云南省曲靖市师宗县彩云中学中考数学一模试题(含解析)

合集下载

云南省曲靖市师宗县2020年中考数学一模试卷 解析版

云南省曲靖市师宗县2020年中考数学一模试卷  解析版

2020年云南省曲靖市师宗县中考数学一模试卷一、填空题(每小题3分,共6小题,18分)1.(3分)函数y=的自变量x的取值范围.2.(3分)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.3.(3分)在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是.4.(3分)用半径为12cm,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.5.(3分)如图,P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在上,若P A长为2,则△PEF的周长是.6.(3分)二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…∁n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n∁n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n∁n的周长为.二、选择题(每小题4分,共32分)7.(4分)下列生态环保标志中,是中心对称图形的是()A.B.C.D.8.(4分)从﹣5,,,﹣1,0,2,π这七个数中随机抽取一个数,恰好为无理数的概率为()A.B.C.D.9.(4分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=144°,则∠C的度数是()A.14°B.72°C.36°D.108°10.(4分)若α、β是一元二次方程x2+2x﹣6=0的两根,则的值是()A.B.C.﹣3D.311.(4分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10%B.15%C.20%D.25%12.(4分)已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能()A.B.C.D.13.(4分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤a﹣b+c<0.其中正确的个数是()A.2B.3C.4D.514.(4分)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.三、解答题(共70分)15.(6分)解方程(1)x2﹣6x=﹣7;(2)x(x﹣2)=6﹣3x.16.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).17.(7分)已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.18.(6分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE 交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.19.(7分)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.20.(9分)如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣2,1),B(1,n).(1)求反比例函数和一次函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当y1>y2时,自变量x的取值范围.21.(9分)大学毕业生小李自主创业,开了一家小商品超市.已知超市中某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价必须低于34元,设每件商品的售价上涨x元(x为非负整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)利用函数关系式求出每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)利用函数关系式求出每件商品的售价为多少元时,每个月的利润恰好是1920元?这时每件商品的利润率是多少?22.(8分)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.23.(12分)如图,直线y=﹣x+3与x轴、y轴分别交于点B,点C,经过B,C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P,点M为抛物线的对称轴上的一个动点.(1)求该抛物线的解析式;(2)当点M在x轴的上方时,求四边形COAM周长的最小值;(3)在平面直角坐标系内是否存在点N,使以C,P,M,N为顶点的四边形为菱形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.2020年云南省曲靖市师宗县中考数学一模试卷参考答案与试题解析一、填空题(每小题3分,共6小题,18分)1.(3分)函数y=的自变量x的取值范围x≥1且x≠3.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x﹣1≥0;根据分式有意义的条件,x﹣3≠0,则函数的自变量x取值范围就可以求出.【解答】解:根据题意得:解得x≥1且x≠3,即:自变量x取值范围是x≥1且x≠3.2.(3分)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.【分析】需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m不为0,即可求出m的值.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.3.(3分)在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是.【分析】画树状图展示所有6种等可能的结果数,找出让灯泡L1发光的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中能让灯泡L1发光的结果数为2,所以能让灯泡L1发光的概率==.故答案为.4.(3分)用半径为12cm,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为3cm.【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【解答】解:圆锥的底面周长是:=6π.设圆锥底面圆的半径是r,则2πr=6π.解得:r=3.故答案是:3.5.(3分)如图,P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在上,若P A长为2,则△PEF的周长是4.【分析】由切线长定理知,AE=CE,FB=CF,P A=PB=2,然后根据△PEF的周长公式即可求出其结果.【解答】解:∵P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在上,∴AE=CE,FB=CF,P A=PB=2,∴△PEF的周长=PE+EF+PF=P A+PB=4.故填空答案:4.6.(3分)二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…∁n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n∁n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n∁n的周长为4n.【分析】由于△A0B1A1,△A1B2A2,△A2B3A3,…,都是等边三角形,因此∠B1A0x=30°,可先设出△A0B1A1的边长,然后表示出B1的坐标,代入抛物线的解析式中即可求得△A0B1A1的边长,用同样的方法可求得△A0B1A1,△A1B2A2,△A2B3A3,…的边长,然后根据各边长的特点总结出此题的一般化规律,根据菱形的性质易求菱形A n﹣1B n A n∁n的周长.【解答】解:∵四边形A0B1A1C1是菱形,∠A0B1A1=60°,∴△A0B1A1是等边三角形.设△A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:()2=,解得m1=0(舍去),m1=1;故△A0B1A1的边长为1,同理可求得△A1B2A2的边长为2,…依此类推,等边△A n﹣1B n A n的边长为n,故菱形A n﹣1B n A n∁n的周长为4n.故答案是:4n.二、选择题(每小题4分,共32分)7.(4分)下列生态环保标志中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.8.(4分)从﹣5,,,﹣1,0,2,π这七个数中随机抽取一个数,恰好为无理数的概率为()A.B.C.D.【分析】从7个数中,找出无理数的个数,再根据概率公式即可得出答案.【解答】解:在﹣5,,,﹣1,0,2,π这七个数中,无理数有,π,共2个数,则恰好为无理数的概率为.故选:B.9.(4分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=144°,则∠C的度数是()A.14°B.72°C.36°D.108°【分析】先根据圆周角定理计算出∠A=72°,然后根据圆内接四边形的性质求∠C的度数.【解答】解:∵∠A=∠BOD=×144°=72°,而∠A+∠C=180°,∴∠C=180°﹣72°=108°.故选:D.10.(4分)若α、β是一元二次方程x2+2x﹣6=0的两根,则的值是()A.B.C.﹣3D.3【分析】根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再代入代数式=计算可得.【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,则===,故选:B.11.(4分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10%B.15%C.20%D.25%【分析】设平均每月的增长率为x,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【解答】解:设平均每月的增长率为x,根据题意得:200(1+x)2=288,(1+x)2=1.44,x1=0.2=20%,x2=﹣2.2(舍去),答:平均每月的增长率为20%.故选:C.12.(4分)已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能()A.B.C.D.【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a、b的符号确定一次函数图象所经过的象限.【解答】解:若反比例函数y=经过第一、三象限,则a>0.所以b<0.则一次函数y=ax﹣b的图象应该经过第一、二、三象限;若反比例函数y=经过第二、四象限,则a<0.所以b>0.则一次函数y=ax﹣b的图象应该经过第二、三、四象限.故选项A正确;故选:A.13.(4分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤a﹣b+c<0.其中正确的个数是()A.2B.3C.4D.5【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用抛物线与x轴交点个数可对②进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(﹣3,0),则可对③进行判断;根据二次函数的性质,通过比较两点到对称轴的距离可对④进行判断;利用当x=﹣1时,代入结合图象,则可对⑤进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(1,0),∴抛物线与x轴的另一个交点坐标为(﹣3,0),∴9a﹣3b+c=0,所以③正确;∵点(﹣0.5,y1)到直线x=﹣1的距离比点(﹣2,y2)到直线x=﹣1的距离小,而抛物线开口向上,∴y1<y2;所以④错误;∵当x=﹣1时,对应y值在x轴下方,∴a﹣b+c<0,所以⑤正确.故选:B.14.(4分)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH =CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4﹣x,根据三角形面积公式得到y=﹣x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【解答】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=﹣x2+2x,故选:B.三、解答题(共70分)15.(6分)解方程(1)x2﹣6x=﹣7;(2)x(x﹣2)=6﹣3x.【分析】(1)直接利用配方法解方程得出答案;(2)直接利用提取公因式法解方程进而得出答案.【解答】解:(1)x2﹣6x=﹣7,则x2﹣6x+9=﹣7+9,故(x﹣3)2=2x﹣3=±,解得:x1=3+,x2=3﹣;(2)x(x﹣2)=6﹣3xx(x﹣2)﹣3(2﹣x)=0,(x﹣2)(x+3)=0,则x﹣2=0或x+3=0,解得:x1=2,x2=﹣3.16.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).【分析】(1)根据题意画出△ABC关于y轴对称的△A1B1C1即可;(2)根据题意画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中扫过的面积为扇形BCC2的面积,求出即可.【解答】解:(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中所扫过得面积S==.17.(7分)已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.【分析】(1)先计算△,化简得到△=(2k﹣3)2,易得△≥0,然后根据△的意义即可得到结论;(2)利用求根公式计算出方程的两根x1=2k﹣1,x2=2,则可设b=2k﹣1,c=2,然后讨论:当a、b为腰;当b、c为腰,分别求出边长,但要满足三角形三边的关系,最后计算周长.【解答】(1)证明:△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a、b为腰,则a=b=4,即2k﹣1=4,解得k=,此时三角形的周长=4+4+2=10;当b、c为腰时,b=c=2,此时b+c=a,故此种情况不存在.综上所述,△ABC的周长为10.18.(6分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE 交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD ≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF 的度数.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°19.(7分)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【分析】(1)先根据题意画出树状图,再根据概率公式即可得出答案;(2)先分别求出小明和小东的概率,再进行比较即可得出答案.【解答】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∴P(小明获胜)==;(2)∵P(小明获胜)=,∴P(小东获胜)=1﹣=,∴这个游戏不公平.20.(9分)如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣2,1),B(1,n).(1)求反比例函数和一次函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当y1>y2时,自变量x的取值范围.【分析】(1)先把A点代入y2=中求出m得到反比例函数解析式,再利用反比例函数解析式确定B点坐标,然后利用待定系数法求一次函数解析式;(2)设直线AB与y轴交于点C,如图,则C点坐标为(0,﹣1),根据三角形面积公式,利用S△AOB=S△AOC+S△COB进行计算;(3)结合函数图象,写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可.【解答】解:(1)把A(﹣2,1)代入y2=得m=﹣2×1=﹣2,∴反比例函数解析式为y2=﹣,把B(1,n)代入y=﹣得n=﹣2,∴B点坐标为(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y1=ax+b得,解得,∴一次函数解析式为y1=﹣x﹣1;(2)设直线AB与y轴交于点C,如图,当x=0,得y=﹣x﹣1=﹣1,∴C点坐标为(0,﹣1).∵S△AOB=S△AOC+S△COB=×1×2+×1×1=;(3)由图象可得,当y1>y2时,自变量x的取值范围是x<﹣2或0<x<1.21.(9分)大学毕业生小李自主创业,开了一家小商品超市.已知超市中某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价必须低于34元,设每件商品的售价上涨x元(x 为非负整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)利用函数关系式求出每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)利用函数关系式求出每件商品的售价为多少元时,每个月的利润恰好是1920元?这时每件商品的利润率是多少?【分析】(1)根据题意,利用总利润=(售价﹣成本)×数量即可列出关系式y=(30﹣20+x)(180﹣10x).(2)根据(1)中所得的关系式.通过配方法,求得顶点式,再根据x的取值范围即可.(3)根据利润率=(售价﹣成本)÷成本×100%即可.【解答】解:(1)依题意,y=(30﹣20+x)(180﹣10x),化简得,y=﹣10x2+80x+1800(0≤x<4,且x为整数),(2)由(1)得,y=﹣10x2+80x+1800=﹣10(x﹣4)2+1960,∵a=﹣10<0,∴当x<4时,y随着x的增大而增大,∵0≤x<4,且x为整数,∴当x=3时,y最大=﹣10(3﹣4)2+1960=1950.故每件商品的售价为33元时,每个月可获得最大利润,最大利润是1950元.(3)由题意,1920=﹣10x2+80x+1800,整理得,x2﹣8x+12=0,解得x1=2或x2=6,∵0≤x<4,且x为整数,∴x=2,∴此时的售价为32元,则利润率为:×100%=60%.故每件商品的售价为32元时,每个月的利润恰好是1920元,这时每件商品的利润率是60%.22.(8分)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.【分析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE =10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2,解得r=3,所以OE=5,OC=3,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.【解答】(1)证明:∵CB,CD分别切⊙O于点B,D,∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,∴∠BCO+∠COB=90°,∵EF⊥OG,∴∠FEB+∠FOE=90°,而∠COB=∠FOE,∴∠FEB=∠ECF;(2)解:连接OD,如图,∵CB,CD分别切⊙O于点B,D,∴CD=CB=6,OD⊥CE,∴CE=CD+DE=6+4=10,在Rt△BCE中,BE==8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,∴OE=8﹣3=5,在Rt△OBC中,OC==3,∵∠COB=∠FOE,∴△OEF∽△OCB,∴=,即=,∴EF=2.23.(12分)如图,直线y=﹣x+3与x轴、y轴分别交于点B,点C,经过B,C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P,点M为抛物线的对称轴上的一个动点.(1)求该抛物线的解析式;(2)当点M在x轴的上方时,求四边形COAM周长的最小值;(3)在平面直角坐标系内是否存在点N,使以C,P,M,N为顶点的四边形为菱形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.【分析】(1)先求出点B,点C坐标,代入解析式可求解;(2)由抛物线的对称性可得AM=BM,点A(1,0),由四边形COAM周长=OC+OA+AM+CM=4+BM+CM,则点B,点M,点C三点共线时,BM+CM有最小值为BC的长,即四边形COAM周长的最小值=4+BC,由勾股定理可求解;(3)由菱形的性质可得△CPM是等腰三角形,分三种情况讨论,由两点距离公式可求解.【解答】解:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B,点C,∴点B(3,0),点C(0,3),∵抛物线y=x2+bx+c经过B,C两点,∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,连接AM,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,∵点A与点B关于对称轴对称,∴AM=BM,点A(1,0),∵点C(0,3),点A(1,0),点B(3,0),∴OA=1,OC=3,OB=3,∵四边形COAM周长=OC+OA+AM+CM,∴四边形COAM周长=4+BM+CM,∴当点B,点M,点C三点共线时,BM+CM有最小值为BC的长,∴四边形COAM周长的最小值=4+BC,∵BC===3,∴四边形COAM周长的最小值=4+3;(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点P(2,﹣1),又∵点C(0,3),∴PC==2,设点M(2,t),∴MC==,MP=|t+1|,∵以C,P,M,N为顶点的四边形为菱形,∴△CPM是等腰三角形,若MC=MP,则=|t+1|,∴t=,∴点M(2,);若MP=PC,则2=|t+1|,∴t1=﹣1+2,t2=﹣1﹣2,∴点M(2,﹣1+2)或(2,﹣1﹣2);若MC=PC,则=2,解得:t3=﹣1(不合题意舍去),t4=7,∴点M(2,7);综上所述:点M的坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2).。

初中数学云南省曲靖市中考模拟数学考试卷及答案.docx

初中数学云南省曲靖市中考模拟数学考试卷及答案.docx

xx学校xx 学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃试题2:下列等式成立的是()A.a2•a5=a10B.C.(﹣a3)6=a18D.试题3:如图是某几何体的三视图,则该几何体的侧面展开图是()A.B.C.D.试题4:某地资源总量Q一定,该地人均资源享有量与人口数n的函数关系图象是()评卷人得分A.B.C.D.试题5:在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,﹣3)D.(﹣5,5)试题6:实数a、b在数轴上的位置如图所示,下列各式成立的是()A.B.a﹣b>0 C.ab>0 D.a÷b>0试题7:如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形试题8:如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称试题9:﹣2的倒数是.试题10:若a=1.9×105,b=9.1×104,则a b(填“<”或“>”).试题11:如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE= .试题12:不等式和x+3(x﹣1)<1的解集的公共部分是.试题13:若整数x满足|x|≤3,则使为整数的x的值是(只需填一个).试题14:一组“穿心箭”按如下规律排列,照此规律,画出2013支“穿心箭”是.试题15:如图,将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3所得到的三角形和△ABC的对称关系是.试题16:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD= .试题17:计算:2﹣1+|﹣|++()0.试题18:化简:,并解答:(1)当x=1+时,求原代数式的值.(2)原代数式的值能等于﹣1吗?为什么?试题19:某种仪器由1种A部件和1个B部件配套构成.每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?试题20:甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题:相关统计量表:量众数中位数平均数方差数人甲 2 2 2乙 1 1 1次品数量统计表:1 2 3 4 5 6 7天数人甲 2 2 0 3 1 2 4乙 1 0 2 1 1 0 2(1)补全图、表.(2)判断谁出现次品的波动小.(3)估计乙加工该种零件30天出现次品多少件?试题21:在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是.(1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).试题22:如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.(1)求证:△DCF≌△ADG.(2)若点E是AB的中点,设∠DCF=α,求sinα的值.试题23:如图,⊙O的直径AB=10,C、D是圆上的两点,且.设过点D的切线ED交AC的延长线于点F.连接OC交AD 于点G.(1)求证:DF⊥AF.(2)求OG的长.试题24:如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D 为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式.(2)当DE=4时,求四边形CAEB的面积.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.试题1答案:考点:有理数的减法.分析:用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:8﹣(﹣2)=8+2=10℃.故选D.点评:本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.试题2答案:考点:二次根式的性质与化简;同底数幂的乘法;幂的乘方与积的乘方.分析:利用同底数的幂的乘法法则以及幂的乘方、算术平方根定义即可作出判断.解答:解:A、a2•a5=a7,故选项错误;B、当a=b=1时,≠+,故选项错误;C、正确;D、当a<0时,=﹣a,故选项错误.故选C.点评:本题考查了同底数的幂的乘法法则以及幂的乘方、算术平方根定义,理解算术平方根的定义是关键.试题3答案:考点:由三视图判断几何体;几何体的展开图分析:由三视图可以看出,此几何体是一个圆柱,指出圆柱的侧面展开图即可.解答:解:根据几何体的三视图可以得到该几何体是圆柱,圆柱的侧面展开图是矩形,且高度=主视图的高,宽度=俯视图的周长.故选A.点评:本题考查了由三视图判断几何体及几何体的侧面展开图的知识,重点考查由三视图还原实物图的能力,及几何体的空间感知能力,是立体几何题中的基础题.试题4答案:考点:反比例函数的应用;反比例函数的图象.分析:根据题意有:=;故y与x之间的函数图象双曲线,且根据,n的实际意义,n应大于0;其图象在第一象限.解答:解:∵由题意,得Q=n,∴=,∵Q为一定值,∴是n的反比例函数,其图象为双曲线,又∵>0,n>0,∴图象在第一象限.故选B.点评:此题考查了反比例函数在实际生活中的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.试题5答案:考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,向上平移纵坐标加求出点P′的坐标即可得解.解答:解:∵点P(﹣2,0)向右平移3个单位长度,∴点P′的横坐标为﹣2+3=1,∵向上平移4个单位长度,∴点P′的纵坐标为1+4=5,∴点P′的坐标为(1,5).故选B.点评:本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.试题6答案:考点:实数与数轴.分析:根据数轴判断出a、b的取值范围,再根据有理数的乘除法,减法运算对各选项分析判断后利用排除法求解.解答:解:由图可知,﹣2<a<﹣1,0<b<1,A、<0,正确,故本选项正确;B、a﹣b<0,故本选项错误;C、ab<0,故本选项错误;D、a÷b<0,故本选项错误.故选A.点评:本题考查了实数与数轴,有理数的乘除运算以及有理数的减法运算,判断出a、b的取值范围是解题的关键.试题7答案:考点:菱形的判定;平行四边形的性质.分析:首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.解答:解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.点评:此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.试题8答案:考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C 正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.试题9答案:考点:倒数.根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.试题10答案:考点:有理数大小比较;科学记数法—表示较大的数.分析:还原成原数,再比较即可.解答:解:a=1.9×105=190000,b=9.1×104=91000,∵190000>91000,∴a>b,故答案为:>.点评:本题考查了有理数的大小比较和科学记数法的应用,注意:科学记数法化成a×10n的形式,其中1≤a<10,n是整数.试题11答案:对顶角、邻补角;角平分线的定义.分析:根据对顶角相等求出∠AOC,再根据角平分线的定义解答.解答:解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°.故答案为:40°.点评:本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.试题12答案:考点:解一元一次不等式组.分析:先解两个不等式,再用口诀法求解集.解答:解:解不等式,得x<4,解不等式x+3(x﹣1)<1,得x<1,所以它们解集的公共部分是x<1.故答案为x<1.点评:本题考查一元一次不等式组的解法,求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).试题13答案:考点:二次根式的定义.分析:先求出x的取值范围,再根据算术平方根的定义解答.解答:解:∵|x|≤3,∴﹣3≤x≤3,∴当x=﹣2时,==3,x=3时,==2.故,使为整数的x的值是﹣2或3(填写一个即可).故答案为:﹣2.点评:本题考查了二次根式的定义,熟记常见的平方数是解题的关键.试题14答案:考点:规律型:图形的变化类.分析:根据图象规律得出每6个数为一周期,用2013除以6,根据余数来决定2013支“穿心箭”的形状.解答:解:根据图象可得出“穿心箭”每6个一循环,2013÷6=335…3,故2013支“穿心箭”与第3个图象相同是.故答案为:.点评:此题主要考查了图象的变化规律,根据已知得出图形变化规律是解题关键.试题15答案:考点:旋转的性质.分析:先根据三角形内角和为180°得出n′1+n′2+n′3=180°,再由旋转的定义可知,将△ABC绕其中一个顶点顺时针旋转180°所得到的三角形和△ABC关于这个点成中心对称.解答:解:∵n′1+n′2+n′3=180°,∴将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3,就是将△ABC绕其中一个顶点顺时针旋转180°,∴所得到的三角形和△ABC关于这个点成中心对称.故答案为:关于旋转点成中心对称.点评:本题考查了三角形内角和定理,旋转的定义与性质,比较简单.正确理解顺时针连续旋转n′1、n′2、n′3,就是顺时针旋转180°是解题的关键.试题16答案:考点:直角梯形.分析:过点D作DE⊥BC于E,则易证四边形ABED是矩形,所以AD=BE=1,进而求出CE的值,再解直角三角形DEC即可求出CD 的长.解答:解:过点D作DE⊥BC于E.∵AD∥BC,∠B=90°,∴四边形ABED是矩形,∴AD=BE=1,∵BC=4,∴CE=BC﹣BE=3,∵∠C=45°,∴cosC==,∴CD=3.故答案为3.点评:此题考查了直角梯形的性质,矩形的判定和性质以及特殊角的锐角三角函数值,此题难度不大,解题的关键是注意数形结合思想的应用.试题17答案:考点:实数的运算;零指数幂;负整数指数幂分析:分别进行零指数幂、负整数指数幂的运算,然后合并即可得出答案.解答:解:原式=++2+1=4.点评:本题考查了实数的运算,解答本题的关键是掌握零指数幂、负整数指数幂的运算法则.试题18答案:考点:分式的化简求值;解分式方程.分析:(1)原式括号中两项约分后,利用乘法分配律化简,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值;(2)先令原式的值为﹣1,求出x的值,代入原式检验即可得到结果.解答:解:(1)原式=[﹣]•=﹣=,当x=1+时,原式==1+;(2)若原式的值为﹣1,即=﹣1,去分母得:x+1=﹣x+1,解得:x=0,代入原式检验,分母为0,不合题意,则原式的值不可能为﹣1.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.试题19答案:考点:二元一次方程组的应用.分析:设安排x人生产A部件,安排y人生产B部件,就有x+y=16和1000x=600y,由这两个方程构成方程组,求出其解即可.解答:解:设安排x人生产A部件,安排y人生产B部件,由题意,得,解得:.答:设安排6人生产A部件,安排10人生产B部件,才能使每天生产的A部件和B部件配套.点评:本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据条件建立建立反映全题等量关系的两个方程是关键.本题时一道配套问题.试题20答案:考点:折线统计图;用样本估计总体;算术平均数;中位数;众数;方差分析:(1)根据平均数、众数、中位数的定义分别进行计算,即可补全统计图和图表;(2)根据方差的意义进行判断,方差越大,波动性越大,方差越小,波动性越小,即可得出答案;(3)根据图表中乙的平均数是1,即可求出乙加工该种零件30天出现次品件数.解答:解:(1):从图表(2)可以看出,甲的第一天是2,则2出现了3次,出现的次数最多,众数是2,把这组数据从小到大排列为0,1,2,2,2,3,4,最中间的数是2,则中位数是2;乙的平均数是1,则乙的第7天的数量是1×7﹣1﹣0﹣2﹣1﹣1﹣0=2;填表和补图如下:众数中位数平均数方差量数人甲 2 2 2乙 1 1 1次品数量统计表:1 2 3 4 5 6 7天数人甲 2 2 0 3 1 2 4乙 1 0 2 1 1 0 2(2)∵S甲2=,S乙2=,∴S甲2>S乙2,∴乙出现次品的波动小.(3)∵乙的平均数是1,∴30天出现次品是1×30=30(件).点评:此题考查了折线统计图,用到的知识点是平均数、众数、中位数、方差的意义、用样本估计总体;读懂折线统计图和图表,从统计图中得到必要的信息是解决问题的关键.试题21答案:考点:列表法与树状图法;概率公式.专题:图表型.分析:(1)设红球有x个,根据概率的意义列式计算即可得解;(2)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)设红球有x个,根据题意得,=,解得x=1;(2)根据题意画出树状图如下:一共有9种情况,两次摸到的球颜色不同的有6种情况,所以,P(两次摸到的球颜色不同)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.试题22答案:考点:正方形的性质;全等三角形的判定与性质;解直角三角形.分析:(1)根据正方形的性质求出AD=DC,∠ADC=90°,根据垂直的定义求出∠CFD=∠CFG=90°,再根据两直线平行,内错角相等求出∠AGD=∠CFG=90°,从而得到∠AGD=∠CFD,再根据同角的余角相等求出∠ADG=∠DCF,然后利用“角角边”证明△DCF和△ADG全等即可;(2)设正方形ABCD的边长为2a,表示出AE,再利用勾股定理列式求出DE,然后根据锐角的正弦等于对边比斜边求出∠ADG的正弦,即为α的正弦.解答:(1)证明:在正方形ABCD中,AD=DC,∠ADC=90°,∵CF⊥DE,∴∠CFD=∠CFG=90°,∴∠AGD=∠CFG=90°,∴∠AGD=∠CFD,又∵∠ADG+∠CDE=∠ADC=90°,∠DCF+∠CDE=90°,∴∠ADG=∠DCF,∵在△DCF和△ADG中,,∴△DCF≌△ADG(AAS);(2)设正方形ABCD的边长为2a,∵点E是AB的中点,∴AE=×2a=a,在Rt△ADE中,DE===a,∴sin∠ADG===,∵∠ADG=∠DCF=α,∴sinα=.点评:本题考查了正方形的性质,全等三角形的判定与性质,锐角三角函数,同角的余角相等的性质,以及勾股定理的应用,熟练掌握各图形的性质并确定出三角形全等的条件是解题的关键.试题23答案:考点:分析:(1)连接BD,根据,可得∠CAD=∠DAB=30°,∠ABD=60°,从而可得∠AFD=90°;(2)根据垂径定理可得OG垂直平分AD,继而可判断OG是△ABD的中位线,在Rt△ABD中求出BD,即可得出OG.解答:解:(1)连接BD,∵,∴∠CAD=∠DAB=30°,∠ABD=60°,∴∠ADF=∠ABD=60°,∴∠CAD+∠ADF=90°,∴DF⊥AF.(2)在Rt△ABD中,∠BAD=30°,AB=10,∴BD=5,∵=,∴OG垂直平分AD,∴OG是△ABD的中位线,∴OG=BD=.点评:本题考查了切线的性质、圆周角定理及垂径定理的知识,解答本题要求同学们熟练掌握各定理的内容及含30°角的直角三角形的性质.试题24答案:考点:二次函数综合题.分析:(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C坐标为(m,0)(m<0),根据已知条件求出点E坐标为(m,8+m);由于点E在抛物线上,则可以列出方程求出m的值.在计算四边形CAEB面积时,利用S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO,可以简化计算;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.解答:解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x2﹣3x+4.(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.∵OA=OB=4,∴∠BAC=45°,∴△ACD为等腰直角三角形,∴CD=AC=4+m,∴CE=CD+DE=4+m+4=8+m,∴点E坐标为(m,8+m).∵点E在抛物线y=﹣x2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2.∴C(﹣2,0),AC=OC=2,CE=6,S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴CE=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).点评:本题考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形、图象面积计算等重要知识点.第(3)问需要分类讨论,这是本题的难点.。

