概率论第二章2节
概率论(仅供参考)
前言由于汤老师不给力,下面由刘老师来为你们划重点 内部使用,仅供参考,不承当任何后果。
参考: 课本 课件第一章该章概型和公式比较多,每个都配上了一个例题便于理解第一节重点:德·摩根律公式交换律:A ∪B=B ∪A ,AB=BA 结合律(A ∪B)∪C=A ∪(B ∪C )(A∩B)∩C=A∩(B∩C )分配律:A∩(B ∪C) = (A∩B)∪( A∩C )A ∪(B∩C) = (A ∪B)∩(A ∪C ) 德·摩根律A B AB A B A B ==第二节频率性质1. 样本任意一事件概率不小于0(非负性)2. 样本事件概率和为1(规范性)3. 如果AB 互斥 ()()()n n n f A B f A f B =+4. 如果AB 不排斥 ()()()()n n n n f A B f A f B f A B =+-⋂5. ()1().P A P A =-第三节 古典概型性质1. 样本空间中样本点有限,既事件有限2. 样本点概率等可能发生3. ()==k A P A n 中所含的基本事件数基本事件总数例题排列组合问题(要是考应该不会太难)几何概型求法:1.求出状态方程2.根据定义域画图3.求概率=阴影面积/总面积第四节条件概型公式:()()()() (|).()()()()AB AB P AB P A BB B P BμμμΩμμμΩ===条件概率满足概率的一切性质既非法性,规范性,可加性例题11()()()()n ni i i i i P B P BA P A P B A ====∑∑例题 书 p251()(|)(|)()(|)i i i ni ii P A P B A P A B P A P B A ==∑第五节独立性如果AB事件独立P AB P A P B()()()若多事件相互独立,理论仍然成立贝努利概型既服从二项分布模型抽取n次的组合次数第二章重点章节,几大分布都是后几章的基础第二节 离散型随机变量及其分布律1. 两点分布、0﹣1分布既随机变量 X 只可能取0或1两个值,事件执行一次只有两种情况,例如抛硬币 记为 X~b (1,p ) p 表示事件的概率,样本点个数为1, 并且1-p 表示相反事件概率 2. 二项分布(应用于上章的贝努利概型)与0-1分布类似,事件执行n 次,记为 X~b (n ,p ) p 表示事件的概率 样本点个数为n 3. 泊松分布{}e ,0,1,2,,!kP X k k k λλ-===⋅⋅⋅记为 X~π(λ),如果出题,应该会标明是泊松分布,或者给出明确的λ二项分布X~b (n ,p )当n 充分大,p 充分小时,对于任意固定的非负整数k ,与泊松分布概率近视相等,并且λ=nb (数学期望相等) 4. 几何分布既抽取问题中可放回情况,该分布具有无记忆性-1{}(1),1,2,k P X k p p k ==-=5. 超几何分布既抽取问题不放回情况12{},0,1,2,k n k N N nNC C P X k k C-===第三节 随机变量及其分布随机变量分布(感觉这个知识点必考,虽然不知道会是什么题) 求事件概率公式,p511. 已知分布函数求分布律,并求事件概率(习题2第一题)根据公式000{}(0)(0)P X x F x F x ==+--求出各个点的概率,并画出分布表,求事件概率可以不会套公式,可以直接看表。
概率论与数理统计答案 第二章1-2节
关键词: 随机变量 离散型随机变量、分布律 连续型随机变量、概率密度 概率分布函数 重伯努利实验、二项分布、泊松分布 均匀分布、正态分布、指数分布 随机变量的函数的分布
1
§1 随机变量
定义
2 3
例1: 将一枚硬币抛掷3次. 关心3次抛掷中, 出现 H的总次数 以X记三次抛掷中出现H的总数, 则对样本空间 S={e}中的每一个样本点e, X都有一个值与之对 应, 即有
1) P { X = k} = C3k p k (1 − p )3− k , k = 0,1, 2,3 (
( 2)
P { X = 2} = C32 p 2 (1 − p)
21
泊松分布(Poisson分布)
若随机变量X的概率分布律为 e− λ λ k
P { X = k} = k! , = 0,1, 2, ⋅⋅⋅, λ > 0 k
互不影响
例如: 1.独立重复地抛n次硬币,每次只有两个可能的结果: 正面,反面, P (出现正面 ) = 1 2 2.将一颗骰子抛n次,设A={得到1点},则每次试验 只有两个结果:A , A , P ( A ) = 1 6
12
定义随机变量X表示n重伯努利试验中事件A发生的次 数, 我们来求它的分布律. X所有可能取的值为0,1,2,...,n. 由于各次试验是相互独立的, 因此事件A在指定的 k(0≤k≤n)次试验中发生, 在其它n−k次试验中A不发生 的概率为
13
设A在n重伯努利试验中发生X次,则
k P பைடு நூலகம் X = k} = Cn p k (1 − p ) n − k , = 0,⋅⋅⋅,n k 1,
⎛n⎞ k Cn = ⎜ ⎟ 表示n中 ⎜k ⎟ ⎝ ⎠ 任选k的组合数目
概率论与数理统计(第3版)(谢永钦)第2章 随机变量
概率论与数理统计
解 :设甲、乙两厂的电子元件的寿命分别为X和Y,则X~ N(1100,502),
Y~ N(1150,802).
