昌平区2012-2013学年第一学期期末考试高三数学理科答案
北京2013届昌平区二模数学理科试题及答案
侧视图俯视图EDCBA 昌平区2012-2013学年第二学期高三年级期第二次质量抽测数 学 试 卷(理科)2013.4第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.) 1、已知集合{|21}x A x =>,{|1}B x x =<,则A B =A. {|1}x x >B. {|0}x x >C. {|01}x x <<D. {|1}x x < 2、已知命题 :p x ∀∈R ,2x ≥,那么下列结论正确的是A. 命题:2p x x ⌝∀∈R ≤, B .命题:2p x x ⌝∃∈<R , C .命题:2p x x ⌝∀∈-R ≤, D .命题:2p x x ⌝∃∈<-R ,3、圆22(2)1x y +-=的圆心到直线3,2x t y t =+⎧⎨=--⎩(t 为参数)的距离为A.24、设0,x y x y +≥⎧⎨-≥⎩与抛物线24y x =-的准线围成的三角形区域(包含边界)为D ,),(y x P 为D 内的一个动点,则目标函数2z x y =-的最大值为A. 1-B. 0C. 2D. 3 5、 在区间[]0,π上随机取一个数x ,则事件“1tan cos 2x x ≥g ”发生的概率为 A. 13 B. 12 C.23 D. 346、 已知四棱锥P ABCD -则此四棱锥的四个侧面的面积中最大的是 A .3 B.C .6 D .87、如图,在边长为2的菱形ABCD 中,60BAD ∠=,E 为CD 的中点,则AE BD ⋅的值为CBAA.1 BC8、设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:① 01q <<; ② 9910110a a ⋅->;③ 100T 的值是n T 中最大的;④ 使1n T >成立的最大自然数n 等于198. 其中正确的结论是A. ①③B. ①④C. ②③D. ②④第Ⅱ卷(非选择题 共110分)一、填空题(本大题共6小题,每小题5分,共30分)9、二项式51(2)x x+的展开式中3x 的系数为___________.10、双曲线2221(0)yx b b-=>的一条渐近线方程为y =b = .11、 如图,AB 切圆O 于点A ,AC 为圆O 的直径,BC 交圆O 于点D ,E 为CD 的中点,且5,6,BD AC ==则CD =__________; AE =__________.12、执行如图所示的程序框图,若①是6i <时,输出的S 值为 ; 若①是2013i <时,输出的S 值为 .13、已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩ 若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是 .14、曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数()20k k >的点的轨迹.给出下列四个结论:①曲线C 过点(1,1)-;图1P FEDCB A②曲线C 关于点(1,1)-对称;③若点P 在曲线C 上,点,A B 分别在直线12,l l 上,则PA PB +不小于2.k④设0P 为曲线C 上任意一点,则点0P 关于直线1x =-、点(1,1)-及直线1y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k .其中,所有正确结论的序号是 .三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) 15、(本小题满分13分)已知函数2()sin(2),R f x x x x π=-+∈. (Ⅰ)求()6f π;(Ⅱ)求)(x f 的最小正周期及单调递增区间.16、(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形, 侧面PAD ⊥底面ABCD,且PA PD AD ==, E 、F 分别为PC 、BD 的中点. (Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:面PAB ⊥平面PDC ;(Ⅲ) 在线段AB 上是否存在点,G 使得 二面角C PD G --的余弦值为13?说明理由. 17、(本小题满分13分)某市为了提升市民素质和城市文明程度,促进经济发展有大的提速,对市民进行了“生活满意”度的调查.现随机抽取40位市民,对他们的生活满意指数进行统计分析,得到如下分布表:(I )求这40位市民满意指数的平均值;(II )以这40人为样本的满意指数来估计全市市民的总体满意指数,若从全市市民(人数很多)中任选3人,记ξ表示抽到满意级别为“非常满意或满意”的市民人数.求ξ的分布列;(III )从这40位市民中,先随机选一个人,记他的满意指数为m ,然后再随机选另一个人,记他的满意指数为n ,求60n m ≥+的概率.18、本小题满分13分) 已知函数21()ln (0).2f x x a x a =-> (Ⅰ)若2,a =求()f x 在(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[1,e]上的最小值;(III )若()f x 在区间(1,e)上恰有两个零点,求a 的取值范围.19、本小题满分13分)如图,已知椭圆22221(0)x y a b a b+=>>的长轴为AB ,过点B 的直线l 与x 轴垂直,椭圆的离心率2e =F 为椭圆的左焦点,且1AF BF =g .(I )求此椭圆的方程;(II )设P 是此椭圆上异于,A B 的任意一点,PH x ⊥轴,H 为垂足,延长HP 到点Q 使得HP PQ =. 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.20、本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++ (其中k 、b 、p 是常数) .(I )当0k =,3b =,4p =-时,求123n a a a a ++++ ;(II )当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式;(III )若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”{}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++< .若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.昌平区2012-2013学年第二学期高三年级期第二次质量抽测数 学 试卷 参考答案(理科)2013.04一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)二、填空题(本大题共6小题,每小题5分,共30分.)9、80 ; 10 11、4 ; ;12、5;2013; 13、 (1, 2); 14、 ②③④三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) 15、(本小题满分13分)解:(Ⅰ)2()sin(2)sin 222sin(2)3f x x x x x x ππ=-+=+=++分∴()2sin()2633f πππ=+==分(Ⅱ)()2sin(2)3f x x π=++22T ππ==.…………………………8分 又由5222(Z)2321212k x k k x k k πππππππππ-≤+≤+⇒-≤≤+∈可得 函数)(x f 的单调递增区间为5,(Z)1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.………13分16、(本小题满分14分)(Ⅰ)证明:连结AC BD F = ,ABCD 为正方形,F 为AC 中点,E 为PC 中点.∴在CPA ∆中,EF //PA ....................2分且PA ⊂平面PAD ,EF ⊄平面PAD ∴//EF PAD 平面 .................4分 (Ⅱ)证明:因为平面PAD ⊥平面ABCD , 平面PAD 面ABCD AD =ABCD 为正方形,CD AD ⊥,CD ⊂平面ABCD 所以CD ⊥平面PAD .∴CD PA ⊥ ....................6分又2PA PD AD ==,所以PAD ∆是等腰直角三角形, 且2APD π∠=即PA PD ⊥CD PD D = ,且CD 、PD ⊂面PDC∵PA PD =, ∴PO AD ⊥. ∵侧面PAD ⊥底面ABCD ,PAD ABCD AD ⋂=平面平面, ∴PO ABCD ⊥平面,而,O F 分别为,AD BD 的中点,∴//OF AB ,又ABCD 是正方形,故OF AD ⊥.∵2PA PD AD ==,∴PA PD ⊥,1OP OA ==. 以O 为原点,直线,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系, 则有(1,0,0)A ,(0,1,0)F ,(1,0,0)D -,(0,0,1)P . 若在AB 上存在点,G 使得二面角C PD G --的余弦值为13,连结,.PG DG 设(1,,0)(02)G a a ≤≤.由(Ⅱ)知平面PDC 的法向量为(1,0,1)PA =-.设平面PGD 的法向量为(,,)n x y z = .∵(1,0,1),(2,,0)DP GD a ==--,∴由0,0n DP n GD ⋅=⋅= 可得00200x y z x a y z +⋅+=⎧⎨-⋅-⋅+⋅=⎩,令1x =,则2,1y z a =-=-,故2(1,,1)n a =--∴1cos ,3n PA n PA n PA ⋅<>===,解得,12a =. 所以,在线段AB 上存在点1(1,,0)2G ,使得二面角C PD G --的余弦值为13. ..............14分 17、(本小题满分13分)解:(Ⅰ)记X 表示这40位市民满意指数的平均值,则1(9015601730602)63.7540X =⨯+⨯+⨯+⨯=(分)…………………2分 (Ⅱ)ξ的可能取值为0、1、2、3.1251)51()54()0(3003===C P ξ ,12512)51()54()1(2113===C P ξ 12548)51()54()2(1223===C P ξ ,12564)51()54()3(0333===C P ξ ∴ξ……………8分(Ⅲ)设所有满足条件60+≥m n 的事件为A①满足600==n m 且的事件数为:1121734A A = ②满足900==n m 且的事件数为:1121530A A =③满足9030==n m 且的事件数为:1161590A A =24034309077()780P A A ++∴== 所以满足条件60+≥m n 的事件的概率为77780.……………………13分 18、(本小题满分13分) 解:(I )2,a =212()2ln ,'(),2f x x x f x x x =-=-1'(1)1,(1),2f f =-= ()f x 在(1,(1))f 处的切线方程为2230.x y +-=………………………..3分(Ⅱ)由2'().a x af x x x x-=-=由0a >及定义域为(0,)+∞,令'()0,f x x =得1,01,a <≤即在(1,e)上,'()0f x>,)(x f 在[1,e]上单调递增, 因此,()f x 在区间[1,e]的最小值为1(1)2f =. ②若21e,1e ,a <<<<即在(上,'()0f x <,)(x f单调递减;在上,'()0f x >,)(x f 单调递增,因此()f x 在区间[1,e]上的最小值为1(1ln ).2f a a =- 2e,e ,a ≥即在(1,e)上,'()0f x <,)(x f 在[1,e]上单调递减, 因此,()f x 在区间[1,e]上的最小值为21(e)e 2f a =-. 综上,当01a <≤时,min 1()2f x =;当21e a <<时,min 1()(1ln )2f x a a =-; 当2e a ≥时,2min 1()e 2f x a =-. ……………………………….9分 (III) 由(II )可知当01a <≤或2e a ≥时,)(xf 在(1,e)上是单调递增或递减函数,不可能存在两个零点. 当21e a <<时,要使()f x 在区间(1,e)上恰有两个零点,则∴21(1ln )0,21(1)0,21(e)e 0,2a a f f a ⎧-<⎪⎪⎪=>⎨⎪⎪=->⎪⎩即2e1e 2a a >⎧⎪⎨<⎪⎩,此时,21e e 2a <<. 所以,a 的取值范围为21(e,e ).2…………………………………………………………..13分 19、(本小题满分13分)解:(Ⅰ)由题意可知,(,0)A a -, (,0)B a ,(,0)F c -, ()()1AF BF a c a c =+-=g2221a c b ∴-==又e = 22222222134c a b a e a a a --==== ,解得24a = 所求椭圆方程为2214x y +=…………………………5分 (Ⅱ)设00(,)P x y ,则00(,2)Q x y 00(2,2)x x ≠≠- 由(2,0),A -得0022AQ y k x =+ 所以直线AQ 方程002(2)2y y x x =++由(2,0),B -得直线l 2,x =的方程为 008(2,)2y M x ∴+ 004(2,)2y N x ∴+由 0000200422224NQy y x x y k x x -+==--又点P 的坐标满足椭圆方程得到:2200+44x y = ,所以 220044x y -=- 000002200022442NQ x y x y x k x y y ===--- ∴直线NQ 的方程:00002()2x y y x x y -=-- 化简整理得到:220000244x x yy x y +=+= 即0024x x yy += 所以点O 到直线NQ的距离2d O ===圆的半径∴直线NQ 与AB 为直径的圆O 相切.……………………………………. 13分20、(本小题满分14分)解:(I )当0k =,3b =,4p =-时,1123()42()n n a a a a a +-=++ , ①用1n +去代n 得,111213()42()n n n a a a a a a +++-=+++ , ②②—①得,113()2n n n a a a ++-=,13n n a a +=,……………………………2分在①中令1n =得,11a =,则n a ≠0,∴13n na a +=, ∴数列{}n a 是以首项为1,公比为3的等比数列,∴123n a a a a ++++ =312n -…………….4分(II )当1k =,0b =,0p =时,112()2()n n n a a a a a +=++ , ③ 用1n +去代n 得,11121(1)()2()n n n n a a a a a a ++++=+++ , ④④—③得, 11(1)0n n n a na a +--+=, ⑤. 用1n +去代n 得,211(1)0n n na n a a ++-++=, ⑥⑥—⑤得,2120n n n na na na ++-+=,即211n n n n a a a a +++-=-,. ∴数列{}n a 是等差数列.∵33a =,915a =, ∴公差93293a a d -==-,∴23n a n =-…………………………………………9分(III )由(II )知数列{}n a 是等差数列,∵212a a -=,∴12(1)n a a n =+-. 又{}n a 是“封闭数列”,得:对任意*,N m n ∈,必存在*N p ∈使1112(1)2(1)2(1)a n a m a p +-++-=+-,得12(1)a p m n =--+,故1a 是偶数,………………10分又由已知,111111218S <<,故1181211a <<.一方面,当1181211a <<时,1(1)n S n n a =+-0>,对任意*N n ∈,都有123111111112n S S S S S ++++≥> . 另一方面,当12a =时,(1)n S n n =+,1111n S n n =-+,则1231111111n S S S S n ++++=-+ , 取2n =,则1211121113318S S +=-=>,不合题意. 当14a =时,(3)n S n n =+,1111()33n S n n =-+,则 1231111111111()183123n S S S S n n n ++++=-+++++ 1118<, 当16a ≥时,1(1)n S n n a =+-(3)n n >+,1111()33n S n n <-+, 123111*********()18312318n S S S S n n n ++++<-++<+++ , 又1181211a <<,∴14a =或16a =或18a =或110a =……………………….14分。
北京2013届昌平上学期期末高三数学(文科)
DCBA昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试 卷(文科)2013.1一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.) 1、复数21i i-的虚部是A. 1-B. 1C. i -D. i2、“2a =”是“直线214a y ax y x =-+=-与垂直”的A. 充分不必要条件 B 必要不充分条件 C. 充要条件 D.既不充分也不必要条件 3、在数列{}n a 中 ,111,,)2n n a a a y x +==点(在直线上,则4a 的值为 A .7 B .8C .9D .164、如图,在,2.=ABC BD D C AB ,AC ,AD ∆== 中若则a =b5、已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积为 A. 4B .8C. 12D. 246、函数22()log (1)f x x x =+-的零点个数为A. 0B. 1C. 2D. 37、设不等式组22,4,2x y x y -+≥≥-⎧⎪⎨⎪⎩0≤ 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是A.413B.513C.825D.9258、设定义域为R 的函数)(x f 满足以下条件;①对任意0)()(,=-+∈x f x f R x ;OFEDCBA②对任意当],,1[,21a x x ∈有时,12x x >21()()f x f x >.则以下不等式一定成立....的是①()(0)f a f >②)()21(a f a f >+ ③)3()131(->+-f aa f ④)()131(a f aa f ->+-A. ①③B. ②④C. ①④D. ②③ 二、填空题(本大题共6小题,每小题5分,共30分) 9、在A B C △中,若3b =,1c =,1cos 3A =,则a =10、已知n S 是等差数列{}n a 的前n 项和,其中2856-3,15,=_______;_______.a a a S ===则 11、已知某算法的流程图如图所示,则程序运行结束时输出的结果为 . 12、以双曲线221916xy-=的右焦点为圆心,并与其渐近线相切的圆的标准方程是 _______.13、 已知函数1()(0),()213(0),xx f x x x ⎧≤⎪=⎨⎪->⎩则((1))f f -=________;若2(23)(5)f a f a ->,则实数a 的取值范围是_______________.14、过椭圆22221(0)x y a b ab+=>>上一点M 作直线,M A M B 交椭圆于,A B 两点,设,M A M B 的斜率分别为12,k k ,若点,A B 关于原点对称, 且121,3k k ⋅=-则此椭圆的离心率为__________________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) 15、(本小题满分13分)已知函数()2cos )cos 1f x x x x =-⋅+.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值. 16、(本小题满分14分)在四棱锥E A B C D -中,底面A B C D 是正方形, ,AC BD O 与交于EC ABCD F 底面,^为B E 的中点.(I)求证:D E ∥平面A C F ; (II )求证:BD AE ^; (III)若,AB E =在线段E O 上是否存在点G ,使CG BDE 平面^?若存在,求出E G E O的值,若不存在,请说明理由.17、(本小题满分13分)以下茎叶图记录了甲、乙两组各四名同学在某次数学测验中的成绩,甲组记录中有一个数据模糊,无法确认,在图中以X 表示. 甲组 乙组 6 X 8 74 1 9 0 0 3(I ) 如果甲组同学与乙组同学的平均成绩一样,求X 及甲组同学数学成绩的方差;(II ) 如果X=7,分别从甲、乙两组同学中各随机选取一名,求这两名同学的数学成绩之和大于180的概率.(注:方差2222121=[()()...()],n s x x x x x x n-+-++-其中12,,...,.n x x x x 为的平均数)18、(本小题满分13分) 已知函数3211()()32f x x a x a a =-+∈R .(I )若1,a =求函数()[0,2]f x 在上的最大值;(Ⅱ)若对任意(0,+)x ∈∞,有()0f x >恒成立,求a 的取值范围.19. (本小题满分13分)已知椭圆:M 22221(0)x y a b ab+=>>,其短轴的一个端点到右焦点的距离为2,且点A 在椭圆M 上.直线l 的斜率为2,且与椭圆M 交于B 、C 两点.(Ⅰ)求椭圆M 的方程; (Ⅱ)求ABC ∆面积的最大值.20. (本小题满分14分)已知每项均是正整数的数列123100,,,,a a a a , 其中等于i的项有i k 个(1,2,3)i = ,设jj k k k b +++= 21(1,2j = ,12()100m g m b b b m =+++- (1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,①求(1),(2),(3),(4)g g g g ; ②求123100a a a a ++++L 的值;(Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小.G ABC DEFO昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试卷 参考答案(文科)2013.01一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)二、填空题(本大题共6小题,每小题5分,共30分.)9、 10、6,9;11、 3; 12、22(5)16x y -+=; 13、 -5,1(,3)2-; 143;三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) 15、(本小题满分13分)解:(Ⅰ)因为()2cos )cos 1f x x x x =-⋅+2cos 2x x =-π2sin(2)6x =-.………………………………5分所以()f x 的最小正周期2ππ2T ==.…………………7分(II )由 5[,],2[,],2[,],422636x x x πππππππ挝-…………..9分 当52,,()1662x x f x πππ-==即时取得最小值,…………….11分当2,,()2623x x f x πππ-==即时取得最大值.……………….13分16、(本小题满分14分) 解:(I )连接O F .由A B C D 是正方形可知,点O 为BD 中点. 又F 为B E 的中点,所以O F ∥D E ….2分 又,,OF ACF DEACF 平面平面趟所以D E ∥平面A C F ………….4分(II) 证明:由EC ABCD BD ABCD 底面,底面,^ 所以,EC BD ^由A B C D 是正方形可知, ,AC BD ^又=,,AC EC C AC ECACE 平面,翘所以,BD ACE 平面^…………..8分又AE ACE 平面,Ì 所以BD AE ^……………..9分 (III) 在线段E O 上存在点G ,使CG BDE 平面^. 理由如下: 如图,取E O 中点G ,连接C G .在四棱锥E A B C D -中,,2AB E C O AB C E ===, 所以C G E O ^.………..11分由(II )可知,,BD ACE 平面^而,BD BDE 平面Ì 所以,,ACE BDE ACE BDEEO 平面平面且平面平面,^? 因为,CG EO CG ACE 平面,^ 所以CG BDE 平面^…………………. 13分 故在线段E O 上存在点G ,使CG BDE 平面^.由G 为E O 中点,得1.2E G E O=…… 14分17、(本小题满分13分)解:(I )乙组同学的平均成绩为87909093904+++=,甲组同学的平均成绩为90,所以8086919490,9.4X X ++++==…………………………………2分甲组同学数学成绩的方差为222228690)(8990)(9190)(9490)17=42s -+-+-+-=甲(… 6分 (II)设甲组成绩为86,87,91,94的同学分别为1234,,,,a a a a 乙组成绩为87,90,90,93的同学分别为1234,,,,b b b b 则所有的事件构成的基本事件空间为:11121314212223243132{(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b a b a b a b333441424344(,),(,),(,),(,),(,),(,)}.a b a b a b a b a b a b 共16个基本事件.设事件A =“这两名同学的数学成绩之和大于180”,则事件A 包含的基本事件的空间为{32333441424344(,),(,)(,),(,),(,),(,),(,)}.a b a b a b a b a b a b a b 共7个基本事件,7()16P A =…….13分18、(本小题满分13分) 解:(I )当1a =时,311()32f x x x =-+,2'()1f x x =- .............1分令12'()01, 1.f x x x ==-=,得..................................2分列表:∴当[0,2]x ∈时,()f x 最大值为()26f =. ………………………7分(Ⅱ)22'()()(),f x x a x a x a =-=-+令12'()0,,.f x x a x a ==-=得① 若0,)()0,()a a f x f x '<<∴在(0,-上,单调递减.)()0,()a f x f x '∞>∴在(-,+上,单调递增.所以,()f x 在x a =-时取得最小值()332121()3232a f a a a a a -=-++=+,因为()2221210,0,()03232a a f a a a <+>-=+<所以.0,0,+()0.a x f x <∈∞>所以当时对任意(),不成立……………………………..9分② 若20,()0,()0+a f x x f x '==≥∞所以在(,)上是增函数,所以当=0()(0)0.a f x f >=时,有………………………………………………………..10分③若0,)()0,()a a f x f x '><在(0,上,所以单调递减.)()0,()a f x f x '∞>在(,+上,所以单调递增.所以,()f x 在x a =取得最小值()332121()3232a f a a a a a =-+=--,令()222121()0,0,0,032322f a a a a a a =-->>-<<<由得,0,()0.2a x f x <<>>所以当0对任意都成立综上,a 的取值范围是[0)2,.………………………………13分19、(本小题满分13分)解: (Ⅰ)由题意知222112a b a ⎧+=⎪⎨⎪=⎩,所以b =.故所求椭圆方程为22142xy+=…………….5分(Ⅱ) 设直线l的的方程为2y x m =+,则0m ≠.设1122(,),(,),B x y C x y代入椭圆方程并化简得2220x m ++-=, …………6分由22224(2)2(4)0m m m ∆=--=->,可得204m << . ( *)由( *),得1,22x =故12BC x =-==…..9分又点A 到BC的距离为d =, …………………10分故12ABC S BC d ∆=⋅=22(4)2m m +-=≤=,当且仅当224m m =-,即m =时取等号满足(*)式.所以ABC ∆面积的最大值为2. ……………………13分 20、(本小题满分13分)解: (I)① 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- . ………8分 ②123100401302203104200a a a a ++++=⨯+⨯+⨯+⨯=L ……….10分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据jb 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , 当且仅当1100m b +=时取等号. 因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =, 所以(1)(2)(49)(50)(51)g g g g g >>>===13分即当149m ≤<时,有()(1)g m g m >+; 当49m ≥时,有()(1)g m g m =+. ……14分。
