反数是0) 5.绝对值:几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a绝对值的性质:(1)0≥a (2)a a -= (3)a a ≥,a a -≥ (4)222a a a ==6.倒数:若a 与b 的乘积是1,则称a 与b 互为倒数;反之,若a 与b 互为倒数,则1=ab7.有理数运算:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 有理数乘法法则:(1) 两数相乘,同号为正,异号为负,并把绝对值相乘。
冀教版数学七年级上:第一章 有理数第一章 有理数
七年级数学·上新课标[冀教]第一章有理数1.理解有理数、相反数和绝对值的意义.2.理解乘方的意义,掌握有理数的简单运算.3.理解有理数的运算律,并能运用运算律进行简化计算.4.能用有理数的运算解决简单的问题.1.在现实情境中,经历引入负数的过程,理解有理数的意义,培养数感.2.经历从现实情境中抽象出数轴的过程,能用数轴上的点表示有理数,借助于数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道|a|的含义(这里的a表示有理数),能比较有理数的大小.3.经历有理数的加、减、乘、除运算法则的获得过程,理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算.注重使学生领会数学知识与现实生活的联系,培养学生认真听讲、积极思考、动手实践、自主探索、合作交流的良好学习习惯.本章从相反意义的量的表示引入负数,将数的范围扩充至有理数,借助数轴直观地表示有理数,进行有理数大小的比较,在有理数范围内讨论加、减、乘、除的运算法则和运算律,进行加、减、乘、除、乘方混合运算.在学习有理数分类、归纳有理数运算法则的过程中,初步理解分类讨论的思想;结合实例进行探究或验证等活动,理解有理数的减法可以转化为加法,有理数的除法可以转化为乘法,渗透转化思想.本章教材选取大量日常生活中的实例为背景材料,通过观察、试验、归纳、类比等方式理解有理数的有关概念,使学生认识到数的扩充来源于实际的生活需要.在知识的呈现上,本单元的主线是:背景知识——知识形成——揭示联系.创设问题情境,帮助学生理解运算律,有利于提高学生的运算能力.【重点】1.有理数的相关概念.2.有理数的混合运算.3.运用有理数的运算解决简单的实际问题.【难点】1.绝对值的概念.2.有理数的运算律.1.负数是一个比较抽象的概念,在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习机会.只有通过一定量的运算实践,才能真正体会并熟练掌握有理数运算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.绝对值概念的学习也要有一个循序渐进的过程.与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值的概念的目的是为有理数运算作准备,会求一个数的绝对值就达到了本章的要求.教科书中用字母表示一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的应用.1.1正数和负数能用正负数表示生活中具有相反意义的量,知道具有相反意义的两个量之间的关系.经历从现实生活中的实例引入负数的过程,体会数学与现实生活的密切联系.感受特殊与一般以及分类讨论的数学思想.【重点】1.用“正”和“负”表示生活中具有相反意义的量.2.理解有理数的定义和有理数的分类.【难点】1.认识现实生活中具有相反意义的量是普遍的.2.分类讨论思想的应用.第课时用“正”和“负”表示生活中具有相反意义的量.通过生活实例帮助学生感受具有相反意义的两个量之间的关系.体会生活实际需要与数的范围的扩大之间的关系.【重点】1.感受、理解生活中具有相反意义的量.2.用“正”和“负”表示生活中具有相反意义的量.【难点】用“正”和“负”表示生活中具有相反意义的量.【教师准备】多媒体课件.【学生准备】回忆引进小数、分数时的学习情境.导入一:如图所示,北京某一天的最高气温是零上8 ℃,用+8 ℃表示,最低气温是零下2 ℃,应该怎样表示呢?