(1)依题意要比较概率
的大小,
两个概率如下:
概率论与数理统计
(2)依题意要比较概率 两个概率如下:
的大小,
比较两个概率的大小就知应选乙厂的产品。
04
第4节 随机变量函数的分布
如果x0为f (x)的连续点,有
f (x)在 x0处的函数值 f (x0)反映了概率在 x0 点处的“密集程度”, 而不表示X在 x0 处的概率。设想一条极细的无穷长的金属杆,总质量 为1,概率密度相当于各点的质量密度。
(2)若X为连续型随机变量,由定义知X的分布函数F(x)为连续函数
(注意:反之不然)。X 取一个点a的概率
称为随机变量X的分布函数。
概率论与数理统计
函数分布的性质
证明:
概率论与数理统计
概率论与数理统计
由概率的 连续性得:
概率论与数理统计
例题 口袋里装有3个白球2个红球,从中任取三个球,
求取出的三个球中的白球数的分布函数.
解: 设X表示取出的3个球中的白球数。X的可能取值为1,2,3。 而且由古典概率可算得
当固定,改变的值,y=f(x)的图形沿Ox轴平移而不改变形状,故 又称为
位置参数。若固定,改变的值,y=f(x)的图形的形状随的增大而变得平坦。
f (x)
f (x)
0.5
1
O
h h 1
x
O
越小,X 落在 附近的概率越大。
1 2
x
概率论与数理统计
pk p1 p2 … pk…
《概率论与数理统计》课件-第2章随机变量及其分布 (1)
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)
第二章 随机变量(二)
1/2
1/4
解: 由概率的有限可加性,得所求分布函数为
15/22
0 x 1 1 1 x 2 4 即 F ( x) 1 1 2 x3 42 1 1 1 x3 4 2 4
0 1 F ( x) 4 3 4 1
例2.2
20/22
泊松定理 设npn=λ(λ>0是一常数,n是任意整数),则对 任意一固定的非负整数k,有
定理的条件npn=λ,意味着n很大时候pn必定很小.因此当n很大,p 很小时有近似公式
其中λ=np。 时用 的近似值效果很好。 (λ=np)
的值有表可查。
在实际计算中,当 作为
而当
时效果更佳。
xk x
即F ( x )
xk x
p
k
这里的和式是所有满足xk≤x的k求和的。分布函数F(x) 在x=xk(k=1,2,…)处有跳跃,其跃跳值为pk=P{x=xk}。
13/22
②已知随机变量X的分布律, 亦可求任意随机事件的 概率。 例如,求事件{X∈B}(B为实轴上的一个区
间)的概率P{ X∈B}时,只需将属于B的X的可能取值
17/22
二项分布
若离散型随机变量X的分布律为
其中0<p<1, 称X服从参数为n,p的二项分布,记为 X~b(n,p)。
18/22
在n重贝努里试验中,假设A在每次试验中出现 的概率为p,若以X表示n次试验中A出现的次数。那 么由二项概率公式得X的分布律为:
即X服从二项分布。
当n=1时,二项分布化为: P{X=k}=pk(1-p)1-k k=0,1 即为(0-1)分布
P{ X xk } F ( xk ) F ( xk 0)
概率论与数理统计2-2
因此 A在 n 次试验中发生 k 次的概率为
n k n k 记 q 1 p p (1 p) k
得 X 的分布律为 X 0 1 n n 1 n pk q pq 1
n k n k pq k
n k n k p q k 称这样的分布为二项分布.记为 X ~ b( n, p).