2023-2024学年北京市昌平区高三(上)期末数学试卷【答案版】
2023-2024学年北京市昌平区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合A ={x |x 2>1},那么∁U A =( ) A .[﹣1,1] B .[1,+∞)C .(﹣∞,1]D .(﹣∞,﹣1]∪[1,+∞)2.在复平面内,复数z 1和z 2对应的点分别为A ,B ,则z 1•z 2=( )A .﹣1﹣3iB .﹣3﹣iC .1﹣3iD .3+i3.若双曲线x 2a 2−y 2b 2=1的离心率为√3,则其渐近线方程为( )A .y =±2xB .y =±√2xC .y =±12xD .y =±√22x4.已知(1﹣3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2+a 4=( ) A .﹣32B .32C .495D .5855.下列函数中,在区间(0,2)上为减函数的是( ) A .y =2x B .y =sin xC .y =x 1−xD .y =log 0.5(﹣x 2+4x )6.设函数f (x )的定义域为R ,则“∀x ∈R ,f (x +1)<f (x )”是“f (x )为减函数”的( ) A .充分必要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件7.已知点P 在圆(x ﹣1)2+y 2=1上,点A 的坐标为(−1,√3),O 为原点,则AO →⋅AP →的取值范围是( ) A .[﹣3,3]B .[3,5]C .[1,9]D .[3,7]8.“三斜求积术”是我国宋代的数学家秦九韶用实例的形式提出的,其实质是根据三角形的三边长a ,b ,c 求三角形面积S ,即S =√14[c 2a 2−(c 2+a 2−b 22)2].现有面积为3√15的△ABC 满足sin A :sin B :sin C=2:3:4,则△ABC 的周长是( ) A .9B .12C .18D .369.已知函数f (x )=2sin x ﹣2cos x ,则( ) A .f(π4+x)=f(π4−x)B .f (x )不是周期函数C .f (x )在区间(0,π2)上存在极值D .f (x )在区间(0,π)内有且只有一个零点10.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,E 为线段AB 上的点,且AE EB=3,点P 在线段D 1E上,则点P 到直线AD 距离的最小值为( )A .√22B .√32C .35D .1二、填空题共5小题,每小题5分,共25分.11.已知sinx =−35,x ∈(π,32π),则tan x = .12.抛物线x 2=4y 上一点P 到焦点的距离为8,则点P 到x 轴的距离为 .13.已知数列{a n }的前n 项和S n 满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列,则a 1= ;a n= .14.若函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上不是单调函数,则实数m 的一个取值可以为 .15.已知数列{a n },a 1=a (0<a <1),a n +1=a a n .给出下列四个结论: ①a 2∈(a ,1); ②a 10>a 9;③{a 2n }为递增数列;④∀n ∈N *,使得|a n +1﹣a n |<1﹣a . 其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(13分)如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 是直角梯形,AD ⊥DC ,AB ∥DC ,AB =AD =2,DC =PD =4,点N 是PD 的中点,直线PC 交平面ABN 于点M . (1)求证:点M 是PC 的中点; (2)求二面角A ﹣MN ﹣P 的大小.17.(14分)在△ABC 中,b cos C +c cos B =2a cos A . (1)求角A 的大小;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使得△ABC 存在且唯一确定,求△ABC 的面积. 条件①:a =7; 条件②:c =8; 条件③:cos C =17.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(13分)某汽车生产企业对一款新上市的新能源汽车进行了市场调研,统计该款车车主对所购汽车性能的评分,将数据分成5组:[90,100),[100,110),[110,120),[120,130),[130,140],并整理得到如下频率分布直方图: (1)求m 的值;(2)该汽车生产企业在购买这款车的车主中任选3人,对评分低于110分的车主送价值3000元的售后服务项目,对评分不低于110分的车主送价值2000元的售后服务项目.若为这3人提供的售后服务项目总价值为X 元,求X 的分布列和数学期望E (X );(3)用随机抽样的方法从购买这款车的车主中抽取10人,设这10人中评分不低于110分的人数为Y ,问k (k =0,1,2,…,10)为何值时,P (Y =k )的值最大?(结论不要求证明)19.(15分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,0),离心率为√22.(1)求椭圆E的方程;(2)设过点T(t,0)的直线l与椭圆E有两个不同的交点A,B(均不与点M重合),若以线段AB为直径的圆恒过点M,求t的值.20.(15分)已知函数f(x)=x2e2﹣x﹣x+1.(1)求曲线y=f(x)在(2,f(2))处的切线方程;(2)设函数g(x)=f'(x),求g(x)的单调区间;(3)判断f(x)极值点的个数,并说明理由.21.(15分)已知Q:a1,a2,…,a k为有穷正整数数列,且a1≤a2≤…≤a k,集合X={﹣1,0,1}.若存在x i∈X,i=1,2,…,k,使得x1a1+x2a2+…+x k a k=t,则称t为k﹣可表数,称集合T={t|t=x1a1+x2a2+…+x k a k,x i∈X,i=1,2,…,k}为k﹣可表集.(1)若k=10,a i=2i﹣1,i=1,2,…,k,判定31,1024是否为k﹣可表数,并说明理由;(2)若{1,2,…,n}⊆T,证明:n≤3k−1 2;(3)设a i=3i﹣1,i=1,2,…,k,若{1,2,…,2024}⊆T,求k的最小值.2023-2024学年北京市昌平区高三(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合A ={x |x 2>1},那么∁U A =( ) A .[﹣1,1] B .[1,+∞)C .(﹣∞,1]D .(﹣∞,﹣1]∪[1,+∞)解:全集U =R ,集合A ={x |x 2>1}=(﹣∞,﹣1)∪(1,+∞),∁U A =[﹣1,1], 故选:A .2.在复平面内,复数z 1和z 2对应的点分别为A ,B ,则z 1•z 2=( )A .﹣1﹣3iB .﹣3﹣iC .1﹣3iD .3+i解:由图可知,z 1=﹣2﹣i ,z 2=1+i ,故z 1•z 2=(﹣2﹣i )•(1+i )=﹣2﹣2i ﹣i +1=﹣1﹣3i . 故选:A .3.若双曲线x 2a 2−y 2b 2=1的离心率为√3,则其渐近线方程为( )A .y =±2xB .y =±√2xC .y =±12xD .y =±√22x解:由双曲线的离心率√3,可知c =√3a ,又a 2+b 2=c 2,所以b =√2a ,所以双曲线的渐近线方程为:y =±bax =±√2x .故选:B .4.已知(1﹣3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2+a 4=( ) A .﹣32B .32C .495D .585解:令x =0,解得a 0=1;当x =1时,a 0+a 1+a 2+a 3+a 4+a 5=﹣32;①,当x =﹣1时,a 0−a 1+a 2−a 3+a 4−a 5=45,②,故①+②得:2a 0+2a 2+2a 4=1024﹣32=992,解得a 0+a 2+a 4=496, 故a 2+a 4=495.故选:C .5.下列函数中,在区间(0,2)上为减函数的是( ) A .y =2x B .y =sin xC .y =x 1−xD .y =log 0.5(﹣x 2+4x )解:根据题意,依次分析选项:对于A ,y =2x ,是指数函数,在(0,2)上为增函数,不符合题意; 对于B ,y =sin x ,是正弦函数,在(0,π2)上为增函数,不符合题意;对于C ,y =x 1−x =−1x−1−1,可以由函数y =−1x向右平移一个单位,向下平移一个单位得到, 故y =x1−x在区间(0,2)上不是单调函数,不符合题意; 对于D ,y =log 0.5(﹣x 2+4x ),设t =﹣x 2+4x ,y =log 0.5t , t =﹣x 2+4x 在(0,2)上为增函数,且t >0恒成立, y =log 0.5t 在(0,+∞)上为减函数,故y =log 0.5(﹣x 2+4x )在区间(0,2)上为减函数,符合题意. 故选:D .6.设函数f (x )的定义域为R ,则“∀x ∈R ,f (x +1)<f (x )”是“f (x )为减函数”的( ) A .充分必要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件解:根据题意,函数f (x )={ ⋯⋯x −4,2≤x <3x −2,1≤x <2x ,0≤x <1x +2,−1≤x <0⋯⋯,在R 上满足f (x +1)<f (x ), 当f (x )不是增函数,反之,若f (x )为减函数,必有f (x +1)<f (x ),故“∀x ∈R ,f (x +1)<f (x )”是“f (x )为减函数”的必要而不充分条件. 故选:B .7.已知点P 在圆(x ﹣1)2+y 2=1上,点A 的坐标为(−1,√3),O 为原点,则AO →⋅AP →的取值范围是( ) A .[﹣3,3]B .[3,5]C .[1,9]D .[3,7]解:设P (x ,y ),由图可知,AO →与AP →夹角为锐角,故AO →⋅AP →>0,又AO →=(1,−√3),AP →=(x +1,y −√3),则AO →⋅AP →=x −√3y +4, 令t =|x−√3y+4|2,则t 为点P (x ,y )到直线x −√3y +4=0的距离, 圆心C (1,0)到直线x −√3y +4=0的距离d =52,所以t ∈[32,72],故AO →⋅AP →∈[3,7].故选:D .8.“三斜求积术”是我国宋代的数学家秦九韶用实例的形式提出的,其实质是根据三角形的三边长a ,b ,c 求三角形面积S ,即S =√14[c 2a 2−(c 2+a 2−b 22)2].现有面积为3√15的△ABC 满足sin A :sin B :sin C=2:3:4,则△ABC 的周长是( ) A .9B .12C .18D .36解:由正弦定理可得,a :b :c =sin A :sin B :sin C =2:3:4,故可设a =2x ,b =3x ,c =4x , S =√14[c 2a 2−(c 2+a 2−b 22)2]=12√(8x 2)2−(16x 2+4x 2−9x 22)2=3√15,解得,x =2,故△ABC 的周长为4+6+8=18. 故选:C .9.已知函数f (x )=2sin x ﹣2cos x ,则( ) A .f(π4+x)=f(π4−x)B .f (x )不是周期函数C .f (x )在区间(0,π2)上存在极值D .f (x )在区间(0,π)内有且只有一个零点解:对于A :因为函数f (x )=2sin x ﹣2cos x , 所以f (x +π2)+f (﹣x )=2sin(x+π2)−2cos(x+π2)+2sin(﹣x )﹣2cos(﹣x )=2cos x ﹣2﹣sin x+2﹣sin x﹣2cos x =0,所以f (x )关于点(π4,0)对称,所以f (π4+x )=﹣f (π4−x ),故A 错误;对于B :因为f (x +2π)=2sin(x +2π)﹣2cos(x +2π)=2sin x ﹣2cos x =f (x ),所以2π为函数f (x )的一个周期,故B 错误;对于C :因为f (x )=2sin x ﹣2cos x ,所以f ′(x )=2sin x cos x •ln 2+2cos x sin x •ln 2, 当0<x <π2时,f ′(x )>0,f (x )单调递增,所以f (x )在(0,π2)上单调递增,故C 错误;对于D :令f (x )=2sin x ﹣2cos x =0,即2sin x =2cos x ,即sin x =cos x ,因为x ∈(0,π),则tan x =1,所以x =π4,所以方程在(0,π)上只有一个根,所以函数f (x )在(0,π)内有且只有一个零点,故D 正确. 故选:D .10.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,E 为线段AB 上的点,且AE EB=3,点P 在线段D 1E上,则点P 到直线AD 距离的最小值为( )A .√22B .√32C .35D .1解:以D 为原点,分别以DA ,DC ,DD 1为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),E (1,34,0),D 1(0,0,1),∴DA →=(1,0,0),ED 1→=(−1,−34,1),设n →=(x ,y ,z),由{n →⋅DA →=x =0n →⋅ED 1→=−x −34y +z =0,取y =1,得n →=(0,1,34). ∴点P 到直线AD 距离的最小值为d =|n →⋅AE →||n →|=34√1+916=35.故选:C .二、填空题共5小题,每小题5分,共25分.11.已知sinx =−35,x ∈(π,32π),则tan x = 34.解:因为sinx =−35,x ∈(π,32π),所以cos x =−45,则tan x =sinx cosx =34.故答案为:3412.抛物线x 2=4y 上一点P 到焦点的距离为8,则点P 到x 轴的距离为 7 . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y =﹣1, 根据抛物线定义,∴y p +1=8,解得y p =7,∴点P 到x 轴的距离为7, 故答案为:7.13.已知数列{a n }的前n 项和S n 满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列,则a 1= 2 ;a n = 2n . 解:由S n =2a n ﹣a 1,得S n +1=2a n +1﹣a 1, 两式相减得a n +1=2a n +1﹣2a n ,即a n+1a n=2,∴{a n }是以q =2为公比的等比数列,由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1a 3, 即2(2a 1+1)=a 1+4a 1,解得a 1=2, ∴a n =2×2n ﹣1=2n .故答案为:2,2n .14.若函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上不是单调函数,则实数m 的一个取值可以为 0(答案不唯一) .解:根据题意,假设函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上是单调函数,则有21﹣m ≤ln 1,即2﹣m ≤0,解可得:m ≥2,反之,若函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上不是单调函数,必有m <2,即m 的取值范围为(﹣∞,2),故m 的值可以为0. 故答案为:0(答案不唯一).15.已知数列{a n },a 1=a (0<a <1),a n +1=a a n .给出下列四个结论: ①a 2∈(a ,1); ②a 10>a 9;③{a 2n }为递增数列;④∀n ∈N *,使得|a n +1﹣a n |<1﹣a . 其中所有正确结论的序号是 ①②④ .解:根据题意可知a 2=a a 1=a a ,因为0<a <1,所以a 1<a a <a 0⇒a 2∈(a ,1)即①正确;由a 1<a 2<1,可得a a 1>a a 2>a 1,得1>a 2>a 3>a 1=a ,所以a a 2<a a 3<a a 1,即a 3<a 4<a 2,故③不正确;根据递推式有a <a 3<a 4<a 2<1,a a 3>a a 4>a a 2,即a 4>a 5>a 3,同理可得a 4>a 6>a 5,a 5<a 7<a 6,a 6>a 8>a 7,a 7<a 9<a 8,从而可得a a 7>a a 9>a a 8,即a 8>a 10>a 9,故②正确;因为0<a <1,所以a a =a 2∈(a ,1),则a a 2∈(a ,1),依次可知a a n ∈(a ,1),所以{a <a n+1<1a ≤a n <1,故|a n +1﹣a n |<1﹣a 成立,④正确. 故答案为:①②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(13分)如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 是直角梯形,AD ⊥DC ,AB ∥DC ,AB =AD =2,DC =PD =4,点N 是PD 的中点,直线PC 交平面ABN 于点M . (1)求证:点M 是PC 的中点; (2)求二面角A ﹣MN ﹣P 的大小.(1)证明:因为AB ∥DC ,AB ⊄平面PDC ,DC ⊂平面PDC , 所以AB ∥平面PDC ,又AB ⊂平面ABMN , 平面ABMN ∩平面PDC =MN , 所以AB ∥MN ,故MN ∥DC ,又N 为PD 中点,所以M 为PC 中点;(2)解法一:由PD ⊥平面ABCD ,可得PD ⊥AD , 又AD ⊥DC ,DC ∩PD =D ,则AD ⊥平面PDC ,故∠AND 为二面角A ﹣MN ﹣P 的平面角的补角,又AD =2,PD =4,点N 是PD 的中点,则AD =DN =2,故∠AND =45°,故二面角A ﹣MN ﹣P 的大小为135°;解法二:由PD ⊥平面ABCD ,可得PD ⊥AD ,PD ⊥DC ,又AD ⊥DC ,则DA ,DC ,DP 两两垂直,故以D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,由AD =2,DC =PD =4,点M ,N 是分别是PD ,PC 的中点,则A (2,0,0),M (0,2,2),N (0,0,2),即AM →=(−2,2,2),AN →=(−2,0,2),设平面AMN 的一个法向量为n →=(x ,y ,z),则由{n →⋅AM →=−2x +2y +2z =0n →⋅AN →=−2x +2z =0,令x =1,可得y =0,z =1, 则平面AMN 的一个法向量为n →=(1,0,1),不妨取平面PMN 的一个法向量为m →=(1,0,0),则cos <m →,n →>=m →⋅n →|m →||n →|=1√2=√22, 由图可知二面角A ﹣MN ﹣P 的平面角为钝角,则二面角A ﹣MN ﹣P 的大小为135°.17.(14分)在△ABC 中,b cos C +c cos B =2a cos A .(1)求角A 的大小;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使得△ABC 存在且唯一确定,求△ABC的面积.条件①:a=7;条件②:c=8;条件③:cos C=1 7.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.解:(1)由b cos C+c cos B=2a cos A及正弦定理,可得sin B cos C+sin C cos B=2sin A cos B,即sin(B+C)=2sin A cos A,即sin A=2sin A cos A,又A∈(0,π),sin A≠0,所以cosA=12,即A=π3;(2)若选①②:即a=7,c=8,A=π3,由正弦定理,可得sinC=sinAa⋅c=√327×8=4√37,因为a<c,所以A<C,即C可能为锐角或钝角,故△ABC不唯一,不合题意;若选①③:即a=7,cosC=17,A=π3,由cosC=17,可得sinC=4√37,由正弦定理可c=asinA⋅sinC=7√32×4√37=8,由余弦定理可得c2=a2+b2﹣2ab•cos C,即64=49+b2−2×7×b×17,整理得b2﹣2b﹣15=0,,解得b=5,故S△ABC=12absinC=12×7×5×4√37=10√3;若选②③:即c=8,cosC=17,A=π3,由cosC=17,可得sinC=4√37,由正弦定理可得:a=csinC⋅sinA=84√37√32=7,由余弦定理可得c2=a2+b2﹣2ab•cos C,即64=49+b2−2×7×b×17,整理得b2﹣2b﹣15=0,,解得b=5,故S△ABC=12absinC=12×7×5×4√37=10√3.18.(13分)某汽车生产企业对一款新上市的新能源汽车进行了市场调研,统计该款车车主对所购汽车性能的评分,将数据分成5组:[90,100),[100,110),[110,120),[120,130),[130,140],并整理得到如下频率分布直方图:(1)求m的值;(2)该汽车生产企业在购买这款车的车主中任选3人,对评分低于110分的车主送价值3000元的售后服务项目,对评分不低于110分的车主送价值2000元的售后服务项目.若为这3人提供的售后服务项目总价值为X元,求X的分布列和数学期望E(X);(3)用随机抽样的方法从购买这款车的车主中抽取10人,设这10人中评分不低于110分的人数为Y,问k(k=0,1,2,…,10)为何值时,P(Y=k)的值最大?(结论不要求证明)解:(1)依题意,(0.005+0.025+0.035+m+0.007)×10=1,所以m=0.028;(2)由题意可知,X的可能取值为:6000,7000,8000,9000,任选1人,估计认为该款车性能的评分不低于110分的概率为0.7,则P(X=6000)=C33×0.73×0.30=0.343;P(X=7000)=C32×0.72×0.3=0.441,P(X=8000)= C31×0.7×0.32=0.189,P(X=9000)=C30×0.70×0.33=0.027,所以X的分布列为:所以E(X)=6000×0.343+7000×0.441+8000×0.189+9000×0.027=6900元;(3)k=7时,P(Y=k)的值最大,理由如下:由题意可知Y~B(10,0.7),则{C10k×0.7k×0.310−k≥C10k+1×0.7k+1×0.39−kC10k×0.7k×0.310−k≥C10k−1×0.7k−1×0.311−k,解得6.7≤k≤7.7,又因为k=0,1,2,…,10,所以k=7,即k =7时,P (Y =k ) 的值最大.19.(15分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,0),离心率为√22. (1)求椭圆E 的方程;(2)设过点T (t ,0)的直线l 与椭圆E 有两个不同的交点A ,B (均不与点M 重合),若以线段AB 为直径的圆恒过点M ,求t 的值.解:(1)因为椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,0),离心率为√22, 所以a =2,c =b =√2,所以椭圆E 的方程x 24+y 22=1.(2)设直线l 的方程为:x =my +t ,A (x 1,y 1),B (x 2,y 2),由{x =my +t x 2+2y 2−4=0,得(m 2+2)y 2+2mty +t 2﹣4=0, Δ=(2mt )2﹣4(m 2+2)(t 2﹣4)>0,y 1+y 2=−2mt m 2+2,y 1y 2=t 2−4m 2+2, x 1+x 2=m (y 1+y 2)+2t =4t 2+m 2,x 1x 2=(my 1+t )(my 2+t ) =m 2y 1y 2+mt (y 1+y 2)+t 2=m 2(t 2−4)2+m 2−2m 2t 22+m 2+t 2=2t 2−4m 22+m 2, 因为以线段AB 为直径的圆恒过点M ,所以MA →⋅MB →=0,即(x 1﹣2)(x 2﹣2)+y 1y 2=0,所以x 1x 2﹣2(x 1+x 2)+4+y 1y 2=0,即2t 2−4m 22+m 2−2×4t 2+m 2+4+t 2−4m 2+2=0, 即3t 2﹣8t +4=0,解得t =23或t =2(舍), 所以t =23. 