[设计意图]天气预报是我们日常生活中经常接触的信息,借助于天气预报中表示气温的方法表示相反意义的量,容易使学生体会到数的范围扩大(引入负数)是现实生活的需要,并感受到现实生活与数学的密切联系,体会数学的应用价值,激发学生学习数学的兴趣.导入二:为了表示物体的个数,产生了自然数0,1,2,3,…;在分配物品或测量时,有时结果不是自然数,要用分数(小数)来表示.这些数都是我们以前学习过的.这些数能够满足我们生活中的实际需要吗?[设计意图]提出具有质疑性的问题让学生直接进行思考,唤起学生的探索欲望和学习热情.观察下图中的两幅图片及其说明,思考以下问题:(1)向东和向西、购进和售出所表达的意义具有怎样的关系?(2)如果仅说3 km,1 km,100箱,90箱,能完整地表达它们的意义吗?[设计意图]通过观察思考,体会每个问题中的两个量都是同一类量,且意义是相反的.使学生认识到现实生活中具有相反意义的量是普遍存在的,引起学生对如何表示相反意义的量的思考.1.问题引导(1)同样是汽车行驶,向东和向西行驶的意义一样吗?(不一样,意义相反)(2)同样是饮料,购进和售出所表达的意义一样吗?(不一样,意义相反)(3)汽车向东行驶和向南行驶,意义和前面一样吗?(不一样,后者意义不相反)(4)如果仅说汽车行驶3 km,1 km,你能知道汽车的行驶方向吗?(不能)(5)如果仅说超市的100箱饮料,90箱饮料,你能知道超市的进货和销售情况吗?(不能)2.类比思考请你再举出一些具有相反意义的量的实例.3.问题总结向东和向西、购进和售出等都具有相反的意义.所以上面出现的每一对量中的两个量都是具有相反意义的量.在天气预报中,零上2 ℃,零上8 ℃,分别用+2 ℃,+8 ℃来表示,零下2 ℃,零下10 ℃和零下12 ℃分别用- 2 ℃, - 10 ℃和- 12 ℃来表示.[设计意图]观察天气预报图中表示气温的方法,感受“+”“- ”的意义,为引出负数的定义做准备.一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,并在表示这个量的前面放上“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在表示这个量的前面放上“- ”(读作“负”)来表示.[知识拓展](1)用“+”和“- ”表示的两个量,必须具有相反的意义,在数量上不一定是相等的.(2)具有相反意义的两个量中,可以任意规定一个量为“+”或“- ”.活动3例题讲解(教材做一做第1题)请你仿照天气预报中对气温的表示方法,完成下表:是否是具有相反意义的量.只有具有相反意义的量,才能用“+”或“- ”表示它们之间的关系.解:[的量的表示方法,进一步感受数学与生活的密切联系.(教材做一做第2题)用带“+”或“- ”的数表示下列具有相反意义的量:(1)如果将开进汽车站汽车28辆记作+28辆,那么从该汽车站开出汽车24辆,可记作辆.(2)如果把公司第一季度亏损2万元记作- 2万元,那么第二季度盈利2.5万元,可记作万元.(3)如果规定高于海平面为正,那么:珠穆朗玛峰高于海平面8844.43 m,可记作m;吐鲁番盆地最低点低于海平面154.31 m,可记作m.(4)如果规定收入为正,那么:小亮家今年收入34200元,可记作元;支出27450元,可记作元.〔解析〕两个具有相反意义的量,如果对其中一种量用“+”或“- ”表示进行了规定,那么在表示另一种量的时候,必须用与其相反的符号去表示.解:(1) - 24(2)+2.5(3)+8844.43- 154.31(4)+34200- 27450一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,并在表示这个量的前面放上“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在表示这个量的前面放上“- ”(读作“负”)来表示.1.下列不具有相反意义的量的是()A.前进5 m和后退5 mB.节约3 t和浪费10 tC.身高增加2 cm和体重减少2千克D.超过5 g和不足2 g解析:常见的具有相反意义的量有:零上与零下、前进与后退、海平面以上与海平面以下、收入与支出、向东与向西、升高与降低、买进与卖出、盈利与亏损等.身高增加2厘米和体重减少2千克不是互为相反意义的量.故选C.2.(2015·崇左中考)一个物体做左右方向的运动,如果规定向右运动4 m记作+4 m,那么向左运动4 m记作()A. - 4 mB.4 mC.8 mD. - 8 m解析:本题考查表示相反意义的量,解题的关键是理解具有相反意义的量.