曲靖市初三中考数学第一次模拟试卷【含答案】

曲靖市初三中考数学第一次模拟试卷【含答案】

曲靖市初三中考数学第一次模拟试卷【含答案】一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×10103.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是24.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b25.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.310.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是.12.(4分)因式分解:3x2+6x+3=.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD =8cm,AD=6cm,则△OBC的周长是.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°18.(6分)先化简,后求值:(x﹣)÷,其中x=2.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.21.(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)22.(7分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,直线AB:y=kx+b(b为常数)与反比例函数y=(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△P A1A是等腰直角三角形,点P在反比例函数y=(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.24.(9分)如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠FDM <90°,连接DM,MF,当S四边形DFHM:S四边形ABCD=3:4时,求动点M经过的弧长.25.(9分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D 是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义和各图特点即可解答.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90000亿=9×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是2【分析】根据有理数的绝对值、平方根、倒数和相反数解答即可.【解答】解:A、2的相反数是﹣2,错误;B、2的绝对值是2,正确;C、2的倒数是,错误;D、2的平方根是±,错误;故选:B.【点评】此题考查了实数的性质,关键是根据有理数的绝对值、平方根、倒数和相反数解答.4.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a6,不符合题意;C、原式=a,符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可.【解答】解:由数轴可得:﹣2<x≤1,故选:D.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°【分析】利用平行线的性质即可求得∠C的度数,根据圆周角定理:同弧所对的圆周角等于圆心角的一半求得∠O的度数,再利用三角形的外角的性质即可求解.【解答】解:∵OC∥AB,∴∠C=∠A=20°,又∵∠O=2∠A=40°,∴∠1=∠O+∠C=20°+40°=60°.故选:D.【点评】本题考查了圆周角定理与平行线的性质定理,正确利用圆周角定理求得∠O的度数是关键.8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【分析】画树状图得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式可得答案.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中点(a,b)在第二象限的有2种结果,所以点(a,b)在第二象限的概率为=,故选:B.【点评】本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.3【分析】如图,作AE⊥x轴于E.根据tan∠AOE==,构建方程即可解决问题.【解答】解:如图,作AE⊥x轴于E.由题意:tan∠AOE==,∵A(t,2),∴AE=2,OE=﹣t,∴=,∴t=﹣,故选:A.【点评】本题考查解直角三角形的应用,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.【分析】过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知QE=QP,从而可表示出QF、EF、EQ的长度,然后在△EFQ中利用勾股定理可得到函数的关系式.【解答】解:如图所示,过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知:EQ=QP=y.∵∠EAP=∠APF=∠PFE=90°,∴四边形EAPF是矩形.∴EF=AP=x,PF=EA=1.∴QF=QP﹣PF=y﹣1.在Rt△EFQ中,由勾股定理可知:EQ2=QF2+EF2,即y2=(y﹣1)2+x2.整理得:y=.故选:D.【点评】本题主要考查的是翻折的性质、矩形的性质和判定、勾股定理的应用,表示出QF、EF、EQ的长度,在△EFQ中利用勾股定理列出函数关系式是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是x1=0,x2=1.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.12.(4分)因式分解:3x2+6x+3=3(x+1)2.【分析】原式提取3,再利用完全平方公式分解即可.【解答】解:原式=3(x2+2x+1)=3(x+1)2,故答案为:3(x+1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为y=2x2.【分析】直接运用平移规律“左加右减,上加下减”,在原式上加1即可得新函数解析式y=2x2.【解答】解:∵抛物线y=2x2﹣1向上平移一个单位长度,∴新抛物线为y=2x2.故答案为y=2x2.【点评】此题比较容易,主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD =8cm,AD=6cm,则△OBC的周长是17cm.【分析】根据平行四边形的对边相等以及对角线互相平分进而求出即可.【解答】解:∵在平行四边形ABCD中,AC=14cm,BD=8cm,AD=6cm,∴CO=AC=7cm,BO=BD=4cm,BC=AD=6cm,∴△OBC的周长=BC+BO+CO=6+7+4=17(cm).故答案为:17cm.【点评】此题主要考查了平行四边形的性质,熟练根据平行四边形的性质得出BO,BC,CO的长是解题关键.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为2.【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC是直角三角形是解决问题的关键.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.【分析】根据含30度的直角三角形三边的关系得OA2====3×;OA3===3×()2;OA4===3×()3,…,于是可得到OA2016=3×()2015,OA2018=3×()2017,代入,化简即可.【解答】解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2====3×;OA3===3×()2;OA4===3×()3,…,∴OA2016=3×()2015,OA2018=3×()2017,∴==()2=.故答案为.【点评】本题考查了规律型,点的坐标,坐标与图形性质,通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系及三角函数.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=4﹣3+2018﹣4×=4﹣3+2018﹣2=2015+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,后求值:(x﹣)÷,其中x=2.【分析】先计算括号内减法、同时将除法转化为乘法,再约分即可化简,最后代入求值即可.【解答】解:原式=×=×=,当x=2+时,原式===.【点评】本题主要考查分式的化简求值能力,熟练掌握分式的混合运算顺序是解题的关键.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.【分析】(1)利用角平分线的作法作出线段BD即可;(2)先根据等腰三角形的性质得出∠ABC=∠C=72°,再由角平分线的性质得出∠ABD的度数,故可得出∠A=∠CBD=36°,∠C=∠C,据此可得出结论.【解答】解:(1)如图,线段BD为所求出;(2)∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°.∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°.∵∠A=∠CBD=36°,∠C=∠C,∴△ABD∽△BDC.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是120人;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为30°,m的值为25;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.【分析】(1)根据了解很少的人数以及百分比,求出总人数即可.(2)求出不了解的人数,画出折线图即可.(3)根据圆心角=360°×百分比计算即可.(4)利用样本估计总体的思想解决问题即可.【解答】解:(1)总人数=60÷50%=120(人).(2)不了解的人数=120﹣60﹣30﹣10=20(人),折线图如图所示:(3)了解的圆心角=×360°=30°,基本了解的百分比==25%,∴m=25.故答案为:30,25.(4)3000×=500(人),答:估算该校学生对足球的了解程度为“不了解”的人数为500人.【点评】本题考查折线统计图,样本估计总体,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)【分析】(1)设甲队单独完成需要x个月,则乙队单独完成需要x﹣5个月,根据题意列出关系式,求出x的值即可;(2)设甲队施工y个月,则乙队施工y个月,根据工程款不超过1500万元,列出一元一次不等式,解不等式求最大值即可.【解答】解:(1)设甲队单独完成需要x个月,则乙队单独完成需要(x﹣5)个月,由题意得,x(x﹣5)=6(x+x﹣5),解得x1=15,x2=2(不合题意,舍去),则x﹣5=10.答:甲队单独完成这项工程需要15个月,则乙队单独完成这项工程需要10个月;(2)设甲队施工y个月,则乙队施工y个月,由题意得,100y+(100+50)≤1500,解不等式得y≤8.57,∵施工时间按月取整数,∴y≤8,答:完成这项工程,甲队最多施工8个月才能使工程款不超过1500万元.【点评】本题考查了一元二次方程的应用和一元一次不等式的应用,难度一般,解本题的关键是根据题意设出未知数列出方程及不等式求解.22.(7分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.【分析】(1)过点F作FG⊥BC于点G,易证△ABE≌△EGF,所以可得到AB=EG,BE=FG,由此可得到∠FCG=∠45°,即CF平分∠DCG,所以CF是正方形ABCD外角的平分线;(2)首先可求出BE的长,即FG的长,再在Rt△CFG中,利用cos45°即可求出CF 的长.【解答】(1)证明:过点F作FG⊥BC于点G.∵∠AEF=∠B=∠90°,∴∠1=∠2.在△ABE和△EGF中,∴△ABE≌△EGF(AAS).∴AB=EG,BE=FG.又∵AB=BC,∴BE=CG,∴FG=CG,∴∠FCG=∠45°,即CF平分∠DCG,∴CF是正方形ABCD外角的平分线.(2)∵AB=3,∠BAE=30°,tan30°=,BE=AB•tan30°=3×,即CG=.在Rt△CFG中,cos45°=,∴CF=.【点评】主要考查了正方形的性质,以及全等三角形的判定和性质、特殊角的三角函数值的运用,题目的综合性较强,难度中等.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,直线AB:y=kx+b(b为常数)与反比例函数y=(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△P A1A是等腰直角三角形,点P在反比例函数y=(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.【分析】(1)如图①,作辅助线,根据等腰三角形三线合一得:OC=AC=OA,所以OC=AC=3,根据点B在反比例函数y=(x>0)的图象上,代入解析式可得B的坐标,再利用待定系数法可得直线AB的解析式;(2)如图①,根据△AOB是等腰直角三角形,得BC=OC=OA,设点B(a,a)(a >0),列方程可得a的值,从而得A的坐标;(3)如图②,作辅助线,根据△P A1A是等腰直角三角形,得PD=AD,设AD=m(m >0),则点P的坐标为(4+m,m),列方程可得结论.【解答】解:(1)如图①,过B作BC⊥x轴于C,∵OB=AB,BC⊥x轴,∴OC=AC=OA,∵点A的坐标为(6,0),∴OA=6,∴OC=AC=3,∵点B在反比例函数y=(x>0)的图象上,∴y==4,∴B(3,4),∵点A(6,0),点B(3,4)在y=kx+b的图象上,∴,解得:,∴直线AB的解析式为:y=﹣x+8;(2)如图①,∵∠OBA=90°,OB=AB,∴△AOB是等腰直角三角形,∴BC=OC=OA,设点B(a,a)(a>0),∵顶点B在反比例函数y=(x>0)的图象上,∴a=,解得:a=(负值舍),∴OC=2,∴OA=2OC=4,∴A(4,0);(3)如图②,过P作PD⊥x轴于点D,∵△P A1A是等腰直角三角形,∴PD=AD,设AD=m(m>0),则点P的坐标为(4+m,m),∴m(4+m)=12,解得:x1=2﹣2,m2=﹣2﹣2(负值舍去),∴A1A=2m=4﹣4,∴OA1=OA+AA1=4,∴点A1的坐标是(4,0).【点评】此题是反比例函数与一次函数的综合题,难度适中,解题的关键是:(1)求出点B的坐标;(2)根据点B在反比例函数图象上列方程;(3)设AD=m,表示P的坐标并列方程.解决该题型题目时,找出点的坐标,再利用反比例函数解析式列方程是关键.24.(9分)如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠FDM <90°,连接DM,MF,当S四边形DFHM:S四边形ABCD=3:4时,求动点M经过的弧长.【分析】(1)过D作DQ⊥BC于Q',连接DE.证明DE=DQ,即BC是⊙D的切线;(2)过F作FN⊥DH于N.先证明△ABD为等边三角形,所以∠DAB=60°,AD=BD =AB,再证明△DHF为等边三角形,在Rt△DFN中,FN⊥DH,∠BDC=60°,sin∠BDC=sin60°=,FN=,S阴影=S扇形FDH﹣S△FDH;(3)假设点M运动到某个位置时,符合题意,连接DM、DF,过M作NZ⊥DF于Z,当M运动到离弧最近时,DE=DH=DF=DM=r,证明∠MDC=60°,此时,动点M 经过的弧长为πr.【解答】解:(1)证明:过D作DQ⊥BC于Q',连接DE.∵⊙D且AB于E,∴DE⊥AB,∵四边形ABCD是菱形,∴BD平分∠ABC,∴DE=DQ,∴BC是⊙D的切线;(2)过F作FN⊥DH于N.∵四边形ABCD是菱形,AB=2,∴AD=AB=2,DC∥AB,∵在Rt△ADE中,DE⊥AB,∠A=60°,∴sin A=sin60°=,∴DE=3,DH=DF=DE=3∵AD=AB=2,∠A=60°,∴△ABD为等边三角形,∴∠DAB=60°,AD=BD=AB,∵DC∥AB,∴∠BDC=∠DBA=60°,∵DH=DF=3,∴△DHF为等边三角形,在Rt△DFN中,FN⊥DH,∠BDC=60°,∴sin∠BDC=sin60°=,∴FN=,∴S阴影=S扇形FDH﹣S△FDH==;(3)假设点M运动到某个位置时,符合题意,连接DM、DF,过M作NZ⊥DF于Z,当M运动到离弧最近时,DE=DH=DF=DM=r,由(2)在Rt△DFN中,sin∠BDC=sin60°=,∴FN=,S△HDF==,在Rt△ADE中,sin A=sin60°=,∴AD=r,AB=AD=r,∴S菱形ABCD=AB•DE==,∵当S四边形DFHM:S四边形ABCD=3:4,∴S四边形DFHM=,∴S△DFM=S四边形DFHM﹣S△HDF==DF•MZ=rMZ,∴MZ=,在Rt△DMF中,MF⊥CD,sin∠MDC==,∴∠MDC=60°,此时,动点M经过的弧长为πr.【点评】本题考查了圆综合知识,熟练掌握圆的相关知识与菱形的性质以及特殊三角函数值是解题的关键.25.(9分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D 是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?【分析】(1):(1)将A(﹣1,0),C(0,)代入抛物线y=ax2+x+c(a≠0),求出a、c的值;(2)由(1)得抛物线解析式:y=,点D是点C关于抛物线对称轴的对称点,C(0,),所以D(2,),DH=,再证明△ACO∽△EAH,于是=即=,解得:EH=2,则DE=2;(3)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP =GF+PF+PN最小,根据S△MFP==,m=时,△MPF面积有最大值.【解答】解:(1)将A(﹣1,0),C(0,)代入抛物线y=ax2+x+c(a≠0),,∴a=﹣,c=(2)由(1)得抛物线解析式:y=∵点D是点C关于抛物线对称轴的对称点,C(0,)∴D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=即=,解得:EH=2,则DE=2;(3)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP =GF+PF+PN最小,∴直线GN的解析式:y=x﹣,由(2)得E(2,﹣),A(﹣1,0),∴直线AE的解析式:y=﹣x﹣,联立解得∴F(0,﹣),∵DH⊥x轴,∴将x=2代入直线AE的解析式:y=﹣x﹣,∴P(2,)∴F(0,﹣)与P(2,)的水平距离为2过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣)(<m<);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=(﹣m2+m+)﹣(m﹣),S△MFP==∵对称轴为:直线m=,∵开口向下,<m,∴m=时,△MPF面积有最大值为..【点评】本题考查了二次函数,熟练运用相似三角形的性质与二次函数图象的性质是解题的关键.中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×10103.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是24.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b25.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.310.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是.12.(4分)因式分解:3x2+6x+3=.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD =8cm,AD=6cm,则△OBC的周长是.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°18.(6分)先化简,后求值:(x﹣)÷,其中x=2.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.。