20.(15分)已知函数f (x )=x 2e 2﹣x ﹣x +1. (1)求曲线y =f (x )在(2,f (2))处的切线方程;(2)设函数g (x )=f '(x ),求g (x )的单调区间;(3)判断f (x )极值点的个数,并说明理由.解:(1)∵f (x )=x 2e 2﹣x ﹣x +1, ∴f ′(x )=e 2﹣x (2x ﹣x 2)﹣1, ∴f ′(2)=﹣1,f (2)=3,∴y =f (x )在(2,f (2))处的切线方程为y ﹣3=﹣(x ﹣2),即x +y ﹣5=0;(2)∵g(x)=f'(x)=e2﹣x(2x﹣x2)﹣1,x∈R,∴g′(x)=e2﹣x(x2﹣4x+2)=e2−x(x−2+√2)(x−2−√2),∴当x∈(﹣∞,2−√2)∪(2+√2,+∞)时,g′(x)>0;当x∈(2−√2,2+√2)时,g′(x)<0,∴g(x)的单调增区间为(﹣∞,2−√2),(2+√2,+∞),单调减区间为(2−√2,2+√2);(3)2个极值点,理由如下:又(2)知:当x<2−√2时,g(x)在(﹣∞,2−√2)上单调递增,且g(2−√2)=(2−√2)e√2−1>12e−1>0,g(0)=﹣1<0,∴存在唯一x1∈(0,2−√2),使得g(x1)=0;当2−√2<x<2+√2时,g(x)在(2−√2,2+√2)上单调递减,g(2−√2)>0,g(2+√2)<g(2)=﹣1<0,∴存在唯一x2∈(2−√2,2+√2),使得g(x1)=0;当x>2+√2时,﹣x2+2x<0,e2﹣x>0,∴g(x)=e2﹣x(2x﹣x2)﹣1<0,∴g(x)在(2+√2,+∞)上无零点,综合可得:当x∈(﹣∞,x1),g(x)=f'(x)<0,当x∈(x1,x2),g(x)=f'(x)>0,当x∈(x2,+∞),g(x)=f'(x)<0,∴当x=x1时,f(x)取得极小值;当x=x2时,f(x)取得极大值,故f(x)有2个极值点.21.(15分)已知Q:a1,a2,…,a k为有穷正整数数列,且a1≤a2≤…≤a k,集合X={﹣1,0,1}.若存在x i∈X,i=1,2,…,k,使得x1a1+x2a2+…+x k a k=t,则称t为k﹣可表数,称集合T={t|t=x1a1+x2a2+…+x k a k,x i∈X,i=1,2,…,k}为k﹣可表集.(1)若k=10,a i=2i﹣1,i=1,2,…,k,判定31,1024是否为k﹣可表数,并说明理由;(2)若{1,2,…,n}⊆T,证明:n≤3k−1 2;(3)设a i=3i﹣1,i=1,2,…,k,若{1,2,…,2024}⊆T,求k的最小值.解:(1)31是,1024不是,理由如下:由题意可知x1a1+x2a2+⋯+x k a k=t,当a i=2i−1,k=10时,有x1+2x2+⋯+29x10=t,x i∈{﹣1,0,1},显然若x1=﹣1,x6=1,x i=0(i∈{2,3,4,5,7,8,9,10})时,t=31,而t ≤20×1+21×1+22×1+⋯+29×1=210﹣1=1023<1024,故31是k ﹣可表数,1024不是k ﹣可表数;(2)由题意可知若x i =0⇒t =0,即0∈T ,设s ∈T ,即∃x i ∈{﹣1,0,1}使得x 1a 1+x 2a 2+⋯+x k a k =S ,所以(﹣x 1a 1)+(﹣x 2a 2)+⋯+(﹣x k a k )=﹣s ,且﹣x i ∈{﹣1,0,1}成立,故﹣s ∈T ,所以若{1,2,…,n }⊆T ,则{±1,±2,…,±n ,0}⊆T ,即{±1,±2,…±n ,0}中的元素个数不能超过T 中的元素,对于确定的Q ,T 中最多有3k 个元素,所以2n +1≤3k ⇒n ≤3k−12; (3)由题意可设∀n ∈N *,∃m ∈N *使3m−1−12<n ≤3m −12, 又x 1×1+x 2×3+x 3×32+⋯+x m−1×3m−2≤1×1+1×3+1×32+…+1×3m ﹣2=3m−1−12, 所以k >m ﹣1,即k ≥m ,而1×1+1×3+1×32+⋯+1×3m−1=3m −12,即当n =3m−12时,取a 1=1,a 2=3,…,a m =3m−1 时,n 为m ﹣可表数, 因为2×(1×1+1×3+1×32+⋯+1×3m−1)=2×3m−12=3m −1, 由三进制的基本事实可知,对任意的0≤p ≤3m ﹣1,存在r ∈{0,1,2}(i =1,2,…,m ,),使p =r 1×30+r 2×31+⋯r m ×3m−1,所以p −3m−12=(r 1×30+r 2×31+⋯r m ×3m−1)−(30+31+⋯+3m−1)=(r 1−1)×30+(r 2−1)×31+⋯+(r m −1)×3m−1,令x i =r i ﹣1 则有x i ∈{﹣1,0,1},i =1,2,…,m ,设t =p −3m −12⇒−3m −12≤t ≤3m−12, 由p 的任意性,对任意的−3m −12≤t ≤3m −12,t ∈Z , 都有t =x 1×30+x 2×31+⋯+x m ×3m−1,x i ∈{﹣1,0,1},i =1,2,…,m ,又因为n ≤3m−12, 所以对于任意的﹣n ≤t ≤n ,t ∈Z ,t 为m ﹣可表数,综上,可知k 的最小值为m ,其中m 满足3m−1−12<n ≤3m −12, 又当n =2024时,37−12<n ≤38−12, 所以k 的最小值为8.。
北京市西城区2013—2014学年度高三年级第一学期期末数学理科
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科)2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B = ( ) (A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=,则c =( ) (A )4(B(C )3(D4.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )12.已知复数z 满足2i=1iz +,那么z 的虚部为( ) (A )1-(B )i -(C )1(D )i5.已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( ) (A)2y x =+-(B)1y x =+-(C)2y x =-+(D)1y x =+-6. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b <<(D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( ) (A )116-(B ) 18-(C ) 14-(D ) 08. 如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP =x , 则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = ____. 10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++= ______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)13. 如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点. 若2PA =,3BC =,则PB =______;ACAB=______.1侧(左)视图14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y =+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v . (1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()2f α=[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.甲组 乙组 891 a822 F CEHD18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k , O 为坐标原点. (Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若114,2a q ==,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<. (Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.北京市西城区2013 — 2014学年度第一学期期末高三数学(理科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B 5.A 6.C 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分. 9.4 10.125511. 12.24 13.1 214.(1,1) π注:第10、13、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x x ωω=->的最小正周期为π, 所以2||ωπ=π,解得2ω=. ……………… 3分由 ()2f α=22α=, 即 cos 22α=, ……… 4分 所以 π22π4k α=±,k ∈Z . 因为 [π,π]α∈-, 所以7πππ7π{,,,}8888α∈--. ……………… 6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- ……………… 8分1sin 222x x =πsin(2)3x =+, ……………10分 由 2πππ2π2π232k k x -++≤≤, ………………11分 解得 5ππππ1212k k x -+≤≤. ………………12分所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 2分解得 1a =. ……………… 3分 (Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 4分依题意 0,1,2,,9a = ,共有10种可能. ……………… 5分 由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同,所以当2,3,4,,9a = 时,乙组平均成绩超过甲组平均成绩,共有8种可能.… 6分 所以乙组平均成绩超过甲组平均成绩的概率84()105P A ==. ……………… 7分 (Ⅲ)解:当2a =时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种, 它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92), ……………… 9分则这两名同学成绩之差的绝对值X 的所有取值为0,1,2,3,4. ……………… 10分 因此2(0)9P X ==,2(1)9P X ==,1(2)3P X ==,1(3)9P X ==,1(4)9P X ==. ……………… 11分所以随机变量X 的分布列为:………………12分所以X 的数学期望221115()01234993993E X =⨯+⨯+⨯+⨯+⨯=.……………13分 17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是菱形,所以 AC BD ⊥. ……… 1分因为平面BDEF ⊥平面ABCD ,且四边形BDEF 是矩形,所以 ED ⊥平面ABCD , ……………… 2分 又因为 AC ⊂平面ABCD ,所以 ED AC ⊥. …………… 3分 因为 ED BD D = ,所以 AC ⊥平面BDEF . …………… 4分 (Ⅱ)解:设AC BD O = ,取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,,O N 分别为,BD EF 的中点,所以 //ON ED ,又因为 ED ⊥平面ABCD ,所以 ON ⊥平面ABCD ,由AC BD ⊥,得,,OB OC ON 两两垂直.所以以O 为原点,,,OB OC ON 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系. ……… 5分 因为底面ABCD 是边长为2的菱形,60BAD ∠= ,3BF =, 所以(0,A ,(1,0,0)B ,(1,0,0)D -,(1,0,3)E -,(1,0,3)F,C,13()22H . ………………6分因为 AC ⊥平面BDEF ,所以平面BDEF的法向量AC =. …………7分设直线DH 与平面BDEF 所成角为α,由33(,)222DH = , 得sin |cos ,|DH AC DH AC DH ACα⋅=<>=== ,所以直线DH 与平面BDEF. ………………9分 (Ⅲ)解:由(Ⅱ),得13()222BH =- ,(2,0,0)DB = .设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩ n n ………………10分即111130,20,x z x ⎧-++=⎪⎨=⎪⎩ 令11z =,得(0,=n . ………………11分由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-,则00(01(3)1cos ,232ED ED ED⋅⨯+⨯+⨯-<>===-⨯n n n . ………………13分 由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60 . ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e xf x x a =+,x ∈R ,所以()(1)e x f x x a '=++. ……………… 2分 令()0f x '=,得1x a =--. ……………… 3分 当x 变化时,()f x 和()f x '的变化情况如下:……………… 5分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分 (Ⅱ)解:结论:函数()g x 有且仅有一个零点. ……………… 7分理由如下:由2()()0g x f x a x =--=,得方程2e x ax x -=,显然0x =为此方程的一个实数解.所以0x =是函数()g x 的一个零点. ……………… 9分 当0x ≠时,方程可化简为e x ax -=.设函数()ex aF x x -=-,则()e 1x a F x -'=-,令()0F x '=,得x a =.当x 变化时,()F x 和()F x '的变化情况如下:即()F x 的单调增区间为(,)a +∞;单调减区间为(,)a -∞.所以()F x 的最小值min ()()1F x F a a ==-. ………………11分 因为 1a <,所以min ()()10F x F a a ==->, 所以对于任意x ∈R ,()0F x >, 因此方程e x a x -=无实数解.所以当0x ≠时,函数()g x 不存在零点.综上,函数()g x 有且仅有一个零点. ………………13分19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分 令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分 因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. ……………… 5分 (Ⅱ)解:由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=,由韦达定理,得11x k +=,所以 11x k =-. ……………… 7分 同理,得AC 的方程为11(1)y x k-=--,211x k =--. ……………… 8分对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线斜率为12x ,所以切线BD 的方程为21112()y x x x x -=-, 即2112y x x x =-. ……………… 9分 同理,抛物线2y x =在点C 处的切线CD 的方程为2222y x x x =-.………………10分联立两条切线的方程2112222,2,y x x x y x x x ⎧=-⎪⎨=-⎪⎩ 解得12311(2)22x x x k k +==--,3121y x x k k==-,所以点D 的坐标为111((2),)2k k k k---. ………………11分 因此点D 在定直线220x y ++=上. ………………12分因为点O 到直线220x y ++=的距离d ==所以5OD ≥,当且仅当点42(,)55D --时等号成立. ………………13分 由3125y k k =-=-,得k =.所以当k =OD………………14分20.(本小题满分13分)(Ⅰ)解:由等比数列{}n a 的14a =,12q =, 得14a =,22a =,31a =,且当3n >时,01n a <<. ……………… 1分所以14b =,22b =,31b =,且当3n >时,[]0n n b a ==. ……………… 2分即 ,6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥ ……………… 3分(Ⅱ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 4分 因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ……………… 5分 由 21a q a =,得 1q <. ……………… 6分 因为 201220142[2,3)a a q =∈,所以 20122223qa >≥,第 11 页 共 11 页 所以 2012213q <<,即 120122()13q <<. ……………… 8分 (Ⅲ)证明:(充分性)因为 1a N *Î,q N *Î, 所以 11n n a a q N -*= ,所以 []n n n b a a == 对一切正整数n 都成立.因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 9分 (必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =;当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =.由 n b Z Î,0n a >,得对一切正整数n 都有n a N *Î, ………………10分 所以公比21a q a =为正有理数. ………………11分 假设 q N *Ï,令p q r=,其中,,1p r r N *?,且p 与r 的最大公约数为1. 因为1a 是一个有限整数,所以必然存在一个整数()k k N Î,使得1a 能被k r 整除,而不能被1k r+整除. 又因为111211k k k k a p a a q r++++==,且p 与r 的最大公约数为1. 所以2k a Z +Ï,这与n a N *Î(n N *Î)矛盾.所以q *∈N .因此1a N *Î,q *∈N . ……………13分。
北京市2013届高三数学理试题分类汇编(含9区一模及上学期期末试题)专题:概率(含答案)
北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:概率一、选择题1 .(2013届北京大兴区一模理科)若实数,a b 满足221a b +≤,则关于x 的方程220x x a b -++=有实数根的概率是 ( )A .14 B .34C .3π24π+ D .π24π- 2 .(2013届东城区一模理科)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于12,则成绩为及格;若飞标到圆心的距离小于14,则成绩为优秀;若飞标到圆心的距离大于14且小于12,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为 ( )A .316B .14C .34D .1163 .(北京市西城区2013届高三上学期期末考试数学理科试题)将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是 ( )A .221B .463C .121 D .2634 .(北京市丰台区2013届高三上学期期末考试 数学理试题 )从装有2个红球和2个黑球的口袋内任取2个球,则恰有一个红球的概率是 ( )A .13B .12C .23D .565 .(北京市昌平区2013届高三上学期期末考试数学理试题 )设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是 ( )A .413B .513C .825D .925二、填空题6 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知随机变量X 的分布列如下,则EX 的值等于7 .(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知区域1,{(,)0,}1,y x x y y x ≤+⎧⎪Ω=≥⎨⎪≤⎩,1,{(,)}0,y x M x y y ⎧≤-+⎪=⎨≥⎪⎩,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为 .三、解答题8 .(2013届北京大兴区一模理科)期末考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩,如下表:(1)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定。
昌平区2013-2014学年第一学期高三年级期末理科数学
昌平区2013-2014学年第一学期高三年级期末质量抽测数 学 试 卷(理 科)(满分150分,考试时间120分钟) 2014.1考生须知:1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3.答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4.修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5.考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项.)(1) 已知全集=R U ,集合{1,0,1}=-A ,2{20}=-<B x x x , 则=I ðU A B(A) {1,0}- (B) {1,0,2}- (C) {0} (D) {1,1}- (2) “1cos 2α=”是“3πα=”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(3) 给定函数①21y x =+,②12log y x =,③12y x =,④1()2xy =,其中在区间(0,1)上单调递增的函数的序号是(A )② ③(B )① ③ (C )① ④(D )② ④w(4) 执行如图所示的程序框图,输出的k 值是 (A)1 (B)2 (C)3 (D)4俯视图左视图主视图(5) 若实数,x y 满足10,2,3,+-≥⎧⎪≤⎨⎪≤⎩x y x y 则z y x =-的最小值是(A) 1 (B) 5 (C) 3- (D) 5- (6) 一个几何体的三视图如图所示,则这个几何体的体积是 (A) 1 (B) 2(C)23 (D)13(7) 连掷两次骰子得到的点数分别为m 和n ,若记向量()m n ,a =与向量(12)=-,b 的夹角为θ,则θ为锐角的概率是 (A)536 (B) 16 (C) 736(D) 29(8)已知函数21, 0,(),40⎧+>⎪=-≤≤x x f x a x 在点(1,2)处的切线与()f x 的图象有三个公共点,则a 的取值范围是(A)[8,4--+ (B)(44---+ (C)(48]-+ (D)(48]---第二卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分.)(9) 已知θ是第二象限的角,3sin 5θ=,则tan θ的值为___________ .(10) 如图,在复平面内,复数z 对应的向量为OA uu r,则复数i ⋅z =_______ .(11) 已知等差数列{}n a 的前n 项和为n S ,若2461a a a -+=,则4a =_____ ,7S = _____.(12)曲线11,2,,0====x x y y x所围成的图形的面积等于___________ . (13) 在ABC ∆中,4,5,2==⋅=AB BC BA AC uu r uuu r,则AC =________ .(14) 将含有3n 个正整数的集合M 分成元素个数相等且两两没有公共元素的三个集合A B C 、、,其中12{,,,}n A a a a =L ,12{,,,}n B b b b =L ,12{,,,}n C c c c =L ,若A B C 、、中的元素满足条件:12n c c c <<<L ,k k k a b c +=,(1,2,3,,)k n =,则称M 为“完并集合”.①若{1,,3,4,5,6}M x =为“完并集合”,则x 的一个可能值为 .(写出一个即可)②对于“完并集合”{1,2,3,4,5,6,7,8,9,10,11,12}M =,在所有符合条件的集合C 中,其元素乘积最小的集合是 .D CBAP三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)已知函数2()cos 2sin 1f x x x x =+-. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)当5[,]126x ππ∈-时,求函数()f x 的取值范围.(16)(本小题满分13分)为了调研某校高一新生的身高(单位:厘米)数据,按10%的比例对700名高一新生按性别分别进行“身高”抽样检查,测得“身高”的频数分布表如下表1、表2.(Ⅰ)求高一的男生人数并完成下面的频率分布直方图; (Ⅱ)估计该校学生“身高”在[165,180)之间的概率;(Ⅲ)从样本中“身高”在[180,190)的男生中任选2人,求至少有1人“身高”在[185,190)之间的概率.(17)(本小题满分14分)在四棱锥P ABCD -中,PD ⊥平面ABCD ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.(Ⅰ)求证:BC PC ⊥;(Ⅱ)求PA 与平面PBC 所成角的正弦值;(Ⅲ)线段PB 上是否存在点E ,使AE ⊥平面PBC ?说明理由.(18)(本小题满分13分)在平面直角坐标系x y O 中,已知点(,0)(0)≠A a a ,圆C 的圆心在直线4y x =-上,并且与直线:10l x y +-=相切于点(3,2)P -.(Ⅰ)求圆C 的方程;(Ⅱ)若动点M 满足2MA MO =,求点M 的轨迹方程;(Ⅲ)在(Ⅱ)的条件下,是否存在实数a ,使得CM 的取值范围是[1,9],说明理由.(19)(本小题满分13分)已知函数2(2)()m xf x x m-=+. (Ⅰ)当1m =时,求曲线()f x 在点11(,())22f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.(20)(本小题满分14分)设满足以下两个条件的有穷数列123,,,,n a a a a L 为(2,3,4,)=L n n 阶“期待数列”: ①1230++++=L n a a a a ,②1231++++=L n a a a a . (Ⅰ)若等比数列{}n a 为2()∈N*k k 阶“期待数列”,求公比q ;(Ⅱ)若一个等差数列{}n a 既是2()∈N*k k 阶“期待数列”又是递增数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”{}i a 的前k 项和为(1,2,3,,)=L k S k n .(1)求证: 12≤k S ; (2)若存在{1,2,3,,}∈L m n ,使12=m S ,试问数列{}(1,2,3,,)=L i S i n 能否为n 阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.昌平区2013-2014学年第一学期高三年级期末质量抽测数学试卷(理科)参考答案及评分标准 2014.1一、选择题共10小题,每小题5分,共50分。