把一个物体向右运动4 m记作+4 m,那么这个物体向左运动4 m应记作- 4 m.故选A.3.在电视上看到的天气预报中,某天的气温为“- 5 ℃”,“- 5 ℃”表示的意思是.解析:零上和零下表示相反意义,零上记为正,零下记为负,所以“- 5 ℃”表示的意思是零下5 ℃.故填零下5 ℃.4.用“+”或“- ”表示下列具有相反意义的量.(1)电梯上升了100米和电梯下降了20米.(2)股市涨了80点和股市跌了30点.解:(1)+100米和- 20米.(2)+80点和- 30点.第1课时活动1观察与思考——感受相反意义的量活动2大家谈谈——表示相反意义的量活动3例题讲解一、教材作业【必做题】教材第4页练习第1,2题.【选做题】教材第4页习题第1题.二、课后作业【基础巩固】1.下列各组数中,不是具有相反意义的量的是()A.向东走5米和向西走2米B.收入10元和支出20元C.上升7米和下降3米D.长大1岁和减少2千克2.如果从银行支取5元记作- 5元,那么存入8元记作()A.+8元B. - 8元C. - 13元D.3元3.(2015·南通中考)如果水位升高6 m时水位变化记作+6 m,那么水位下降6 m时水位变化记作()A. - 3 mB.3 mC.6 mD. - 6 m4.球赛时,如果赢了2局记作+2,那么- 2表示.【能力提升】5.(2015·宜昌中考)陆地上最高处是珠穆朗玛峰的峰顶,高出海平面约8844 m,记为+8844 m;陆地上最低处是地处亚洲西部的死海,低于海平面约415 m,记为()A.+415 mB. - 415 mC.±415 mD. - 8844 m6.如果规定电梯上升为“+”,那么- 10米表示()A.电梯下降了10米B.电梯上升了10米C.电梯上升了0米D.电梯下降了0米7.(1)如果节约电20千瓦时记作+20千瓦时,那么浪费10千瓦时记作什么?(2)如果- 20.50元表示亏本20.5元,那么+100.57元表示什么?(3)如果+20%表示增加20%,那么- 6%表示什么?【拓展探究】8.王老师在数学课上提出“温度上升6 ℃,再上升- 2 ℃”的意义是.9.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑了1008 m记作- 1008 m,那么他折回来又继续跑了1010 m是什么意思?这时他停下来休息,此时他在A地的什么方向?小明共跑了多少米?【答案与解析】1.D(解析:具有相反意义的量必须是同类量.)2.A(解析:支取和存入是具有相反意义的量.)3.D(解析:升高和下降具有相反意义,既然升高记为正,那么下降就记为负.水位升高用正数表示,则水位下降用负数表示,下降6 m应记作- 6 m.)4.输了2局(解析:如果赢用“+”表示,那么与其具有相反意义的量,即输球用“- ”表示.)5.B(解析:常见的具有相反意义的量有:零上与零下、前进与后退、海平面以上与海平面以下、收入与支出、向东与向西、升高与降低、买进与卖出、盈利与亏损等.因为高出海平面8844 m 记为+8844 m,所以低于海平面415 m应记作- 415 m.故选B.)6.A(解析:“- ”表示与其具有相反意义的量,电梯上升为正,那么电梯下降为负,所以- 10米表示电梯下降了10米.故选A.)7.解:(1)浪费10千瓦时记作- 10千瓦时.(2)+100.57元表示盈利100.57元.(3) - 6%表示减少6%.8.温度先上升6 ℃,再下降2 ℃(解析:上升- 2 ℃表示下降2 ℃.)9.解:如果把向北跑了1008 m记作- 1008 m,那么他折回来又继续跑了1010 m表示小明又向南跑了1010 m.此时他在A地的南边,小明共跑了1008+1010=2018(米).答:他在A地的南边,小明共跑了2018米.本课时在帮助学生感受数学与生活密切联系的理念指导下,贯彻引导学生发现问题、思考问题的原则,较好地帮助学生理解了具有相反意义的量及其表示方法,为中学数学课程的学习开了一个好头,为下一课时的学习打下了基础.在例题讲解的过程中,发挥学生的主动性不够,老师的示范和讲解略多.课前帮助学生回忆为什么要引进小数和分数的概念,进而为数的范围扩大做好心理准备.在例题的处理过程中,老师可以放手交给学生独立去完成,最后老师总结指导.