云南省曲靖市中考数学模拟试卷样卷含答案解析

云南省曲靖市中考数学模拟试卷样卷含答案解析

2020年云南省曲靖市中考数学模拟试卷(样卷)一、选择题(本大题共 8小题,每题 4 分,共32分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.)1.a 的倒数是﹣ ,则a 是( )A .﹣B .C .﹣D .2.自 2020 年1 月21 日开建的印尼雅万高铁是中国和印尼合作的重要标志性项目,这条高铁的总长为 152 公里.其中“152公里”用科学记数法可以表示为( ) A .×106mB . ×105m C .×106m D .152×105m3.以下运算正确的选项是( )A 2B 2 2C ab 2 2D 2a 2÷a=4aaa=2a. a?a=2a .(﹣ =2ab.(.+ ) )4.小明同学把一个含有 45°角的直角三角板放在以下列图的两条平行线 m 、n 上,测得∠α=120°,则∠β的度数是( )A .45°B .55°C .65°D .75°5.民族图案是数学文化中的一块瑰宝.以下列图案中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .6.不等式组 的解集在数轴上表示为( )A .B .C .D .7.将一个长方体内部挖去一个圆柱(以下列图),它的主视图是( )A .B .C .D .第1页(共21页)8.平面直角坐标系中,正六边形ABCDEF的初步地址如图1所示,边AB在x轴上,现将正六边形沿x轴正方向无滑动转动,第一次转动后,边BC落在x轴上(如图2);第二次转动后,边CD落在x轴上,这样连续下去.则第2020次转动后,落在x轴上的是()A.边DE B.边EFC.边FA D.边AB二、填空题(本大题共6小题,小题3分,共18分,直接把最简答案填写在答题卷的横线上)9.若有意义,则x的取值范围是.10.分式方程=3的解为.11.如图,在平行四边形ABCD中,AB>AD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则以下结论正确的有:.①AG均分∠DAB;②CH=DH;③△ADH是等腰三角形;④S△ADH=S四边形ABCH.12.如图,小明在大楼30米高即(PH=30米)的窗口P处进行观察,测得山坡上A处的俯角为15°,山脚处的俯角为60°.巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC,则A到BC的距离为米.第2页(共21页)13.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后端点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .14.已知以下命题:① 正五边形的每个外角等于 72°;② 90°的圆周角所对的弦是直径;③方程ax 2+bx+c=0,当b 2﹣4ac >0时,方程必然有两个不等实根; ④ 函数y=kx+b ,当k >0时,图象有可能不经过第二象限; 真命题是.三、解答题(本大题共9小题,共 70 分)2020×( ) ﹣2 π015.计算:﹣1 ++(﹣)﹣|﹣|.16.已知M=(1 ﹣ )÷1)化简M ;2)当a 满足方程a 2﹣3a+2=0时,求M 的值.17.“地球一小时(EarthHour )”是世界自然基金会( WWF )对付全球天气变化所提出的一项建议,希望个人、社区、企业和政府在每年 3月最后一个星期六20:30﹣21:30 熄灯一 小时,来唤醒人们对节约资源保护环境的意识.2020年,因为西方复生节的缘故,活动提前到2020年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以 “地球一小时﹣﹣你怎么看?”为主题对公众进行了检查,主要有 4种态度A :认识、赞同并支持B :认识,忘了关灯C :不认识,无所谓 D :纯粹是作秀,不支持,请依照图中的信息回答下 列问题:(1)此次抽样的公众有人;(2)请将条形统计图补充完满;(3)在扇形统计图中, “不认识,无所谓”部分所对应的圆心角是度; (4)若城区人口有300 万人,估计赞同并支持 “地球一小时”的有 人.并依照统计信息,谈谈自己的感想.第3页(共21页)18.小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A、B、C、D四块积木.(1)小明选择把积木A和B放入图3,要求积木A和B的九个小圆恰好能分别与图3中的九个小圆重合,请在图3中画出他放入方式的表示图(温馨提示:积木A和B的连接小圆的小线段还是要画上哦!);(2)现从A、B、C、D四块积木中任选两块,求恰好能全部不重叠放入的概率.19.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准以下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908070已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需开销17700元,若两个年级结合组团只需开销14700元.(1)两个年级参加春游学生人数之和高出200人吗?为什么?(2)两个年级参加春游学生各有多少人?20.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作CE⊥AC,且使AE∥BD,连接DE.1)求证:AD=CE.2)若DE=3,CE=4,求tan∠DAE的值.21.如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比率函数y=的图象在第四象限的订交于点P,并且PA⊥y轴于点A,已知A(0,﹣6),且S△CAP=18.(1)求上述一次函数与反比率函数的表达式;第4页(共21页)(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.22.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC 于F.P是ED延长线上一点且PC=PF.1)求证:PC是⊙O的切线;2)若点D是劣弧AC的中点,OH=1,AH=2,求弦AC的长.2bx c经过点A(﹣30)、B10)、C03).23.如图,抛物线y=ax++,(,(,(1)求抛物线的解析式;(2)若点P为抛物线在第二象限上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的极点为D,DE⊥x轴于点E,在y轴上可否存在点M,使得△ADM是等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明原由.第5页(共21页)2020年云南省曲靖市中考数学模拟试卷(样卷) 参照答案与试题解析一、选择题(本大题共8小题,每题4分,共32分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.)1.a 的倒数是﹣,则a 是( ) A .﹣ B . C .﹣ D . 【考点】倒数.【解析】先把小数化为假分数,尔后依照倒数的定义求解即可. 【解答】解:∵﹣1.5=﹣ ,﹣ 的倒数为﹣ , a=﹣;应选C .2.自2020 年1 月21日开建的印尼雅万高铁是中国和印尼合作的重要标志性项目,这条高 铁的总长为 152 公里.其中“152 公里”用科学记数法可以表示为( )A .×106mB . ×105mC .×106mD .152×105m【考点】科学记数法—表示较大的数.【解析】依照1 公里=1000米可得 152公里=152×1000米,再用科学记数法表示 152000,a10n 1 a 10 , n 为整数.确定 n的值时,整 科学记数法的表示形式为 ×的形式,其中≤| |< 数位数减1即可.当原数绝对值> 10时,n 是正数;当原数的绝对值< 1时,n 是负数.【解答】解:152公里=152×1000 米=152000米×105m ,应选:B .3.以下运算正确的选项是( )A .a+a=2a 2B .a 2?a=2a 2C .(﹣ab )2=2ab 2D .(2a )2÷a=4a【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【解析】直接利用合并同类项法规以及积的乘方运算法规和同底数幂的乘法运算法规分别化简求出答案.【解答】解:A 、a+a=2a ,故此选项错误; 23C 、(﹣ab )2=a 2b 2,故此选项错误;2应选:D .4.小明同学把一个含有45°角的直角三角板放在以下列图的两条平行线 m 、n 上,测得∠α=120°,则∠β的度数是()第6页(共21页)A.45°B.55°C.65°D.75°【考点】平行线的性质;三角形内角和定理.【解析】依照平行线的性质得∠1=∠2,依照三角形外角性质有∠α=∠2+∠3,可计算出∠2=120°﹣45°=75°,则∠1=75°,依照对顶角相等即可获取∠β的度数.【解答】解:如图,∵m∥n,∴∠1=∠2,∵∠α=∠2+∠3,而∠3=45°,∠α=120°,∴∠2=120°﹣45°=75°,∴∠1=75°,∴∠β=75°.应选:D.5.民族图案是数学文化中的一块瑰宝.以下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【解析】依照轴对称图形与中心对称图形的看法求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是,可是每旋转与原图重合,而中心对称的定义是绕必然点旋转度,新图形与原图形重合.因此不吻合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.应选C.6.不等式组的解集在数轴上表示为()第7页(共21页)A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【解析】先求出每个不等式的解集,找出不等式组的解集,再在数轴上表示出来即可.【解答】解:,∵解不等式①得:x<0,解不等式②得:x≥﹣1∴不等式组的解集为:﹣1≤x<0,在数轴上表示不等式组的解集为:,应选A.7.将一个长方体内部挖去一个圆柱(以下列图),它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【解析】找到从正面看所获取的图形即可,注意全部的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.应选A.8.平面直角坐标系中,正六边形ABCDEF的初步地址如图1所示,边AB在x轴上,现将正六边形沿x轴正方向无滑动转动,第一次转动后,边BC落在x轴上(如图2);第二次转动后,边CD落在x轴上,这样连续下去.则第2020次转动后,落在x轴上的是()A.边DE B.边EF C.边FA D.边AB第8页(共21页)【考点】正多边形和圆;坐标与图形性质;旋转的性质.【解析】由正六边形ABCDEF一共有6条边,即6次一循环;易得第2020次转动后,与第六次转动后的结果相同,既而求得答案.【解答】解:∵正六边形ABCDEF一共有6条边,即6次一循环;2020÷6=336,∵第一次转动后,边BC落在x轴上(如图2);第二次转动后,边CD落在x轴上,这样连续下去,第六次转动后,边AB落在x轴上,∴第2020次转动后,落在x轴上的是:边AB.应选D.二、填空题(本大题共6小题,小题3分,共18分,直接把最简答案填写在答题卷的横线上)9.若有意义,则x的取值范围是x≠2.【考点】分式有意义的条件.【解析】分母为零,分式没心义;分母不为零,分式有意义.【解答】解:依照题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.10.分式方程=3的解为x=6.【考点】分式方程的解.【解析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转变成整式方程求解.【解答】解:方程两边乘以(x﹣2)得:4x﹣12=3(x﹣2),4x﹣12=3x﹣6,4x﹣3x=12﹣6,x=6,检验:把x=6代入(x﹣2)≠0.故x=6是原方程的根.故答案为:x=6.11.如图,在平行四边形ABCD中,AB>AD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则以下结论正确的有:①③.①AG均分∠DAB;②CH=DH;③△ADH是等腰三角形;④S△ADH=S四边形ABCH.第9页(共21页)【考点】平行四边形的性质;等腰三角形的判断与性质;作图—基本作图.【解析】依照作图过程可得得AG均分∠DAB;再依照角均分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而获取AD=DH,进而获取△ADH是等腰三角形.【解答】解:依照作图的方法可得AG均分∠DAB,故①正确;∵AG均分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴△ADH是等腰三角形,故③正确;故答案为:①③.12.如图,小明在大楼30米高即(PH=30米)的窗口P处进行观察,测得山坡上A处的俯角为15°,山脚处的俯角为60°.巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC,则A到BC的距离为10米.【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【解析】作AM⊥BC于M,设AM=x,先证明PB=AB=2x,在RT△PBH中利用sin∠PBH=解决问题.【解答】解:如图作AM⊥BC于M,设AM=x.tan∠ABM=,∴∠ABM=30°,∴AB=2AM=2x,第10页(共21页)∵∠HPB=30°,∴∠PBH=90°﹣∠HPB=60°,∴∠ABP=180°﹣∠PBH ﹣∠ABM=90°,∴∠BPA=∠BAP=45°, ∴AB=BP=2x ,在RT △PBH 中,∵sin ∠PBH= , ∴ = , ∴x=10 .故答案为 10 .13.如图,在平面直角坐标系中,将矩形 AOCD 沿直线AE 折叠(点 E 在边DC 上),折叠后端点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 (10,3).【考点】翻折变换(折叠问题);坐标与图形性质.【解析】依照折叠的性质获取 AF=AD ,因此在直角△ AOF 中,利用勾股定理来求 OF=6,尔后设EC=x ,则EF=DE=8﹣x ,CF=10﹣6=4,依照勾股定理列方程求出 EC 可得点E 的坐 标.【解答】解:∵四边形 A0CD 为矩形,D 的坐标为(10,8),∴AD=BC=10,DC=AB=8, ∵矩形沿AE 折叠,使D 落在BC 上的点F 处,∴AD=AF=10,DE=EF ,在Rt △AOF 中,OF= =6, FC=10﹣6=4,设EC=x ,则DE=EF=8﹣x ,在Rt △CEF 中,EF 2=EC 2+FC 2,即(8﹣x )2=x 2+42,解得x=3,即EC 的长为3.∴点E 的坐标为(10,3),故答案为:(10,3).第11页(共21页)14.已知以下命题:①正五边形的每个外角等于 72°;②90°的圆周角所对的弦是直径; ③方程ax 2+bx+c=0,当b 2﹣4ac >0时,方程必然有两个不等实根;④函数y=kx+b ,当k >0时,图象有可能不经过第二象限; 真命题是 ①② . 【考点】命题与定理.【解析】解析可否为真命题, 需要分别解析各题设可否能推出结论, 进而利用消除法得出答案.【解答】解:①正五边形的每个外角等于 72°是真命题;②90°的圆周角所对的弦是直径是真命题;③方程ax 2+bx+c=0,当a=0时,b 2﹣4ac >0时,方程必然有一个不等实根是假命题; ④函数y=kx+b ,当k >0,b >0时,图象经过第二象限,是假命题;故答案为:①②.三、解答题(本大题共9小题,共 70分)2020×()﹣215.计算:﹣1+ +(π﹣)﹣|﹣|.【考点】实数的运算;零指数幂;负整数指数幂.【解析】原式利用乘方的意义,立方根定义,绝对值的代数意义,以及零指数幂、负整数指数幂法规计算即可获取结果.【解答】解:原式=﹣1+3×9+1﹣3=﹣1+27+1﹣3 =24.16.已知M=(1﹣ )÷1)化简M ;2)当a 满足方程a 2﹣3a+2=0时,求M 的值.【考点】分式的化简求值. 【解析】(1)依照分式混杂运算的法规先算括号里面的,再算除法即可;2)求出a 的值,代入分式进行计算即可.【解答】解:(1)M= ?=a+1;第12页(共21页)2)解方程a 2﹣3a+2=0得,a1=1,a2=2,当a=1时,原式=2;当a=2时,原式=3.17.“地球一小时(EarthHour)”是世界自然基金会(WWF)对付全球天气变化所提出的一项建议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30﹣21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2020年,因为西方复生节的缘故,活动提前到2020年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以“地球一小时﹣﹣你怎么看?”为主题对公众进行了检查,主要有4种态度A:认识、赞同并支持B:认识,忘了关灯C:不认识,无所谓D:纯粹是作秀,不支持,请依照图中的信息回答以下问题:1)此次抽样的公众有1000人;2)请将条形统计图补充完满;3)在扇形统计图中,“不认识,无所谓”部分所对应的圆心角是162度;(4)若城区人口有300万人,估计赞同并支持“地球一小时”的有45万人.并依照统计信息,谈谈自己的感想.【考点】条形统计图;用样本估计整体;扇形统计图.【解析】(1)依照题意可得:B类的有300人,占30%;即可求得总人数;(2)进而可求得D类的人数,据此可补全条形图;(3)依照扇形图中,每部分占整体的百分比等于该部分所对应的扇形圆心角的度数与360°的比,可求得“不认识,无所谓”部分所对应的圆心角度数;4)用样本估计整体,可估计赞同的人数.【解答】解:(1)300÷30%=1000人.故此次抽样的公众有1000人;2)1000﹣150﹣300﹣450=100人,作图为:(3)×360°=162°.故“不认识,无所谓”部分所对应的圆心角是162度;(4)300×=45(万人).第13页(共21页)我们要节约资源保护环境.谈感想:言之有理给分,没有道理不给分.故答案为:1000;162;45万.18.小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A、B、C、D四块积木.(1)小明选择把积木A和B放入图3,要求积木A和B的九个小圆恰好能分别与图3中的九个小圆重合,请在图3中画出他放入方式的表示图(温馨提示:积木A和B的连接小圆的小线段还是要画上哦!);2)现从A、B、C、D四块积木中任选两块,求恰好能全部不重叠放入的概率.【考点】列表法与树状图法.【解析】(1)按要求画出图形;2)先利用画树状图显现全部12种等可能的结果数,再找出恰好能全部不重叠放入的结果数,尔后依照概率公式求解.【解答】解:(1)如图3,(2)画树状图:共有12种等可能的结果数,其中恰好能全部不重叠放入的结果数为4,因此恰好能全部不重叠放入的概率==.第14页(共21页)19.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准以下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908070已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需开销17700元,若两个年级结合组团只需开销14700元.(1)两个年级参加春游学生人数之和高出200人吗?为什么?2)两个年级参加春游学生各有多少人?【考点】二元一次方程组的应用.【解析】(1)设两个年级参加春游学生人数之和为a人,分两种情况谈论,即a>200和100<a≤200,即可得出答案;(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,依照两种情况的开销,即100<x≤200和x>200分别列方程组求解,即可得出答案.【解答】解:(1)设两个年级参加春游学生人数之和为a人,若a>200,则a=14700÷70=210(人).若100<a≤200,则a=14700÷80=183(不合题意,舍去).则两个年级参加春游学生人数之和等于210人,高出200人.(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,则①当100<x≤200时,得,解得.②当x>200时,得,解得(不合题意,舍去).则七年级参加春游学生人数有120人,八年级参加春游学生人数有90人.20.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作CE⊥AC,且使AE∥BD,连接DE.1)求证:AD=CE.2)若DE=3,CE=4,求tan∠DAE的值.【考点】全等三角形的判断与性质;平行四边形的判断与性质.【解析】(1)利用已知条件证明△BAD≌△ACE,依照全等三角形的对应边相等即可解答;第15页(共21页)(2)由△BAD≌△ACE,获取BD=AE,AD=CE,进而证明四边形ABDE为平行四边形,再证明∠EDA=∠BAD=90°,最后依照三角函数即可解答.【解答】解:(1)∵AB=AC,∴∠B=∠BCA,∵AE∥BD,∴∠CAE=∠BCA,∴∠B=∠CAE,又∵AD⊥AB,CE⊥AC,∴∠BAD=∠ACE=90°,在△BAD和△ACE中,,∴△BAD≌△ACE.∴AD=CE.(2)∵△BAD≌△ACE,∴BD=AE,AD=CE,∵AE∥BD,∴四边形ABDE为平行四边形.∴DE∥AB,∴∠EDA=∠BAD=90°,∴.又∵AD=CE=4,DE=3,tan∠DAE=.21y=kx+3的图象分别交x轴、y轴于点B、点C,与反比率函数y=的.如图,一次函数图象在第四象限的订交于点P,并且PA⊥y轴于点A,已知A(0,﹣6),且S△CAP=18.(1)求上述一次函数与反比率函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.【考点】反比率函数与一次函数的交点问题.第16页(共21页)【解析】(1)由一次函数表达式可得出点C的坐标,结合A点坐标以及三角形的面积公式可得出AP的长度,进而得出点P的坐标,由点P的坐标结合待定系数法即可求出一次函数及反比率函数的表达式;(2)设点Q的坐标为(m,﹣m+3).由一次函数的表达式可找出点B的坐标,结合等底三角形面积的性质可得出关于m的一元一次方程,解方程即可得出m的值,将其代入点Q的坐标中即可.【解答】解:(1)令一次函数y=kx+3中的x=0,则y=3,即点C的坐标为(0,3),∴AC=3﹣(﹣6)=9.∵S△CAP=AC?AP=18,AP=4,∵点A的坐标为(0,﹣6),∴点P的坐标为(4,﹣6).∵点P在一次函数y=kx+3的图象上,∴﹣6=4k+3,解得:k=﹣;∵点P在反比率函数y=的图象上,∴﹣6=,解得:n=﹣24.∴一次函数的表达式为y=﹣x3y=﹣.+,反比率函数的表达式为2)令一次函数y=﹣x3中的y=0,则0=﹣x3,(++解得:x=,即点B的坐标为(,0).设点Q的坐标为(m,﹣m+3).∵△OCQ的面积是△BCO面积的2倍,|m|=2×,解得:m=±,∴点Q的坐标为(﹣,9)或(,﹣3).(22.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.1)求证:PC是⊙O的切线;2)若点D是劣弧AC的中点,OH=1,AH=2,求弦AC的长.第17页(共21页)【考点】切线的判断.【解析】(1)依照等腰三角形的性质和直角三角形两锐角互余的性质,证得∠PCF+∠AC0=90°,即OC⊥PC,即可证得结论;(2)先依照勾股定理求出DH,再经过证明△OGA≌△OHD,得出AC=2AG=2DH,求出弦AC的长.【解答】(1)证明:连接OC,∵OA=OC,∴∠ACO=∠OAC,∵PC=PF,∴∠PCF=∠PFC,∵DE⊥AB,∴∠OAC+∠AFH=90°,∵∠PDF=∠AFH,∴∠PFC+∠OAC=90°,∴∠PCF+∠AC0=90°,即OC⊥PC,∴PC是⊙O的切线;2)解:连接OD交AC于G.∵OH=1,AH=2,∴OA=3,即可得OD=3,∴DH===2.∵点D在劣弧AC中点地址,∴AC⊥DO,∴∠OGA=∠OHD=90°,在△OGA和△OHD中,,∴△OGA≌△OHD(AAS),∴AG=DH,∴AC=4.第18页(共21页)23.如图,抛物线 y=ax 2+bx+c 经过点A (﹣3,0)、B (1,0)、C (0,3).(1)求抛物线的解析式;(2)若点P 为抛物线在第二象限上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)设抛物线的极点为 D ,DE ⊥x 轴于点E ,在y 轴上可否存在点 M ,使得△ADM 是等腰三角形?若存在,请直接写出点 M 的坐标;若不存在,请说明原由.【考点】二次函数综合题.【解析】(1)用待定系数法求出 a ,b ,c ,即可求解; 2)用S=S △AOP +S △COP ﹣S △AOC 计算即可; 3)设M (0,m )先判断△AOM ≌△MFD ,求出m 即可.【解答】解:(1)∵抛物线 y=ax 2+bx+c 经过点A (﹣3,0)、B (1,0)、C (0,3).∴,∴,∴抛物线 y=﹣x 2﹣2x+3;(2)以下列图,第19页(共21页)设P(x,﹣x 2﹣2x+3),(﹣3<x<0),∵OA=3,OC=3,∴S=S△AOP +S△COP﹣S△AOC=OA×|y P|+OA×|x P|﹣OA×OC=×322x3)+3x)﹣33×(﹣x﹣+××(﹣××=﹣x 2﹣ x=﹣(x+)2 +,∴当x=﹣时,S最大=,∴﹣(﹣)2﹣2×(﹣)+3=,∴点P的坐标为(﹣,),3)以下列图,当△ADM是等腰直角三角形,只能∠AMD=90°,设M(0,m),过D作DF⊥x轴,∴F(0,4),∴OM=m,PM=4﹣m,DF=1,∴△AOM≌△MFD,∴OM=DF=1,PM=OA=3,∴,m=1,∴M(0,1)第20页(共21页)云南省曲靖市中考数学模拟试卷样卷含答案解析2020年8月8日第21页(共21页)21 / 2121。