2013-2014学年度第一学期期末统一考试高三数学试卷(理科)
曲靖市2013—2014学年度第一学期期末统一考试高三数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟. 注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上.3、不可以使用计算器.4、考试结束,将答题卡交回,试卷不用上交.第Ⅰ卷(选择题共40分)一、选择题:(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为 ( ) A .{}2 B .{}4,6C .{}1,3,5D .{}4,6,7,82.等差数列}{n a 的前n 项和为n S ,若301272=++a a a ,则13S 的值是( ) A .130 B .65 C .70 D .753.“22ab >”是 “22log log a b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形5.直线2(1)10x a y +++=的倾斜角的取值范围是( ) A .[0,]4πB .3,4ππ⎡⎫⎪⎢⎣⎭C .[0,](,)42πππD .3,,424ππππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭6.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为( )A .521B .27C .13D .8217.若右边的程序框图输出的S 是126,则条件①可为( ) A .n ≤5B .n ≤6C .n ≤7D .n ≤88.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值.其中所有正确的命题的序号是( )A .①②③B .①③C .②④D .①③④第Ⅱ卷(非选择题共110分)二、填空题:(本大题共6小题,每小题5分,共30分.)9.在二项式()62+x 的展开式中,含3x 的项的系数是__________10.曲线2:x y C =、直线2:=x l 与x 轴所围成的图形面积为_________11.已知函数()x f 的导数()()()()1,f x a x x a f x x a '=+-=若在处取得极大值,则a 的取值范围为__________12.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积...等于 13.已知直线0=++c by ax 与圆1:22=+y x O 相交于,A B 两点,且,3=AB 则OB OA ⋅的值是14.如下图,对大于或等于2的自然数m 的n 次幂进行如下方式的“分裂”:C1BA 241357341315171944616365672213323542792313533791143252729仿此,26的“分裂”中最大的数是 ;32013 的“分裂”中最大的数是 ; 三、解答题:(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分)函数()2sin()ωϕ=+f x x (0,0)2ωϕπ><<的部分图象如下图所示,该图象与y 轴交于点(0,1)F ,与x 轴交于点,B C ,M 为最高点,且三角形MBC 的面积为π.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若((0,)62f ααππ-=∈,求cos(2)4απ+的值.16.(本小题满分12分)已知等差数列{}n a 的公差大于0,且53,a a 是方程045142=+-x x 的两根,数列{}n b 的前n 项的和为n S ,且n n b S 211-= (*n N ∈). (1) 求数列{}n a ,{}n b 的通项公式; (2) 记n n n b a c ⋅=,求证:n n c c ≤+1.17.(本小题满分14分) 如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 、E 分别为11A B 、1AA 的中点,点F 在棱AB 上,且14AF AB =. (Ⅰ)求证://EF 平面1BDC ;(Ⅱ)在棱AC 上是否存在一个点G ,使得平面EFG 将三棱柱分割成的两部分体积之比为1:15,若存在, 指出点G 的位置;若不存在,说明理由.18.(本小题满分14分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:(Ⅰ)该同学为了求出y 关于x 的线性回归方程ˆˆˆybx a =+,根据表中数据已经正确计算出ˆ0.6b=,试求出ˆa 的值,并估计该厂6月份生产的甲胶囊产量数; (Ⅱ)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.19.(本小题满分14分) 已知函数()b ax x x f +-=331,其中实数b a ,是常数. (Ⅰ)已知{}2,1,0∈a ,{}2,1,0∈b ,求事件A :“()01≥f ”发生的概率;(Ⅱ)若()x f 是R 上的奇函数,()a g 是()x f 在区间[]1,1-上的最小值,求当1≥a 时A 1x()a g 的解析式;(Ⅲ)记()x f y =的导函数为()x f ',则当1=a 时,对任意[]2,01∈x ,总存在[]2,02∈x 使得12()()f x f x '=,求实数b 的取值范围.20.(本小题满分14分) 已知函数()2ln bf x ax x x=--,(1)0f =. (Ⅰ)若函数()f x 在其定义域内为单调函数,求实数a 的取值范围; (Ⅱ)若函数()f x 的图象在1x =处的切线的斜率为0,且211()11n n a f n a n +'=-+-+,已知14a =,求证:22n a n ≥+;(Ⅲ)在(Ⅱ)的条件下,试比较1231111...1111n a a a a ++++++++与25的大小,并说明你的理由.中山市高三级2012—2013学年度第一学期期末统一考试数学试卷(理科)答案一、选择题二、填空题9.160; 10.83; 11.01<<-a ; 12.326+; 13.12-;14.11(本空2分);3m (m 为奇数)的“分拆”的最大数是21m m +-,所以2201320124054181+=(本空3分,写成“220132012+”或“4054181”都给3分)三、解答题15.(本小题满分12分)解:(I )∵122MBC S BC BC ∆=⨯⨯==π, ∴周期2,1T ωω2π=π== ……….2分由(0)2sin 1f ϕ==,得1sin 2ϕ=, ……………………………………3分∵02ϕπ<<,∴6ϕπ=,∴()2sin()6f x x π=+. …………………………………………….6分 (Ⅱ)由()2sin 6f ααπ-=sin α=, ∵(0,2απ∈,∴cos α=, ∴234cos 22cos 1,sin 22sin cos 55ααααα=-===,∴cos(2)cos2cos sin 2sin 444αααπππ+=-3455==. …………………….12分16.(本小题满分12分)解:(Ⅰ)∵53,a a 是方程045142=+-x x 的两根,且数列}{n a 的公差0d >,∴355,9a a ==,公差.23535=--=a a d∴.12)5(5-=-+=n d n a a n ( *n N ∈)………………4分又当n=1时,有b 1=S 1=1-.32,2111=∴b b 当).2(31),(21,2111≥=∴-=-=≥---n b b b b S S b n n n n n n n n 有时 ∴数列{b n }是等比数列,.31,321==q b ∴.3211nn n q b b ==- ( *n N ∈) …………8分 (Ⅱ)由(Ⅰ)知,3)12(2,3)12(211+++=-==n n n n n n n c n b a c …………10分∴.03)1(83)12(23)12(2111≤-=--+=-+++n n n n n n n n c c ∴.1n n c c ≤+ …………………………12分在三棱柱111ABC A B C -中,,D M 分别为11,A B AB 的中点,11//,A D BM A D BM ∴=,1A DBM ∴为平行四边形,1//A M BD ∴ //,EF BD ∴BD ⊆ 平面1BC D ,EF ⊄平面1BC D//EF ∴平面1BC D…………………….7分(II )设AC 上存在一点G ,使得平面EFG 将三棱柱分割成两 部分的体积之比为1︰15,则111:1:16E AFG ABC A B C V V --=111111sin 321sin 2E AFG ABC A B C AF AG GAF AEV V AB AC CAB A A --⨯⋅∠⋅=⋅⋅∠⋅ 111134224AG AG AC AC =⨯⨯⨯=⋅112416AG AC ∴⋅=, 32AG AC ∴=, 32AG AC AC ∴=> 所以符合要求的点G 不存在 ……………………….14分18.(本小题满分14分)解:(Ⅰ)11(12345)3,(44566)555x y =++++==++++=,因线性回归方程ˆ=+ybx a 过点(,)x y , ∴50.66 3.2a y bx =-=-⨯=,∴6月份的生产甲胶囊的产量数:ˆ0.66 3.2 6.8y=⨯+=…………….6分(Ⅱ)0,1,2,3,ξ=31254533991054010(0),(1),84428421C C C P P C C ξξ======== 213454339930541(2),(3).84148421C C C P P C C ξξ======== …………………….10分5105140123 422114213E ξ∴=⨯+⨯+⨯+⨯= …………………….14分19.(本小题满分14分)解:(Ⅰ)当{}{}0,1,2,0,1,2a b ∈∈时,等可能发生的基本事件(,)a b 共有9个: (00)(01)(02),(10)(11)(12)(20)(21)(22).,,,,,,,,,,,,,,,, 其中事件A : “1(1)03f a b =-+≥”,包含6个基本事件: (00)(01)(02)(11)(12)(22).,,,,,,,,,,,故62()93P A ==. 即事件“(1)0f ≥”发生的概率23…………………….4分 (Ⅱ)31(),3f x x ax b =-+是R 上的奇函数,得(0)0,0.f b ==(5分)∴31(),3f x x ax =- 2()f x x a '=-,① 当1a ≥时,因为11x -≤≤,所以()0f x '≤,()f x 在区间[]1,1-上单调递减,从而1()(1)3g a f a ==-; ② 当1a ≤-时,因为11x -≤≤,所以()0f x '>,()f x 在区间[]1,1-上单调递增,从而1()(1)3g a f a =-=-+, 综上,知1,13().1,13a a g a a a ⎧-≤-⎪⎪=⎨⎪-+≥⎪⎩…………………….9分(Ⅲ)当1=a 时,()()1,3123-='∴+-=x x f b x x x f当()()()()02,1,01,0>'∈<'∈x f x x f x 时当时()()()上递增上递减,在在2,11,0x f ∴,即()()b f x f +-==321m in 又()()()0322,0f b f b f >+== ,[]()⎥⎦⎤⎢⎣⎡++-∈∈∴b b x f x 32,3220时,,当 而()[]210,2f x x x '=-∈在上递增,()[1,3]f x '∈-对任意[]2,01∈x ,总存在[]2,02∈x 使得)()(21x f x f '=()()f x f x '∴⊆的值域的值域,[]22-,1,333b b ⎡⎤++⊆-⎢⎥⎣⎦即∴ 2-13b +≥-且233b +≤,解得13-73b ≤≤.…………………….14分20.(本小题满分14分)解(Ⅰ) (1)0f a b a b =-=⇒= ,()2ln a f x ax x x ∴=--, 22 ()a f x a x x'∴=+-. 要使函数()f x 在其定义域内为单调函数,则在定义域(0,)+∞内, ① 当0a =时,2()0f x x'=-<在定义域(0,)+∞内恒成立, 此时函数()f x 在其定义内为单调递减函数,满足题意; ②当0a >时,要使222111 ()()0a f x a a a x x x a a '=+-=-+-≥恒成立,则10a a-≥,解得1a ≥;此时函数()f x 在其定义内为单调递增函数,满足题意;③ 当0a <时,22()0a f x a x x'=+-<恒成立;此时函数()f x 在其定义内为单调递减函数,满足题意;综上所述,实数a 的取值范围是(,0][1,)-∞⋃+∞;…………………….4分(注: 本问也可采用“分离变量”的方法,酌情给分)(Ⅱ)由题意知(1)0f '=,可得20a a +-=,解得1a =,所以21()(1)f x x'=-于是/2211(1211n n n n a f n a na a n +=-+=-+-+,下面用数学归纳法证明22n a n ≥+成立,数学归纳法证明如下:(i )当1n =时,14212a =≥⨯+,不等式成立;(ii )假设当n k =时,不等式22k a k ≥+成立,即22k a k -≥成立,则当1n k =+时,1(2)1(22)21452(1)2k k k a a a k k k k +=-+≥+⨯+=+>++, 所以当1n k =+时,不等式也成立,由(i )(ii )知*n N ∀∈时都有22n a n ≥+成立. …………………….8分(Ⅲ) 由(Ⅱ)得1111(22)1[2(1)222]121n n n n n a a a n a n n a ----=-++≥-+-++=+,(*,2n N n ∀∈≥)于是112(1)n n a a -+≥+, (*,2n N n ∀∈≥)成立,所以2112(1)a a +≥+,3212(1),...a a +≥+,112(1)n n a a -+≥+成立 累乘可得:1112(1)n n a a -+≥+,则1111112(1)n n a a -≤++成立,(*,2n N n ∀∈≥) 所以1231111...1111n a a a a ++++++++2111111212(1...)(1)1222525n n a -≤++++=-<+.。
2012-2013学年度第一学期期末试卷高三数学(理科)
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B = ( ) (A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞(D )(,1)(0,)-∞-+∞2.在复平面内,复数5i 2i-的对应点位于( )(A )第一象限 (B )第二象限(C )第三象限(D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( ) (A )416(,)55(B )4(,16)5(C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221(B )463(C )121(D )263第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =_____.10.如图,R t △A B C 中,90ACB ︒∠=,3A C =,4B C =.以A C 为直径的圆交AB 于点D ,则 BD = ;C D =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =______.12.已知椭圆22142xy+=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12P F F 的面积是______.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2B C =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ; (Ⅱ)求证:平面P A D ⊥平面A B C D ; (Ⅲ)求二面角B AC E --的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下: 测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]元件A 8 1240 32 8 元件B71840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.18.(本小题满分13分)已知函数2()x f x x b=+,其中b ∈R .(Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线A F ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线M N 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n = 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()nniji j l A r A cA ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6;12. 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)21cos 2B B =-,所以 2cos 2sin B B B =. ………………3分因为 0B <<π, 所以 sin 0B >,从而 tan B = (5)分所以 π3B =. (6)分解法二: 依题意得2cos 21B B +=, 所以 2sin(2)16B π+=, 即 1sin(2)62B π+=. (3)分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=. (5)分所以 π3B =. (6)分(Ⅱ)解法一:因为 4A π=,π3B =,根据正弦定理得sin sin A CB CB A=, (7)分所以 sin sin B C B A C A⋅==. (8)分因为 512C A B π=π--=, (9)分所以 5sin sinsin()12464C πππ==+=, (11)分所以 △ABC 的面积13sin 22S AC BC C +=⋅=. (13)分解法二:因为 4A π=,π3B =,根据正弦定理得sin sin A CB CB A=, (7)分所以 sin sin B C B A C A⋅==. (8)分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, (9)分化简为 2220AB AB --=,解得 1AB =+ (11)分所以 △ABC 的面积1sin 22S AB BC B =⋅=………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . (7)分所以平面PAD ⊥平面ABCD . (8)分(Ⅲ)解法一:在平面PAD 内过D 作直线D z AD ⊥.因为平面PAD ⊥平面ABCD ,所以D z ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. (9)分设4A B =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E . 所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.E A A C ⎧⋅=⎪⎨⋅=⎪⎩ n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(1,1,3)=n . (11)分易知平面ABCD 的法向量为(0,0,1)=v . (12)分所以 |||cos ,|||||11⋅==〈〉n v n v n v . (13)分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. (14)分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN . 因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD .由,,MP MA MN 两两垂直,建立如图所示 的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---. 所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.E A A C ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. (11)分易知平面ABCD 的法向量为=v )1,0,0(. (12)分所以|||cos,|||||11⋅==〈〉n v n v n v . (13)分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. (14)分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. (1)分元件B 为正品的概率约为4029631004++=. (2)分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=;411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. (7)分所以,随机变量X 的分布列为:X 90 45 30 15- P3532015120 (8)分3311904530(15)66520520E X =⨯+⨯+⨯+-⨯=. (9)分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =. ………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A ,则 445531381()C ()()444128P A =⨯+=. ………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=.故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b xf x x b -'=+. (3)分令()0f x '=,得1x =,2x = ()f x 和()f x '的情况如下:)故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(. (5)分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b xf x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间. (7)分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. (9)分设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =. (11)分则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤.所以,b 的取值范围是1(0,]4. (13)分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. (4)分从而128y y =-. (5)分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. (7)分设直线A M 的方程为1x ny =+,将其代入24y x =,消去x ,整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y y k y y y y ++===--+-+. (13)分由(Ⅰ)得122k k =,为定值. (14)分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.1- 1- 1- 1- 1 1 1 1 1 1 1 1 1111………………3分(Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A , ,9()r A ,1()c A ,2()c A , ,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅ . 一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅ 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅ 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. (8)分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅ ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅ .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅ . ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A , ,()n r A ,1()c A ,2()c A , ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -,所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n = ,显然0()2l A n =. 将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤ ,其余1ij a =. 所以 12()()()1k r A r A r A ====- ,12()()()1k c A c A c A ====- . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -= . (13)分。