练习(教材第4页)1.解:(1)(2)(3)中的量是具有相反意义的.2.(1) - 300(2)+3- 2(3)+2000- 1500习题(教材第4页)1.解:答案不唯一.(1)气温是零下8 ℃.(2)向北走100 m.(3)转盘逆时针转3圈.(4)乙地低于海平面500 m.2.解:(1)上升15 m记作+15 m.(2) - 300元表示从银行取出300元.(3)低于标准质量2 g记作- 2 g.3.解:答案不唯一.如向前走20米和向后走10米,零上10 ℃和零下9 ℃.(1)汽车向东行驶3.5千米和向西行驶2.5千米.如果规定向东为正,向西为负,那么向东行驶3.5千米记作千米;向西行驶2.5千米记作千米.(2)收入500元或支出237元.如果规定收入为正,支出为负,那么收入500元记作元;支出237元记作元.(3)水位升高1.2米或下降0.7米.如果规定水位升高为正,下降为负,那么水位升高1.2米记作米;下降0.7米记作米.〔答案〕(1)+3.5- 2.5(2)+500- 237(3)+1.2- 0.7第课时理解有理数的定义和分类.借助于相反意义的量,引入有理数的概念.理解数学与生活的联系,强化数学的应用意识.【重点】有理数的定义.【难点】有理数的分类.【教师准备】多媒体课件.【学生准备】回忆具有相反意义的量的表示方法.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现了自然数,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数,那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,帮助学生理解数的发展源于生产和生活的实际需要.导入二:(1)如果飞机上升200 m记作+200 m,那么飞机下降300 m可记作m.(2)如果规定铅球的质量高于标准质量为正,低于标准质量为负,那么:甲铅球高于标准质量3 g,可记作g;乙铅球低于标准质量2 g,可记作g.(3)如果规定木材公司购进木材为正,售出木材为负,那么:该公司购进木材2000 m3,可记作m3;售出木材1500 m3,可记作m3.问题:我们用带“+”和“- ”的数统一地表示出具有相反意义的量,从而得到了- 3, - 800, - 50,- 24,- 2,- 154.31,- 27450等这样形式的数,它们都是在已学过的数(0除外)的前面添上“- ”得到的,这样的数是什么数?和我们之前学过的数的意义相同吗?[设计意图]通过设问提出与有理数相关的问题,进而为学习有理数打下基础.1.负数前面,我们用带“+”和“- ”的数统一地表示出具有相反意义的量,从而得到了- 3, - 800, - 50,- 24,- 2,- 154.31,- 27450等这样形式的数,它们都是在已学过的数(0除外)的前面添上“- ”得到的,这样的数叫做负数.问题思考:(1)负数能表示实际意义吗?请举例说明;(2)下面这些负数应该怎样进行分类?(负整数和负分数)- 1, - 2, - 3, - , - , - 8.[设计意图]深刻领会负数的意义,初步领会分类思想,为探讨有理数的分类做好准备.2.正数+1.8,+1200,+30,+28,+2.5,+8844.43,+34200等这样的数,都是在已学过的数(0除外)的前面添上“+”得到的,这样的数叫做正数.问题思考:(1)正数能表示实际意义吗?请举例说明;(2)下面这些正数应该怎样进行分类?(正整数和正分数)+1,2,3,,1,3.(3)正数中的“+”可以省略吗?(可以)(4)0是正数还是负数?(0既不是正数,也不是负数)3.有理数正整数、0和负整数统称为整数,正分数和负分数统称为分数,整数和分数统称为有理数.[知识拓展]对正数和负数的理解要注意以下几点:(1)并不一定要将某一种量规定为正,若将一种量规定为正,则与其意义相反的量即为负.(2)负数前面的“一”表示这个数的性质,是性质符号,读作“负”,不能省略,但正数前面的“+”可以省略.活动2有理数的分类根据有理数的意义,我们知道有理数可作如下分类:有理数你能进一步将整数和分数分类吗?有理数还有其他分类方法吗?把你的想法与同学交流.1.按照以上的定义,你能画出一张有理数的分类图吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)师生共同总结出:有理数2.