P{ X 0} 0.012 P{ X 1} 0.058
P{ X 4} 0.218 P{ X 5} 0.175 P{ X 6} 0.109 P{ X 8} 0.022 P{ X 9} 0.007
P{ X 10} 0.002
P{ X 2} 0.137
1000 1000 0.0001 0.1, 可利用泊松定理计算 0.0001 0.9999999 1 0.9999 1
1000
e0.1 0.1 e0.1 0.0047. P { X 2} 1 0! 1!
合理配备维修工人问题 例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
泊松资料
P{ X k }
k e
, k 0,1,2,,
泊松分布的图形
泊松分布随机数演示
泊松分布的背景及应用
二十世纪初卢瑟福和盖克两位科学家在观察 与分析放射性物质放出的粒子个数的情况时,他 们做了2608次观察(每次时间为7.5秒)发现放射 性物质在规定的一段时间内, 其放射的粒子数X 服从泊松分布.
概率论与数理统计 第二节
i C k i pk q n1 n2 k C n1 n2 i 0
k
k i k i k n1 n2 k C C p q i 0 n1 n2
k k q n1 n2 k p C n1 n2
Z X Y ~ B(n n , p)
Z1
P
Z2
P
0.2
例(p151) 设二维随机向量(X,Y)的概率分布如 下表所示,求Z=max{X,Y}的分布。
Y
X
2
1
1 8 8 8
0
1 8
2
1 1 8
0
1
1 1
0
1 8
8 8
1
解 用二维表形式列出Z的可能值
Y
X
2
1
1 8 8 8
0
1 8
2
1 1 8
Z Y X 2
1
0 0 0
1
2
2 2 2
(二)代数式法
例(p152) 若X和Y相互独立,它们分别服从参数为 1, 2 的泊松分布, 求Z=X+Y的概率分布。 解:由题意知
P( X i )
1i
i! 2 j 2 P (Y j ) e j!
e
1
i = 0,1,2,… j = 0,1,2,…
则Z=X+Y的取值为 k = i + j = 0,1,2,…
f ( x , y )dxdy
D
其中D {( x, y) | g( x, y) z}
' f Z ( z ) FZ ( z) 2.Z的密度函数为
1 e 例(p154) 设(X,Y)的密度函数为 f ( x , y ) 2 求 Z X 2 Y 2 的密度函数 f Z ( z ) .
概率论与数理统计第二章随机变量及其分布
设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,
概率论与数理统计B教案第二章
第二章随机变量及其分布在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量. 由于这一变量的取值依赖于随机试验结果,因而被称为随机变量. 与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性. 本章将介绍两类随机变量及描述随机变量统计规律性的分布.第一节随机变量的概念内容要点:一、随机变量概念的引入为全面研究随机试验的结果, 揭示随机现象的统计规律性, 需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.1. 在有些随机试验中, 试验的结果本身就由数量来表示.2. 在另一些随机试验中, 试验结果看起来与数量无关,但可以指定一个数量来表示之.二、随机变量的定义定义设随机试验的样本空间为S, 称定义在样本空间S上的实值单值函数)X=(eX为随机变量.随机变量与高等数学中函数的比较:(1) 它们都是实值函数,但前者在试验前只知道它可能取值的范围,而不能预先肯定它将取哪个值;(2) 因试验结果的出现具有一定的概率,故前者取每个值和每个确定范围内的值也有一定的概率.三、引入随机变量的意义随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来.由此可见,随机事件这个概念实际上是包容在随机变量这个更广的概念内.也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则以动态的观点来研究之.其关系类似高等数学中常量与变量的关系.随机变量概念的产生是概率论发展史上的重大事件. 引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量因其取值方式不同, 通常分为离散型和非离散型两类. 