2013学年高一数学上学期期末考试试题及答案(新人教A版 第118套)
辽宁省大连市2012-2013学年高一上学期期末考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.参考公式:球的体积公式343V R π=,球的表面积公式24S R π=. 第I 卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列图形中,表示集合N M ⊆关系的韦恩图是 ( )2.已知直线10x my +-=与直线220x y -+=平行,则m 的值为( ) A. 2- B.12-C. 2D.123.函数3()f x x =的图像关于( )A .y 轴对称B .坐标原点对称C .直线x y =对称D .直线x y -=对称4.直线l 的方程是5x =,圆C 的方程是22(2)9x y -+=,则直线l 与圆C 的位置关系是( )A. 相离B. 相切C. 相交D. 相交或相切5.已知函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x ,则)]41([f f 的值是 ( ) A. 91 B. 41 C. 4 D. 96.如图为函数ln y m x =+的图像,其中m 、n 常数,则下列结论正确的是 ( ) A .0,1m n <> B .0,1m n >> C .0,01m n ><< D .0,01m n <<<7.在用二分法求方程3210x x --=(1,2)内,则下一步可断定该根所在的区间为( )A .(1.4,2)B .(1,1.4)C .3(1,)2D .3(,2)28.已知函数22log (2)y x kx k =-+的值域为R,则k 的取值范围是( )A .01k << B 01k ≤< C.0k ≤或1k ≥ D.0k =或1k ≥9.在下列正方体中,有AB CD ⊥的是( )A B C D10. 若过点(4,0)A 的直线l 与曲线22(2)1x y -+=1)2(22=+-y x 有公共点,则直线l 的斜率的取值范围为( )A .[B .(C . [D .( 11.点(4,2)P -与圆224x y +=上任一点连线的中点轨迹方程是 ( )A .22(2)(1)1x y -++=B .22(2)(1)4x y -++=C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-=12.已知函数()y f x =的定义域为D ,若对于任意的1x ,2x D ∈()12x x ≠,都有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,则称()y f x =为D 上的凹函数.由此可得下列函数中的凹函数为( )A .2log y x =B .y =.3y x = D .2y x =第 Ⅱ 卷(非选择题,共90分)二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.设2.03=a ,π21log =b ,3..021⎪⎭⎫ ⎝⎛=c ,则c b a ,,从大到小的顺序为 .14.过点()1,2P 引一直线,使其倾斜角为直线:l 30x y --=的倾斜角的两倍,则该直线的方程是_________________.15.给出下列四个命题:①若直线垂直于平面内的两条直线,则这条直线垂直于这个平面;②若直线与平面内的任意一条直线都垂直,则这条直线垂直于这个平面; ③若直线l α平面,直线m α平面,则l m ; ④若直线a 直线b ,且直线l a ⊥,则l b ⊥.其中正确命题的序号是 .16.从点P 出发三条射线,,PA PB PC 两两成60°角,且分别与球O 相切于,,A B C 三点,若球的体积为43π,则OP 的距离为 .三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)定义在R 上的函数()y f x =是偶函数,当x ≥0时,2483f x x x =-+-(). (Ⅰ)当0x <时,求()f x 的解析式;(Ⅱ)求()y f x =的最大值,并写出()f x 在R 上的单调区间(不必证明).. 18.(本小题满分12分)如图, 在底面是菱形的四棱锥P ABCD -,60ABC ∠=︒,PA AC a ==,PB PD ==,点E 是PD 的中点.证明: (Ⅰ)PA ⊥平面ABCD ;(Ⅱ)PB ∥平面EAC .19. (本小题满分12分)如图所示是一个几何体的直观图及它的三视图(其中主视图为直角梯形,俯视图为正方形,左视图为直角三角形,尺寸如图所示),(Ⅰ)求四棱锥P ABCD -的体积;(Ⅱ)若G 为BC 的中点,求证:AE PG ⊥.20.(本小题满分12分)已知2()3gx x=--,()f x 是二次函数,当[1,2]x ∈-时,()f x 的最小值为1,且()()f x g x +为奇函数,求函数()f x 的表达式.44主视图左视图俯视图21.(本小题满分12分)已知圆M 过两点A (1,-1),B (-1,1),且圆心M 在20x y +-=上.(1)求圆M 的方程;(2)设P 是直线3480x y ++=上的动点,PC 、PD 是圆M 的两条切线,C 、D 为切点,求四边形PCMD 面积的最小值. 22.(本题满分12分)定义:对于任意x ∈[0,1],函数()0f x ≥恒成立,且当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立,则称()f x 为G 函数.已知函数2()g x x =与()21x h x a =⋅-是定义在[0,1]上的函数.(1)试问函数()g x 是否为G 函数?并说明理由;(2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,利用函数图象讨论方程(2)(21)x g h x m +-+=(R)m ∈解的个数情况.高一期末测试卷数学参考答案与评分标准一.选择题1. C ;2.A ;3.B ;4.B ;5.A ;6.D ;7.D ;8.C ;9.A ;10.C ;11.A ;12.D . 二.填空题13.a c b >>;14.1x =;15.②,④;16.3. 三.解答题17.解:(Ⅰ)设x <0,则0x ->,22()4()8()3483f x x x x x -=--+--=---, ············ 2分∵()f x 是偶函数,∴()()f x f x -=,∴0x <时, 2()483f x x x =---. ················· 5分(Ⅱ)由(Ⅰ)知224(1)1(0)()4(1)1(0)x x f x x x ⎧--+≥⎪=⎨-++<⎪⎩, ············ 6分 ∴()y f x =开口向下,所以()y f x =有最大值(1)(1)1f f =-=. ···· 8分函数()y f x =的单调递增区间是(-∞,-1]和[0,1];单调递减区间是 [-1,0]和 [1,+∞). ···············10分 18.证明:(1)底面ABCD 为菱形,60ABC ∠=,AB BC CD DA AC a ∴=====. ··················· 2分PA AC =,PA AB a ∴==,PB =,PA AB ∴⊥,同理可证PA AD ⊥, ··················· 4分又AB AD A =,PA ∴⊥平面ABCD . ················ 6分 (2)连结AC BD ,相交于O ,则O 为BD 的中点.E 为PD 的中点,PB OE ∴∥. ···················· 8分 又OE ⊂平面EAC ,PB ⊄平面EAC , ················ 10分 PB ∴∥平面EAC . ·························· 12分19.解(Ⅰ)由几何体的三视图可知,底面ABCD 是边长为4的正方形, ······· 2分PA ⊥面ABCD ,PA ∥EB ,且PA =42,BE =22,AB =AD =CD =CB =4, ..... 4分∴V P -ABCD =13PA x S ABCD =13×42×4×4=6423. .......................... 5分(Ⅱ)连BP ,∵EB AB =BAPA=12,∠EBA =∠BAP =90°, ................... 7分 ∴△EBA ∽△BAP ,∴∠PBA =∠BEA , ................................ 8分∴∠PBA +∠BAE =∠BEA +∠BAE =90°,∴PB ⊥AE . .................. 10分 又∵BC ⊥面APEB ,∴BC ⊥AE ,∴AE ⊥面PBG ,∴AE ⊥PG . ............. 12分 20. 解:设()(),02≠++=a c bx ax x f则()()()312-++-=+c bx x a x g x f . ················· 2分 又()()x g x f +为奇函数,∴3,1==c a . ··············· 4分∴(),32++=bx xx f 对称轴2bx -= .当22≥-b时,()f x 在[]2,1-上为减函数 ∴()f x 的最小值为()13242=++=b f ∴3-=b 又4-≤b ,∴此时无解. ······························ 6分当221<-<-b 时,()14322min =-=⎪⎭⎫⎝⎛-=b b f x f ∴22±=b∵2224-=∴<<-b b ,此时(),3222+-=x x x f ········· 8分当12-≤-b时,()f x 在[]2,1-上为增函数∴()f x 的最小值为()141=-=-b f ∴3=b ,又满足2≥b ∴(),332++=x x x f ············· 10分综上所述,(),3222+-=x x x f 或()332++=x x x f ·········· 12分21.解:(1)法一:线段AB 的中点为(0,0),其垂直平分线方程为0x y -=. ···· 2分 解方程组0,20.x y x y -=⎧⎨+-=⎩所以圆M 的圆心坐标为(1,1).故所求圆M 的方程为:22(1)(1)4x y -+-=. ············· 4分 法二:设圆M 的方程为:222()()x a y b r -+-=,根据题意得222222(1)(1),(1)(1),20.a b r a b r a b ⎧-+--=⎪--+-=⎨⎪+-=⎩·················· 2分解得1,2a b r ===.故所求圆M 的方程为:22(1)(1)4x y -+-=. ············· 4分(2)由题知,四边形PCMD 的面积为1122PMC PMD S S S CM PC DM PD ∆∆=+=+. ············ 6分 又2CM DM ==,PC PD =,所以2S PC =,而PC ==即S = ························ 8分因此要求S 的最小值,只需求PM 的最小值即可,即在直线3480x y ++=上找一点P ,使得PM 的值最小,所以min3PM==, ··················10分 所以四边形PCMD 面积的最小值为S ===. ·················· 12分22.解:(1) 当[]0,1x ∈时,总有2g x x 0()=≥,满足条件①, ········ 1分 当12120,0,1x x x x ≥≥+≤时,22222121212121212g x x x x x x 2x x x x g x g x ()()()()+=+=++≥+=+,满足条件②································ 3分 (2)∵()21xh x a =⋅-是G 函数,∴210xa ⋅-≥,∴12x a ≥恒成立. ····· 4分 ∴a 1≥. ······························· 5分 由1212g x x g x g x ()()()+≥+ ,得1212x x x x a 21a 21a 21+⋅-≥⋅-+⋅-,即12xxa 121211[()()]---≤, ······················· 6分 因为 12120,0,1x x x x ≥≥+≤ 所以1x 0211≤-≤ 2x 0211≤-≤ 1x 与2x 不同时等于111x x 021211()()∴≤--<,11x x 0121211()()∴<---≤,11x x 1a 12121()()∴≤--- ·························· 7分当12x x 0==时,11x x 1112121min ()()()=--- ,a 1∴≤, ·········· 8分 综合上述a 的值为1. ·························· 8分 (3)根据⑵知: a=1,方程为x2x 1421m -++-=, ············· 9分令x 4tt 14[,]=∈ 方程为2t m 1t+=+ 图(略) ································· 10分 由图形可知:当7m 122{}(,]∈⋃时,有一解;当m 12(,]∈ 时,有二不同解;当7m 12(,)(,)∈-∞⋃+∞时,方程无解. ················ 2分。
2012-2013学年下学期期末调研考试高一数学试题(含答案)(必修3+必修4)
19. (本小题满分14分) 从3名男生和2名女生中任选两人参加演讲比赛,试求: (1)所选2人都是男生的概率; (2)所选2人恰有1名女生的概率; (3)所选2人至少有1名女生的概率.
20.(本小题满分15分) 设 x R ,函数 f ( x ) cos ( x ) 为 ,且 f ( )
2012-2013学年下学期期末调研考试
高一数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.试卷满分150分.考试时间 100分钟. 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证 号填写清楚. 2.第Ⅰ卷,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效. 3.第Ⅱ卷,请务必用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,
15.已知 a 4 , e 为单位向量,当 a 与 e 之间的夹角为 1200 时, a 在 e 方向上的投影为 16.对于函数 f ( x ) 3sin(2 x ①图像关于原点成中心对称 ②图像关于直线 x
6
) ,给出下列命题:
6
对称
③函数 f ( x ) 的最大值是3 ④函数的一个单调增区间是 [
, ] 4 4
其中正确命题的序号为 . 三.解答题(本大题5个小题,共70分.解答应写出说明文字,证明过程或演算步骤) 17. (本小题满分12分) 已知 tan( ) 2 .
sin cos 的值; sin cos (2)求 sin 2 的值.
专题31以立体几何中探索性问题为背景的解答题-2021年高考数学备考优生百日闯关系列(解析版)
【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法. 求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题.2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【精选名校模拟】1.【成都石室中学2014届高三上期“一诊”模拟考试(一)(理)】(本小题满分12分)已知直三棱柱111C B A ABC -的三视图如图所示,且D 是BC 的中点.(Ⅰ)求证:1A B ∥平面1ADC ; (Ⅱ)求二面角1C AD C --的余弦值;(Ⅲ)试问线段11A B 上是否存在点E ,使AE 与1DC 成60︒角?若存在,确定E 点位置,若不存在,说明理由.2.【四川省绵阳市高2014届第二次诊断性考试数学(理)】(本题满分12分)如图,在直角梯形ABCD 中,AD //BC ,∠ADC =90º,AE ⊥平面ABCD ,EF //CD , BC =CD =AE =EF =12AD =1. (Ⅰ)求证:CE //平面ABF ; (Ⅱ)求证:BE ⊥AF ;(Ⅲ)在直线BC 上是否存在点M ,使二面角E -MD -A 的大小为6π?若存在,求出CM 的长;若不存在,请说明理由.试题解析:(I)证明:如图,作FG∥EA,AG∥EF,连结EG交AF于H,连结BH,BG,∵EF∥CD且EF=CD,∴AG∥CD,即点G在平面ABCD内.由AE⊥平面ABCD知AE⊥AG,∴四边形AEFG为正方形,故在直线BC 上存在点M ,且|CM |=|32(2)3-±|=33.………………………12分 法二、作AH DM ⊥,则3AH =,由等面积法得:233,33DM CM =∴=. 3.【四川省成都七中高2014届高三“一诊”模拟考试数学(理)】如图四棱锥ABCD P -中,底面ABCD 是平行四边形,⊥PG 平面ABCD ,垂足为G ,G 在AD 上且GD AG 31=,GC BG ⊥,2==GC GB ,E 是BC 的中点,四面体BCG P -的体积为38. (1)求二面角P BC D --的正切值; (2)求直线DP 到平面PBG 所成角的正弦值;(3)在棱PC 上是否存在一点F ,使异面直线DF 与GC 所成的角为060,若存在,确定点F 的位置,若不存在,说明理由.试题解析:(1)由四面体BCG P -的体积为38.∴4PG =设二面角P BC D --的大小为θ2==GC GB E 为中点,∴GE BC ⊥ 同理PE BC ⊥∴PEG θ∠=∴tan 22θ=……………………………………………………3分4.【湖北省稳派教育2014届高三上学期强化训练(三)数学(理)试题】如图,正方形ABCD 所在平面与圆O 所在的平面相交于CD ,线段CD 为圆O 的弦,AE 垂直于圆O 所在的平面,垂足E 为圆O 上异于C 、D 的点,设正方形ABCD 的边长为a ,且a AE 21=.(1)求证:平面⊥ABCD 平面ADE ;(2)若异面直线AB 与CE 所成的角为θ,AC 与底面CDE 所成角为α,二面角E CD A --所成角为β ,求证βαθtan tan sin =.又)21,0,0(a EA =,)21,,23(a a CA -=,4222141||||,cos sin 2=⋅=⋅>=<=∴a a a CA EA α,由此得77tan =α,5.【2014安徽省六校教育研究会高三2月联考数学理】(本小题满分12分)(Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.【答案】(Ⅱ)在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB = 【解析】试题分析:(Ⅰ)二面角1A DE B --为直二面角,要证1A D ⊥平面BCED ;只要证1A D DE ⊥;设PB x =()03x ≤≤,则2x BH =,3PH x =,在Rt △1PA H 中,160PA H ∠=,所以112A H x = ,在Rt △1A DH 中,11A D =,122DH x =- ,由22211A D DH A H +=, 得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭ ,解得52x =,满足03x ≤≤,符合题意 所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB = ………………………12分解得54a =,即522PB a ==,满足023a ≤≤,符合题意,所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB = . ………………………12分6.【2014年“皖西七校”高三年级联合考试】(本小题满分12分)如图1,已知O ⊙的直径4AB =,点C 、D 为O ⊙上两点,且=45CAB ∠,60DAB ∠=,F 为弧BC 的中点.将O ⊙沿直径AB 折起,使两个半圆所在平面互相垂直(如图2). (Ⅰ)求证://OF AC ;(Ⅱ)在弧BD 上是否存在点G ,使得//FG 平面ACD ?若存在,试指出点G 的位置;若不存在,请说明理由;(Ⅲ)求二面角C -AD -B 的正弦值.⊥于E,连CE.(Ⅲ)过O作OE AD⊥,平面ABC⊥平面ABD,故CO⊥平面ABD.因为CO AB则CEO ∠是二面角C -AD -B 的平面角,又60OAD ∠=,2OA =,故3OE =. 由CO ⊥平面ABD ,OE ⊂平面ABD ,得CEO ∆为直角三角形, 又2CO =,故7CE =,可得cos CEO ∠=37=217,故二面角C -AD -B 的正弦值为27.121210(3)03121cos 771n n |n ||n |θ⋅⨯+-⨯+⨯∴===⋅⋅,故二面角C -AD -B 的正弦值为27. 7.(山东省日照市2014届高三12月校际联考)(本小题满分12分)在四棱锥P-ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥DC ,90,1,2ADC AB AD PD CD ∠=====ADC -900,AB=AD= PD=1.CD=2. (I)求证:BC ⊥平面PBD :(II)设E 为侧棱PC 上异于端点的一点,PE PC λ=,试确定λ的值,使得二面角 E-BD-P 的大小为45.试题解析:(Ⅰ)证明:因为侧面PCD ⊥底面ABCD ,PD ⊥CD ,所以PD ⊥底面ABCD ,所以PD ⊥AD .又因为ADC ∠=90,即AD ⊥CD ,以D 为原点建立如图所示的空间直角坐标系,则(1,0,0)A ,(1,1,0)B ,(0,2,0)C ,(0,0,1)P ,所以(1,1,0),(1,1,0).DB BC ==- 所以0DB BC ⋅=,所以BC BD ⊥ 由PD ⊥底面ABCD ,可得PD BC ⊥, 又因为PDDB D =,所以BC ⊥平面PBD . ……5分8.【昌平区2013-2014学年第一学期高三年级期末质量抽测(理)】(本小题满分14分)在四棱锥P ABCD -中,PD ⊥平面ABCD ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.(Ⅰ)求证:BC PC ⊥;(Ⅱ)求PA 与平面PBC 所成角的正弦值;(Ⅲ)线段PB 上是否存在点E ,使AE ⊥平面PBC ?说明理由. 【答案】(Ⅰ)详见解析;(Ⅱ)10Ⅲ) E 为PB 中点时,AE ⊥平面PBC(Ⅲ)(法一)当E 为线段PB 的中点时,AE ⊥平面PBC . 如图:分别取,PB PC 的中点,E F ,连结,,AE DF EF . 所以//EF BC ,且12EF BC =. 因为//,AD BC 且12AD BC =, 所以//,AD EF 且AD EF =. 所以四边形AEFD 是平行四边形.9.【海淀区2014届高三年级第一学期期末练习数学(理科)】(本小题共14分) 如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,AC BD O =,PAC ∆是边长为2的等边三角形,6PB PD ==,4AP AF =. (Ⅰ)求证:PO ⊥底面ABCD ;(Ⅱ)求直线CP 与平面BDF 所成角的大小;(Ⅲ)在线段PB 上是否存在一点M ,使得CM ∥平面BDF ?如果存在,求BMBP的值,如果不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)30;(Ⅲ)存在,BM BP =13【解析】试题分析:(Ⅰ)ACBD O =,所以O 为,AC BD 中点。
北京市2013届高三数学理试题分类汇编(含9区一模及上学期期末试题)专题:立体几何(含答案)