如果按照正负来分,那么有理数还可以怎样进行分类呢?师生共同总结出:有理数有时我们习惯上将“正有理数和0”又称作非负有理数;将“负有理数和0”称作非正有理数;将“正整数和0”又称作非负整数,将“负整数和0”又称作非正整数,因此要注意0的特殊性,0是整数、自然数、有理数,但0既不是正数,也不是负数.[知识拓展]对有理数及其分类要注意以下几点:(1)整数包括三类,其中0是单独的一类,不要忽视.(2)分数包括两类,正分数和负分数,不包括0.(3)现在我们学过的数中,除了π或跟π有关的数,如,, - π等,其他的数都是有理数.(4)由有理数的两种分类方法可以发现有理数可被细分为正整数、正分数、0、负整数、负分数五类.(5)通常把正整数和0统称为非负整数,也叫自然数;负整数和0统称为非正整数;正有理数和0统称为非负有理数;负有理数和0统称为非正有理数.所以一定不要误认为一个数非正即负.[设计意图]学生的思维方式不同,研究问题的角度也不尽相同.在教学中通过对问题多角度的考虑,有利于培养学生的探索精神,使学生体验到重要的数学思想——分类思想.活动3例题讲解(教材第6页练习第3题)把下列各数分别填在相应的圈内:- 7,4.8,+15, - 3.5,,.〔解析〕正数的判断不能简单地依据是否带有“+”,负数的判定必须依据是否带有“- ”.解:正数:4.8,+15,,;负数: - 7, - 3.5.整数和分数统称为有理数.按照有理数的定义和正负这两种分类方法对有理数进行分类,同学们要掌握这两种分类方法,并能正确地对有理数进行分类.强调:对于每一个有理数,不但要看它的数字特点,还要看它的符号特点,例如- 200,从数字看200是整数,从符号看- 200是负数,所以它既属于整数,又属于负数,也属于有理数.1.(2015·贺州中考)下列各数是负数的是()A.0B.+C.2.5D. - 1解析:因为1是正数,所以在1前面加“- ”的数是负数,即- 1是负数.故选D.2.下列说法中错误的是()A.有理数是指整数、分数、正有理数、零、负有理数这五类B.一个有理数不是整数就是分数C.正有理数分为正整数和正分数D.负整数、负分数统称为负有理数解析:A把有理数的两种分类方法混合在一起来说,显然概念重复,故A是错误的;B,C,D都是正确地对有理数中的概念进行了分类.故选A.3.写出- 1和0之间的任意一个负数( - 1除外):.解析:这是一个开放性题目,答案不唯一,在- 1和0之间的负数有无数个,只要写出一个符合要求的即可.故可填- 0.3, - 等.4.把下列各数分别填入相应的括号内:+8,3.275, - ,, - 1.25, - 0..正数:{…};负数:{…}.解:正数:{+8,3.275,,…};负数:.第2课时活动1有理数的定义活动2有理数的分类活动3例题讲解一、教材作业【必做题】教材第6页做一做.【选做题】教材第6页练习第1题.二、课后作业【基础巩固】1.(2015·广州中考)四个数: - 3.14,0,1,2中为负数的是()A. - 3.14B.0C.1D.22.下列结论中正确的是()A.小学里学过的数都是正数B.小学里学过的数前面加上“- ”后都是负数C.0是自然数,也是偶数D.一个数不是正数就是负数3.下列各数中既是负数又是分数的是()A. - 9B.C. -D.04.下列说法中正确的个数是()①a是正数;② - 5是负数;③正数前面加上“- ”即为负数;④+3是正数.A.1B.2C.3D.4【能力提升】5.在0,1, - 2, - 3.5这四个数中,是负整数的是()A.0B.1C. - 2D. - 3.56.下列说法正确的是()A.0 ℃表示没有温度B.0既可看作正数又可看作负数C.0既不是正数也不是负数D.以上均不正确7.下列叙述正确的是()A.一个数不是正数就是负数B.小数可以用分数表示C.正数和分数统称有理数D.有理数中有最大的负整数和最小的正整数8.已知0.2, - 0., - ,π, - 3.14,0.101001…,其中有理数有个.【拓展探究】9.观察下列各数: - 1,, - ,, - ,…,这列数的第2015项是.10.写出5个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数都是有理数,这五个数是:(只写出一组即可).11.(1)把下列各数填在相应的大括号内:- 3,0, - 2,7,,, - , - 3.14,+8848.