而非非离散型随机变量中最重要的是连续型随机变量. 今后,我们主要讨论离散型随机变量和连续型随机变量.例题选讲:例1(讲义例1)在抛掷一枚硬币进行打赌时, 若规定出现正面时抛掷者赢1元钱, 出现反面时输1元钱, 则其样本空间为S{正面, 反面},=记赢钱数为随机变量X, 则X作为样本空间S的实值函数定义为⎩⎨⎧=-==.,1,,1)(反面正面e e e X例2 (讲义例2) 在将一枚硬币抛掷三次, 观察正面H 、反面T 出现情况的试验中, 其样本空间};,,,,,,,{TTT TTH THT HTT THH HTH HHT HHH S = 记每次试验出现正面H 的总次数为随机变量X , 则X 作为样本空间S 上的函数定义为1112223X TTTTTH THT HTT THH HTH HHT HHH e易见, 使X 取值为})2({2=X 的样本点构成的子集为},,,{THH HTH HHT A = 故 ,8/3)(}2{===A P X P 类似地,有.8/4},,,{}1{==≤TTT TTH THT HTT P X P例3 (讲义例3) 在测试灯泡寿命的试验中, 每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=t t S 上的函数,即t t X X ==)(,是随机变量.课堂练习1. 一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.第二节 离散型随机变量及其分布函数内容要点:一、离散型随机变量及其概率分布定义 设离散型随机变量X 的所有可能取值为),2,1( =i x i , 称,2,1,}{===i p x X P i i为X 的概率分布或分布律, 也称概率函数.常用表格形式来表示X 的概率分布:n i n p p p p x x x X 2121二、常用离散分布退化分布 两点分布 n 个点上的均匀分布 二项分布 几何分布 超几何分布泊松分布:泊松分布是概率论中最重要的几个分布之一. 实际问题中许多随机现象都服从或近似服从泊松分布.三、二项分布的泊松近似定理1 (泊松定理) 在n 重伯努利试验中, 事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关), 如果∞→n 时, λ→n np (0>λ为常数), 则对任意给定的k , 有λλ-∞→=e k p n k b kn n !),,(lim .例题选讲:离散型随机变量及其概率分布例1 (讲义例1) 某篮球运动员投中篮圈的概率是0.9, 求他两次独立投篮投中次数X 的概率分布.例2 (讲义例2) 设随机变量X 的概率分布为:0,,2,1,0,!}{>===λλ k k aK X P k.试确定常数a .二项分布例3 (讲义例3) 已知100个产品中有5个次品, 现从中有放回地取3次, 每次任取1个, 求在所取的3个中恰有2个次品的概率.例4 (讲义例4) 某人进行射击, 设每次射击的命中率为0.02, 独立射击400次, 试求至少击中两次的概率.例5 (讲义例5) 设有80台同类型设备, 各台工作是相互独立的,发生故障的概率都是0.01, 且一台设备的故障能由一个人处理. 考虑两种配备维修工人的方法, 其一是由4人维护, 每人负责20台; 其二是由3人共同维护80台. 试比较这两种方法在设备发生故障时不能及时维修的概率的大小. 几何分布例6 (讲义例6) 某射手连续向一目标射击, 直到命中为止, 已知他每发命中的概率是p , 求所需射击发数X 的概率分布. 泊松分布例7 (讲义例7) 某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布, 求该城市一天内发生3次或3次以上火灾的概率. 二项分布的泊松近似例8 (讲义例8) 某公司生产的一种产品300件. 根据历史生产记录知废品率为0.01. 问现在这300件产品经检验废品数大于5的概率是多少?例9 (讲义例9) 一家商店采用科学管理,由该商店过去的销售记录知道, 某种商品每月的销售数可以用参数5=λ的泊松分布来描述, 为了以95%以上的把握保证不脱销, 问商店在月底至少应进某种商品多少件?例10 (讲义例10) 自1875年至1955年中的某63年间, 上海市夏季(5—9月)共发生大暴雨180次, 试建立上海市夏季暴雨发生次数的概率分布模型.课堂练习1.某类灯泡使用时数在1000小时以上的概率是0.2, 求三个灯泡在使用1000小时以后最多只有一个坏了的概率.2.