云南省曲靖市中考数学一模试卷

云南省曲靖市中考数学一模试卷

云南省曲靖市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列结论正确的是()A . ﹣4与+(﹣4)互为相反数B . 0的相反数是0C . ﹣与互为相反数D . ﹣本身是相反数2. (2分) (2020七下·西安月考) 计算(-a2)3的结果是()A . -a5B . a5C . -a6D . a63. (2分)(2016·福州) 如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A .B .C .D .4. (2分) (2019八上·恩施期中) 下面有4个汽车商标图案,其中是轴对称图形的是()A .B .C .D .5. (2分)(2020·广西模拟) 如图,CD为⊙O的直径,弦AB交CD于点M,M是AB的中点,点P在劣弧上,PC与AB交于点N,∠PNA=60°,则∠PDC等于()A . 40°B . 50°C . 60°D . 70°6. (2分)将抛物线y=2x2的图象先向右平移4个单位,再向下平移3个单位所得的解析式为()A . y=2(x-3)2+4B . y=2(x+4)2-3C . y=2(x-4)2+3D . y=2(x-4)2-37. (2分) (2019七下·卫辉期末) 商店将某种商品按进货价提高100%后,又以八折售出,售价为80元,则这种商品的进价是()A . 100元B . 80元C . 60元D . 50元8. (2分)(2018·青羊模拟) 如图,已知直线a//b//c,分别交直线m、n于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF的长为()A .B .C . 6D .9. (2分)(2019·阿城模拟) 若反比例函数的图像经过点,则该函数图像位于()A . 第一、二象限B . 第二、四象限C . 第一、三象限D . 第三、四象限10. (2分)二次函数的图象如图,若一元二次方程有实数解,则k的最小值为()A . -4B . -6C . -8D . 0二、填空题 (共10题;共10分)11. (1分)(2017·贵港) 中国的领水面积约为370 000km2 ,将数370 000用科学记数法表示为________.12. (1分) (2018八下·瑶海期中) 代数式中x的取值范围是________.13. (1分) (2017七下·柳州期末) 计算: =________.14. (1分)(2017·渭滨模拟) 分解因式:2m2﹣2=________.15. (1分)不等式组的所有整数解是________.16. (1分) (2019九上·孝感月考) 二次函数的顶点坐标为________.17. (1分)如图,△ABC中,AC=BC,AB=4,∠ACB=90°,以AB的中点D为圆心DC长为半径作圆DEF,设∠BDF=α(0°<α<90°),当α变化时图中阴影部分的面积为________ (圆:∠EDF=90°,圆的面积=)18. (1分) (2019九上·深圳期末) 如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=________.19. (1分)(2017·芜湖模拟) 如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是________.20. (1分)(2019·海州模拟) 如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E 作EF⊥CE交AB的延长线于点F,若AF=8,则正方形ABCD的边长为________.三、解答题 (共7题;共72分)21. (5分)(2018·河南模拟) 化简()÷ ,并在﹣1,0,1,2中选出一个合适的数代入求值.22. (2分) (2018九上·汉阳期中) 如图,是等边三角形.(1)作的外接圆;(2)在劣弧上取点,分别连接,并将绕点逆时针旋转;(3)若,直接写出四边形的面积.23. (15分)(2018·三明模拟) 写字是学生的一项基本功,为了了解某校学生的书写情况,随机对该校部分学生进行测试,测试结果分为A,B,C,D四个等级.根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息,回答以下问题:(1)把条形统计图补充完整;(2)若该校共有2000名学生,估计该校书写等级为“D级”的学生约有________人;(3)随机抽取了4名等级为“A级”的学生,其中有3名女生,1名男生,现从这4名学生中任意抽取2名,用列表或画树状图的方法,求抽到的两名学生都是女生的概率.24. (10分) (2018九上·长宁期末) 已知在矩形ABCD中,AB=2,AD=4. P是对角线BD上的一个动点(点P 不与点B、D重合),过点P作PF⊥BD,交射线BC于点F. 联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求 ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.25. (10分) (2020九下·下陆月考)(1)关于x,y的方程组满足,求m的值.(2)“五一”江北水城文化旅游期间,几名同学包租一辆面包车去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,求原来参加游览的同学有多少人?26. (15分) (2020九上·鄞州期末) 已知:如图,在半圆O中,直径AB的长为6,点C是半圆上一点,过圆心O作AB的垂线交线段AC的延长线于点D,交弦BC于点E。

云南省曲靖市中考数学一模试题(含解析)-人教版初中九年级全册数学试题

云南省曲靖市中考数学一模试题(含解析)-人教版初中九年级全册数学试题

某某省某某市2016年中考数学一模试题一、选择题:本大题共8个小题,每小题只有一个正确选项,每小题3分,共24分.1.下列方程是一元二次方程的是( )A.3x2+=0 B.2x﹣3y+1=0 C.(x﹣3)(x﹣2)=x2D.(3x﹣1)(3x+1)=32.对右图的对称性表述,正确的是( )A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形3.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A.115°B.120°C.125°D.145°4.已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为( )A.﹣1 B.1 C.﹣2 D.25.如图,在⊙O中,弦AB⊥AC,OD⊥AB于点D,OE⊥AC于点E,若AB=8cm,AC=6cm,则⊙O 的半径OA的长为( )A.7cm B.6cm C.5cm D.4cm6.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( ) A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=1487.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB 于点C,D,若PA=4,则△PCD的周长为( )A.5 B.7 C.8 D.108.二次函数y=ax2+bx+c的图象如图所示,在ab、ac、b2﹣4ac,2a+b,a+b+c,这五个代数式中,其值一定是正数的有( )A.1个B.2个C.3个D.4个二、填空题:本大题共8个小题,每小题3分,共24分。

9.一元二次方程x(x﹣2)=0的解是__________.10.二次函数y=2(x﹣)2+3,当x__________时,y随x的增大而增大.11.平面直角坐标系中,点A的坐标为(2,3),把OA绕点O逆时针旋转90°,那么A点旋转后所到点的横坐标是__________.12.如图,AB是半圆的直径,点C在半圆周上,连接AC,∠BAC=30°,点P在线段OB上运动.则∠ACP的度数可以是__________.13.已知点A(a﹣2b,﹣2)与点A′(﹣6,2a+b)关于坐标原点对称,则3a﹣b=__________.14.若x=a是方程x2﹣x﹣2015=0的根,则代数式2a2﹣2a﹣2015值为__________.15.一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是__________cm2.16.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④、…则三角形⑩的直角顶点与坐标原点的距离为__________.三、解答题:本大题共8个小题,满分72分。

2023-2024学年云南省曲靖市中考数学质量检测仿真模拟试题合集2套(含解析)

2023-2024学年云南省曲靖市中考数学质量检测仿真模拟试题合集2套(含解析)

2023-2024学年云南省曲靖市中考数学质量检测仿真模拟试题(一模)一、单选题1.下列各数中,比-1小的数是()A.0B.0.5C.-0.5D.-22.如图,“中国天眼”即500米口径球面射电望远镜(FAST ),是具有我国自主知识产权、世界单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成10n a ⨯(其中,1≤a <10,n 为整数)的形式,则n 为()A.-1B.2C.3D.43.如图,若∠1=50°,则∠2的度数为A.30°B.40°C.50°D.90°4.下列运算中,正确的是()A.(a 3)3=a 9B.a 2×a 2=2a 2C.a-a 2=-aD.(ab )2=ab 25.如图,在Rt ABC ∆中,90,6,8ACB AC BC ∠=︒==,则Rt ABC ∆的中线CD 的长为()A.5B.6C.8D.106.已知面积为8的正方形边长是x ,则关于x 的结论中,正确的是()A.x 是有理数B.x 没有能在数轴上表示C.x 是方程48x =的解D.x 是8的算术平方根7.如图,△ABC 中,∠BCD =∠A ,DE ∥BC ,与△ABC 相似的三角形(△ABC 自身除外)的个数是()A.1个B.2个C.3个D.4个8.用配方法解一元二次方程2x2-4x-2=1的过程中,变形正确的是()A.2(x-1)2=1B.2(x-1)2=5C.(x-1)2=52 D.(x-2)2=529.已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中没有一定成立的是()A.∠DAE=∠BAEB.∠DEA=12∠DAB C.DE=BE D.BC=DE 10.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程15001500105x x-=-,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成11.由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是对称图形;②俯视图是对称图形;③左视图没有是对称图形;④俯视图和左视图都没有是轴对称图形,其中正确结论是()A.①③B.①④C.②③D.②④12.如图,在半径为4的⊙O 中,弦AB ∥OC ,∠BOC =30°,则AB 的长为()A.2B. C.4D.13.在一个没有透明的袋子里装有2个红球1个黄球,这3个小球除了颜色没有同外,其它都相同,贝贝同学摸出一个球后放回口袋再摸一个;莹莹同学摸2个球,两人分别记录下小球的颜色,关于两个摸到1个红球1个黄球和2个红球的概率的描述中,正确的是()A.(11)(11)=P P 贝贝摸到红黄莹莹摸到红黄B.(11)(11)>P P 贝贝摸到红黄莹莹摸到红黄C.(2)(2)=P P 贝贝摸到红莹莹摸到红 D.(2)(2)>P P 贝贝摸到红莹莹摸到红14.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y =ax 2(a ≠0)△ABC 区域(包括边界),则a 的取值范围是()A.1a ≤-或2a ≥B.10a -≤<或02a <≤C.10a -≤<或112a <≤D.122a ≤≤15.如图,R t △ABC 中,∠ACB =90°,∠BAC =30°,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AB ,垂足为E ,连接CE 交AD 于点F ,则以下结论:①AB =2CE ;②AC =4CD ;③CE ⊥AD ;④△DBE 与△ABC 的面积比是:1:(7+)其中正确结论是()A.①②B.②③C.③④D.①④16.一个数学游戏,正六边形被平均分为6格(其中1格涂有阴影),规则如下:若个正六边形下面标的数字为a (a 为正整数),则先绕正六边形的顺时针旋转a 格;再沿某条边所在的直线l 翻折,得到第二个图形.例如:若个正六边形下面标的数字为2,如图,则先绕其顺时针旋转2格;再沿直线l 翻折,得到第二个图形.若个正六边形下面标的数字为4,如图,按照游戏规则,得到第二个图形应是()A. B. C. D.二、填空题17.12+3.18.没有等式组30210x x ->⎧⎨->⎩的解集是________.19.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动(1)连接OC ,线段OC 的长随t 的变化而变化,当OC 时,t =______.(2)当ABC ∆的边与坐标轴平行时,t =______.三、解答题20.计算张老师在黑板上写了三个算式,希望同学们认真观察,发现规律.请你这些算式,解答下列问题:(1)请你再写出另外两个符合上述规律的算式;(2)验证规律:设两个连续奇数为2n+1,2n–1(其中n为正整数),则它们的平方差是8的倍数;(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?请说明理由.21.为了解甲、乙两班英语口语水平,每班随机抽取了10名学生进行了口语测验,测验成绩满分为10分,参加测验的10名学生成绩(单位:分)称为样本数据,抽样过程如下:收集数据甲、乙两班的样本数据分别为:甲班:67946769610乙班:7897578595整理和描述数据规定了四个层次:9分以上(含9分)为“”,8-9分(含8分)为“良好”,6-8分(含6分)为“一般”,6分以下(没有含6分)为“没有合格”.按以上层次分布绘制出如下的扇形统计图.请计算:(1)图1中,“没有合格”层次所占的百分比;(2)图2中,“”层次对应的圆心角的度数.分析数据对于甲、乙两班的样本数据,请直接回答:(1)甲班的平均数是7,中位数是_____;乙班的平均数是_____,中位数是7;(2)从平均数和中位数看,____班整体成绩.解决问题若甲班50人,乙班40人,通过计算,估计甲、乙两班“没有合格”层次的共有多少人?22.如图,数轴上的点A 、B 、C 、D 、E 表示连续的五个整数,对应的数分别为a 、b 、c 、d 、e .(1)若a +e =0,直接写出代数式b +c +d 的值为_____;(2)若a +b =7,先化简,再求值:211224a a a a a -⎛⎫÷+ ⎪++-⎝⎭;(3)若a +b +c +d +e =5,数轴上的点M 表示的实数为m ,且满足MA +ME >12,则m 的范围是____.23.如图,点O 在线段AB 上,(没有与端点A 、B 重合),以点O 为圆心,OA 的长为半径画弧,线段BP 与这条弧相切与点P ,直线CD 垂直平分PB ,交PB 于点C ,交AB 于点D ,在射线DC 上截取DE ,使DE =DB .已知AB =6,设OA =r .(1)求证:OP ∥ED ;(2)当∠ABP =30°时,求扇形AOP 的面积,并证明四边形PDBE 是菱形;(3)过点O 作OF ⊥DE 于点F ,如图所示,线段EF 的长度是否随r 的变化而变化?若没有变,直接写出EF 的值;若变化,直接写出EF 与r 的关系.24.如图,在平面直角坐标系中,已知点A (5,3),点B (﹣3,3),过点A 的直线y =12x +m (m 为常数)与直线x =1交于点P ,与x 轴交于点C ,直线BP 与x 轴交于点D .(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△PAB的面积比;(3)若反比例函数kyx(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的值或最小值.25.如图1,图2中,正方形ABCD的边长为6,点P从点B出发沿边BC—CD以每秒2个单位长的速度向点D匀速运动,以BP为边作等边三角形BPQ,使点Q在正方形ABCD内或边上,当点Q恰好运动到AD边上时,点P停止运动.设运动时间为t秒(t≥0).(1)当t=2时,点Q到BC的距离=_____;(2)当点P在BC边上运动时,求CQ的最小值及此时t的值;(3)若点Q在AD边上时,如图2,求出t的值;(4)直接写出点Q运动路线的长.26.某商场经销一种商品,已知其每件进价为40元.现在每件售价为70元,每星期可卖出500件.该商场通过市场发现:若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出m(m为正整数)件.设价格后每星期的利润为W元.(1)设该商品每件涨价x(x为正整数)元,①若x=5,则每星期可卖出件,每星期的利润为元;②当x为何值时,W,W的值是多少?(2)设该商品每件降价y(y为正整数)元,①写出W与y的函数关系式,并通过计算判断:当m=10时每星期利润能否达到(1)中W的值;②若使y=10时,每星期的利润W,直接写出W的值为.(3)若每件降价5元时的每星期利润,没有低于每件涨价15元时的每星期利润,求m的取值范围.2023-2024学年云南省曲靖市中考数学质量检测仿真模拟试题(一模)一、单选题1.下列各数中,比-1小的数是()A.0B.0.5C.-0.5D.-2【正确答案】D【详解】试题解析:正数一定大于负数,排除A,B项;-<-12,1 2.∴->-故选D.点睛:负有理数比较大小时,值越大的反而小.2.如图,“中国天眼”即500米口径球面射电望远镜(FAST),是具有我国自主知识产权、世界单a⨯(其中,口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成10n1≤a<10,n为整数)的形式,则n为()A.-1B.2C.3D.4【正确答案】Ca⨯(其中,1≤a<10,n为整数)的形式为:【详解】试题解析:4600表示成10n3=⨯4600 4.610.∴=3.n故选C.3.如图,若∠1=50°,则∠2的度数为A.30°B.40°C.50°D.90°【正确答案】B【详解】试题解析:根据平角的概念可知:2180190180509040.∠=-∠-=--=故选B.4.下列运算中,正确的是()A.(a 3)3=a 9B.a 2×a 2=2a 2C.a-a 2=-aD.(ab )2=ab 2【正确答案】A【详解】【分析】根据幂的乘方、同底数幂的乘法、合并同类项、积的乘方的运算法则逐项进行计算即可得.【详解】A.(a 3)3=a 9,正确,符合题意;B.a 2×a 2=a 4,故B 选项错误,没有符合题意;C.a 与a 2没有是同类项,没有能合并,故C 选项错误,没有符合题意;D.(ab )2=a 2b 2,故D 选项错误,没有符合题意,故选A.本题考查了同底数幂的乘法、幂的乘方与积的乘方等,熟练掌握各运算的运算法则是解题的关键.5.如图,在Rt ABC ∆中,90,6,8ACB AC BC ∠=︒==,则Rt ABC ∆的中线CD 的长为()A.5B.6C.8D.10【正确答案】A【分析】根据勾股定理求出AB ,根据直角三角形的性质解答.【详解】Rt △ABC 中,∠ACB=90°,AC=6,BC=8,∴AB=22AC BC +=10,∵CD 是Rt △ABC 的中线,∴CD=12AB=5,故选A .本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.6.已知面积为8的正方形边长是x ,则关于x 的结论中,正确的是()A.x 是有理数B.x 没有能在数轴上表示C.x 是方程48x =的解D.x 是8的算术平方根【正确答案】D【详解】试题解析:根据题意,得:28,x =x ∴==x ==-(舍去),A..B.是实数,实数和数轴上的点是一一对应的,可以在数轴上表示,故错误.C.方程48x =的解是:2,x =没有是,故错误.D.8的算术平方根.正确.故选D.7.如图,△ABC 中,∠BCD =∠A ,DE ∥BC ,与△ABC 相似的三角形(△ABC 自身除外)的个数是()A.1个B.2个C.3个D.4个【正确答案】B 【分析】【详解】试题解析:∵DE ∥BC∴△ADE ∽△ABC,∠BCD=∠A,∠B=∠B,∴△BCD ∽△ABC∴有两个与△ABC 相似的三角形故选B .本题考查相似三角形的判定,有两组角相等的两个三角形相似.8.用配方法解一元二次方程2x 2-4x-2=1的过程中,变形正确的是()A.2(x-1)2=1B.2(x-1)2=5C.(x-1)2=52 D.(x-2)2=52【正确答案】C【详解】【分析】首先将方程的未知数的项放在方程的左边,常数项放方程的右边,然后根据等式的性质,方程两边都除以2,将二次项系数化为1,再根据等式的性质,方程两边都加上项系数一半的平方1,然后左边利用完全平方公式分解因式,右边合并同类项,即可得出答案.【详解】2x2-4x-2=1,2x2-4x=3,x2-2x=3 2,x2-2x+1=32+1,()2512x-=,故选C.本题考查了配方法,熟练掌握配方法解一元二次方程的一般步骤及注意事项是解题的关键.9.已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中没有一定成立的是()A.∠DAE=∠BAEB.∠DEA=12∠DAB C.DE=BE D.BC=DE【正确答案】C【分析】根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.【详解】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项没有符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=12∠DAB,故本选项没有符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项没有符合题意.故选B.本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.10.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x 个,可得方程150********x x-=-,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成【正确答案】B【分析】设实际每天生产零件x 个,则原计划每天生产零件(x-5)个,根据提前10天完成任务,列方程即可.【详解】解:实际每天生产零件x 个,那么5x -表示原计划每天生产的零件个数,实际上每天比原计划多生产5个,150********x x-=-表示原计划用的时间-实际用的时间=10天,说明实际上每天比原计划多生产5个,提前10天完成任务.故选B .本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.11.由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是对称图形;②俯视图是对称图形;③左视图没有是对称图形;④俯视图和左视图都没有是轴对称图形,其中正确结论是()A.①③B.①④C.②③D.②④【正确答案】A 【详解】试题解析:该几何体的三视图如图所示:①主视图既是轴对称图形,又是对称图形;正确.②俯视图是对称图形;错误.③左视图没有是对称图形;正确.左视图是轴对称图形,④俯视图和左视图都没有是轴对称图形,错误.故选A.12.如图,在半径为4的⊙O 中,弦AB ∥OC ,∠BOC =30°,则AB 的长为()A.2B.23C.4D.43【正确答案】D【详解】解:如图,过点O 作⊥OD AB 于D ,1,2AD BD AB ∴==∵AB ∥OC ,30BOC ∠=︒,30OBD BOC ∴∠=∠=︒,4OB = ,122OD OB ∴==,∴223BD OB BD =-=2AB BD ∴==故选D .本题主要考查了勾股定理,含30度角的直角三角形的性质,平行线的性质,垂径定理等等熟知垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧是解题的关键.13.在一个没有透明的袋子里装有2个红球1个黄球,这3个小球除了颜色没有同外,其它都相同,贝贝同学摸出一个球后放回口袋再摸一个;莹莹同学摸2个球,两人分别记录下小球的颜色,关于两个摸到1个红球1个黄球和2个红球的概率的描述中,正确的是()A.(11)(11)=P P 贝贝摸到红黄莹莹摸到红黄 B.(11)(11)>P P 贝贝摸到红黄莹莹摸到红黄C.(2)(2)=P P 贝贝摸到红莹莹摸到红 D.(2)(2)>P P 贝贝摸到红莹莹摸到红【正确答案】D【详解】【分析】根据题意用列表法表示出贝贝摸出球的所有可能结果,根据表格可知所有等可能的结果共有9中种,其中贝贝摸到1红1黄的共有4种,贝贝摸到2红的共有4种,根据概率公式即可得出贝贝摸到1红1黄的概率及贝贝摸到2红的概率;莹莹同学摸2个球,一共有3种情况:红1红2,红1黄,红2黄.根据概率公式即可得出莹莹摸到1红1黄的概率及莹莹摸到2红的概率,再将它们的概率进行比较即可.【详解】没有透明的袋子里装有2个红球1个黄球,贝贝同学摸出一个球后放回口袋再摸一个,红1红2黄红1红1,红1红2,红1黄,红1红2红1,红2红2,红2黄,红2黄红1,黄红2,黄黄,黄一种9种结果,P (贝贝摸到1红1黄)=49,P (贝贝摸到2红)=49,莹莹同学摸2个球,一共有3种情况:红1红2,红1黄,红2黄,P (莹莹摸到1红1黄)=23,P (莹莹摸到2红)=13,A.(1111P =P 贝贝摸到红黄)莹莹摸到红黄,错误,B.(1111P P >贝贝摸到红黄)莹莹摸到红黄,错误,C.(22P =P 贝贝摸到红)莹莹摸到红,错误,D .(22P P >贝贝摸到红)莹莹摸到红,正确,故选D.本题考查了列表法或树状图法求概率,用到的知识点是:概率=所求情况数与总情况数之比.14.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y =ax 2(a ≠0)△ABC 区域(包括边界),则a 的取值范围是()A.1a ≤-或2a ≥B.10a -≤<或02a <≤C.10a -≤<或112a <≤D.122a ≤≤【正确答案】B【详解】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =点()1,2A 时,2,a =抛物线的开口最小,a 取得值2.抛物线2y ax =△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠二次项系数a 决定了抛物线开口的方向和开口的大小,0,a >开口向上,0,a <开口向下.a 的值越大,开口越小.15.如图,R t △ABC 中,∠ACB =90°,∠BAC =30°,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AB ,垂足为E ,连接CE 交AD 于点F ,则以下结论:①AB =2CE ;②AC =4CD ;③CE ⊥AD ;④△DBE 与△ABC 的面积比是:1:(73+)其中正确结论是()A.①②B.②③C.③④D.①④【正确答案】C 【分析】如图,设BE =a .解直角三角形求出相应的线段,即可一一判断;【详解】解:如图,设BE =a.在Rt △BDE 中,∵∠DEB =90°,∠B =60°,BE =a ,∴BD =2BE =2a ,DE,∵DA 平分∠CAB ,DC ⊥AC ,DE ⊥AB ,∴DC =DE,∴AB =2BC =4a,∵∠BEC 是钝角,∴BC >CE ,∵AB =2BC ,故①错误,∵△DAC ≌△DAE ,∴AE =AC2a)=+3a ,显然AC ≠4CD ,故②错误,∵DE =DC ,AC =AE ,∴AD 垂直平分线段EC ,故③正确,∴1a 2=1a 2DBE ABC S S △△(23)故选C .16.一个数学游戏,正六边形被平均分为6格(其中1格涂有阴影),规则如下:若个正六边形下面标的数字为a (a 为正整数),则先绕正六边形的顺时针旋转a 格;再沿某条边所在的直线l 翻折,得到第二个图形.例如:若个正六边形下面标的数字为2,如图,则先绕其顺时针旋转2格;再沿直线l 翻折,得到第二个图形.若个正六边形下面标的数字为4,如图,按照游戏规则,得到第二个图形应是()A.B.C.D.【正确答案】A【详解】试题解析:个正六边形下面标的数字为4,先绕其顺时针旋转4格,旋转后的图形是,关于直线l 的对称图形是.故选A.二、填空题17.12+3.【正确答案】3【分析】先把12化成23,然后再合并同类二次根式即可得解.【详解】原式3+3=33故答案为33本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.18.没有等式组30210xx->⎧⎨->⎩的解集是________.【正确答案】13 2x<<【分析】分别解出没有等式组中的每一个没有等式,然后根据大小小大中间找得出原没有等式组的解集即可.【详解】30 210xx->⎧⎨->⎩①②,解没有等式①,得:x<3,解没有等式②,得:x >12,所以没有等式组的解集为:12<x <3,故答案为12<x <3.本题考查了解一元没有等式组,熟练掌握解一元没有等式组的解集的确定方法“同大取大,同小取小,大小小大中间找,小小无处找”是解题的关键.19.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动(1)连接OC ,线段OC 的长随t 的变化而变化,当OC 时,t =______.(2)当ABC ∆的边与坐标轴平行时,t =______.【正确答案】①.②.243255和【分析】(1)由等腰三角形的性质可得AD=BD ,从而可求出OD=4,然后根据当O ,D ,C 共线时,OC 取值求解即可;(2)根据等腰三角形的性质求出CD ,分AC ∥y 轴、BC ∥x 轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.【详解】(1)15,,42BC AC CD AB AD BD AB ∴==⊥∴===,190,,42AOB AD BD OD AB ︒∠==∴== ,当O ,D ,C 共线时,OC 取值,此时OD ⊥AB.∵,4OD AB OD AD BD ⊥===,∴△AOB 为等腰直角三角形,∴OA t ===;(2)∵BC=AC ,CD 为AB 边的高,∴∠ADC=90°,BD=DA=12AB=4,∴CD==3,当AC∥y轴时,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴AO ABCD AC=,即835t=,解得,t=24 5,当BC∥x轴时,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴AO ABBD BC=,即845t=,解得,t=32 5,则当t=245或325时,△ABC的边与坐标轴平行.故答案为t=245或325.本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.三、解答题20.计算张老师在黑板上写了三个算式,希望同学们认真观察,发现规律.请你这些算式,解答下列问题:(1)请你再写出另外两个符合上述规律的算式;(2)验证规律:设两个连续奇数为2n+1,2n–1(其中n为正整数),则它们的平方差是8的倍数;(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?请说明理由.【正确答案】(1)229784-=⨯;2211985-=⨯(2)两个连续奇数的平方差是8的倍数(3)没有正确【详解】试题分析:()1观察所给式子,找出规律.()2根据平方差公式,化简即可.()3举例说明或者参照()2进行运算即可.试题解析:()1观察所给式子:找出规律:229784-=⨯2211985-=⨯(2)验证规律:设两个连续奇数为2n +1,2n -1(其中n 为正整数),则它们的平方差是8的倍数;()()()()22212121212121n n n n n n +--=+-+++-,248.n n =⨯=故两个连续奇数的平方差是8的倍数.(3)没有正确,解法一:举反例:224212-=因为12没有是8的倍数,故这个结论没有正确,解法二:设这两个偶数位2n 和2n +2,()()()()2222222222284n n n n n n n +-=-++=+因为8n +4没有是8的倍数,故这个结论没有正确.21.为了解甲、乙两班英语口语水平,每班随机抽取了10名学生进行了口语测验,测验成绩满分为10分,参加测验的10名学生成绩(单位:分)称为样本数据,抽样过程如下:收集数据甲、乙两班的样本数据分别为:甲班:67946769610乙班:7897578595整理和描述数据规定了四个层次:9分以上(含9分)为“”,8-9分(含8分)为“良好”,6-8分(含6分)为“一般”,6分以下(没有含6分)为“没有合格”.按以上层次分布绘制出如下的扇形统计图.请计算:(1)图1中,“没有合格”层次所占的百分比;(2)图2中,“”层次对应的圆心角的度数.分析数据对于甲、乙两班的样本数据,请直接回答:(1)甲班的平均数是7,中位数是_____;乙班的平均数是_____,中位数是7;(2)从平均数和中位数看,____班整体成绩.解决问题若甲班50人,乙班40人,通过计算,估计甲、乙两班“没有合格”层次的共有多少人?【正确答案】见解析【分析】整理和描述数据:(1)用没有合格人数除以总人数可得;(2)用人数除以总人数可得;分析数据:(1)根据中位数和平均数的定义求解可得;(2)在平均数相等的前提下,中位数高者;解决问题:用总人数乘以样本中没有合格人数所占比例分别求得甲乙班没有合格人数,据此可得答案.【详解】解:整理和描述数据:(1)抽取的10人中,甲班没有合格的人数为1,110×=10%,(2)抽取的10人中,乙班的人数为2,236072. 10⨯︒=︒分析数据对于甲、乙两班的样本数据,请直接回答:(1)甲班的平均数是7,中位数是6.5;乙班的平均数是7,中位数是7;(2)从平均数和中位数看,乙班整体成绩.解决问题甲班没有合格的人数约为:50×10%=5(人)乙班没有合格的人数约为:3401210⨯=(人)5+12=17(人)答:甲、乙两班“没有合格”层次的共有17人.本题主要考查数据的收集与整理及其应用,解题的关键是熟练掌握中位数、平均数的定义及其意义,样本估计总体思想的运用.22.如图,数轴上的点A 、B 、C 、D 、E 表示连续的五个整数,对应的数分别为a 、b 、c 、d 、e .(1)若a +e =0,直接写出代数式b +c +d 的值为_____;(2)若a +b =7,先化简,再求值:211224a a a a a -⎛⎫÷+ ⎪++-⎝⎭;(3)若a +b +c +d +e =5,数轴上的点M 表示的实数为m ,且满足MA +ME >12,则m 的范围是____.【正确答案】(1)0;(2)12;(3)m<-5或m>7【分析】()1设,a x =则1,2,3,4,b x c x d x e x =+=+=+=+根据0,a e +=列出方程,求出x 的值,即可求出b c d ++的值;()2根据7,a b +=列出方程,求出x 的值,即求出a 的值,对所求式子进行化简,代入运算即可;()35,a b c d e ++++=列出方程,求出x 的值,分两种情况进行讨论.【详解】解:()1设,a x =则1,2,3,4,b xc xd xe x =+=+=+=+0,a e += 40,x x ∴++=解得:2,x =-11,20,31,b xc xd x =+=-=+==+=1010.b c d ∴++=-++=故答案为0.()27,a b += 则:17,x x ++=解得:3,x =即:3,a =211,224a a a a a -⎛⎫÷+ ⎪++-⎝⎭=()212122a a a a a --+÷++,()()()222121a a a a a +--=÷+-,21a a -=-,当3a =时,原式=321312-=-;()35,a b c d e ++++= 12345,x x x x x ∴++++++++=解得:1,x =-即1,3,a e =-=当点M 在点A 的左侧时,12MA ME ,+>即:()()1312,m m --+->解得:5,m <-当点M 在点E 的右侧时,12MA ME ,+>即:()()1312,m m ++->解得:7.m >故5m <-或7.m >23.如图,点O 在线段AB 上,(没有与端点A 、B 重合),以点O 为圆心,OA 的长为半径画弧,线段BP 与这条弧相切与点P ,直线CD 垂直平分PB ,交PB 于点C ,交AB 于点D ,在射线DC 上截取DE ,使DE =DB .已知AB =6,设OA =r .(1)求证:OP ∥ED ;(2)当∠ABP =30°时,求扇形AOP 的面积,并证明四边形PDBE 是菱形;(3)过点O 作OF ⊥DE 于点F ,如图所示,线段EF 的长度是否随r 的变化而变化?若没有变,直接写出EF 的值;若变化,直接写出EF 与r 的关系.【正确答案】(1)见解析;(2)43π,见解析;(3)EF=3【详解】试题分析:()1根据BP 为O 的切线,得到OP BP ⊥,CD BP ⊥,可以推出90OPB DCB ∠=∠=︒,进而证明平行.()2根据30 所对的直角边等于斜边的一半,列出方程,求出半径,根据扇形的面积公式进行即可即可.根据对角线互相垂直平分的四边形是菱形证明.()3根据题意可知,OP ∥ED ;点C 是PB 的中点,则点D 是OB 的中点,可以用r 表示出,,,,.CD BD DF CE 即可求出EF 的长.试题解析:(1)∵BP 为O 的切线OP BP ∴⊥,∵CD BP ⊥,∴90OPB DCB ∠=∠=︒,∴OP ∥ED ;(2)在Rt △OBP 中,9030OPB ABP ∠=︒∠=︒,,∴60POB ∠=︒,120,AOP ∴∠=︒在Rt △OBP 中,12OP OB =,即()16,2r r =-解得: 2.r =S 扇形AOP =2120243603ππ⨯=,证明:∵30CD PB ABP ⊥∠=︒,,∴60EDB ,∠=︒∵DE BD =,∴EDB △是等边三角形,BD BE =又∵CD PB ⊥,∴.CD CE =∴DE 与PB 互相垂直平分,∴四边形PDBE 是菱形.(3)线段EF 的长度是没有会随r 的变化而变化, 3.EF =根据题意可知,OP ∥ED ;点C 是PB 的中点,则点D 是OB 的中点,6,,AB OA OP CF r ==== 6,OB r ∴=-()1163,22OD BD PD DE r r ====-=-11,22CD OP r ==1133.22CE CE CD r r r ∴=-=--=-3 3.EF CE CF r r =+=-+=线段EF 的长度是没有会随r 的变化而变化, 3.EF =24.如图,在平面直角坐标系中,已知点A (5,3),点B (﹣3,3),过点A 的直线y =12x +m (m 为常数)与直线x =1交于点P ,与x 轴交于点C ,直线BP 与x 轴交于点D .(1)求点P 的坐标;(2)求直线BP 的解析式,并直接写出△PCD 与△PAB 的面积比;(3)若反比例函数k y x=(k 为常数且k ≠0)的图象与线段BD 有公共点时,请直接写出k 的值或最小值.【正确答案】(1)P (1,1);(2)14PCD PAB S S =△△;(3)当k <0时,最小值为-9;当k >0时,值为98【详解】试题分析:()1把点A 坐标代入函数12y x m =+,求得m 的值,进而求得点P 的坐标.()2用待定系数法即可求得直线BP 的解析式,直接计算面积即可求出它们的比值.()3分成0k >和0k <两种情况进行讨论.试题解析:(1)∵12y x m =+过点A (5,3),53.2m =+解得:1.2m =∴y =1122x +,当1x =时,∴11122y =+=,∴()11.P ,(2)设直线BP 的解析式为y =ax +b ,根据题意,得331a b a b =-+⎧⎨=+⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BP 的解析式为1322y x =-+,点()()1,0,3,0.C D -14112.14822PCD PAB S S ⨯⨯==⨯⨯ (3)当0k <时,点B 时,有最小值为-9;当0k >时,联立方程1322,y x k y x ⎧=-+⎪⎪⎨⎪=⎪⎩整理得,2320,x x k -+=980,k ∆=-=解得:9.8k =即值为98.25.如图1,图2中,正方形ABCD 的边长为6,点P 从点B 出发沿边BC—CD 以每秒2个单位长的速度向点D 匀速运动,以BP 为边作等边三角形BPQ ,使点Q 在正方形ABCD 内或边上,当点Q 恰好运动到AD 边上时,点P 停止运动.设运动时间为t 秒(t ≥0).(1)当t =2时,点Q 到BC 的距离=_____;(2)当点P 在BC 边上运动时,求CQ 的最小值及此时t 的值;(3)若点Q 在AD 边上时,如图2,求出t 的值;(4)直接写出点Q运动路线的长.【正确答案】(1);(2)t=32;(3)9t =-;(4)18-【分析】()1过点Q 作,QE BC ⊥用三角函数的知识即可求出点Q 到BC 的距离,()2点P 在BC 边上运动时,有60QBC ∠=︒,根据垂线段最短,当CQ BQ ⊥时,CQ 最小,作图,求解即可.()3若点Q 在AD 边上,则26CP t =-,证明Rt △BAQ ≌Rt △BCP ,122,DQ DP t ==-。