正整数集合:{…};负分数集合:{…};非负数集合:{…};自然数集合:{…}.(2)活动课上,贝贝对京京说字母a永远是一个正数,京京表示怀疑,你认为呢?12.有一位同学对老师说,因为像2,+2.37,…这样的正数是有理数,像- 1, - 3.1, - 6,…这样的负数也是有理数,同样0也是有理数,所以得出结论:有理数包括正数、0和负数.请问这位同学得出的结论是否正确?若不正确,请说明理由.【答案与解析】1.A(解析: - 3.14是负数,0既不是正数也不是负数,1和2都是正数.)2.C(解析:A错,因为0既不是正数也不是负数;B和A犯同样的错误;C正确;D也漏掉了0,不正确.故选C.)3.C(解析:先判断哪些数是负数,再判断哪个数是分数.)4.C(解析:a可能是正数,也可能是负数和0,所以①错误,②③④均正确.)5.C(解析:负数有- 2, - 3.5,而- 3.5是负分数, - 2是负整数.)6.C(解析:0 ℃表示一个确定的温度;0既不是正数也不是负数.)7.D(解析:0既不是正数也不是负数;无限不循环小数不可以用分数表示;整数和分数统称为有理数;最大的负整数是- 1,最小的正整数是1, - 1和1是有理数.)8.4(解析:π不是有理数,同时无限不循环小数,即0.101001…也不是有理数.)9. - (解析: - 1可以看作- ,这样一来,这列数的分子都是1,分母是从1开始的连续自然数,分母上自然数与该数的项数相同,其中奇数项的符号都是“- ”号,偶数项的符号都是“+”号,所以第2015项是- .)10.- 1,- 2,0,3,5(解析:有三个非正数,三个非负数,且放到一起只有五个数,可确定五个数中一定有一个数既是非正数,也是非负数,故这个数是0.另外两个非正数可以任意写两个负数,如: - 1, - 2,而另外两个非负数可以任意写两个正数,如:3,5.故这五个数可以为- 1, - 2,0,3,5.)11.解:(1)正整数集合:{7,+8848,…};负分数集合:;非负数集合:{0,7,,,+8848,…};自然数集合:{0,7,+8848,…}.(2)京京的怀疑是正确的,字母a不一定是一个正数,当a>0时,a表示一个正数;当a=0时,a既不是正数也不是负数;当a<0时,a表示一个负数.12.解:不正确.理由如下:如π是正数,但π不是有理数,所以不能说有理数包括正数,0和负数,应改为有理数包括正有理数、0和负有理数.本课时在教学的过程中注意问题的引导和渗透,把概念的总结和数学的分类思想紧密结合起来.学生通过老师的引导提示,在思考的过程中理解了有理数的定义,体验了不同方法对有理数进行分类带来的乐趣.在学习有理数定义的过程中,忽略了对先前知识的复习,可能给部分学生学习有理数的定义带来困难.在进行有理数分类的时候,分两个层次和阶段进行,首先完成教材上的做一做的基本练习,然后在此基础上让学生尝试有理数的分类,并互相倾听分类的依据.练习(教材第6页)。
人教版数学七年级上册第一章有理数的混合运算课件(共17张)
解:原式=
1.计算:
解:原式= =-10-80 =-90
解:原式=
2.计算:
有理数的加减乘除混合运算三步走: 1.看清运算,定运算顺序; 2.根据特点,巧用运算律; 3.选对法则,耐心计算.
(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).
解:(1)原式=2×(-27)-(-12)+15 =-54+12+15 =-27
(2)原式=-8+(-3)×(16+2)-9÷(-2)
=-8+(-3)×18-(-4.5) =-8-54+4.5 =-57.5
计算:
(1)(1)10 2 (2)3 4
(3)取每行数的第10个数,计算这三个数的和. 解:(3)每行数中的第10个数的和是
视察下列各式:
1 21 1
1 2 22 1
1 2 22 23 1
猜想:1 2 22 23 263
若n是正整数,那么 1 2 22 2n
1.计算:
解:原式= -2×9-36 =-18-36 =-54
例2
计算:(3)2
2 3
(
5 9
)
点拨:在运算过程中,巧 用运算律,可简化计算
解法一:
解法二:
解:原式=
9 (
11 9
)
= -11
解:
原式=
9
(
2 3
)
9
(
5 9
)
=-6+(-5)
=-11
讨论交流:你认为哪 种方法更好呢?