一汽车沿一街道行驶, 需要通过三个均设有红绿信号灯的路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号灯显示的时间相等. 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求X 的概率分布.第三节 随机变量的分布函数当我们要描述一个随机变量时,不仅要说明它能够取哪些值,而且还要指出它取这些值的概率. 只有这样,才能真正完整地刻画一个随机变量, 为此,我们引入随机变量的分布函数的概念.内容要点:一. 随机变量的分布函数定义 设X 是一个随机变量, 称)()()(+∞<<-∞≤=x x X P x F为X 的分布函数.有时记作)(~x F X 或)(x F X .分布函数的性质1. 单调非减. 若21x x <, 则)()(21x F x F ≤;2. ;1)(lim )(,0)(lim )(==+∞==-∞+∞→-∞→x F F x F F x x3. 右连续性. 即).()(lim 00x F x F x x =+→二、离散型随机变量的分布函数设离散型随机变量X 的概率分布为n i n p p p p x x x X 2121则X 的分布函数为∑∑≤≤===≤=xx i xx i i i p x X P x X P x F )()()(.例题选讲:随机变量的分布函数例1(讲义例1)等可能地在数轴上的有界区间],[b a 上投点, 记X 为落点的位置(数轴上的坐标) , 求随机变量X 的分布函数.例2(讲义例2)判别下列函数是否为某随机变量的分布函数?⎪⎩⎪⎨⎧≥<≤+<=⎪⎩⎪⎨⎧≥<≤<=⎪⎩⎪⎨⎧≥<≤--<=.2/1,1,2/10,2/1,0,0)()3(;,1,0,sin ,0,0)()2(;0,1,02,2/1,2,0)()1(x x x x x F x x x x x F x x x x F ππ离散型随机变量的分布函数例3(讲义例3)设,2/16/13/1210i p X 求)(x F .例4 X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.例5(讲义例4)设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.3,1,32,19/15,21,19/9,1,0)(x x x x x F求X 的概率分布.课堂练习1.设随机变量X 的概率分布为4/12/14/1421i p X -,求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<X P {}.32≤≤X P第四节 连续型随机变量及其概率密度内容要点:一、 连续型随机变量及其概率密度定义 如果对随机变量X 的分布函数)(x F ,存在非负可积函数)(x f ,使得对于任意实数x 有.)(}{)(⎰∞-=≤=xdt t f x X P x F则称X 为连续型随机变量, 称)(x f 为X 的概率密度函数,简称为概率密度或密度函数. 关于概率密度的说明1. 对一个连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求得其分布函数)(x F , 同时, 还可求得X 的取值落在任意区间],(b a 上的概率:⎰=-=≤<ba dx x f a Fb F b X a P )()()(}{2. 连续型随机变量X 取任一指定值)(R a a ∈的概率为0.3. 若)(x f 在点x 处连续, 则)()(x f x F =' (1)二、常用连续型分布 均匀分布定义 若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a ab x f 则称X 在区间),(b a 上服从均匀分布, 记为),(~b a U X .指数分布定义 若随机变量X 的概率密度为0.,0,0,)(>⎩⎨⎧>=-λλλ其它x e x f x则称X 服从参数为λ的指数分布.简记为).(~λe X正态分布定义 若随机变量X 的概率密度为.,21)(222)(∞<<∞-=--x e x f x σμσπ其中μ和)0(>σσ都是常数, 则称X 服从参数为μ和2σ的正态分布. 记为).,(~2σμN X 注: 正态分布是概率论中最重要的连续型分布, 在十九世纪前叶由高斯加以推广, 故又常称为高斯分布. 一般来说,一个随机变量如果受到许多随机因素的影响,而其中每一个因素都不起主导作用(作用微小),则它服从正态分布. 这是正态分布在实践中得以广泛应用的原因. 