云南省曲靖市实验中学2024届中考数学全真模拟试卷含解析

云南省曲靖市实验中学2024届中考数学全真模拟试卷含解析

云南省曲靖市实验中学2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为()A.-1 B.-11 C.1 D.112.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°3.如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-45.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.6.下列命题中,真命题是()A .如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B .如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C .如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D .如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离7.某工厂第二季度的产值比第一季度的产值增长了x %,第三季度的产值又比第二季度的产值增长了x %,则第三季度的产值比第一季度的产值增长了( ) A .2x %B .1+2x %C .(1+x %)x %D .(2+x %)x %8.二次函数y =ax 2+bx +c (a ≠0)和正比例函数y =﹣13x 的图象如图所示,则方程ax 2+(b + 13)x +c =0(a ≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定9.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2B .3C .4D .510.若代数式22x x -有意义,则实数x 的取值范围是( )A .x =0B .x =2C .x≠0D .x≠211.如图是某个几何体的三视图,该几何体是( )A .圆锥B .四棱锥C .圆柱D .四棱柱12.一元二次方程2240x x ++=的根的情况是( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根D .没有实数根二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A 和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.规定用符号[]m表示一个实数m的整数部分,例如:20 3⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎡⎤+⎣⎦的值为________.16.已知函数y=1x-1,给出一下结论:①y的值随x的增大而减小②此函数的图形与x轴的交点为(1,0)③当x>0时,y的值随x的增大而越来越接近-1④当x≤12时,y的取值范围是y≥1以上结论正确的是_________(填序号)17.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.18.若点(a,1)与(﹣2,b)关于原点对称,则b a=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为BD的中点,且BD=8,AC=9,sinC=13,求⊙O的半径.20.(6分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.21.(6分)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.22.(8分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示.试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作∠ABD=∠ADE,交AC 于点E.(1)求证:DE为⊙O的切线.(2)若⊙O的半径为256,AD=203,求CE的长.24.(10分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=12∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=35,AK=10,求CN的长.25.(10分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.26.(12分)小明对A,B,C,D四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知A超市有女工20人.所有超市女工占比统计表超市A B C D女工人数占比62.5% 62.5% 50% 75%A超市共有员工多少人?B超市有女工多少人?若从这些女工中随机选出一个,求正好是C超市的概率;现在D超市又招进男、女员工各1人,D超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.27.(12分)如图,已知正比例函数y=2x与反比例函数y=kx(k>0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=kx(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.【题目详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28所以解这个方程组,得所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【题目点拨】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.2、B【解题分析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,3、A【解题分析】A. 是轴对称图形,是中心对称图形,故本选项正确;B. 是中心对称图,不是轴对称图形,故本选项错误;C. 不是中心对称图,是轴对称图形,故本选项错误;D. 不是轴对称图形,是中心对称图形,故本选项错误。

云南省师宗县彩云中学九年级数学第一次模拟测试题(无

云南省师宗县彩云中学九年级数学第一次模拟测试题(无

云南省师宗县彩云中学2016届九年级数学第一次模拟测试题时间:120分满分:120分一、选择题(24分)1、-5的相反数的倒数是()A.15B.-5C.15- D.52、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.3、下列函数中,自变量的取值范围是x≥2的是()A.2y x=- B.12yx=-C.2y x=- D.12yx=-4、下列几何体中,其主视图不是中心对称图形的是( )5、下列函数的图像在每一个象限内,y值随x值的增大而增大的是() A.1y x=-+ B.21y x=- C.1yx=D.1yx=-6、如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15° B.30° C.45° D.60°7、下列说法正确的是:A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差是S=3.2,S=2.9,则甲组数据更稳定8、要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A B CDAx (x+1)=15 B . x (x ﹣1)=15 C . x (x+1)=15 D . x (x ﹣1)=15二、填空题(24分)9、写一个以2,-1为根的一元二次方程: 。

10、分解因式:a 3b ﹣9ab 3= .11、己知m 是关于x 的方程2270x x --=的一个根,则22(2)m m -= . 12.一个汽车牌在水中的倒影为则该车牌照号码为_____________.13、不等式组的解集是 ___________.14、点E 在□ABCD 的BC 边的延长线上,AE 交CD 于点F ,CE :AD =1:3,则△CEF 与△BEA 的面积之比是 。

云南省 中考数学一模试卷(含解析)

云南省 中考数学一模试卷(含解析)