例3 视察下面三行数: -2, 4, -8, 16, -32, 64,…;① 0, 6, -6, 18, -30, 66,…;② -1, 2, -4, 8, -16, 32,…. ③
七年级 第一章:有理数
乘法结合律:(ab)c=a(bc)
3)一个数和两个数的和相乘,等于把这个数分别和这两个数相乘再把积相加。
乘法分配律:a c)=ab+ac
2、除以一个不等于0的数等于乘以这个数的倒数。
除法法则:a b=a (b 0)
2-1、两个数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数都为0。
2-2、0不可以做除数。
3、有理数加减乘除混合运算顺序:先乘除,后加减,有括号的要最先算扩号里面的。
1.5有理数乘方
1、求n个相同因式积的运算( a 0)叫做乘方,乘方的结果叫做幂(power)。在 中,“a”叫做底数(base number),“n”叫做指数(exponent)。 的运算读作:a的n次方。 的结果读作:a的n次幂。(“a的n次幂”是a的n次方运算的结果)。
一个数和0相加仍的这个数。
1-1、加法运算律:1)有理数的加法中:两个数相加,交换两个数的位置,和不变。
加法交换律:a+b=
例: 32+23=
2)有理数的加法中:三个数相加,先把前两个数相加和先把后两个数相加,和不变。
加法结合律:(a+b)+c =
例:16+( 25)+24+( 15)=
2、有理数的减法法则:减去一个数等于加上这个数的相反数。
4、有效数字:1)精确数字—从这个数左边第一个非0数起到末尾数止。
2)近似数字—从这个数左边第一个非0数起到精确到的位数止。
第一章知识点回顾与思考:
1、为什么要引入负数?举出实例说明正数和负数在表示相反意义的量时的作用。
2、数的范围从正整数、0和正分数扩展到有理数后,增加了哪些数?
人教版初中七年级数学上册第一章《有理数》模拟测试题(含答案解析)(17)
一、选择题1.(0分)[ID:67645]某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定2.(0分)[ID:67641]下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个3.(0分)[ID:67623]计算4(8)(4)(1)+-÷---的结果是()A.2 B.3 C.7 D.4 34.(0分)[ID:67619]实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.(0分)[ID:67608]绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.106.(0分)[ID:67604]用计算器求243,第三个键应按()A.4 B.3 C.y x D.=7.(0分)[ID:67603]下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23| 8.(0分)[ID:67594]下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|9.(0分)[ID:67593]如果a,b,c为非零有理数且a + b + c = 0,那么a b c abc a b c abc +++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2 10.(0分)[ID:67584]下列四个式子,正确的是()①33.834⎛⎫->-+⎪⎝⎭;②3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+⎪⎝⎭.A.③④B.①C.①②D.②③11.(0分)[ID :67566]按键顺序是的算式是( )A .(0.8+3.2)÷45=B .0.8+3.2÷45=C .(0.8+3.2)÷45= D .0.8+3.2÷45= 12.(0分)[ID :67563]甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃13.(0分)[ID :67562]已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2± B .±1 C .2±或0 D .±1或0 14.(0分)[ID :67560]下列分数不能化成有限小数的是( )A .625B .324C .412 D .11615.(0分)[ID :67569]已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题16.(0分)[ID :67754]绝对值小于2的整数有_______个,它们是______________. 17.(0分)[ID :67741]已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________.18.(0分)[ID :67711]若有理数a ,b 满足()26150a b -+-=,则ab =__________. 19.(0分)[ID :67709]观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数20.(0分)[ID :67697](1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____. 21.(0分)[ID :67686]把35.89543精确到百分位所得到的近似数为________. 22.(0分)[ID :67682]计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.23.(0分)[ID :67680]有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____. 24.(0分)[ID :67672]计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________. 25.(0分)[ID :67721]已知2x =,3y =,且x y <,则34x y -的值为_______. 26.(0分)[ID :67707]根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.27.(0分)[ID :67706]某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题28.(0分)[ID :67956]计算:2334[28(2)]--⨯-÷- 29.(0分)[ID :67930]计算:()22131********⎛⎫-+--⨯--⎪⎝⎭. 30.(0分)[ID :67922]计算:(1)()()674-+--;(2)()3232--⨯.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.B 3.C4.B5.A6.C7.A8.D9.A10.D11.B12.B13.C14.C15.C二、填空题16.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(117.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±418.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=19.90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为1920.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a+2|+|b-21.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答22.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后23.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中24.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键25.-6或-18【分析】先依据绝对值的性质求得xy的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握26.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变27.