北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:立体几何一、选择题1 .(2013届北京大兴区一模理科)已知平面βα,,直线nm,,下列命题中不.正确的是()A.若α⊥m,β⊥m,则α∥βB.若m∥n,α⊥m,则α⊥nC.若m∥α,n=βα ,则m∥nD.若α⊥m,β⊂m,则βα⊥.2 .(2013届北京海滨一模理科)设123,,l l l为空间中三条互相平行且两两间的距离分别为4,5,6的直线.给出下列三个结论:①i iA l∃∈(1,2,3)i=,使得123A A A∆是直角三角形;②i iA l∃∈(1,2,3)i=,使得123A A A∆是等边三角形;③三条直线上存在四点(1,2,3,4)iA i=,使得四面体1234A A A A为在一个顶点处的三条棱两两互相垂直的四面体.其中,所有正确结论的序号是()A.①B.①②C.①③D.②③3 .(2013届北京市延庆县一模数学理)一四面体的三视图如图所示,则该四面体四个面中最大的面积是()A.2B.22C.3D.324 .(2013届北京西城区一模理科)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.6B.12(7题图)轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分6 .(2013届房山区一模理科数学)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()A.B.8C.D.837 .(2013届门头沟区一模理科)一个几何体的三视图如右图所示,则该几何体的体积是()A.21B.13C.65D.18 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()A.B.C.D.9 .(北京市东城区普通校2013届高三3月联考数学(理)试题)平面α∥平面β的一个充分条件是()A.存在一条直线a aααβ,∥,∥B.存在一条直线a a aαβ⊂,,∥C.存在两条平行直线a b a b a bαββα⊂⊂,,,,∥,∥D.存在两条异面直线a b a b a bαββα⊂⊂,,,,∥,∥10.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知一个几何体是由上下两部分构成的组合体,其三视图如下,若图中圆的半径为1()A.43πB.2πC.83πD.103π正视图侧视图俯视图正视图侧视图俯视图正视图侧视图俯视图正视图侧视图俯视图主视图左视图俯视图11.(北京市西城区2013届高三上学期期末考试数学理科试题)某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )A.B.C.D.12.(北京市通州区2013届高三上学期期末考试理科数学试题 )一个几何体的三视图如图所示,该几何 体的表面积是( )A.16+B.12+C.8+D.4+13.(北京市丰台区2013届高三上学期期末考试 数学理试题 )如图,正(主)视图 侧(左)视图俯视图直角三角形,则该三棱锥的四个面的面积中最大的是()A B.C.1 D.214.(北京市昌平区2013届高三上学期期末考试数学理试题)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为()A.10+B.10+.14+D.14+15.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题)已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为()A B C.34D.116.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题 )在棱长为1的正方体1111ABCD A BC D -中,点1P ,2P 分别是线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是 ( )A .124 B .112C .16D .1217.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ18.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )某三棱锥的三视图如图所示,该三棱锥的体积是 ( )A .38B .4C .2D .3419.(北京市房山区2013届高三上学期期末考试数学理试题 )若正三棱柱的三视图如图所示,该三棱柱的表面积是( )A.C.6+二、填空题20.(2013届北京丰台区一模理科)某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是_______.21.(北京市东城区2013届高三上学期期末考试数学理科试题)一个几何体的三视图如图所示,则该几何体的表面积为 .22.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.23.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且PA r =(0r <<),记点P 的轨迹的长度为()f r ,则1()2f =______________;关于r 的方程()f r k =的解的个数可以为________.(填上所有可能的值). 三、解答题24.(2013届北京大兴区一模理科)如图,直三棱柱ABC —A 1B 1C 1中,ABC D 是等边三角形,D 是BC 的中点.(Ⅰ)求证:A 1B //平面ADC 1;(Ⅱ)若AB=BB 1=2,求A 1D 与平面AC 1D 所成角的正弦值.25.(2013届北京丰台区一模理科)如图,四边形ABCD 是边长为2的正方形,MD ⊥平面ABCD ,NB ∥MD ,且NB=1,MD=2;(Ⅰ)求证:AM ∥平面BCN;(Ⅱ)求AN 与平面MNC 所成角的正弦值;(Ⅲ)E 为直线MN 上一点,且平面ADE ⊥平面MNC ,求MEMN的值..26.(2013届北京海滨一模理科)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又4PA AB ==,120CDA ∠= ,点N 在线段PB 上,且PN =(Ⅰ)求证:BD PC ⊥;(Ⅱ)求证://MN 平面PDC ; (Ⅲ)求二面角A PC B --的余弦值.ABCD P -的底面27.(2013届北京市延庆县一模数学理)如图,四棱锥ABCD 为菱形, 60=∠ABC ,侧面PAB 是边长为2的正三角形,侧面PAB ⊥底面ABCD .(Ⅰ)设AB 的中点为Q ,求证:⊥PQ 平面ABCD (Ⅱ)求斜线PD 与平面ABCD 所成角的正弦值;(Ⅲ)在侧棱PC 上存在一点M ,使得二面角C BD M --的大小为 60,求CPCM的值.28.(2013届北京西城区一模理科)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.29.(2013届东城区一模理科)如图,已知ACDE 是直角梯形,且//ED AC ,平面ACDE ⊥平面ABC ,90BAC ACD ∠=∠=︒,AB AC AE ==2=,12ED AB =, P 是BC 的中点. (Ⅰ)求证://DP 平面EAB ;(Ⅱ)求平面EBD 与平面ABC 所成锐二面角大小的余弦值.30.(2013届房山区一模理科数学)在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD , ABCD 为直角梯形,BC //AD ,90ADC ∠=︒,112BC CD AD ===,PA PD =,E F ,为AD PC,的中点.(Ⅰ)求证:P A //平面BEF ;(Ⅱ)若PC 与AB 所成角为45︒,求PE 的长;(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A 的余弦值.31.(2013届门头沟区一模理科)在等腰梯形ABCD 中,//AD BC ,12AD BC =,60ABC ∠= ,N 是BC 的中点.将梯形ABCD 绕AB 旋转90 ,得到梯形ABC D ''(如图).(Ⅰ)求证:AC ⊥平面ABC '; (Ⅱ)求证://C N '平面AD D '; (Ⅲ)求二面角A C N C '--的余弦值.DFECBAPADD 'C '32.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )(本小题满分13分) 在四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PD 底面⊥,1=AB ,2=BC ,3=PD ,F G 、分别为CD AP 、的中点.(1)求证:PC AD ⊥;(2)求证://FG 平面BCP ;(3)线段AD 上是否存在一点R ,使得平面⊥BPR 平面PCB ,若存在,求出AR 的长;若不存在,请说明理由.33.(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知几何体A —BCED 的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角 三角形,正视图为直角梯形. (Ⅰ)求此几何体的体积V 的大小;(Ⅱ)求异面直线DE 与AB 所成角的余弦值; (Ⅲ)试探究在棱DE 上是否存在点Q ,使得 AQ ⊥BQ ,若存在,求出DQ 的长,不存在说明理由.侧视图俯视图正视图F G P D CB A34.(北京市东城区2013届高三上学期期末考试数学理科试题)如图,在菱形ABCD 中,60DAB ∠=,E 是AB的中点, MA ⊥平面ABCD ,且在矩形ADNM中,2AD =,7AM =. (Ⅰ)求证:AC ⊥BN ;(Ⅱ)求证:AN // 平面MEC ; (Ⅲ)求二面角M EC D --的大小.学)如35.(北京市海淀区北师特学校2013届高三第四次月考理科数图所示,正方形D D AA 11与矩形ABCD 所在平面互相垂直,22==AD AB ,点E 为AB 的中点。
2013-2014学年度第一学期高三年级期末质量调查数学试卷(理)含答案
2013-2014学年度第一学期高三年级期末质量调查数学试卷(理)第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名,准考号、科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A ,B 互斥,那么P(A B )P(A)P(B )=+如果事件A ,B 相互对立,那么P(AB )P(A)P(B )=球的表面积公式24S R π=球的体积公式343V R π= 其中R 表示球的半径一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合22123234*l {x ||x |,x N },P {,},Q {,,}=-≤∈==,则l (P Q )= ð( )(A){1,4} (B ){2,3}(C){1} (D ){4}2、在复平面内,复数33z cos i sin =-(i 是虚数单位)对应的点位于( )(A )第一象限 (B)第二象限 (C)第三象限 (D)第四象限3、设a ,b ∈R ,那么“1a b>”是“a>b>0”的( )(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件4、阅读右面的程序框图,运行相应的程序,则输出S 的值为( ) (A) 18 (B) 14 (C) 12(D)1 5、已知正项数列{n a }中,22212111222n n n a ,a ,a a a (n )+-===+≥,则9a 等于( )(A) 25(B) (C)4 (D)56、已知函数2f (x )x cos x =-,则06005f (.),f (),f (.)-的大小关系是( )(A )00605f ()f (.)f (.)<<- (B) 00506f ()f (.)f (.)<-<(C) 06050f (.)f (.)f ()<-< (D) 05006f (.)f ()f (.)-<<7、设点P 是椭圆22195x y +=上的一点,点M 、N 分别是两圆:2221(x )y ++=和2221(x )y -+=上的点,则的最小值、最大值分别为( )(A)6,8 (B)2,6(C)4,8 (D)8,128、已知函数2100x (x )f (x )log x(x )+≤⎧=⎨>⎩,则函数[]1y f f (x )=+的零点个数是( ) (A) 4 (B) 3 (C) 2 (D) 1第Ⅱ卷注意事项:1.答卷前将密封线内的项目及座位号填写清楚。
2013届高三数学名校试题汇编(第3期)专题06 数列
【精选+详解】2013届高三数学名校试题汇编(第3期)专题06 数列一.基础题1.【广东省华附、省实、广雅、深中2013届高三上学期期末四校联考】 在正项等比数列{}n a 中,1a 和19a 为方程016102=+-x x 的两根,则=12108a a a ( ) (A)16 (B)32 (C)64 (D)2562.【2013年河南省开封市高考数学一模试卷(文科)】设等比数列{a n }的公比q=2,前n 项和为S n ,则的值为( )==15a =.3.【安徽省2013届高三开年第一考】已知等差数列{}n a 的前n 项和为n S ,3813a a +=且735S =,则7a =( )A .11B .10C .9D .84.【2012-2013学年四川省成都市高新区高三(上)统一检测】已知等比数列{a n }的前三项,公比为nn 123146. [安徽省宣城市6校2013届高三联合测评考]设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a 的值为( ) A .2 B .4 C .152 D .172【答案】C【解析】()4142112151222a S a a --==⨯7.【安徽省皖南八校2013届高三第二次联考】已知各项均为正数的等差数列{}n a 中,21249a a ∙=,则7a 的最小值为( )A.7B. 8C. 9D. 108.【2012-2013学年江西省南昌市调研考试】已知等比数列}{n a 公比为q ,其前n 项和为n S ,若396,,S S S 成等差数列,则3q 等于( )A.12-B.1C.12-或1D.112-或 【答案】A【解析】若1q =,则31a +61a =2⨯91a ,得1a =0,而等比数列任何一项都不为0,故1q ≠;所以369111(1)(1)(1)2111a q a q a q q q q ---+=---,换元解方程得3q =12-或1(舍) 9.【北京市海淀区北师特学校2013届高三第四次月考】等差数列{}n a 的前n 项和是n S ,若125a a +=,349a a +=,则10S 的值为( )A. 55B. 65C. 60D.7010.【北京市东城区2012-2013学年度第一学期期末教学统一检测】已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于(A )1 (B )53(C )2 (D )311.【惠州市2013届高三第三次调研考试】在等比数列{}n a 中,11a =,公比2q =,若{}n a 前n 项和127n S =,则n 的值为 .【答案】7【解析】1212721712nn n S n -===-⇒=-12【广州市2013届高三年级1月调研测试】 已知等差数列}{n a 的前n 项和为n S , 若34512a a a ++=,则7S 的值为 .【答案】28二.能力题1.【北京市昌平区2013届高三上学期期末理】设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 A.1 B. 2 C. 3 D. 4【答案】C【解析】因为124,,S S S 成等比数列,所以2142S S S =,即2111(46)(2)a a d a d +=+,即2112,2d a d d a ==,所以211111123a a d a a a a a ++===,选C. 2.【北京市东城区2013届高三上学期期末理】已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于(A ) (B )53(C )2 (D )33.【北京市海淀区2013届高三上学期期末理】数列{}n a 满足111,n n a a r a r +==⋅+(*,n r ∈∈N R 且0r ≠),则“1r =”是“数列{}n a 成等差数列”的A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件 【答案】A【解析】若1r =,则11n n a a +=+,即11n n a a +-=,所以数列{}n a 成等差数列。
北京市昌平区2013-2014学年高二上学期期末考试数学(文)试题 Word版含答案
昌平区2013-2014学年第一学期高二年级期末质量抽测数学试卷(文科)考生注意事项:1.本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,考试时间 120分钟.2.答题前,考生务必将学校、班级、姓名、考试编号填写清楚.答题卡上第一部分(选择题)必须用2B 铅笔作答,第二部分(非选择题)必须用黑色字迹的签字笔作答,作图时必须使用2B 铅笔.3.修改时,选择题用塑料橡皮擦干净,不得使用涂改液.请保持卡面整洁,不要折叠、折皱、破损.不得在答题卡上作任何标记.4.请按照题号顺序在各题目的答题区域内作答,未在对应的答题区域作答或超出答题区域的作答均不得分.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)1. 已知命题 :p x ∀∈R ,1≤x ,那么命题p ⌝为A .x ∀∈R ,1≥xB .∈∃x R ,1>xC .x ∀∈R ,1-≥xD .∈∃x R ,1->x2.直线2x + y -1=0关于y 轴对称的直线方程是A . x -2y +1=0B .x -2y -1=0C .2x -y -1=0D .2x -y +1=0 3. 设()f x '是x x x f -=331)(的导函数,则(1)f '-等于 A .-2 B .0 C .2 D .34-4. 已知椭圆1162522=+y x ,21,F F 是椭圆的两个焦点,点P 是椭圆上任意一点,若4||1=PF ,则=||2PFA .4B .5C .6D .8 5.方程为01=--aax y 的直线可能是CABD6. “0=⋅y x ”是“220x y +=”的A.充分而不必要条件 B . 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件7. 已知三棱锥的三视图如图所示,其中侧视图为直角三角形, 俯视图为等腰直角三角形,则此三棱锥的体积等于A.3 B .334 C. 338 D. 388. 设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A . 若n m n m //,//,//则αα B. 若βαββα⊂α⊂//,//,//,,则n m n m C .若β⊥α⊂β⊥αm m 则,, D. 若αα⊄β⊥β⊥α//,,,,m n m 则9. 若函数x x y -=2的图象在点)2,2(M 处的切线l 被圆)0(:222>=+r r y x C 所截得的弦长是5102 ,则=r A. 22B . 1C . 2D . 210. 在棱长为a 的正方体1111ABCD A B C D -中,若点P 是棱上一点,则满足a PC PA 21=+的点P 的个数为A. 3个B.4个C.5 个D.6个第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分.)11. 在空间直角坐标系中,已知点A (1,0,2),B(1,-3,1),则|AB|=_________. 12.如果直线012=--y x 和1+=kx y 互相垂直,则实数k 的值为_____________.俯视图侧视图正视图13.棱长为1的正方体1111D C B A ABCD -的顶点都在球面上,则1AC 的长是_________,球的表面积是___________.14. 双曲线14:22=-y x C 的离心率为______,其渐近线方程是_________________. 15.函数()e x f x x =⋅的单调递减区间为______________,其最小值是_____________. 16.若曲线0),(=y x F 上两个不同点处的切线重合,则称这条切线为曲线0),(=y x F 的“自公切线”.下列方程:① 122=-y x ;②||22x x y -=;③x x y cos sin +=;④221||y x -=+ 对应的曲线中不存在“自公切线”的有_____________三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17. (本小题满分14分)已知两点)1,1(-A ,)3,1(--B . (I ) 求过A 、B 两点的直线方程; (II ) 求线段AB 的垂直平分线l 的直线方程;(III )若圆C 经过A 、B 两点且圆心在直线10x y -+=上,求圆C 的方程.18. (本小题满分14分)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,,AB AD =F BD AC PC PA =⋂=,,点E 是PC 的中点.(Ⅰ) 求证:EF ∥平面PAD ; (Ⅱ) 求证:平面⊥ADF 平面PBD .FEPDCBA19. (本小题满分14分)已知函数3)(23--+=x ax x x f 在1-=x 时取得极值. (I )求)(x f 的解析式; (II )求()f x 在区间]1,2[-上的最大值.20.(本小题满分14分)如图,已知平面ABEF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,CD AB ADC //,900=∠,a CD AB a AF AD 22,====. (Ⅰ)求证://AF 平面BCE ; (Ⅱ)求证:AC ⊥平面BCE ; (Ⅲ)求四棱锥C ABEF -的体积.21.(本小题满分14分)已知平面上的动点Q 到定点(0,1)F 的距离与它到定直线3y =的距离相等. (I )求动点Q 的轨迹1C 的方程;(II )过点F 作直线1l 交22:4C x y =于,B A 两点(B 在第一象限).若B 2,F AF = 求直线1l 的方程;(III )在满足(II )的条件下,试问在曲线1C 上是否存在一点M ,过点M 作曲线1C 的切线2l 交抛物线2C 于,D E 两点,使得⊥?若存在,求出点M 的坐标;若不存AFEBC D在,请说明理由。
2012-2013学年第一学期浙江省湖州市高三数学(理)期末试卷(含答案)
(
)
………10 分
又由(Ⅰ)知平面
uuuu r A1 BC 的法向量为 AC1 = 0 ,, 3 3 , ……11 分
(
)
设所求二面角的大小为 θ ,则 r uuuu r n ⋅ AC1 r uuuu r cos θ = cos n , AC1 = r uuuu r = n ⋅ AC1
6 = 7, 7 21 ⋅ 12
第 5 页 共 10 页
…………4 分
…………5 分
2 . ………………………7 分 9 (Ⅱ) ξ 的所有取值为 0 , 1 , 2 , 3 . …………………………………8 分 因为 ξ = 0 时,只有 x = 2 , y = 2 这一种情况, ξ = 1 时,有 x = 1 , y = 1 或 x = 2 , y = 1 或 x = 2 , y = 3 或 y = 3 , x = 3 四种情况, ξ = 2 时,有 x = 1 , y = 2 或 x = 3 , y = 2 两种情况. 1 4 2 …………11 分 所以 P (ξ = 0) = , P (ξ = 1) = , P (ξ = 2) = . 9 9 9 则随机变量 ξ 的分布列为: ξ 0 3 1 2 1 4 2 2 P 9 9 9 9
二、填空题(本大题共 7 小题,每小题 4 分,共 28 分. ) 11. 1 15. 25 26 12. 15 16. 5 2 + 2 13. 4 17. 440 14. 4 x − 8 y − 15 = 0
三、解答题(本大题共 5 小题,共 72 分,解答应写出文字说明,证明过程或演算步骤. ) 18.(Ⅰ)解: f ( x ) = −2sin 2 x + 2 3 sin x cos x = −1+cos 2 x + 2 3 sin x cos x
2012-2013学年高二上学期期末模块考试数学(理)试题 Word版含答案
2012-2013学年度第一学期高二期末模块考试数学(理)试题(2013.1)说明:本卷为发展卷,采用长卷出题、附加计分的方式。
第Ⅰ、Ⅱ卷为必做题,第Ⅲ卷为选做题,必做题满分为 120 分,选做题满分为30分。
第Ⅰ卷为第1题 页至第 10 题,第Ⅱ卷为第11 题至第18 题,第Ⅲ卷为第19 题至第22 题。
考试时间120 分钟。
温馨提示:生命的意义在于不断迎接挑战,做完必做题后再挑战一下发展题吧,你一定能够成功!第I 卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知在等差数列{}n a 中,若1a =4,45-=a ,则该数列的公差d 等于 A.1 B.53C. - 2D. 3 2.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为3. 设a b >,c d >,则下列不等式成立的是 A. a c b d ->- B. ac bd > C.a dc b>D. b d a c +<+4.在ABC △中,60,6,10A b c ===,则ABC △的面积为A.B. C.15 D.30 5. 在等差数列{}n a 中,有67812a a a ++=,则该数列的前13项之和为 A .24 B.52 C.56 D.1046. 不等式组13y x x y y <⎧⎪+≤⎨⎪≥-⎩表示的区域为D ,点P (0,-2),Q (0,0),则A. P ∉D ,且Q ∉DB. P ∉D ,且Q ∈DC. P ∈D ,且Q ∉DD. P ∈D ,且Q ∈D7.在ABC △中,::4:3:2a b c =,那么cos C 的值为A.14 B.14- C.78 D.11168. 在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为321S =,则4a = A .32B.24C.27D .549.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥-+≤-+01033032y y x y x ,若目标函数y x z +=2的最大值是A .6B .3 C.23D .1 10. 等比数列}{n a 的前n 项和n S ,若36,963==S S ,则=++987a a a A. 72 B. 81 C. 90 D. 99提示:请将1—10题答案涂在答题卡上,11-22题写在答题纸上第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4小题,每小题5分,共20分) 11. 正数,x y 满足2x y +=,则x y ⋅的最大值为______ . 12. 数列{}n a 的前n 项和n S 满足31n n S =-,则n a = . 13. 若不等式220ax bx ++>的解集是11(,)23-,则a b +的值为 . 14. 在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤) 15. (本小题满分12分) 解下列不等式 (1)2230x x +-< ; (2)203xx -≤+. 16. (本小题满分12分)已知在△ABC 中,角A,B,C 的对边分别是c b a ,,,若46,5,cos 5a b A ===-(1)求角B 的大小;(2)求边c. 17. (本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,365,36a S ==,(1)求数列{}n a 的通项公式;(2) 设2n an b =,求数列{}n b 的前n 项和n T . 18. (本小题满分13分)云南省镇雄县高坡村发生山体滑坡,牵动了全国人民的心,为了安置广大灾民,救灾指挥 部决定建造一批简易房,每间简易房是地面面积为1002m ,墙高为3m 的长方体样式,已知简易房屋顶每12m 的造价为500元,墙壁每12m 的造价为400元.问怎样设计一间简易房的地面的长与宽,能使一间简易房的总造价最低?最低造价是多少?第Ⅲ卷(发展题,共30分)19、(3分)在下列函数中,最小值是的是 A.12lg (0)lg y x x x=+> B. 2sin sin y x x =+()0,x π∈C. 2y =D.2x x y e e -=+20(3分)在锐角ABC ∆中,1,2,BC B A ==则AC 的取值范围为 . 21. (本小题满分12分)已知锐角三角形ABC 的内角A,B,C 的对边分别为a b c ,,,若2sin a b A = (1)求B 的大小;(2)求C A sin cos +的取值范围.22. (本小题满分12分)已知各项均为正数的数列{}n a ,满足221120n n n n a a a a ++--= (*∈N n ),且21=a . (1)求数列{}n a 的通项公式;(2)设n n n a a b 21log ⋅=,若n b 的前n 项和为n S ,求n S ;(3)在(2)的条件下,求使5021>⋅++n n n S 成立的正整数n 的最小值.2013年1月高二期末模块考试数学试卷(理科)参考答案一、选择题 1.C 2.A 3.D 4.B 5.B 6.C 7.C 8.B 9.A 10.B 二、填空题 11. 1 12. 132-⋅=n n a 13.14- 14、等腰三角形 三、解答题15.解:(1) (3)(1)0x x +-< {|31}x x ∴-<< -----------------------------------------6分(2)203x x -≥+ {|23}x x x ∴≥<-或 -----------------------------------------12分 16. 解:(1)由题知54cos -=A则53sin =A 且A 为钝角 -----------------------------------------4分由正弦定理得B b A a sin sin =,21sin =B 所以30=B -----------------------------------------8分(2)bca cb A 2cos 222-+=整理得01182=-+c c解得433-=c -----------------------------------------12分17解: (1)设{}n a 的公差为d , 则1125656362a d a d +=⎧⎪⎨⨯+=⎪⎩------------------3分 即112556a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,-----------------------------------------6分*12(1)21,()n a n n n N ∴=+-=-∈.-------------------------------8分 (2) 2122n an n b -==135212222n n T -∴=++++--------------------------------------10分2(14)2(41)143n n --==-------------------------------------------12分18. 解:设地面的长为x m,宽为m x100--------------------------------------2分 则总造价400)10066(500100⨯⨯++⨯=xx y --------------------------------------6分 2400)100(50000⨯++=xx y 9800024002050000=⨯+≥所以,当且仅当xx 100=时,即x=10m 时,y 取得最小值.--------------------------------------10分答:设计地面长宽均为10m 时,造价最低,为98000元。