中考数学一模试卷一、填空题(本大题共6小题,每小题3分,共18分)1.﹣2017的相反数是.2.分解因式:a3﹣16a= .3.不等式组的解集是.4.若关于x的一元二次方程x2+3x﹣k=0有两个相等的实数根,则k的值是.5.小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为cm.6.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN= .二、选择题(本大题共8小题,每小题4分,共32分)7.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10108.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣19.图中三视图对应的正三棱柱是()A.B.C.D.10.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n211.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2016年4月份用电量的调查结果:那么关于这10户居民月用电量的说法错误的是()A.中位数是50 B.众数是51 C.平均数是46.8 D.方差是4212.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.13.已知:抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③a﹣b+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中正确的结论有()A.4个B.3个C.2个D.1个14.阅读理解:如图①所示,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由OM的长度m与∠MON的度数θ确定,有序数对(m,θ)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为()A.(4,60°)B.(4,45°)C.(2,60°)D.(2,50°)三、解答题(本大题共9小题,共70分)15.计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.16.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了名学生,其中最喜爱戏曲的有人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.18.(1)如图1所示,平行四边形纸片ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D 是形.(2)如图2所示,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形;②求四边形AFF′D两条对角线的长.19.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?20.甲、乙两人进行摸排游戏,现有三张形状大小完全相同的牌,正面分别标有数字2,3,5,将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法写出所有可能的结果;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.21.如图所示,CD是⊙O的弦,AB是⊙O的直径,且CD∥AB,连接AC,AD,OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分图形的周长(结果精确到1,参考数据:π=3.1, =1.4,=1.7).22.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.23.观察下表:我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16.①求x,y的值;②在①的条件下,第n格的“特征多项式”是否有最小值?若有,求出最小值和相应的n 值;若没有,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.﹣2017的相反数是2017 .【考点】14:相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣2017的相反数是2017.故答案为:2017.2.分解因式:a3﹣16a= a(a+4)(a﹣4).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a3﹣16a,=a(a2﹣16),=a(a+4)(a﹣4).3.不等式组的解集是﹣3<x≤2 .【考点】CB:解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≤2,由②得:x>﹣3,则不等式组的解集为﹣3<x≤2.故答案为:﹣3<x≤24.若关于x的一元二次方程x2+3x﹣k=0有两个相等的实数根,则k的值是﹣.【考点】AA:根的判别式.【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的一元一次方程,解之即可得出结论【解答】解:∵关于x的一元二次方程x2+3x﹣k=0有两个相等的实数根,∴△=32+4k=9+4k=0,解得:k=﹣.故答案为:﹣.5.小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为10 cm.【考点】MP:圆锥的计算.【分析】由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形卡纸制作一个圣诞帽,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.【解答】解:设卡纸扇形的半径和弧长分别为R、l,圣诞帽底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm.故答案是:10.6.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN= 3 .【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线;L7:平行四边形的判定与性质.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.二、选择题(本大题共8小题,每小题4分,共32分)7.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.8.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1【考点】72:二次根式有意义的条件.【分析】直接利用二次根式有意义的条件进而得出x﹣1≥0,求出答案.【解答】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.9.图中三视图对应的正三棱柱是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.10.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选B.11.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2016年4月份用电量的调查结果:那么关于这10户居民月用电量的说法错误的是()A.中位数是50 B.众数是51 C.平均数是46.8 D.方差是42【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.【解答】解:10户居民2016年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51﹣30=21,方差为 [(30﹣46.8)2+2(42﹣46.8)2+3(50﹣46.8)2+4(51﹣46.8)2]=42.96.故选D.12.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.【考点】S8:相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C.13.已知:抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③a﹣b+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中正确的结论有()A.4个B.3个C.2个D.1个【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;根据抛物线过点(﹣1,0),则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴b2﹣4ac>0,即4ac<b2,所以①正确;②∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;③∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),∴a﹣b+c=0,所以③错误;④∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;⑤∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.14.阅读理解:如图①所示,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由OM的长度m与∠MON的度数θ确定,有序数对(m,θ)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为()A.(4,60°)B.(4,45°)C.(2,60°)D.(2,50°)【考点】D5:坐标与图形性质;IH:方向角.【分析】设正六边形的中心为D,连接AD,判断出△AOD是等边三角形,根据等边三角形的性质可得OD=OA,∠AOD=60°,再求出OC,然后根据“极坐标”的定义写出即可.【解答】解:如图,设正六边形的中心为D,连接AD,∵∠ADO=360°÷6=60°,OD=AD,∴△AOD是等边三角形,∴OD=OA=2,∠AOD=60°,∴OC=2OD=2×2=4,∴正六边形的顶点C的极坐标应记为(4,60°).故选A.三、解答题(本大题共9小题,共70分)15.计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1+2×﹣4+1=﹣1+3﹣4+1=﹣1.16.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【考点】KD:全等三角形的判定与性质.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了50 名学生,其中最喜爱戏曲的有 3 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是72°.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由“新闻”类人数及百分比可得总人数,由总人数及“戏曲”类百分比可得其人数,求出“体育”类所占百分比,再乘以360°即可;(2)用样本中“新闻”类人数所占百分比乘以总人数2000即可.【解答】解:(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人);∵“娱乐”类人数占被调查人数的百分比为:×100%=36%,∴“体育”类人数占被调查人数的百分比为:1﹣8%﹣30%﹣36%﹣6%=20%,∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°;故答案为:50,3,72°.(2)2000×8%=160(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.18.(1)如图1所示,平行四边形纸片ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D 是矩形.(2)如图2所示,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形;②求四边形AFF′D两条对角线的长.【考点】LO:四边形综合题.【分析】(1)根据矩形的判定,可得答案;(2)①根据菱形的判定,可得答案;②根据勾股定理,可得答案.【解答】解:(1)纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为矩形,故答案为:矩;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:∵△AEF,将它平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF===5,∴AF=AD=5,∴四边形AFF′D是菱形;②连接AF′,DF,如图3:在Rt△DE′F中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF===,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′===3.19.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;(2)设这所学校再次购买y个乙种足球,根据题意列出不等式解答即可.【解答】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),可得:,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)设这所学校再次购买y个乙种足球,可得:50×(1+10%)×(50﹣y)+70×(1﹣10%)y≤2900,解得:y≤18.75,由题意可得,最多可购买18个乙种足球,答:这所学校最多可购买18个乙种足球.20.甲、乙两人进行摸排游戏,现有三张形状大小完全相同的牌,正面分别标有数字2,3,5,将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法写出所有可能的结果;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【考点】X7:游戏公平性;X6:列表法与树状图法.【分析】(1)根据题意直接列表,即可得出所有可能出现的结果;(2)根据概率的意义分别求出甲、乙获胜的概率,再进行比较,即可得出答案.【解答】解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果;(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为,乙获胜的概率为.∵>,∴甲获胜的概率大,游戏不公平.21.如图所示,CD是⊙O的弦,AB是⊙O的直径,且CD∥AB,连接AC,AD,OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分图形的周长(结果精确到1,参考数据:π=3.1, =1.4,=1.7).【考点】MC:切线的性质;MN:弧长的计算.【分析】(1)要求DA平分∠CDO,只要求得∠CDA=∠ADO成立即可,根据题目中的条件,可以得到∠CDA=∠ADO,从而可以解答本题;(2)图中阴影部分图形的周长是BE+DE+的长,根据(1)中的结论和题目中的条件,可以求得BE+DE+的长,从而可以解答本题.【解答】证明:(1)∵CD∥AB,∴∠CDA=∠DAO,∵OA=OD,∴∠ADO=∠DAO,∴∠CDA=∠ADO,∴DA平分∠CDO;(2)∵AC=CD,∴∠CDA=∠CAD,∵∠CDA=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,又∵AC=CD,CD∥AB,∴四边形AODC是菱形,∴OA=AC,连接OC,∵AB=12,∴OA=AC=OC=6,∴∠CAO=60°,作CF⊥AB于点F,∴CF=AC•sin60°=6×=3,AF=AC•cos60°=3,∵EB⊥AB,CD∥AB,则BE=CF=3,DE=AB﹣AF﹣CD=12﹣3﹣6=3,∵∠CAO=60°,AC∥DO,∴∠CAO=∠DOB=60°,∴,∴图中阴影部分图形的周长是: =2π+3+3=2×3.1+3×1.7+3≈14.22.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)过点A作AE⊥x轴于点E,设反比例函数解析式为y=.通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可;(2)由点B在反比例函数图象上可求出点B的坐标,设直线AB的解析式为y=ax+b,由点A、B的坐标利用待定系数法求出直线AB的解析式,令该解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S △AOB =OC•(y A ﹣y B )=×1×[3﹣(﹣4)]=.23.观察下表:我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y ,回答下列问题:(1)第3格的“特征多项式”为 16x+9y ,第4格的“特征多项式”为 25x+16y ,第n 格的“特征多项式”为 (n+1)2x+n 2y ;(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16. ①求x ,y 的值;②在①的条件下,第n 格的“特征多项式”是否有最小值?若有,求出最小值和相应的n 值;若没有,请说明理由.【考点】HE :二次函数的应用;43:多项式;9A :二元一次方程组的应用.【分析】(1)利用已知表格中x ,y 个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x ,y 的等式组成方程组求出答案; ②利用二次函数最值求法得出答案.【解答】解:(1)第3格的“特征多项式”为:16x+9y ;第4格的“特征多项式”为:25x+16y ; 第n 格的“特征多项式”为:(n+1)2x+n 2y ;故答案为:16x+9y;25x+16y;(n+1)2x+n2y;(2)①∵第1格的“特征多项式”的值为﹣8,第2格的“特征多项式”的值为﹣11,∴根据题意可得:,解得:;②有最小值,将x=﹣,y=代入(n+1)2x+n2y=(﹣)(n+1)2+n2=(n﹣12)2﹣,当n=12时,最小值为﹣.。

2023年云南省曲靖市中考一模 数 试题(学生版+解析版)

2023年云南省曲靖市中考一模 数 试题(学生版+解析版)

2023年云南省曲靖市中考一模数试题〈全卷三个大题,共24个小题,满分120分,考试用时120分钟〉注意事项z1.本卷为试题卷,考生必须在答题卡上解题作答,答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题〈本大题共12小题,每小题只有一个正确选项,每小题4分,共48分〉I.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为(〉.A.46×108B. 4.6xl08 c. 4.6×109 D. 4.6xl0102.一个物体从起始位置向西移动了5米后,又向东移动了7米,则这个物体最终位置在起始位置的(〕A西边12米B,因边2米C东边2米D东边12%3.如|蜀,AD是LCAE"f分线,LB=35。

,,三DAE=(:l)。

,则LACD的度数是(〉B c DA.25°B.60。

C.85°D.95。

4己知反比例函数y=兰�的图像上有三个点:A(2,y,),B(3,只).C(一l,为),贝11Y1、Y2、灼的大五小关系是〈A.)与>Y2 > YiB.Y2 >Yi>)性C.Y3 >Y i> Y2D.Y, > Y2 >)性5.如图,在1:,ABC中两条中线BE、CD相交子点。

,i?,1:,DOE的面积为币,1:,COB的面积为S2,则S1:S2=(〉A'r.A.l: 4B.2: 3C.I: 3D. I: 26.2022年2月22日春城飘雪,低温挡不住昆明人对雪的热情.21日军27日一周昆明每天的最低气温(单位:℃〉分别为:2,斗,), 3, 5, 5, 6,则下列关于这组数据说法错误的是(〉.A.平均数是3 C.中位数是323 B方差是7D众数是57.如图是一个立体图形正视图、左视图和俯视图,那么这个立体阁彤是(〉DD正视图左视图俯视剧A圆锥B三棱锥 C.四棱锥 D.五棱锥8.按一定规律排列的单项式:x,3泸,以3,7λ4, 9x5,..,...,第n个单项式是(〉A.(2n-l)x”B.(2n+l)x”c.(11-l) X” D.(n+l)x”9下列说法正确的是(〉A平分弦的直径垂直子弦,并且平分弦所对的两条弧:B圆的切线垂直子圆的半径:C.三角形的外心到三角形三边的距离相等:10.下列运算正确的是(〉D同弧或等弧所对的圆周角相等:A 1-(-2)1 = 2 B.3+../3 =3J3c.(1r =-2,。

【3套试卷】曲靖市中考一模数学精选及答案

【3套试卷】曲靖市中考一模数学精选及答案

中考模拟考试数学试卷含答案一、选择题:(本大题12个小题,每小题4分,共48分)1.在﹣1,0,2,3这四个数中,比0小的数是()A. ﹣1B. 0C. 2D. 32.下列图形中,是轴对称图形的是()A. B. C. D.3.计算3a3•(﹣2a)2的结果是()A. 12a5B. ﹣12a5C. 12a6D. ﹣12a64.△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长的比为()A. 3:4B. 4:3C. 9:16D. 16:95.1x+中,字母x的取值范围是()A. x≥0B. x≤0C. x≥﹣1D. x≤﹣16.下列说法正确的是()A. 了解我国青年人喜欢的电视节目应采用全面调查B. 对飞机乘客的安检应采用抽样调查C. “掷一次硬币,出现正面向上”是随机事件D. “购买1张彩票就中奖”是不可能事件7.已知a=4,b=﹣1,则代数式2a﹣b﹣3的值为()A. 4B. 6C. 7D. 128.19273-)A. ﹣2和﹣1B. ﹣3和﹣2C. ﹣4和﹣3D. ﹣5和﹣49.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π- B.2233π- C.433π- D.4233π-10.如图,每个图形都由同样大小的“△”按照一定的规律组成,其中第1个图形有4个“△”,第2个图形有7个“△”,第3个图形有11个“△”,…,则第8个图形中“△”的个数为()A. 46B. 48C. 50D. 5211.防洪大堤的横截面如图所示,已知AE∥BC,背水坡AB的坡度41:3i=,且AB=20米.身高1.7米的小明竖直站立于A点,眼睛在M点处测得竖立的高压电线杆顶端D点的仰角为24°,已知地面CB宽30米,则高压电线杆CD的高度为()(结果精确到整数,参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.45)A. 30米B. 32米C. 34米D. 36米12.若关于x的不等式组12()321(53)6x xx a a⎧+≤+⎪⎪⎨⎪->-+⎪⎩有三个整数解,且关于x的分式方程1122x a x x++=---有正数解,则所有满足条件的整数a 的值之和是( ) A. ﹣3 B. ﹣1 C. 0 D. 2二、填空题:(本大题6个小题,每小题4分,共24分)13.我国因环境污染造成的巨大经济损失每年高达680000000元,这个数用科学记数法表示为 ▲ 元.14.211()2---- =_____.15.某市近8日每日最高气温折线统计图如图所示,这组每日最高气温数据的位数是_____度.16.如图,△ABC 是⊙O 的内接三角形,AD 是直径,∠ABC=48°,则∠CAD=_____.17.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x 小时,两车之间的距离为y 千米,图中的折线表示y 与x 之间的函数关系.当两车之间的距离首次为300千米时,经过_____小时后,它们之间的距离再次为300千米.18.如图,已知在正方形ABCD 中,F 是CD 边上一点(不与C 、D 重合),过点D 作DG⊥BF 交BF 延长线于点G .连接AG ,交BD 于点E ,连接EF ,交CD 于点M .若DG =6,AG =2,则EF 长为__.三、解答题:(本大题2个小题,每小题8分,共16分)19.如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,求∠EFC的度数.20.我校4月份举办了教职工羽毛球赛,本次比赛共分三个项目:男双、女双和混双.比赛规定参赛男教师只能在男双或混双中选报一项,参赛女教师只能在女双或混双中选报一项,现将参赛人数和各项的参赛队数(两人组成一队)绘制成了如下不完整的统计图:(1)本次比赛共有_____名参赛教师,并补全条形统计图;(2)已知男双冠军分别是音乐教师和体育教师,女双冠军都是数学教师,混双冠军分别是数学男教师和美术女教师.暑假期问市教委将举办全市中小学教师羽毛球比赛,比赛规定:每所学校的参赛人数为两人,且参赛教师不得属于同一学科.所以学校决定:从三支冠军队伍中的数学教师中随机选取一人,再从其他教师中选取一人参加比赛.请用列表法或画树状图的方法求出所选两位教师恰好搭档参加混双项目的概率.四、解答题:(本大题4个小题,每小题10分,共40分)21.计算:(1)a(a+2b)﹣(a﹣2b)(a+b)(2)232 (1)11x xxx x+--÷++.22.如图,一次函数y=kx ﹣2的图象与反比例函数的图象交于A 、B 两点,过A 作AC ⊥x 轴于点C .已知cos ∠AOC=255,OA=5. (1)求反比例函数及直线AB 的解析式;(2)求△AOB 的面积.23.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的98,且乙种树木每棵80元,共用去资金6160元. (1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了2005a ,且总费用为6804元,求a 的值. 24.如图1,在△ABC 中,∠BAC=90°,点D 在AC 上,点E 在BA 的延长线上,连接BD ,CE ,AD=AE ,BD=CE .(1)若BD=17,AD=1,求BC 的长度;(2)将图1中的BD 延长,过点A 作AF ∥BC 交BD 延长线于点F ,如图2,连接FC ,若BC=BF ,求证:CD=CF .五、解答题:(本大题共2个小题,25题10分,26题12分,共22分) 25.阅读下列材料,解决问题材料一:如果一个正整数的个位数字等于除个位数字之外的其他各位数字之和,则称这个数为“刀塔数”,比如:因1+2=3,所以123是“刀塔数”,同理,55,1315也是“刀塔数”. 材料二:形如(2)(2)x x x -+的三位数叫“王者数”,其中x ﹣2,x ,x +2分别是这个数的百位数字,十位数字,个位数字.例如:135,468均为“王者数”问题:(1)已知a 既是“刀塔数”又是“王者数”,若数b (b >0)使10a +b 为一个“刀塔数”,求b 的最小值;(2)已知一个五位“刀塔数”abcde 与一个“王者数”的和能被3整除,且c ﹣a +d ﹣b=4,证明10507abcde <.26.如图1,在平面直角坐标系中,抛物线212333y x x =--与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于C 点,点E 在第一象限且四边形ACBE 为矩形.(1)求∠BCE 的度数;(2)如图2,F 为线段BC 上一动点,P 为第四象限内抛物线上一点,连接CP 、FP 、BP 、EF ,M ,N 分别是线段CP ,FP 的中点,连接MN ,当△BCP 面积最大,且MN +EF 最小时,求PF 的长度;(3)如图3,将△AOC 绕点O 顺时针旋转一个角度α(0°<α<180°),点A ,C 的对应点分别为A',C',直线A'C'与x 轴交于点G ,G 在x 轴正半轴上且OG=52.线段KH 在直线A'C'上平移( K 在H 左边),且KH=5,△KHC 是否能成为等腰三角形?若能,请求出所有符合条件的点K 的坐标;若不能,请说明理由.本试卷的题干、答案和解析均由组卷网()专业教师团队编校出品。

曲靖市数学中考全真模拟试卷(一)

曲靖市数学中考全真模拟试卷(一)

曲靖市数学中考全真模拟试卷(一)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列各方程组中,属于二元一次方程组的是()A .B .C .D .2. (2分)如果 | a + 2 | +(b − 1)2 =0 ,那么代数式a + b的值是()A . 1B . −1C . 0D . −23. (2分)下列结论中错误的是()A . 四边形的内角和等于它的外角和B . 点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为(-3,0)C . 方程x2+x-2=0的两根之积是-2D . 函数y= 的自变量x的取值范围是x>34. (2分)(2020·防城港模拟) 下列叙述正确的是()A . 方差越大,说明数据就越稳定B . 在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C . 不在同一直线上的三点确定一个圆D . 两边及其一边的对角对应相等的两个三角形全等5. (2分)函数的自变量x的取值范围是()A . x≤2B . x≥2且x≠3C . x≥2D . x≤2且x≠36. (2分)(2020·防城港模拟) 若与是同类项,则的值为()A . 1B . 2C . 3D . 47. (2分)(2014·河南) 如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A . 35°B . 45°C . 55°D . 65°8. (2分)(2020·防城港模拟) AB是⊙O的直径,BD、CD分别是过⊙O上点B、C的切线,且∠BDC=100°,连接AC,则∠A的度数是()A . 15°B . 30°C . 40°D . 45°9. (2分)如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=()A .B .C . 4D . 210. (2分)(2020·防城港模拟) 如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图形含有正方形的个数是()A . 102B . 91C . 55D . 3111. (2分)(2020·防城港模拟) 如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC 边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A .B .C .D .12. (2分)(2020·防城港模拟) 如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y =(x>0)的图像上,已知点B的坐标是(,),则k的值为()A . 10B . 8C . 6D . 4二、填空题 (共6题;共7分)13. (1分) (2015七下·绍兴期中) 若3xm+5y2与x3yn的和是单项式,则nm=________14. (1分)0.12516×(﹣8)17=________.15. (2分) (2018八上·连城期中) 若点A(﹣4,2)与点B关于y轴对称,则点B的坐标为________.16. (1分) (2019七下·杭州期中) 下列说法中:①若am=3,an=4,则am+n=7;②两条直线被第三条直线所截,一组内错角的角平分线互相平行;③若(t﹣2)2t=1,则t=3或t=0;④平移不改变图形的形状和大小;⑤经过一点有且只有一条直线与已知直线平行.其中,你认为错误的说法有________.(填入序号)17. (1分) (2015九上·宁波月考) △ABC中,∠A、∠B均为锐角,且,则△ABC的形状是________.18. (1分) (2018九上·阜宁期末) 在△ABC中,(tanC-1)2 +∣ -2cosB∣=0,则∠A=________三、解答题 (共8题;共73分)19. (5分) (2019九下·常熟月考) 解方程:(1) x2﹣2x﹣4=0(2)用配方法解方程:2x2+1=3x20. (5分)(2020·防城港模拟) 如图,在△ABC中,∠ABC=∠ACB,过A作AD⊥AB交BC的延长线于点D,过点C作CE⊥AC,使AE=BD.求证:∠E=∠D.21. (10分)(2020·防城港模拟) 化简下列各式:(1);(2) .22. (11分)(2020·防城港模拟) 某数学兴趣小组将我校九年级某班学生一分钟跳绳的测试成绩进行了整理,分成5个小组(x表成绩,单位:次,且100≤x<200),根据测试成绩绘制出部分频数分布表和部分频数分布直方图,其中B、E两组测试成绩人数直方图的高度比为4:1,请结合下列图标中相关数据回答下列问题:测试成绩频数分布表组别成绩x次频数(人数)频率A100≤x<1205B120≤x<140bC140≤x<1601530%D160≤x<18010E180≤x<200a(1)填空:a=________,b=________,本次跳绳测试成绩的中位数落在________组(请填写字母);(2)补全频数分布直方图;(3)已知本班中甲、乙两位同学的测试成绩分别为185次、195次,现要从E组中随机选取2人介绍经验,请用列表法或画树状图的方法,求出甲、乙两人中至少1人被选中的概率.23. (10分)(2020·防城港模拟) 对x,y定义一种新运算T,规定 (其中a,b均为非零常数),这里等式右边是通常的四则运算,例: .已知, .(1)求a,b的值;(2)若关于m的不等式组恰好有3个整数解,求实数p的取值范围.24. (2分)如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC⊥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?25. (15分)(2020·防城港模拟) 如图1,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,过点C作CF⊥CP交于C,交AB于点F,过点B作BM⊥CF于点N,交AC于点M.(1)若AP= AC,BC=4,求S△ACP;(2)若CP﹣BM=2FN,求证:BC=MC;(3)如图2,在其他条件不变的情况下,将“正方形ABCD”改为“矩形ABCD”,且AB≠BC,AC=AP,取CP 中点E,连接EB,交AC于点O,猜想:∠AOB与∠ABM之间有何数量关系?请说明理由.26. (15分)(2020·防城港模拟) 如图1,在平面直角坐标系中,抛物线y=ax2+bx+c分别交 x轴于A(4,0)、B(1,0),交y轴于点C(0,﹣3),过点A的直线交抛物线与另一点D.(1)求抛物线的解析式及点D的坐标;(2)若点P为x轴上的一个动点,点Q在线段AC上,且Q点到x轴的距离为,连接PC、PQ,当△PCQ 周长最小时,求出点P的坐标;(3)如图2,在(2)的结论下,连接PD,在平面内是否存在△A1P1D1 ,使△A1P1D1≌△APD(点A1、P1、D1的对应点分别是A、P、D,A1P1平行于y轴,点P1在点A1上方),且△A1P1D1的两个顶点恰好落在抛物线上?若存在,请求出点A1的横坐标m;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共73分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