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h > 故选B . 【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.2.B解析:B 【分析】根据有理数的减法运算法则对各小题分析判断即可得解. 【详解】①减去一个数等于加上这个数的相反数,故本小题正确; ②互为两个相反数的两数相加得零,故本小题正确; ③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个. 故选B . 【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.3.C解析:C 【分析】先计算除法、将减法转化为加法,再计算加法可得答案. 【详解】=++解:原式421=,7故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.4.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.5.A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.6.C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.7.A解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.8.D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.9.A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.10.D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.11.B解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=,故选:B.【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.12.B解析:B 【解析】 【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩解得35x ≤≤. 故选:B . 【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.13.C解析:C 【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果. 【详解】 ∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-; 当0a <,0b >时,原式110=-+=. 故选:C . 【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.14.C解析:C 【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数. 【详解】A、625的分母中只含有质因数5,所以625能化成有限小数;B、31248=,18的分母中只含有质因数2,所以324能化成有限小数;C、41123=,13的分母中含有质因数3,所以412不能化成有限小数;D、116的分母中只含有质因数2,所以116能化成有限小数.故选:C.【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.15.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b<a<0,∴a+b<a+(-b)=a-b.∵b>-1,∴a-1=a+(-1)<a+b.又∵-b<1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b<a-b<a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.二、填空题16.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.17.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.18.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a,b 的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.19.90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.20.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.21.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.22.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.23.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.24.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键【分析】将同分母的分数分别相加,再计算加法即可.【详解】 原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦. 故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.25.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 26.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案.27.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题28.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.29.13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键. 30.(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:1.5.2科学记数法
【学习目标】
1.知道科学记数法的意义;
2.学会利用科学记数法表示比10大的数;
3.通过对科学记数法的学习,感受数学符号的简洁美.
【活动方案】
活动一感受用科学记数法的意义
阅读课本P44~P45例5以上的部分,回答下列问题.
1.我们为什么要学习科学记数法?
2.在课本上画出科学记数法的定义,在关键字
...下做上记号,并判断下列是不是用科学记数法表示的数?
(1)3
0.12310
-⨯;(3)3
⨯.
12.310
⨯;(2)3
1.2310
思考:判断一个数是否用科学记数法表示的关键是什么?(小组交流)
活动二探究科学记数法与数之间的关系
阅读课本P45例5并完成本页观察和思考后,回答下列问题.
1.用科学记数法写出下列各数:
801000,-56000000,
思考:怎样确定结果中的a及10的指数?
2.下列用科学记数法写出来的数,原来分别是什么数?
7
110
⨯,6
3.9610
-⨯.
⨯,4
7.0410
8.510
⨯,5
思考:你可以怎样检验结果是正确的?
课堂小结:从知识、方法等方面小结本节课
【检测反馈】
一、判断:
1.负数不能用科学记数法来表示( );
2.在科学记数法a n ⨯10中,110<<a ( );
3.在科学记数法a n ⨯10中,n 是大于1的整数( );
4.100万用科学记数法可以写成1102⨯( );
5.156104.⨯是156万( ).
二、填空:
6.10000=10( );
100000=10( ) ;
00...10个n =10( ).
7.50600 5.06 5.0610=⨯=⨯( ).
8.6100000000中有___________位整数,6后面有___________位.
9.如果一个数记成科学记数法后,10的指数是31,那么这个数有___________位整数.
10.写出下列各数的原数:58.0110⨯=___________,76.4210-⨯=___________.
三、用科学记数法表示下面的数.
11.水星和太阳的平均距离约为57900000 km .
12.-38900000000000。