2012学年第一学期期末考试高一数学含答案
2012学年第一学期期末考试高一数学试卷一.选择题:本大题共10小题,每小题5分,共50分. 1. 已知函数2log ()3xx f x -⎧=⎨⎩(0)(0)x x >≤,则1[()]4f f 的值是 ( )A .9B .19-C .-9D .-19-2.设{1,1,2,3}α∈-,则使αx y =的定义域为R 且为奇函数的所有α的值为 ( )A .3,1,1-B .1,1-C .3,1-D .3,13. 设函数x x g 21)(-=,)0(1))((≠-=x x x x g f ,则=)21(f ( )A .1B .3C .15D .304. 函数)62sin(2π+=x y 的单调增区间为 ( ) A.)](65,3[Z k k k ∈++ππππ B. )](32,6[Z k k k ∈++ππππC. )](6,3[Z k k k ∈+-ππππ D. )](,65[Z k k k ∈++ππππ5. 已知向量),4(x a =,)4,(x b =,若a、b平行且反向,则x 的值为 ( )A .0B .-4C . 4D . R x ∈6. 下列四个函数中,在(0,+∞)上增函数的是 ( )A .3y x =-B .2(1)y x =- C .11y x =-+ D .y x =-7. 三个数60.70.70.76log 6,,的大小关系为 ( ) A .60.70.70.7log 66<< B 60.70.70.76log 6<<C 0.760.7log 660.7<<D .60.70.7log 60.76<<8. 直线3y =与函数26y x x =-的图象的交点个数为 ( )A 4B 3C 2D 19. 已知1sin 123x π⎛⎫+= ⎪⎝⎭,则7cos 12x π⎛⎫+ ⎪⎝⎭的值为 ( ) A .13B .13-C.3-D310. 如图,O 为△ABC 的外心,BAC AC AB ∠==,2,4为钝角,M 是边BC 的中点,则AO AM ⋅的值( )第10题图A .4B .5C .7D .6二、填空题:本大题共7小题,每小题4分,共28分.把答案填在题中横线上.11. 已知1249a =,则23log a = .12. 函数)4tan(π+=x y 的定义域为 .13. 角6π的终边与单位圆的交点的坐标是 .14. 若2{0}A x x x a =+->,且1A ∉,则a 的取值范围为 .15. 若向量,a b的夹角为150 ,|||4==a b ,则|2|+a b 的值为 .16. 若()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x +=-,则()f x = .17.设()f x 是定义在R 上的奇函数,且图像关于直线12x =对称,则f (1)+ f (2)+ f (3)+f (4)+ f (5)=______________ .三、解答题:本大题共5小题,共42分.解答应写出文字说明、证明过程或演算步骤.18. 设向量(6,2)a = ,(3,)b k =-.(Ⅰ) 当a b ⊥时,求实数k 的值;(Ⅱ) 当a b时,求实数k 的值.19. 已知二次函数()f x 满足:11()()22f x f x -=+,其图像与x 轴的两个交点间的距离为3,并且其图像过点()1,2-.(Ⅰ)求()f x ; (Ⅱ)若方程()3f x mx =-在(0,2)x ∈上有解,求m 的取值范围.20. 已知函数⎪⎪⎩⎪⎪⎨⎧<<-≥-=10,111,11)(x xx xx f(Ⅰ) 用定义证明)(x f 在),1[+∞上为增函数; (Ⅱ) 当b a <<0,且)()(b f a f =时,求ba 11+的值.21. 已知函数()sin ()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像,如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A . (Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),23P R Q π∠=,求A 的值.22.已知函数x x f )31()(=, 函数x x g 31log )(=.(Ⅰ)若函数)2(2m x mx g y ++=的定义域为R ,求实数m 的取值范围; (Ⅱ)当]1,1[-∈x 时,求函数3)(2)]([2+-=x af x f y 的最小值)(a h ;2012学年第一学期期末考试高一数学试卷参考解答1-5 ADBCB 6-10 CDABB 11.4 12.{x ,Z}4x k k ππ≠+∈ 13.122,) 14.[2,+∞)15.2 16.2()1xf x x =- 17.018. 解:(1) 当a ⊥b 时,a ·b =0,即6×(-3)+2k =0,解得k =9. (2) 当a ∥b 时,6k =2×(-3),解得k =-1.19.(1)2()2f x x x =--(2)问题等价于2(2)10x m x -++=在(0,2)上有解,得:1m ≥20.解:(1)设211x x <≤则212112212111)11()11()()(x x x x x x x x x f x f -=-=---=-211x x <≤ )()(0,021212121x f x f x x x x x x <∴<-∴<-∴)(x f ∴在),1[+∞上为增函数(2)b a <<0 ,且)()(b f a f = 由图(略)可知b a <<<10bb f aa f 11)(,11)(-=-=∴ 得由)()(b f a f =ba1111-=- 211=+∴ba21.解:由题意得,263T ππ==因为(1,)P A 在sin()3y A x πϕ=+的图像上所以sin() 1.3πϕ+=又因为02πϕ<<,所以6πϕ=(Ⅱ)解:设点Q 的坐标为(0,x A ). 由题意可知02363x πππ+=,得04x =,所以(4,)Q A -解得A 2=3,又A >0,所以22.(1)①当0=m 时,不满足条件;②当0≠m 时,有100>⇒⎩⎨⎧<∆>m m综上可得,1>m 。
北京市昌平区2013-2014学年七年级第一学期数学期末数学试题
昌平区2013-2014学年第一学期初一年级期末质量抽测数学试卷 2014.1一、选择题(共8个小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的 1.5-的相反数是 A .15 B .15- C .5 D .-52.中共十八届三中全会于2013年11月9日到11月12日在北京召开.截止到2013年11月28日,某网站关于此次会议热点问题讨论的相关微博约1090000条. 请将1090000用科学记数法表示为 A . 0.109×106B . 1.09×106C . 1.09×105D . 10.9×1043. 下列各式中结果为负数的是A . (3)--B .2(3)-C .3--D . 23-4.如果x =-1是关于x 的方程5x +2m -7=0的解,则m 的值是A . -1B . 1C . 6D . -65.下列运算正确的是A . 43m m -=B . 33323a a a -=-C . 220a b ab -=D . 2yx xy xy -= 6.若23(2)0m n ++-=,则n m 的值为A . 6B . 6-C . 9D . 9- 7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是①a <b <0 ;② |b |>|a | ;③ a ·b <0 ;④ b -a >a +b .A .①②B .①④C .②③D .③④8.如图,一个正方体的顶点分别为:A ,B ,C ,D ,E ,F ,G ,H ,点P 是边DH 的中点.一只蚂蚁从正方体的一个顶点A 沿表面爬行到顶点G 处,最短路线为A . A →B →G B . A →F →GC . A →P →GD . A →D →C →G 二、填空题(共4个小题,每小题4分,共16分)0 9.比较大小:-21 0.10.如果3=x ,y =2,那么x +y = .11.如图,直线AB ,CD 相交于点O ,∠AOC = 60°,∠1= 2∠2,aH G FE D CBAP ABDE12OC则∠2= °,∠AOE = °.12. 如图,已知边长为4的正方形ABCD ,点E 在AB 上,点F 在BC 的延长线上,EF 与AC 交于点H ,且AE =CF = m ,则四边形EBFD 的面积为 ; △AHE 与△CHF 的面积的和为 (用含m 的式子表示). 三、解答题(共6个小题,每小题5分,共30分) 13.计算: 8-(-15)+(-2)×3. 14.计算:()131486412⎛⎫-+⨯-⎪⎝⎭. 15.计算: ()()32215279-+-⨯--÷ .16.解方程: ()32143x x -=+. 17.解方程:2135234x x --=+. 18.如图,已知∠AOB . (1)画出∠AOB 的平分线OC ;(2)在OC 上取一点P ,画PD ⊥OA , PE ⊥OB ,垂足分别为D ,E ; (3)写出所画图中的一对相等的线段.四、解答题(共 4 道小题,每小题5分,共 20 分)19.先化简,再求值: (2a 2-5a )-2 (a 2+3a -5),其中a =-1.∴ ∠BOD = ∠BOC -∠ = °.21.列方程解应用题某校七年级学生从学校出发步行去博物馆参观,他们出发半小时后,张老师骑自行车按相同路线用15分钟赶上学生队伍.已知张老师骑自行车的速度比学生队伍步行的速度每小时多8千米,求学生队伍步行的速度?ABOA BCDFE H22.现场学习:观察一列数:1,2,4,8,16,…,这一列数按规律排列,我们把它叫做一个数列,其中的每个数,叫做这个数列中的项,从第二项起,每一项与它的前一项的比都等于2,我们把这个数列叫做等比数列,这个常数2叫做这个等比数列的公比.一般地,如果一列数从第二项起,每一项与它的前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.解决问题:(1)已知等比数列5,-15,45,…,那么它的第六项是.(2)已知一个等比数列的各项都是正数,且第2项是10,第4项是40,则它的公比为.(3)如果等比数列a1,a2,a3,a4,…,公比为q ,那么有:a2 = a1q ,a3 = a2q =(a1q)q =a1q2,…,a n=.(用a1与q的式子表示,其中n为大于1的自然数)五、解答题(23题7分,24题7分,25题8分,共3道小题,共 22 分)23.如图,已知AB=2,点D是AB的中点,点C在直线AB上,且2BC=3AB.(1)补全图形;(2)求CD的长.备用图24.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?25.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC :∠BOC = 2:1,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按顺时针方向旋转至图2的位置,使得OM落在射线OA上,此时ON 旋转的角度为°;(2)继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得OM在∠BOC的内部,则∠BON-∠COM = °;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按每秒钟15°的速度旋转,当OM恰为∠BOC的平分线时,此时,三角板绕点O的运动时间为秒,简要说明理由.图1CBA ONNAC图2图3MCBA ONC备用图昌平区2013-2014学年第一学期初一年级期末质量抽测数学试卷参考答案及评分标准 2014.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6个小题,每小题5分,共30分)13.解:原式=8+15-6 ……………………………… 3分=23-6 ……………………………… 4分=17 ………………………………… 5分 14.解:原式=()()()1314848486412⨯--⨯-+⨯- ……………………………… 1分 =-8+36-4 ……………………………… 3分= 24 ……………………………… 5分 15.解:原式=-4-5+3 ……………………………… 3分 =-6 ……………………………… 5分 16.解:去括号,得 6x -3=4x +3. ……………………………… 1分 移项、合并同类项,得 2 x =6. ……………………………… 4分 系数化为1,得 x = 3. ……………………………… 5分 17.解:去分母,得 4(2x -1)=3(3x -5)+24. ……………………………… 2分 去括号,得 8x -4=9x -15+24. ……………………………… 3分 移项、合并同类项,得 -x =13. ……………………………… 4分 系数化为1,得 x =-13. ……………………………… 5分 18.(1)如图. ………………………………1分 (2)如图. ……………………………… 4分 (3)图中的相等线段:PD =PE ,或OD =OE . ……………… 5分 四、解答题(共 4 道小题,每小题5分,共 20 分) 19.解:(2a 2-5a ) -2 (a 2+3a -5)=2a 2-5a -2a 2-6a +10 ……………………………… 2分 =-11a +10 ……………………………… 4分 ∵ a =-1,∴ 原式=-11×(-1)+10=21. ……………………………… 5分 20. AOC ,60,AOB ,DOC ,20. ……………………………… 5分 21.解:设学生队伍步行的速度为每小时x 千米,则张老师骑自行车的速度为每小时(x +8)千米.……………………………… 1分根据题意,得43x =41(x +8). ……………………………… 3分 解这个方程,得 x =4. ……………………………… 4分 答:学生队伍步行的速度为每小时4千米. ……………………………… 5分 22.(1)-1215. ……………………………… 1分 (2)2. ……………………………… 3分 (3)a 1q n -1. ……………………………… 5分 五、解答题(23题7分,24题7分,25题8分,共3道小题,共 22 分) 23.(1)如图:图2图1D C BA A BC D ……………………………… 2分(2)解:∵ AB =2 ,D 是AB 的中点,∴ AD =DB =21AB =1. ∵ 2BC =3AB ,∴ BC =3. ……………………………… 5分 当点C 在线段AB 的延长线上时(如图1), CD =DB +BC =4.当点C 在线段BA 的延长线上时(如图2),CD =CB -DB =2. ……………………………… 7分24.解:(1)设用100元购买A 类年票可进入该公园的次数为x 次,购买B 类年票可进入该公园的次数为y 次,据题意,得 49+3x =100.解得 x =17. ……………………………… 1分 64+2y =100.解得 y =18. ……………………………… 2分 答:进入该公园次数较多的是B 类年票. ……………………………… 3分 (2)设进入该公园z 次,购买A 类、B 类年票花钱一样多.据题意,得49+3z =64+2z . ……………………………… 5分 解得 z =15. ……………………………… 6分 答:进入该公园15次,购买A 类、B 类年票花钱一样多. …………… 7分 25.解:(1)90; ……………………………… 1分M'NO A B CM(2)30; ……………………………… 3分 (3)16秒. ……………………………… 5分 理由:如图.∵ 点O 为直线AB 上一点,∠AOC :∠BOC = 2:1, ∴ ∠AOC =120°,∠BOC =60°. ∵ OM 恰为∠BOC 的平分线, ∴ ∠COM ’=30°.∴ ∠AOM +∠AOC +∠COM ’=240°. ………… 7分 ∵ 三角板绕点O 按每秒钟15°的速度旋转, ∴ 三角板绕点O 的运动时间为15240=16(秒). … 8分。
2022-2023学年北京市昌平区高一年级上册学期期末质量检测数学试题【含答案】
2022-2023学年北京市昌平区高一上学期期末质量检测数学试题一、单选题1.已知集合,则( ){}2,1,0,2,{2}A B x x =--=<∣A B = A .B .C .D .{}1-{}1,0-{}2,1,0--{}2,1,0,2--【答案】B【分析】根据公式法解绝对值得即可解决.{22}B xx =-<<∣【详解】由题知,,{}2,1,0,2,{2}A B x x =--=<∣因为,即,2x <22x -<<所以,{22}B xx =-<<∣所以.{}1,0A B ⋂=-故选:B2.命题“”的否定为( ),e 0x x ∀∈>R A .B .,e 0xx ∃∈≤R ,e 0xx ∃∈<R C .D .,e 0xx ∀∈≤R ,e 0xx ∀∈<R 【答案】A【分析】全称量词命题的否定是特称量词命题,把任意改为存在,把结论否定.【详解】“”的否定为“”.,e 0xx ∀∈>R ,e 0x x ∃∈≤R 故选:A3.如图,在矩形中,对角线交于点,则下列各式一定成立的是( )ABCD ,AC BD OA .AB CD=B .AC BD=C .12AO CA= D .()12AO AB AD=+ 【答案】D【分析】由矩形的几何性质,结合各线段对应向量的关系判断各项的正误.【详解】由图知:,故A 错误;不相等,即,故B 错误;AB DC CD ==-,AC BD AC BD ≠ ,故C 错误;,故D 正确.1122AO AC CA ==-()12AO AB AD=+ 故选:D4.为响应“健康中国2030”的全民健身号召,某校高一年级举办了学生篮球比赛,甲、乙两位同学在6场比赛中的得分茎叶图如图所示,下列结论正确的是( )A .甲得分的极差比乙得分的极差小B .甲得分的平均数比乙得分的平均数小C .甲得分的方差比乙得分的方差大D .甲得分的分位数比乙得分的分位数大25%25%【答案】C【分析】根据茎叶图求出甲,乙两位同学得分的极差,平均分,方差,百分位数即可解决.【详解】由题知,甲同学6场比赛得分分别为14,16,23,27,32,38,极差为,381424-=平均数,141623273238256x +++++==方差,22222221192271371.36s +++++=≈因为,所以得分的25%分位数为16,13642⨯=乙同学6场比赛得分分别为13,22,24,26,28,37,极差为,371324-=平均数,132224262837256x +++++==方差,222221231131251.36s +++++=≈因为,所以得分的25%分位数为22,13642⨯=所以ABD 错误;故选:C5.已知,则的大小关系正确的是( )12212log 3,log 3,3a b c -===,,a b c A .B .a b c >>a c b >>C .D .c a b >>c b a>>【答案】B【分析】根据指对数的性质判断的大小关系.,,a b c 【详解】由,121122022lo 31g 3log 10l 3log 23og -<==<<=<所以.a c b >>故选:B6.已知射击运动员甲击中靶心的概率为,射击运动员乙击中靶心的概率为,且甲、乙两人是0.80.9否击中靶心互不影响.若甲、乙各射击一次,则至少有一人击中靶心的概率为( )A .B .C .D .0.980.80.720.26【答案】A【分析】根据独立事件的乘法公式和对立事件的概率公式可求出结果.【详解】设甲击中靶心为事件,乙击中靶心为事件,A B 则,,()0.8P A =()0.9P B =因为与相互独立,所以与也相互独立,A B A B 则甲、乙都不击中靶心的概率为,(P A B ⋅()()(()1()1()P A P B P A P B ==--(10.8)(10.9)0.02=--=所以甲、乙至少有一人击中靶心的概率为.10.020.98-=故选:A7.“”是“”成立的( )01x <<ln 0x <A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【分析】由对数函数的性质判断题设条件间的推出关系,结合充分、必要性定义确定答案.【详解】当时,则有成立,充分性成立;01x <<ln 0x <当时,则有成立,必要性成立.ln 0x <01x <<故“”是“”成立的充分必要条件.01x <<ln 0x <故选:C 8.已知函数,则下列函数为奇函数的是( )()1xf x x =-A .B .()11f x ++()11f x +-C .D .()11f x -+()11f x --【答案】B【分析】利用题意先得到,,然后利用奇函数的定义进行判断即可()11x f x x ++=()112x f x x --=-【详解】由可得,,()1xf x x =-()11x f x x ++=()112x f x x --=-对于A ,令,定义域为,()()121111x x g x f x x x ++=++=+={}0x x ≠因为,所以不是奇函数,故A 错误;()()2121x x g x g x x x -++-=≠-=--()11f x ++对于B ,令,定义域为,()()11111x h x f x x x +=+-=-={}0x x ≠因为,所以是奇函数,故B 正确;()()11h x h x x x -==-=--()11f x +-对于C ,由于,定义域为,不关于原点对称,故不是奇函数,故C ()1111,2x f x x --+=+-{}2x x ≠错误;对于D ,由于,定义域为,不关于原点对称,故不是奇函数,故D ()1111,2x f x x ---=--{}2x x ≠错误;故选:B9.某校航模小组进行无人机飞行测试,从某时刻开始15分钟内的速度(单位:米/分钟)与()v x 飞行时间(单位:分钟)的关系如图所示.若定义“速度差函数”(单位:米/分钟)为无人机x ()u x在这个时间段内的最大速度与最小速度的差,则的图像为( )[]0,x ()u xA .B .C .D .【答案】C【分析】根据图像分析,即可得到答案【详解】由题图知,当时, 无人机做匀加速运动,,“速度差函数”;[]0,6x ∈()40803v x x =+()403x u x =当时, 无人机做匀减速运动,速度从160开始下降,一直降到80,“速度差函数”;[]6,10x ∈()v x ()80u x =当时, 无人机做匀减速运动,从80开始下降, ,“速度差函数”[]10,12x ∈()v x ()18010v x x=-;()()160180101020u x x x =--=-当时无人机做匀加速运动,“速度差函数”.[]12,15x ∈()16060100u x =-=所以函数在和两个区间上都是常数.()u x[]6,10[]12,15故选:C10.已知集合都是的子集,中都至少含有两个元素,且满足:,A B *N ,A B ,A B ①对于任意,若,则;,x y A ∈x y ≠xy B ∈②对于任意,若,则.,x y B ∈x y <yAx ∈若中含有4个元素,则中含有元素的个数是( )A A B ⋃A .5B .6C .7D .8【答案】C【分析】令且,,根据已知条件确定可能元素,进而写出{,,,}A a b c d =*,,,N a b c d ∈a b c d <<<B 且时的可能元素,讨论、,结合确定的关系,即可,x y B ∈x y <{}y x bc ad ≠bc ad =y Ax ∈a b c d ,,,得集合A 、B 并求出并集中元素个数.