2021-2022年云南省中考数学一模试卷含答案解析

2021-2022年云南省中考数学一模试卷含答案解析

中考数学一模试卷一、选择题(每小题4分,共32分)1.(4分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.2.(4分)下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x33.(4分)若代数式2x a y3z c与是同类项,则()A.a=4,b=2,c=3 B.a=4,b=4,c=3 C.a=4,b=3,c=2 D.a=4,b=3,c=44.(4分)下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.5.(4分)若bk<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限6.(4分)若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是()A.1 B.2 C.﹣D.﹣7.(4分)如图,CD是⊙O的直径,已知∠1=30°,则∠2=()A.30° B.45° C.60° D.70°8.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(每小题3分,共18分)9.(3分)的算术平方根是.10.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为.11.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为.12.(3分)x2+kx+9是完全平方式,则k= .13.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c= .14.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.三、解答题(共9小题,共70分)15.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.16.(7分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.17.(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;(2)该班学生体育测试成绩的中位数落在等级内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?18.(8分)如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD=BC,试判断四边形ABED的形状,并说明理由.19.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.20.(6分)某商店从厂家以每件18元购进一批商品出售,若每件售价为a元,则可售出(320﹣10a)件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?21.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC最新y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.22.(8分)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?23.(12分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.参考答案与试题解析一、选择题(每小题4分,共32分)1.(4分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.2.(4分)下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x3【解答】解:A、x•x6=x7,原式计算错误,故本选项错误;B、(x2)3=x6,原式计算正确,故本选项正确;C、(x+2)2=x2+4x+4,原式计算错误,故本选项错误;D、(2x)3=8x3,原式计算错误,故本选项错误.故选B.3.(4分)若代数式2x a y3z c与是同类项,则()A.a=4,b=2,c=3 B.a=4,b=4,c=3 C.a=4,b=3,c=2 D.a=4,b=3,c=4【解答】解:∵代数式2x a y3z c与是同类项,∴a=4,b=3,c=2,故选C.4.(4分)下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选B.5.(4分)若bk<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限【解答】解:由bk<0,知①b>0,k<0;②b<0,k>0,①当b>0,k<0时,直线经过第一、二、四象限,②b<0,k>0时,直线经过第一、三、四象限.综上可得函数一定经过一、四象限.故选D.6.(4分)若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是()A.1 B.2 C.﹣D.﹣【解答】解:依题意得:x1+x2=3,x1•x2=﹣4,所以+===﹣.故选:C.7.(4分)如图,CD是⊙O的直径,已知∠1=30°,则∠2=()A.30° B.45° C.60° D.70°【解答】解:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ACD中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°,故选C.8.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.二、填空题(每小题3分,共18分)9.(3分)的算术平方根是.【解答】解:∵,,故答案为:2.10.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为 4.4×106.【解答】解:将4400000用科学记数法表示为:4.4×106.故答案为:4.4×106.11.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为 2 .【解答】解:菱形的面积=×1×4=2.故答案为:2.12.(3分)x2+kx+9是完全平方式,则k= ±6 .【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.13.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c= 1 .【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.14.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是(63,32).【解答】方法一:解:∵直线y=x+1,x=0时,y=1,∴A1B1=1,点B2的坐标为(3,2),∴A1的纵坐标是:1=20,A1的横坐标是:0=20﹣1,∴A2的纵坐标是:1+1=21,A2的横坐标是:1=21﹣1,∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22﹣1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23﹣1,即点A4的坐标为(7,8).据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.即点A n的坐标为(2n﹣1﹣1,2n﹣1).∴点A6的坐标为(25﹣1,25).∴点B6的坐标是:(26﹣1,25)即(63,32).故答案为:(63,32).方法二:∵B1C1=1,B2C2=2,∴q=2,a1=1,∴B6C6=25=32,∴OC1=1=21=1,OC2=1+2=22﹣1,OC3=1+2+4=23﹣1…OC6=26﹣1=63,∴B6(63,32).三、解答题(共9小题,共70分)15.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.【解答】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.16.(7分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.【解答】解:(﹣a+1)÷===,当a=0时,原式=.17.(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为4% ,C级学生所在的扇形圆心角的度数为72°;(2)该班学生体育测试成绩的中位数落在等级 B 内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?【解答】解:(1)总人数为25÷50%=50人,D成绩的人数占的比例为2÷50×100%=4%,表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°,故答案为:4%,72°;(2)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B 成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;故答案为:B;(3)×500=380(人),答:估计这次考试中A级和B级的学生共有380人.18.(8分)如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD=BC,试判断四边形ABED的形状,并说明理由.【解答】(1)证明:∵∠BDC=90°,∠BDE=∠DBC,∴∠EDC=∠BDC﹣∠BDE=90°﹣∠BDE,又∵∠C=90°﹣∠DBC,∴∠EDC=∠C,∴DE=EC;(2)若AD=BC,则四边形ABED是菱形.证明:∵∠BDE=∠DBC.∴BE=DE,∵DE=EC,∴DE=BE=EC=BC,∵AD=BC,∴AD=BE,∵AD∥BC,∴四边形ABED是平行四边形,∵BE=DE,∴▱ABED是菱形.19.(8分)在Rt△ABC中,∠AC B=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.【解答】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.20.(6分)某商店从厂家以每件18元购进一批商品出售,若每件售价为a元,则可售出(320﹣10a)件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?【解答】解:设每件商品的售价定为a元,则(a﹣18)(320﹣10a)=400,整理得a2﹣50a+616=0,∴a1=22,a2=28∵18(1+25%)=22.5,而28>22.5∴a=22.卖出商品的件数为320﹣10×22=100.答:每件商品的售价应定为22元,需要卖出这种商品100件.21.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC最新y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA 2=90°,∴点A到A2的路径长为=π.22.(8分)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【解答】解:(1)设第一次每个书包的进价是x元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.23.(12分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.【解答】解:(1)∵分别交y轴、x轴于A、B两点,∴A、B点的坐标为:A(0,2),B(4,0),将x=0,y=2代入y=﹣x2+bx+c得c=2,将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=,∴抛物线解析式为:y=﹣x2+x+2;(2)如答图1,设MN交x轴于点E,则E(t,0),BE=4﹣t.∵tan∠ABO===,∴ME=BE•tan∠ABO=(4﹣t)×=2﹣t.又N点在抛物线上,且x N=t,∴y N=﹣t2+t+2,∴MN=y N﹣ME=﹣t2+t+2﹣(2﹣t)=﹣t2+4t,∴当t=2时,MN有最大值4;(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.(i)当D在y轴上时,设D的坐标为(0,a)由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2,从而D为(0,6)或D(0,﹣2),(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,易得D1N的方程为y=x+6,D2M的方程为y=x﹣2,由两方程联立解得D为(4,4)故所求的D点坐标为(0,6),(0,﹣2)或(4,4).。

云南曲靖中考模拟(样卷)数学考试卷(解析版)(初三)中考模拟.doc

云南曲靖中考模拟(样卷)数学考试卷(解析版)(初三)中考模拟.doc

云南曲靖中考模拟(样卷)数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】a的倒数是﹣1.5,则a是()A.﹣ B. C.﹣ D.【答案】C【解析】试题分析:∵﹣1.5=﹣,﹣的倒数为﹣,∴a=﹣;故选C.考点:倒数.【题文】自2016年1月21日开建的印尼雅万高铁是中国和印尼合作的重大标志性项目,这条高铁的总长为152公里.其中“152公里”用科学记数法可以表示为()A.0.152×106m B.1.52×105m C.1.52×106m D.152×105m【答案】B【解析】试题分析:根据1公里=1000米可得152公里=152×1000米,再用科学记数法表示152000,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.152公里=152×1000米=152000米=1.52×105m ,故选:B.考点:科学记数法—表示较大的数.【题文】下列运算正确的是()A.a+a=2a2 B.a2•a=2a2 C.(﹣ab)2=2ab2 D.(2a)2÷a=4a【答案】D【解析】试题分析:A、a+a=2a,故此选项错误;B、a2•a=a3,故此选项错误;C、(﹣ab)2=a2b2,故此选项错误;D、(2a)2÷a=4a,正确.考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【题文】小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数l【答案】C【解析】试题分析:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是°,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.考点:中心对称图形;轴对称图形.【题文】不等式组的解集在数轴上表示为()A. B.C. D.【答案】A【解析】试题分析:,∵解不等式2x&lt;0得:x<0,解不等式2+x≥1得:x≥﹣1,∴不等式组的解集为:﹣1≤x<0,在数轴上表示不等式组的解集为:,故选A.考点:在数轴上表示不等式的解集;解一元一次不等式组.【题文】将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.【解析】试题分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.考点:简单组合体的三视图.【题文】平面直角坐标系中,正六边形ABCDEF的起始位置如图1所示,边AB在x轴上,现将正六边形沿x 轴正方向无滑动滚动,第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD落在x轴上,如此继续下去.则第2016次滚动后,落在x轴上的是()A.边DE B.边EF C.边FA D.边AB【答案】D【解析】试题分析:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2016÷6=336,∵第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD落在x轴上,如此继续下去,第六次滚动后,边AB落在x轴上,∴第2016次滚动后,落在x轴上的是:边AB.故选D.考点:正多边形和圆;坐标与图形性质;旋转的性质.【题文】使有意义的x的取值范围是__________.【答案】x≠2【解析】试题分析:分母为零,分式无意义;分母不为零,分式有意义.根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.考点:分式有意义的条件.【题文】分式方程=3的解为.【答案】x=6.【解析】试题分析:方程两边乘以(x﹣2)得:4x﹣12=3(x﹣2),4x﹣12=3x﹣6,4x﹣3x=12﹣6,x=6,检验:把x=6代入(x﹣2)≠0.故x=6是原方程的根.故答案为:x=6.考点:分式方程的解.【题文】如图,在平行四边形ABCD中,AB>AD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG 交CD于点H,则下列结论正确的有:.①AG平分∠DAB;②CH=DH;③△ADH是等腰三角形;④S△ADH=S四边形ABCH.【答案】①③.【解析】试题分析:根据作图的方法可得AG平分∠DAB,故①正确;∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴△ADH是等腰三角形,故③正确;故答案为:①③.考点:平行四边形的性质;等腰三角形的判定与性质;作图—基本作图.【题文】如图,小明在大楼30米高即(PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚处的俯角为60°.巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC,则A到BC的距离为米.【答案】10.【解析】试题分析:如图作AM⊥BC于M,设AM=x.∵tan∠ABM=,∴∠ABM=30°,∴AB=2AM=2x,∵∠HPB=30°,∴∠PBH=90°﹣∠HPB=60°,∴∠ABP=180°﹣∠PBH﹣∠ABM=90°,∴∠BPA=∠BAP=45°,∴AB=BP=2x,在RT△PBH中,∵sin∠PBH=,∴,∴x=10.故答案为10.考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【题文】如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为______________.【答案】(10,3).【解析】试题分析:∵四边形A0CD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10﹣6=4,设EC=x,则DE=EF=8﹣x,在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3),故答案为:(10,3).考点:翻折变换(折叠问题);坐标与图形性质.【题文】已知下列命题:①正五边形的每个外角等于72°;②90°的圆周角所对的弦是直径;③方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根;④函数y=kx+b,当k>0时,图象有可能不经过第二象限;真命题是.【答案】①②.【解析】试题分析:①正五边形的每个外角等于72°是真命题;②90°的圆周角所对的弦是直径是真命题;③方程ax2+bx+c=0,当a=0时,b2﹣4ac>0时,方程一定有一个不等实根是假命题;④函数y=kx+b,当k>0,b>0时,图象经过第二象限,是假命题;故答案为:①②.考点:命题与定理.【题文】计算:﹣12016+×()﹣2+(π﹣3.14)0﹣|﹣|.【答案】24【解析】试题分析:原式利用乘方的意义,立方根定义,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.试题解析:原式=﹣1+3×9+1﹣3=﹣1+27+1﹣3=24.考点:实数的运算;零指数幂;负整数指数幂.【题文】已知M=(1﹣)÷(1)化简M;(2)当a满足方程a2﹣3a+2=0时,求M的值.【答案】(1)M=a+1;(2)当a=1时,原式=2;当a=2时,原式=3.【解析】试题分析:(1)根据分式混合运算的法则先算括号里面的,再算除法即可;(2)求出a的值,代入分式进行计算即可.试题解析:(1)M=•=a+1;(2)解方程a2﹣3a+2=0得,a1=1,a2=2,当a=1时,原式=2;当a=2时,原式=3.考点:分式的化简求值.【题文】“地球一小时(Earth Hour)”是世界自然基金会(WWF)应对全球气候变化所提出的一项倡议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30﹣21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2013年,因为西方复活节的缘故,活动提前到2013年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以“地球一小时﹣﹣你怎么看?”为主题对公众进行了调查,主要有4种态度A:了解、赞成并支持 B:了解,忘了关灯 C:不了解,无所谓 D:纯粹是作秀,不支持,请根据图中的信息回答下列问题:(1)这次抽样的公众有人;(2)请将条形统计图补充完整;(3)在扇形统计图中,“不了解,无所谓”部分所对应的圆心角是 162 度;(4)若城区人口有300万人,估计赞成并支持“地球一小时”的有 45万人.并根据统计信息,谈谈自己的感想.【答案】(1)1000;(2)100人;图见试题解析.(3)162°;(4)45万.1000;162;45万.【解析】试题分析:(1)根据题意可得:B类的有300人,占30%;即可求得总人数;(2)进而可求得D类的人数,据此可补全条形图;(3)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比,可求得“不了解,无所谓”部分所对应的圆心角度数;(4)用样本估计总体,可估计赞成的人数.试题解析:(1)300÷30%=1000人.故这次抽样的公众有1000人;(2)1000﹣150﹣300﹣450=100人,作图为:(3)×360°=162°.故“不了解,无所谓”部分所对应的圆心角是162度;(4)300×=45(万人).我们要节约资源保护环境.谈感想:言之有理给分,没有道理不给分.故答案为:1000;162;45万.考点:条形统计图;用样本估计总体;扇形统计图.【题文】小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A、B、C、D四块积木.(1)小明选择把积木A和B放入图3,要求积木A和B的九个小圆恰好能分别与图3中的九个小圆重合,请在图3中画出他放入方式的示意图(温馨提醒:积木A和B的连接小圆的小线段还是要画上哦!);(2)现从A、B、C、D四块积木中任选两块,求恰好能全部不重叠放入的概率.【答案】(1)见解析;(2).【解析】试题分析:(1)按要求画出图形;(2)先利用画树状图展示所有12种等可能的结果数,再找出恰好能全部不重叠放入的结果数,然后根据概率公式求解.试题解析:(1)如图3,(2)画树状图:共有12种等可能的结果数,其中恰好能全部不重叠放入的结果数为4,所以恰好能全部不重叠放入的概率==.考点:列表法与树状图法.【题文】某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908070已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?【答案】(1)超过200人;(2)七年级参加春游学生人数有120人,八年级参加春游学生人数有90人.【解析】试题分析:(1)设两个年级参加春游学生人数之和为a人,分两种情况讨论,即a>200和100<a≤200,即可得出答案;(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,根据两种情况的费用,即100<x≤200和x>200分别列方程组求解,即可得出答案.试题解析:(1)设两个年级参加春游学生人数之和为a人,若a>200,则a=14700÷70=210(人).若100<a≤200,则a=14700÷80=183(不合题意,舍去).则两个年级参加春游学生人数之和等于210人,超过200人.(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,则①当100<x≤200时,得,解得.②当x>200时,得,解得(不合题意,舍去).则七年级参加春游学生人数有120人,八年级参加春游学生人数有90人.考点:二元一次方程组的应用.【题文】如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作CE⊥AC,且使AE∥BD,连结DE .(1)求证:AD=CE.(2)若DE=3,CE=4,求tan∠DAE的值.【答案】(1)证明见解析;(2)tan∠DAE=.【解析】试题分析:(1)利用已知条件证明△BAD≌△ACE,根据全等三角形的对应边相等即可解答;(2)由△BAD≌△ACE,得到BD=AE,AD=CE,从而证明四边形ABDE为平行四边形,再证明∠EDA=∠BAD=90°,最后根据三角函数即可解答.试题解析:(1)∵AB=AC,∴∠B=∠BCA,∵AE∥BD,∴∠CAE=∠BCA,∴∠B=∠CAE,又∵AD⊥AB,CE⊥AC ,∴∠BAD=∠ACE=90°,在△BAD和△ACE中,,∴△BAD≌△ACE.∴AD=CE.(2)∵△BAD≌△ACE,∴BD=AE,AD=CE,∵AE∥BD,∴四边形ABDE为平行四边形.∴DE∥AB,∴∠EDA=∠BAD=90°,∴tan∠DAE=.又∵AD=CE=4,DE=3,∴tan∠DAE==.考点:全等三角形的判定与性质;平行四边形的判定与性质.【题文】如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且PA⊥y轴于点A,已知A (0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.【答案】(1)反比例函数的表达式为y=﹣;(2)点Q的坐标为(﹣,9)或(,﹣3).【解析】试题分析:(1)由一次函数表达式可得出点C的坐标,结合A点坐标以及三角形的面积公式可得出AP的长度,从而得出点P的坐标,由点P的坐标结合待定系数法即可求出一次函数及反比例函数的表达式;(2)设点Q的坐标为(m,﹣m+3).由一次函数的表达式可找出点B的坐标,结合等底三角形面积的性质可得出关于m的一元一次方程,解方程即可得出m的值,将其代入点Q的坐标中即可.试题解析:(1)令一次函数y=kx+3中的x=0,则y=3,即点C的坐标为(0,3),∴AC=3﹣(﹣6)=9.∵S△CAP=AC•AP=18,∴AP=4,∵点A的坐标为(0,﹣6),∴点P的坐标为(4,﹣6).∵点P在一次函数y=kx+3的图象上,∴﹣6=4k+3,解得:k=﹣;∵点P在反比例函数y=的图象上,∴﹣6=,解得:n=﹣24.∴一次函数的表达式为y=﹣x+3,反比例函数的表达式为y=﹣.(2)令一次函数y=﹣x+3中的y=0,则0=﹣x+3,解得:x=,即点B的坐标为(,0).设点Q的坐标为(m,﹣m+3).∵△OCQ的面积是△BCO面积的2倍,∴|m|=2×,解得:m=±,∴点Q的坐标为(﹣,9)或(,﹣3).考点:反比例函数与一次函数的交点问题.【题文】如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB 于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)若点D是劣弧AC的中点,OH=1,AH=2,求弦AC的长.【答案】(1)证明见解析;(2)AC=4.【解析】试题分析:(1)根据等腰三角形的性质和直角三角形两锐角互余的性质,证得∠PCF+∠AC0=90°,即OC⊥PC ,即可证得结论;(2)先根据勾股定理求出DH,再通过证明△OGA≌△OHD,得出AC=2AG=2DH,求出弦AC的长.试题解析:(1)连接OC,∵OA=OC,∴∠ACO=∠OAC,∵PC=PF,∴∠PCF=∠PFC,∵DE⊥AB,∴∠OAC+∠AFH=90°,∵∠PDF=∠AFH,∴∠PFC+∠OAC=90°,∴∠PCF+∠AC0=90°,即OC⊥PC,∴PC是⊙O的切线;(2)连接OD交AC于G.∵OH=1,AH=2,∴OA=3,即可得OD=3,∴DH===2.∵点D在劣弧AC中点位置,∴AC⊥DO,∴∠OGA=∠OHD=90°,在△OGA和△OHD中,,∴△OGA≌△OHD(AAS),∴AG=DH,∴AC=4.考点:切线的判定.【题文】如图,抛物线y=ax2+bx+c经过点A(﹣3,0)、B(1,0)、C(0,3).(1)求抛物线的解析式;(2)若点P为抛物线在第二象限上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【答案】(1)抛物线y=﹣x2﹣2x+3;点P的坐标为(﹣,);(3)M(0,1).【解析】试题分析:(1)用l=OA×|yP|+OA×|xP|﹣OA×OC=×3×(﹣x2﹣2x+3)+×3×(﹣x)﹣×3×3=﹣x2﹣x=﹣(x+)2+,∴当x=﹣时,S最大=,∴﹣(﹣)2﹣2×(﹣)+3=,∴点P的坐标为(﹣,),(3)如图所示,当△ADM是等腰直角三角形,只能∠AMD=90°,设M(0,m),过D作DF⊥x轴,∴F(0,4),∴OM=m,PM=4﹣m,DF=1,∴△AOM≌△MFD,∴OM=DF=1,PM=OA=3,∴,∴m=1,∴M(0,1)考点:二次函数综合题.。

曲靖市师宗县彩云中学2019届中考数学一模试卷

曲靖市师宗县彩云中学2019届中考数学一模试卷

曲靖市师宗县彩云中学2019届中考数学一模试卷一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.下列运算正确的是( )A .33623a a a =+B .236a a a =⋅C .222()a b a b -=-D .236()=a a --2.2014年全国两会政府工作报告中指出:今年再解决6000万农村人口的饮水安全问题,经过今明两年努力,要让所有农村居民都能喝上干净的水.将6000万用科学计数法表示为( )A .6×107B .6×108C .6×104D .60×107 3.某班5位同学的身高(单位:米)为1.4,1.5,1.6,1.6,1.7,对于这组数据下列说法正确的是( )A .中位数是1.6B .平均数是1.5C .极差是0.1D .众数是1.74.如图,在下列四个几何体中,主视图、俯视图、左视图都相同的有( )A .1个B .2个C .3个D .4个 5.如图,平行四边形ABCD 的对角线相交于点O ,且AB=5,△OCD的周长为23,则四边形ABCD 的两条对角线的和是(A .18B .28C .36D .46 6.在函数x 的取值范围是( ) A .x ≤1 B .x ≥1 C .x <1D .x >17.如图,⊙O 的直径CD ⊥AB ,∠B=60°,则∠AOC 等于( )第7题图A BOCD第5题图A .30°B .40°C .50°D .60°8.二次函数y = -x 2+bx +c 的图象如图所示,若点A (x 1 ,y 1)、B (x 2 ,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是( ) A .y 1≤y 2 B .y 1<y 2 C .y 1≥y 2 D .y 1>y 2二、填空题(本大题共6个小题,每小题3分,满分18分) 9.-6的绝对值的相反数是 . 10.反比函数ky x=的图像经过点(3,-1),则k 的值为 . 11.已知圆锥的底面半径是3cm ,高为4cm ,则圆锥的侧面积是 cm 2(结果保留π)12.已知2a b +=,1ab =,则2332a b a b +的值为.13.如图,AB ∥CD ,EF ⊥AB 于E ,EF 交CD 于F ,已知∠1=60°,则∠2 = .14.如图,是用火柴棒拼成的图形,则第n 个图形需 根火柴棒.三、解答题(本大题共9个小题,满分58分)15.(4分)计算:02120144sin 452--()16.(5分)解方程:13122x x-=-- 17.(6分)某制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天 获得利润不少于2100元,则至少需要安排多少名工人制作衬衫?第8题图CD BAEF12图 第13题图BF DC EA18.(6分)如图,点F 、B 、E 、C 在同一直线上,并且FB=CE ,∠ABC=∠DEF .能否由上面的已知条件证明△ABC ≌△DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC ≌△DEF ,并给出证明.提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF .19.(6分)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼上的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的仰角为30°.若旗杆与教学楼的水平距离CD 为9m留根号)20.(7分)为了解我县1600名初中毕业生参加云南省数学学业水平考试的成绩情况(得分取整数),我们随机抽取了部分学生的数学成绩,将其等级情况制成不完整的统计表如下:根据以上提供的信息解答下列问题:(1)若抽取的学生的数学成绩的及格率(C 级及其以上为及格)为77.5%,则抽取的学生数是多少人?其中成绩为C 级的学生有多少人? (2)求出D 级学生的人数在扇形统计图中的圆心角. (3)请你估计全县数学成绩为A 级的学生总人数. 21.(7分)把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、A 级B 级C 级D 级B AC DE2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张. (1)用画树状图或列表的方法写出所有可能出现的结果; (2)试求取出的两张卡片数字之积不小于5的概率;(3)若取出的两张卡片数字之积为奇数,则甲胜;取出的两张卡片数字之积为偶数,则乙胜;试分析这个游戏是否公平?请说明理由. 22.(8分)如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E . (1)判断四边形ACED 的形状,并说明理由; (2)若BD,求线段BE 的长.23.(9分)已知二次函数21342y x x =-+的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.曲靖市师宗县彩云中学2019届中考数学一模试卷参考答案一.选择题: 1.D 2.A 3.A 4.B 5.C 6.D 7.D 8.B二.填空题: 9.-6 10.-3 11.15π 12.2 13.30° 14.2n+1 三.解答题:15.(4分)解:原式=1+-4×2-4= -3 16.(5分)解:去分母得,4=x -2 即x =6经检验是原方程的根,则原方程的根是x =6 17.(6分)解:(1)设应安排x 名工人制作衬衫,依题意得, 3x =5(24-x ) 解得x =15 所以,24-x =24-15=9答:应安排15名工人制作衬衫,9名工人制作裤子. (2)设应安排y 名工人制作衬衫,依题意得, 3×30y+5×16(24-y)≥2100 解得y ≥18 答:至少应安排18名工人制作衬衫. 18.(6分)解:不能; 选择条件:①AB=DE ; ∵FB=CE ,∴FB+BE=CE+BE , 即FE=CB ,在△ABC 和△DEF 中AB=DEABC=DEF FE=CB ⎧⎪∠∠⎨⎪⎩∴△ABC ≌△DEF (SAS ). (也可以选择③)略19.(6分)在Rt △ACD 中, ∵tan ∠ACD =DCAD, ∴tan30°=9AD, ∴AD =33, 在Rt △BCD 中, ∵∠BCD =45° ∴BD =CD =9∴AB =AD +BD =33+9 答:旗杆的高度为(33+9)米。

云南省曲靖市2019-2020学年中考第一次质量检测数学试题含解析

云南省曲靖市2019-2020学年中考第一次质量检测数学试题含解析

云南省曲靖市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE2.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补3.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-4.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个5.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8 C.5x+4y=-3 D.3x-4y=-86.如图由四个相同的小立方体组成的立体图像,它的主视图是().A.B.C.D.7.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x +c的图象可能是()A. B.C.D.8.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b29.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<210.实数4的倒数是()A.4 B.14C.﹣4 D.﹣1411.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K 的值不可能是( )A .-5B .-2C .3D .512.以x 为自变量的二次函数y=x 2﹣2(b ﹣2)x+b 2﹣1的图象不经过第三象限,则实数b 的取值范围是( )A .b≥1.25B .b≥1或b≤﹣1C .b≥2D .1≤b≤2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,⊙P 的圆心在x 轴上,且经过点A (m ,﹣3)和点B (﹣1,n ),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P 的圆心的坐标是_____.14.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.15.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .16.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.17.在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_________.18.因式分解:a 3b ﹣ab 3=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上).已知AB =80m ,DE =10m ,求障碍物B ,C 两点间的距离.(结果保留根号)20.(6分)如图,已知AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.21.(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a 的值为 ,中位数在第 组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率. 组别成绩x 分 频数(人数) 第1组 50≤x <60 6第2组60≤x <70 8 第3组70≤x <80 14 第4组80≤x <90 a 第5组 90≤x <100 1022.(8分)在矩形纸片ABCD 中,AB=6,BC=8,现将纸片折叠,使点D 与点B 重合,折痕为EF ,连接DF .(1)说明△BEF 是等腰三角形;(2)求折痕EF 的长.23.(8分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.24.(10分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7米,梯子顶端到地面的距离AC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D 为1.5米,求小巷有多宽.25.(10分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). 请画出△ABC 向左平移5个单位长度后得到的△A B C ;请画出△ABC 关于原点对称的△A B C ; 在轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写出P 的坐标.26.(12分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.27.(12分)计算:﹣14﹣2×(﹣3)2+327-÷(﹣13)如图,小林将矩形纸片ABCD 沿折痕EF 翻折,使点C 、D 分别落在点M 、N 的位置,发现∠EFM=2∠BFM ,求∠EFC 的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键. 2.C【解析】【分析】分清截线和被截线,根据平行线的性质进行解答即可.【详解】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.3.A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x =100x,故选A.4.C【解析】【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.5.D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.6.D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选D.7.A【解析】【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上,∴x=ax 2+bx+c ,∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点,∴方程ax 2+(b-1)x+c=0有两个正实数根.∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点, 又∵-2b a>0,a >0 ∴-12b a -=-2b a +12a >0 ∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件,故选A .8.B【解析】【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b )1=a 1±1ab+b 1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A 选项:4x 3•1x 1=8x 5,故原题计算正确;B 选项:a 4和a 3不是同类项,不能合并,故原题计算错误;C 选项:(-x 1)5=-x 10,故原题计算正确;D 选项:(a-b )1=a 1-1ab+b 1,故原题计算正确;故选:B .【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则.9.D【解析】【分析】【详解】解:∵直线l1与x轴的交点为A(﹣1,0),∴﹣1k+b=0,∴242y xy kx k=-+⎧⎨=+⎩,解得:42282kxkkyk-⎧=⎪⎪+⎨⎪=⎪+⎩.∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,∴42282kkkk-⎧>⎪⎪+⎨⎪>⎪+⎩,解得0<k<1.故选D.【点睛】两条直线相交或平行问题;一次函数图象上点的坐标特征.10.B【解析】【分析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【详解】解:实数4的倒数是:1÷4=14.故选:B.【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.11.B【解析】【分析】当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y 轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.12.A【解析】∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,解得b≥.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线与x轴的交点的横坐标分别为x1,x2,则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,∴此种情况不存在.∴b≥.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(2,0)【解析】【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,∵A(m,﹣3)和点B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,设P(a,0),∴a+1=3,a=2,∴P(2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.14.3.308×1.【解析】【分析】正确用科学计数法表示即可.【详解】解:33080=3.308×1【点睛】科学记数法的表示形式为10na 的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.15.-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解!16.【解析】【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【详解】设大和尚x 人,小和尚y 人,由题意可得. 故答案为.【点睛】本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组. 17.2m【解析】【分析】本题是已知圆的直径,弦长求油的最大深度其实就是弧AB 的中点到弦AB 的距离,可以转化为求弦心距的问题,利用垂径定理来解决.【详解】解:过点O 作OM ⊥AB 交AB 与M ,交弧AB 于点E .连接OA .在Rt △OAM 中:OA=5m ,AM=AB=4m .根据勾股定理可得OM=3m ,则油的最大深度ME 为5-3=2m .【点睛】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题. 18.ab (a+b )(a ﹣b )【解析】【分析】先提取公因式ab ,然后再利用平方差公式分解即可.【详解】a 3b ﹣ab 3=ab (a 2﹣b 2)=ab (a+b )(a ﹣b ),故答案为ab (a+b )(a ﹣b ).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(70﹣103)m .【解析】【分析】过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H.通过解Rt ADF V 得到DF 的长度;通过解Rt CDE△得到CE 的长度,则BC BE CE =-.【详解】如图,过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H.则DE=BF=CH=10m ,在Rt ADF V 中,∵AF=80m−10m=70m,45ADF ∠=o ,∴DF=AF=70m.在Rt CDE △中,∵DE=10m,30DCE ∠=o ,∴)tan30DE CE m ===o ,∴(70.BC BE CE m =-=-答:障碍物B ,C两点间的距离为(70.m -20.证明见解析.【解析】【分析】根据等式的基本性质可得BAC DAE ∠=∠,然后利用SAS 即可证出ABC ADE ∆≅∆,从而证出结论.【详解】证明:BAD CAE ∠=∠Q ,BAD DAC CAE DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC ∆和ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴∆≅∆,BC DE ∴=.【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.21.(1)①12,3. ②详见解析.(2)13. 【解析】分析:(1)①根据题意和表中的数据可以求得a 的值;②由表格中的数据可以将频数分布表补充完整; (2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率. 详解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为12,3;②如图,(2)121050×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小强分在一起的概率为:13.点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.22.(1)见解析;(2)15 2.【解析】【分析】(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【详解】(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE=254=DE=BF,AE=8﹣DE=8﹣254=74=BM ,∴FM=254﹣74=92. 在Rt △EMF 中,由勾股定理得:EF=22962()+=152. 故答案为152.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键. 23.(1)一次函数为112y x =-+,反比例函数为12y x =-;(2)△AHO 的周长为12 【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy 为定值,列出方程,求出k 的值,便可求出反比例函数的解析式;根据k 的值求出B 两点的坐标,用待定系数法便可求出一次函数的解析式. (2)由(1)知AH 的长,根据勾股定理,可得AO 的长,根据三角形的周长,可得答案.详解:(1)∵tan ∠AOH=AH OH =43 ∴AH=43OH=4 ∴A (-4,3),代入k y x =,得 k=-4×3=-12∴反比例函数为12y x =-∴122m -=-∴m=6∴B (6,-2)∴4362a b a b -+=⎧⎨+=-⎩ ∴a =12-,b=1 ∴一次函数为112y x =-+ (2)2222345OA AH OH =+=+=△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.24.2.7米.【解析】【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【详解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.25.(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【解析】【分析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A 1B 1C 1如图所示;(2)△A 2B 2C 2如图所示;(3)△PAB 如图所示,点P 的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用26.(1)2x 2x 3y -++=;(2)1x 3-<<.【解析】【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ;从而得出抛物线的解析式; (2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过()1,0-和()0,3两点, 得103b c c --+=⎧⎨=⎩, 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2x 2x 3y -++=,(2)令y 0=,得2x 2x 30-++=.解这个方程,得1x 3=,2x 1=-.∴此二次函数的图象与x 轴的另一个交点的坐标为()3,0.当1x 3-<<时,y 0>.【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点. 27.(1)﹣10;(2)∠EFC=72°.【解析】【分析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC ,∵∠EFM=2∠BFM ,∴设∠EFM=∠EFC=x ,则有∠BFM=12x , ∵∠MFB+∠MFE+∠EFC=180°,∴x+x+12x=180°, 解得:x=72°,则∠EFC=72°.【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省曲靖市师宗县彩云中学2016届中考数学一模试题一、选择题1.﹣5的相反数的倒数是()A.B.﹣5 C.﹣D.52.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.下列函数中,自变量的取值范围是x≥2的是()A.y=x﹣2 B.C.D.4.下列几何体中,其主视图不是中心对称图形的是()A.B.C.D.5.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C. D.6.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15° B.30° C.45° D.60°7.下列说法正确的是()A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定8.要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=15 B. x(x﹣1)=15 C.x(x+1)=15 D.x(x﹣1)=15二、填空题9.写出一个以2,﹣1为解的一元二次方程.10.分解因式:a3b﹣9ab3= .11.己知m是关于x的方程x2﹣2x﹣7=0的一个根,则2(m2﹣2m)= .12.一个汽车牌在水中的倒影为,则该车牌照号码.13.不等式组的解集是.14.点E在▱ABCD的BC边的延长线上,AE交CD于点F,CE:AD=1:3,则△CEF与△BEA的面积之比是.15.分式方程:的解为.16.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为度.三、解答题17.计算:.18.先化简,再求值:,其中a=﹣2.19.甲乙两家商店5月份共盈利5.7万元,分别比4月份增长10%和20%,4月份甲商店比乙商店多盈利1万元.4月份甲乙两家商店各盈利多少万元?20.我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.大双,小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1,2,3的三个小球,B袋中放着分别标有数字4,5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1,2,3的三个小球,且已搅匀,大双,小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票.(若积分相同,则重复第二次.)(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小双设计的游戏方案对双方是否公平?不必说理.22.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).23.如图A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB是菱形.24.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x 轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.2016年云南省曲靖市师宗县彩云中学中考数学一模试卷参考答案与试题解析一、选择题1.﹣5的相反数的倒数是()A.B.﹣5 C.﹣D.5【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,5的倒数是,故选:A.【点评】本题考查了倒数,先求相反数,再求倒数.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列函数中,自变量的取值范围是x≥2的是()A.y=x﹣2 B.C.D.【考点】函数自变量的取值范围.【分析】分别求出四个选项中自变量的取值范围即可求解.【解答】解:A、自变量的取值范围是全体实数;B、自变量的取值范围是x≠2;C、自变量的取值范围是x≥2;D、自变量的取值范围是x>2.故选C.【点评】主要考查了函数自变量的取值范围.确定函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.下列几何体中,其主视图不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;简单几何体的三视图.【分析】先判断出各图形的主视图,然后结合中心对称的定义进行判断即可.【解答】解:A、主视图是矩形,矩形是中心对称图形,故本选项错误;B、主视图是三角形,三角形不是中心对称图形,故本选项正确;C、主视图是圆,圆是中心对称图形,故本选项错误;D、主视图是正方形,正方形是中心对称图形,故本选项错误;故选B.【点评】本题考查了简单几何体的三视图及中心对称的知识,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C. D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】一次函数当k大于0时,y值随x值的增大而增大,反比例函数系数k为负时,y值随x值的增大而增大,对于二次函数根据其对称轴判断其在区间上的单调性.【解答】解:A、对于一次函数y=﹣x+1,k<0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;B、对于二次函数y=x2﹣1,当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、对于反比例函数,k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、对于反比例函数,k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.故选D.【点评】本题主要考查二次函数、一次函数和反比例函数的性质,解答本题的关键是熟练掌握各个函数在每个象限内的单调性.6.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15° B.30° C.45° D.60°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补解答.【解答】解:如图,∠3=∠1=60°(对顶角相等),∵AB∥CD,E G⊥EF,∴∠3+90°+∠2=180°,即60°+90°+∠2=180°,解得∠2=30°.故选B.【点评】本题考查了两直线平行,同旁内角互补的性质,对顶角相等的性质,以及垂直的定义,是基础题.7.下列说法正确的是()A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定【考点】方差;全面调查与抽样调查;算术平均数;众数.【分析】根据调查方式,可判断A;根据众数的意义可判断B;根据平均数的意义,可判断C;根据方差的性质,可判断D.【解答】解:A、了解某班同学的身高情况适合全面调查,故A正确;B、数据2、3、4、2、3的众数是2,3,故B错误;C、数据4、5、5、6、0的平均数是4,故C错误;D、方差越小越稳定,乙的方差小于甲得方差,乙的数据等稳定,故D错误.故选:A.【点评】本题考查了方差,方差越小数据越稳定是解题关键.8.要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=15 B. x(x﹣1)=15 C.x(x+1)=15 D.x(x﹣1)=15【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=15,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为: x(x﹣1)=15.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.二、填空题9.写出一个以2,﹣1为解的一元二次方程x2﹣x﹣2=0 .【考点】根与系数的关系.【专题】开放型.【分析】此题给了一元二次方程的两个根,可以应用根与系数的关系求方程.如:2+(﹣1)=1,2×(﹣1)=﹣2,可得方程为x2﹣x﹣2=0.【解答】解:如:x2﹣x﹣2=0.【点评】此题考查了学生对一元二次方程根的理解.如果给出一元二次方程的两个根,则可采用根与系数的关系求得方程.10.分解因式:a3b﹣9ab3= ab(a+3b)(a﹣3b).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:a3b﹣9ab3,=ab(a2﹣9b2),=ab(a+3b)(a﹣3b).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,分解因式一定要彻底.11.己知m是关于x的方程x2﹣2x﹣7=0的一个根,则2(m2﹣2m)= 14 .【考点】一元二次方程的解.【分析】把x=m代入已知方程来求(m2﹣2m)的值.【解答】解:把x=m代入关于x的方程x2﹣2x﹣7=0,得m2﹣2m﹣7=0,则m2﹣2m=7,所以2(m2﹣2m)=2×7=14.故答案是:14.【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.12.一个汽车牌在水中的倒影为,则该车牌照号码M17936 .【考点】镜面对称.【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解.【解答】解:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣M 1 7 9 3 6∴该车的牌照号码是M17936.故答案为:M17936.【点评】此题主要考查了镜面对称,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形.13.不等式组的解集是x<﹣6 .【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<﹣3,由②得,x<﹣6,故此不等式组的解集为:x<﹣6.故答案为:x<﹣6.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.点E在▱ABCD的BC边的延长线上,AE交CD于点F,CE:AD=1:3,则△CEF与△BEA的面积之比是.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】证明△CEF∽△BEA,然后根据相似三角形的面积的比等于相似比的平方即可求解.【解答】解:∵平行四边形ABCD中,BC=AD,又∵CE:AD=1:3,∴CE:BE=1:4.∵平行四边形ABCD中,CD∥AB,∴△CEF∽△BEA,∴=()2=()2=.故答案是:.【点评】本题考查了相似三角形的判定与性质,相似三角形的面积的比等于相似比的平方.15.分式方程:的解为x=6 .【考点】解分式方程.【分析】去分母化为整式方程后求解即可.【解答】解:方程两边同时乘以(2+x)(2﹣x)得:x(2﹣x)﹣(2+x)(2﹣x)=8,整理得:2x﹣4=8,解得:x=6,检验:当x=6时,(2+x)(2﹣x)≠0,所以方程的解为x=6.【点评】本题考查了分式方程的解法,解题的关键是能够确定最简公分母并去分母化为整式方程,注意一定要检验.16.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为45 度.【考点】圆周角定理.【专题】计算题.【分析】∠AOB与∠APB为所对的圆心角和圆周角,已知∠AOB=90°,利用圆周角定理求解.【解答】解:∵∠AOB与∠APB为所对的圆心角和圆周角,∴∠APB=∠AOB=×90°=45°.故答案为:45.【点评】本题考查了圆周角定理的运用.关键是确定同弧所对的圆心角和圆周角,利用圆周角定理.三、解答题17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项先利用平方根的定义化简,再计算除法运算,最后一项先计算零指数幂及特殊角的三角函数值,再计算乘法运算,即可得到结果.【解答】解:原式=3﹣2÷4+1×=3﹣+=3.【点评】此题考查了实数的运算,涉及的知识有:零指数、负指数幂,平方根的定义,绝对值的代数意义,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中a=﹣2.【考点】分式的化简求值.【专题】计算题.【分析】首先把括号里因式通分,然后进行约分化简,最后代值计算.【解答】解:原式=•=2a+4;当a=﹣2时,原式=.【点评】本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键.19.甲乙两家商店5月份共盈利5.7万元,分别比4月份增长10%和20%,4月份甲商店比乙商店多盈利1万元.4月份甲乙两家商店各盈利多少万元?【考点】二元一次方程组的应用.【分析】设4月份甲商店盈利x万元,乙商店盈利y万元,根据4月份甲商店比乙商店多盈利1万元,5月份甲乙两家共盈利5.7万元,列方程组求解.【解答】解:设4月份甲商店盈利x万元,乙商店盈利y万元,由题意得,,解得:.答:4月份甲商店盈利3万元,乙商店盈利2万元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了20 名同学,其中C类女生有 2 名,D类男生有 1 名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.【解答】解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为:20,2,1;(2)如图所示:(3)根据张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:男A 女A1 女A2男D 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.大双,小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1,2,3的三个小球,B袋中放着分别标有数字4,5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1,2,3的三个小球,且已搅匀,大双,小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票.(若积分相同,则重复第二次.)(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小双设计的游戏方案对双方是否公平?不必说理.【考点】游戏公平性;列表法与树状图法.【专题】阅读型;方案型.【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)大双的设计游戏方案不公平.可能出现的所有结果列表如下:A袋1 2 3积B袋4 4 8 125 5 10 15或列树状图如下:∴P(大双得到门票)=P(积为偶数)==,P(小双得到门票)=P(积为奇数)=,∵≠,∴大双的设计方案不公平.(2)小双的设计方案不公平.参考:可能出现的所有结果列树状图如下:.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【专题】计算题;几何图形问题.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.【点评】命题立意:此题主要考查解直角三角形的应用.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23.如图A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB是菱形.【考点】垂径定理;等边三角形的判定与性质;菱形的判定;圆心角、弧、弦的关系.【专题】证明题.【分析】连OC,由C是的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱形的判定方法即可得到结论.【解答】证明:连OC,如图,∵C是的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,相等的弧所对的圆心角相等.也考查了等边三角形的判定与性质以及菱形的判定.24.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x 轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.【考点】二次函数综合题.【专题】压轴题;数形结合.【分析】(1)已知直线AB的解析式,首先能确定A、B点的坐标,然后利用待定系数法确定a、b 的值;若设直线AB与y轴的交点为E,E点坐标易知,在Rt△AEO中,能求出sin∠AEO,而∠AEO=∠ACP,则∠ACP的正弦值可得.(2)①已知P点横坐标,根据直线AB、抛物线的解析式,求出C、P的坐标,由此得到线段PC的长;在Rt△PCD中,根据(1)中∠ACP的正弦值,即可求出PD的表达式,再根据所得函数的性质求出PD长的最大值.②在表达△PCD、△PBC的面积时,若都以PC为底,那么它们的面积比等于PC边上的高的比.分别过B、D作PC的垂线,首先求出这两条垂线段的表达式,然后根据题干给出的面积比例关系求出m 的值.【解答】解:(1)由x+1=0,得x=﹣2,∴A(﹣2,0).由x+1=3,得x=4,∴B(4,3).∵y=ax2+bx﹣3经过A、B两点,∴∴,则抛物线的解析式为:y=x2﹣x﹣3,设直线AB与y轴交于点E,则E(0,1).∵PC∥y轴,∴∠ACP=∠AEO.∴sin∠ACP=sin∠AEO===.(2)①由(1)知,抛物线的解析式为y=x2﹣x﹣3.则点P(m, m2﹣m﹣3).已知直线AB:y=x+1,则点C(m, m+1).∴PC=m+1﹣(m2﹣m﹣3)=﹣m2+m+4=﹣(m﹣1)2+Rt△PCD中,PD=PC•sin∠ACP=[﹣(m﹣1)2+]•=﹣(m﹣1)2+∴PD长的最大值为:.②如图,分别过点D、B作DF⊥PC,BG⊥PC,垂足分别为F、G.∵sin∠ACP=,∴cos∠ACP=,又∵∠FDP=∠ACP∴cos∠FDP==,在Rt△PDF中,DF=PD=﹣(m2﹣2m﹣8).又∵BG=4﹣m,∴====.当==时,解得m=;当==时,解得m=.【点评】本题考查了二次函数的应用以及解析式的确定、解直角三角形、图形面积的求法等知识,主要考查学生数形结合思想的应用能力.。

相关文档
最新文档