【详解】令且,,如下表行列分别表示,{,,,}A a b c d =*,,,N a b c d ∈a b c d <<<,x y 集合可能元素如下:B xya b cda -abacadb --bc bdc---cdd ----则,min{,}max{,}ab ac bc ad bc ad bd cd <<<<<若,不妨令,下表行列分别表示,bc ad ≠ab ac bc ad bd cd <<<<<,y x y xabac bc ad bd cdab -c b c ad b d acd ab ac --b a dc bd acd a bc ---ad bc d c d bad ----b ac a bd-----c bcd------由,而,且,yAx ∈min{,}max{,}min{,}max{,}c b c b c d c d d d b a b a a c a c b a <<<<<ad d bd d cd bc c ac a ab <<<<显然中元素超过4个,不合题设;{}y x 若,则,下表行列分别表示,bc ad =ab ac bc ad bd cd <<=<<,y x y xabac bc bd cdab -c b c ad a22()()cd c d ab a b ==ac --b a 22()()bd b d ac a c ==d abc ---d b c a=d c b a =bd----c bcd-----由,而,且,yAx ∈min{,}max{,}c b c b c d b a b a a a <<<222min{(,}max{(,}()b b c b c c a a a a a a <<<要使中元素不超过4个,只需,{}y x 2b ac bc ad⎧=⎨=⎩此时,222()min{(),}max{(,}c b b c cd c db aa a a a a a =<=<<显然,即,则,即且,故,2(c d a a ≠2c ad ≠c ba b a ==2b a =3c ab a ==4d a =所以,即,34567ab a ac a bc ad a bd a cd a =<=<==<=<=34567{,,,,}B a a a a a =而,故,共7个元素.234{,,,}A a a a a =234567{,,,,,,}a a a a a a A B a = 故选:C【点睛】关键点点睛:令且,,结合已知写出可能元素,由{,,,}A a b c d =*,,,N a b c d ∈a b c d <<<B 且时的可能元素且研究的关系.,x y B ∈x y <{}y x yAx ∈a b c d ,,,二、填空题11.某学校有教师志愿者80人,其中小学部有24人,初中部有32人,高中部有24人.现采用分层抽样的方法从全校教师志愿者中抽出20人参加周末社区服务活动,那么应从初中部抽出的人数为__________.【分析】利用分层抽样直接求解.【详解】从80人中抽取20人,抽样比为,所以应从初中部抽出的人数为.201804=13284⨯=故答案为:8.12.已知向量在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则,a b__________.43a b -=【分析】由图知,应用向量数量积的运算律求得,即可得||1,||,45a b a b ==<>=︒24310a b -= 结果.【详解】由图知:,则,||1,||,45a b a b ==<>=︒ 1cos 451a b ⋅=︒=又,则.222431624916241810a b b b a a ⋅-=-=-++= 43a b -=13.已知函数的定义域为,满足,且在上是减函()f x ()(),00,∞-+∞ ()()f x f x -=()f x ()0,∞+数,则符合条件的函数的解析式可以是__________.(写出一个即可)()f x =【答案】(答案不唯一)2x -【分析】根据幂函数的性质可得.【详解】的定义域为,想到作分母,()f x ()(),00,∞-+∞ x ,说明函数为偶函数,所以的指数为偶数,()()f x f x -= x 所以想到幂函数,验证在单调递减成立.()2f x x -=()0,∞+故答案为:(答案不唯一)2x -14.已知函数,则__________;的最小值为__________.()211,,221log ,2x x f x x x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎪≥⎪⎩()2f -=()f x 【答案】 4 -1【分析】根据单调性分别讨论分段函数每段的最小值,再综合判断.【详解】,()21242f -⎛⎫-== ⎪⎝⎭在区间内单调递减,故在上无最小值,且()11,22xx f x ⎛⎫<= ⎪⎝⎭()f x 12x<1212⎛⎫ ⎪⎝⎭在区间内单调递增,故,()21,log 2x f x x≥=()2min 11log 122f x f ⎛⎫===-< ⎪⎝⎭故答案为:-115.某学校为了调查高一年级600名学生年平均阅读名著的情况,通过抽样,获得了100名学生年平均阅读名著的数量(单位:本),将数据按照分成5组,制成[)[)[)[)[]0,5,5,10,10,15,15,20,20,25了如图所示的频率分布直方图,则图中的值为__________;估计高一年级年平均阅读名著的数量a 不少于10本的人数为__________.【答案】 ## 0.033100150【分析】由频率和为1列方程求参数a ,由图知数量不少于10本的频率为,(0.030.0140.006)5++⨯进而求人数.【详解】由直方图知:,(0.080.070.0140.006)5(0.17)51a a ++++⨯=+⨯=所以,0.03a =则高一年级年平均阅读名著的数量不少于10本为人.(0.030.0140.006)5600150++⨯⨯=故答案为:,0.0315016.已知定义在上的函数,则的零点是__________;若关于的方程()0,∞+()45f x x x =+-()f x x 有四个不等实根,则__________.()()0f x m m =>1234,,,x x x x 1234x x x x =【答案】 和 1x =4x =16【分析】令结合即可求出零点,将转化为与有四个()0f x =,()0x ∈+∞()()0f x m m =>()f x 0y m =>不同交点,画出函数图象并令,易知、分别是、1234x x x x <<<14,x x 23,x x 2(5)40x m x -++=的两个根,进而求.2(5)40x m x +-+=1234x x x x 【详解】令,则,即,可得或,()0f x =45x x +=254(1)(4)0x x x x -+=--=1x =4x =又,故的零点是和;,()0x ∈+∞()f x 1x =4x =由有四个不等实根,即且与有四个不同交点,()()0f x m m =>1234,,,x x x x ()f x ,()0x ∈+∞0y m =>因为,当且仅当时等号成立,4551y x x =+-≥-=-2x =结合对勾函数性质,在上递减,在上递增,y (0,2)x ∈(2,)x ∈+∞综上,和上,上,(0,1)(4,)+∞0y >(1,4)0y <则、上递减,、上递增,(0,1)(2,4)()||f x y =(1,2)(4,)+∞()||fx y =所以函数图象如下,由图知:,()f x 01m <<又,则,解得451y x x =+-=2640x x -+=3x =若,则1234x x x x <<<123431243x x x x <<<<<<<<故,,1414445x x m x x +=+=+2323445x x mx x +=+=-所以是的两个根,是的两个根,14,x x 2(5)40x m x -++=23,x x 2(5)40x m x +-+=则,故.14234x x x x ==123416x x x x =故答案为:和,1x =4x =16四、解答题17.如图,在中,.设.ABC 11,32AM AB BN BC==,AB a AC b ==(1)用表示;,a b,BC MN (2)若为内部一点,且.求证:三点共线.P ABC 51124AP a b=+ ,,M P N 【答案】(1),BC b a =- 1126b MN a=+(2)证明见解析【分析】(1)由图中线段的位置及数量关系,用表示出,即可得结果;,AC AB ,BC MN(2)用表示,得到,根据向量共线的结论即证结论.,a b AM AN +AM AP AN λμ=+ 1λμ+=【详解】(1)由题图,,BC AC AB b a =-=-.121211()232326BN BM BC AB b a a b aMN =-=+=-+=+ (2)由,1111151()3323262AM AN AB AC CN AB AC BC a b b a a b+=++=+-=+--=+ 又,所以,故三点共线.51124AP a b=+1122AM AP AN =+ ,,M P N18.已知集合.{}2560A x x x =-+>∣(1)求;A R(2)若集合,且,求实数的取值范围.{2}B x a x a =<<∣B A ⊆a 【答案】(1){|23}A x x =≤≤R (2)13a a ≤≥或【分析】(1)先求解一元二次不等式,再求补集;(2)由可分类讨论与时画图分析即可.B A ⊆B φ=B φ≠【详解】(1)∵2{|560}{|23}A x x x x x x =-+>=<>或∴{|23}A x x =≤≤R (2)∵B A⊆∴①当时,,解得:,B =∅2a a ≥0a ≤②当时,即:,B ≠∅0a >∴或022a a >⎧⎨≤⎩03a a >⎧⎨≥⎩∴013a a <≤≥或∴综述:.13a a ≤≥或19.为了践行“节能减排,绿色低碳”的发展理念,某企业加大了对生活垃圾处理项目的研发力度.经测算,企业每月平均处理生活垃圾的增量y (单位:吨)与每月投入的研发费用(单位:万元)x 之间的函数关系式为.2600010400xy x x =++(1)若要求每月平均处理生活垃圾的增量不低于100吨,则每月投入的研发费用应该在什么范围?(2)当每月投入的研发费用为多少时,每月平均处理生活垃圾的增量达到最大值?最大值是多少?x 【答案】(1)每月投入的研发费用的范围是万元[]10,40(2)每月投入的研发费用为20万元时,每月平均处理生活垃圾的增量达到最大值,最大值是120吨.【分析】(1)根据题意得到,然后解不等式即可求解;2600010010400xy x x =≥++(2)利用基本不等式即可求解【详解】(1)根据题意,,2600010010400xy x x =≥++因为()22104005400250,x x x ++=++->所以不等式转化为化简可得,解得26000100(10400),x x x ≥++2504000x x -+≤1040.x ≤≤所以每月投入的研发费用的范围是万元[]10,40(2)因为,所以,0x >2600060004001040010x y x x x x ==++++因为,当且仅当,即时,取等号,40040x x +≥=400x x =20x =所以当且仅当时,取得最大值.20x =y 60001201040=+所以每月投入的研发费用为20万元时,每月平均处理生活垃圾的增量达到最大值,最大值是120吨.20.2022年11月29日23时08分,搭载神舟十五号载人飞船的长征二号F 遥十五运载火箭在酒泉卫星发射中心点火发射成功,实现了两个飞行乘组首次太空“会师”.下表记录了我国已发射成功的所有神舟飞船的发射时间和飞行时长.名称发射时间飞行时长神舟一号1999年11月20日21小时11分神舟二号2001年1月10日6天18小时22分神舟三号2002年3月25日6天18小时39分神舟四号2002年12月30日6天18小时36分神舟五号2003年10月15日21小时28分神舟六号2005年10月12日4天19小时32分神舟七号2008年9月25日2天20小时30分神舟八号2011年11月1日16天神舟九号2012年6月16日13天神舟十号2013年6月11日15天神舟十一号2016年10月17日32天神舟十二号2021年6月17日3个月神舟十三号2021年10月16日6个月神舟十四号2022年6月5日6个月神舟十五号2022年11月29日预计6个月为帮助同学们了解我国神舟飞船的发展情况,某学校“航天社团”准备通过绘画、海报、数据统计图表等形式宣传“神舟系列飞船之旅”.(1)绘画组成员从表中所有的神舟飞船中随机选取1艘进行绘画,求选中的神舟飞船的发射时间恰好是在10月份的概率;(2)海报组成员从飞行时长(包括预计飞行时长)大于30天的神舟飞船中随机选取2艘制作海报,求选中的神舟飞船的飞行时长(包括预计飞行时长)均为6个月的概率;(3)数据统计组成员在2022年5月计算了已经完成飞行任务的神舟飞船的飞行时长平均值,记为年12月30日又计算了已经完成飞行任务的神舟飞船的飞行时长平均值,记为.试判断0.2022μ1μ和的大小.(结论不要求证明)0μ1μ【答案】(1)415(2)310(3)01μμ<【分析】(1)设“神舟飞船的发射时间恰好是在10月份”为事件列举出满足事件的样本点,即,A A 可算出概率;(2)列举基本事件,根据古典概型公式求解即可(3)比较和新加入的数,即可得到结论0μ【详解】(1)记名称为神舟第号飞船为,则“从表中所有的神舟飞船中随机选取1艘”的样本空i i a 间为,共15个样本点.{}1123456789101112131415Ω,,,,,,,,,,,,,,a a a a a a a a a a a a a a a =设“神舟飞船的发射时间恰好是在10月份”为事件,A 则,共4个样本点,所以{}561113,,,A a a a a =4()15P A =(2)“从飞行时长(包括预计飞行时长)大于30天的神舟飞船中随机选取2艘”的样本空间为,共10{211121113111411151213Ω(,),(,),(,),(,),(,),a a a a a a a a a a =}12141215131413151415(,),(,),(,),(,),(,)a a a a a a a a a a 个样本点.设“选中的神舟飞船的飞行时长(包括预计飞行时长)均为6个月”为事件B ,则,共3个样本点,{}131413151415(,),(,),(,)B a a a a a a =所以3()10P B =(3)易得2022年5月计算神舟一号到神舟十三号的平均数小于6个月,0μ年12月30日又计算了一遍,新加入神舟十四号和神舟十五号的数据,一定会比要大,故20220μ会拉高平均数,所以01μμ<21.设有限集合,对于集合,给出两个性质:{}1,2,3,,E N = {}123,,,,,m A E A x x x x ⊆= ①对于集合A 中任意一个元素,当时,在集合A 中存在元素,使得k x 1k x ≠()i j x x i j ≤,,则称A 为的封闭子集;k i jx x x =+E ②对于集合A 中任意两个元素,都有,则称A 为的开放子集.(),i j x x i j ≠i j x x A+∉E (1)若,集合,判断集合为的封闭20N ={}{}*1,2,4,6,8,1031,6,A B x x k k k ===+≤∈N ,∣A B ,E 子集还是开放子集;(直接写出结论)(2)若,且集合A 为的封闭子集,求的最小值;1001100,,N A A =∈∈E m (3)若,且为奇数,集合A 为的开放子集,求的最大值.*N ∈N N E m 【答案】(1)A 为的封闭子集,B 为E 的开放子集E (2)9(3)12N +【分析】对于(1),利用封闭子集,开放子集定义可得答案;对于(2),,设.{}2311100,,,,,m A x x x -= 2311100m x x x -<<<<< 因集合A 中任意一个元素,当时,在集合A 中存在元素,使得,则k x 1k x ≠()i j x x i j ≤,k i j x x x =+,其中.据此可得,得,后排除1112n n n x x x --+≤≤2,Nn m n *≤≤∈7764100x ≤≤<7m >8,再说明9符合题意即可;m =m =对于(3),因,且为奇数,当时,得;*N ∈N N 1N =1m =当,将里面的奇数组成集合A ,说明集合A 为E 开放子集,且3N ≥{}1,2,3,,E N = 为最大值即可.12N m +=【详解】(1)对于A ,因,2114226248261028,,,,=+=+=+=+=+且,则A 为E 的封闭子集;A E ⊆对于B ,由题可得,注意到其中任意两个元素相加之和都不在B 中,任意元素{}4,7,10,13,16,19B =也不是其他两个元素之和,且,故B 为E 的开放子集;B E ⊆(2)由题:,{}2311100,,,,,m A x x x -= 设.2311100m x x x -<<<<< 因集合A 中任意一个元素,当时,在集合A 中存在元素,使得,则k x 1k x ≠()i j x x i j ≤,k i j x x x =+,其中.1112n n n x x x --+≤≤2,,,N n n m n x *⎡⎤∈∈⎣⎦得,,,22x =34538164, 4, 5x x x ≤≤≤≤≤≤6632x ≤≤.因,则.7764x ≤≤7764100x ≤≤<7m >若,则,则在A 中存在元素,使它们的和为.8m =8100x =()i j x x i j ≤,100又,则当时,,2311100m x x x -<<<<< i j <6796100i j x x x x ≤+≤<+得,则在A 中存在元素,使它们的和为.877250x x x =⇒=()i j x x i j ≤,50又当时,,得,则在A 中存在元素,i j <654850i j x x x x ≤≤<++766225x x x =⇒=()i j x x i j ≤,使它们的和为.注意到奇数,且,故不存在元素,使2525452425i j x x x x ≤≤<++()i j x x i j ≤,,这与集合A 为的封闭子集矛盾,故.6i jx x x =+E 8m ≠当,取,易得其符合的封闭子集的定义,故的最小值为9m ={}124816326496100,,,,,,,,A =E m 9;(3)因,且为奇数,当时,得;*N ∈N N 1N =1m =当,将里面的奇数组成集合A ,则,3N ≥{}1,2,3,,E N = {}1357,,,,A N = 因A 中每个元素都是奇数,而任意两个奇数之和为偶数,且,则A 为E 开放子集,此时集A E ⊆合A 元素个数为.下面说明为最大值.12N +12N +m时,显然成立;当,若,则中至少有一个属于的偶数,1N =3N ≥12N m +>A {}1,2,3,,E N = 设为,则,得为属于集合中的奇数,这与E 开放子集的t a 21t a N ≤≤-1t a +{}1357,,,,,t N a 定义矛盾,故.12N m +≤综上:的最大值为.m 12N +【点睛】关键点点睛:本题考查集合新定义,难度较大.(1)问主要考查对于定义的理解;(2)问从定义出发,得到,得,继7764100x ≤≤<7m >而结合定义分析出;(3)问,由任意两个奇数之和为偶数可构造出集合A.8m ≠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试卷 参考答案(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)二、填空题(本大题共6小题,每小题5分,共30分.) (9)(10)22(5)16x y -+=(11) 3 (12)4(13) 2; [-9,9] (14)三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)解:(Ⅰ)由sin 0x ≠得πx k ≠(k ∈Z ),故()f x 的定义域为{x ∈R |π,x k ≠k ∈Z }.…………………2分 因为1sin cos )2sin sin32()(2+⋅-=xx x x x f2cos )cos 1x x x =-⋅+2cos 2x x=-π2sin(2)6x =-,………………………………6分所以()f x 的最小正周期2ππ2T ==.…………………7分(II )由 5[,],2[,],2[,],422636x x x πππππππ挝-…………..9分 当52,,()1662x x f x πππ-==即时取得最小值,…………….11分当2,,()2623x x f x πππ-==即时取得最大值.……………….13分(16)(本小题满分14分)G ABC DEFO解:(I )连接O F .由A B C D 是正方形可知,点O 为BD 中点. 又F 为B E 的中点,所以O F ∥D E ………………….2分 又,,OF ACF DEACF 平面平面趟所以D E ∥平面A C F ………….4分 (II) 证明:由EC ABCD BD ABCD 底面,底面,^ 所以,EC BD ^由A B C D 是正方形可知, ,AC BD ^又=,,AC EC C AC ECACE 平面,翘 所以,BD ACE 平面^………………………………..8分又AE ACE 平面,Ì所以BD AE ^…………………………………………..9分(III)解法一:在线段E O 上存在点G ,使CG BDE 平面^. 理由如下: 如图,取E O 中点G ,连接C G . 在四棱锥E A B C D -中,,2AB E C O AB C E ===,所以C G E O ^.…………………………………………………………………..11分 由(II )可知,,BD ACE 平面^而,BD BDE 平面Ì 所以,,ACE BDE ACE BDE EO 平面平面且平面平面,^? 因为,CG EO CG ACE 平面,^所以CG BDE 平面^…………………………………………………………. 13分 故在线段E O 上存在点G ,使CG BDE 平面^.由G 为E O 中点,得1.2E G E O=…………………………………………… 14分yx解法二:由EC ABCD 底面,^且底面A B C D 建立空间直角坐标系,C DBE -由已知,AB E =设(0)CE a a =>,则(0,0,0),,0,0),(0,,0),(0,0,),C D B E a,,0),,,0),(0,,),(,,).2222O a a BD BE a EO a a uuu ruuruuu r =-=-=-设G 为线段E O 上一点,且(01)EGEO λλ=<<,则,,),22EG EO a a a λλuuu r uuu r ==-,,(1)),22CG CE EO a a a λλλλuuu r uur uuu r =+=-…………………………..12分由题意,若线段E O 上存在点G ,使CG BDE 平面^,则C G BD^uuu r uuu r,C G BE ^uuu r uur .所以,221(1)0,0,12a a λλλ解得,()-+-==,故在线段E O 上存在点G ,使CG BDE 平面^,且1.2E G E O=…………………… 14分(17)(本小题满分13分)解:(I )甲厂抽取的样本中优等品有6件,优等品率为63.105=乙厂抽取的样本中优等品有5件,优等品率为51.102=………………..2分(II )ξ的取值为0,1,2,3.312555533101015(0),(1),1212C C C C P P C C ξξ⋅⋅======21355533101051(2),(3)1212C C C P P CCξξ⋅======所以ξ的分布列为故155130123.121212122E ξξ=⨯+⨯+⨯+⨯=的数学期望为()……………………9分(III) 抽取的优等品数甲厂恰比乙厂多2件包括2个事件,即A=“抽取的优等品数甲厂2件,乙厂0件”,B=“抽取的优等品数甲厂3件,乙厂1件”2200333321127()()()()()5522500P A C C =⨯=331123331181()()()()5221000P B C C =⨯=抽取的优等品数甲厂恰比乙厂多2件的概率为278127()().5001000200P A P B +=+=…13分(18)(本小题满分13分)解:(I ).23)(2ax x x f +-=' …………………………. ……………1分根据题意,(1)tan1,321, 2.4f a a π'==∴-+==即 …………………3分此时,32()24f x x x =-+-,则2()34f x x x '=-+.令124'()00,.3f x x x ===,得列表:∴当[]1,1x ∈-时,()f x 最小值为()04f =-. ………………………7分 (II )).32(3)(a x x x f --='①若0,0,()0,()(0,)a x f x f x '><∴+∞≤当时在上单调递减.又(0)4,0,() 4.f x f x =-><-则当时000,0,()0.a x f x ∴>>当≤时不存在使…………………………………………..10分②若220,0,()0;,()0.33a a a x f x x f x ''><<>><则当时当时从而)(x f 在(0,23a )上单调递增,在(23a ,+)∞上单调递减..4274494278)32()(,),0(333max -=-+-==+∞∈∴a a aa f x f x 时当根据题意,33440,27. 3.27aa a ->>∴>即 …………….............................. 13分综上,a 的取值范围是(3,)+∞.(19)(本小题满分13分)解:(I )由已知抛物线的焦点为0),故设椭圆方程为22221(0)x y a b ab+=>>,则22, 2.2c e a b ====由得所以椭圆M 的方程为221.42xy+=……………………………………5分(II )当直线l 斜率存在时,设直线方程为y kx m =+,则由22,1.42y kx m x y=+⎧⎪⎨+=⎪⎩ 消去y 得,222(12)4240k x km x m +++-=, …………………6分222222164(12)(24)8(24)0k m k m k m ∆=-+-=+->,①…………7分设A B P 、、点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则:012012122242,()21212km m x x x y y y k x x m kk =+=-=+=++=++,…………8分由于点P 在椭圆M 上,所以2200142x y +=. ……… 9分 从而2222222421(12)(12)k mmk k +=++,化简得22212m k =+,经检验满足①式.………10分 又点O 到直线l 的距离为:||2m d ===≥=………11分当且仅当0k =时等号成立 ………12分当直线l 无斜率时,由对称性知,点P 一定在x 轴上,从而点P 的坐标为(2,0)(2,0)-或,直线l 的方程为1x =±,所以点O 到直线l 的距离为1 .所以点O 到直线l的距离最小值为2. ………13分(20)(本小题满分14分)解: (I) 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- …………………4分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , ①当且仅当1100m b +=时取等号.因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =, 所以(1)(2)(49)(50)(51)g g g g g >>>===即当149m ≤<时,有()(1)g m g m >+;当49m ≥时,有()(1)g m g m =+ …9分(III )设M 为{}12100,,,a a a 中的最大值. 由(II )可以知道,()g m 的最小值为()g M . 根据题意,123100,M M b k k k k =++++=L 12312310023....M k k k M k a a a a ++++=++++L 下面计算()g M 的值.123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++-12312(23)()M M k k k M k k k k =-++++++++123100()M a a a a b =-+++++ 123100()100a a a a =-+++++ ,∵123100200a a a a ++++= , ∴()100g M =-,∴()g m 最小值为100-. ………………………………………….14分。