例如, 产品的质量指标, 元件的尺寸, 某地区成年男子的身高、体重, 测量误差, 射击目标的水平或垂直偏差, 信号噪声、农作物的产量等等, 都服从或近似服从正态分布.标准正态分布正态分布当1,0==σμ时称为标准正态分布, 此时, 其密度函数和分布函数常用)(x ϕ和)(x Φ表示:,21)(22x e x -=πϕ ⎰∞--=Φxt dt e x 2221)(π标准正态分布的重要性在于, 任何一个一般的正态分布都可以通过线性变换转化为标准正态分布.定理 设),,(~2σμN X 则).1,0(~N X Y σμ-=标准正态分布表的使用:(1)表中给出了0>x 时)(x Φ的数值, 当0<x 时, 利用正态分布的对称性, 易见有);(1)(x x Φ-=-Φ(2) 若),1,0(~N X 则);()(}{a b b X a P Φ-Φ=≤< (3)若),(~2σμN X , 则),1,0(~N X Y σμ-=故X 的分布函数;}{)(⎪⎭⎫⎝⎛-Φ=⎭⎬⎫⎩⎨⎧-≤-=≤=σμσμσμx x X P x X P x F⎭⎬⎫⎩⎨⎧-≤<-=≤<σμσμb Y a P b X a P }{.⎪⎭⎫⎝⎛-Φ-⎪⎭⎫⎝⎛-Φ=σμσμa b例题选讲:连续型随机变量及其概率密度例1 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤≤--=其它,011,12)(2x x x f π求其分布函数)(x F .例2(讲义例1)设随机变量X 具有概率密度⎪⎪⎩⎪⎪⎨⎧≤≤-<≤=.,0,43,22,30,)(其它x x x kx x f}.2/71{)3();()2(;)1(≤<X P x F X k 求的分布函数求确定常数例3(讲义例2)设随机变量X 的分布函数为⎪⎩⎪⎨⎧<≤<≤=x x x x x F 1,110,0,0)(2求 (1) 概率}7.03.0{<<X P ; (2) X 的密度函数.常用连续型分布 均匀分布例4 (讲义例3)某公共汽车站从上午7时起, 每15分钟来一班车, 即7:00, 7:15, 7:30, 7:45等时刻有汽车到达此站, 如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率. 指数分布例5(讲义例4)某元件的寿命X 服从指数分布, 已知其平均寿命为1000小时,求3个这样的元件使用1000小时, 至少已有一个损坏的概率. 正态分布例6(讲义例5)设)4,1(~N X , 求 .}2|1{|},6.10{),5(≤-≤<X P X P F 例7 设某项竞赛成绩N X ~(65, 100),若按参赛人数的10%发奖,问获奖分数线应 定为多少?例8(讲义例6)将一温度调节器放置在贮存着某种液体的容器内,调节器整定在d ℃,液体的温度X (以℃计)是一个随机变量,且 )5.0,(~2d N X(1) 若 09=d ℃,求X 小于89℃ 的概率;(2) 若要求保持液体的温度至少为80℃的概率不低于0.99,问d 至少为多少?例9(讲义例7)某企业准备通过招聘考试招收300名职工,其中正式工280人, 临时工20人; 报考的人数是1657人, 考试满分是400分. 考试后得知, 考试总平均成绩, 即166=μ分, 360分以上的高分考生31人. 某考生B 得256分, 问他能否被录取? 能否被聘为正式工? 例10(讲义例8)在电源电压不超过200伏,在200~240伏和超过240伏三种情形下,某种电子元件损坏的概率分别为0.1,0.001和0.2. 假设电源电压X 服从正态分布N (220,252),试求:(1) 该电子元件损坏的概率α;(2) 该电子元件损坏时,电源电压在200~240伏的概率β.课堂练习1.已知)5.0,8(~2N X ,求 (1) );7(),9(F F (2) }105.7{≤≤X P ;(3) };1|8{|≤-X P(4) }.5.0|9{|<-X P2.某种型号电池的寿命X 近似服从正态分布),(2σμN , 已知其寿命在250小时以上的概率和寿命不超过350小时的概率均为92.36%, 为使其寿命在x -μ和x +μ之间的概率不小于0.9, x 至少为多少?第五节 随机变量函数的分布讲解注意:一、 随机变量的函数定义 如果存在一个函数)(X g , 使得随机变量Y X ,满足:)(X g Y =,则称随机变量Y 是随机变量X 的函数.注: 在微积分中,我们讨论变量间的函数关系时, 主要研究函数关系的确定性特征, 例如:导数、积分等.而在概率论中, 我们主要研究是随机变量函数的随机性特征, 即由自变量X 的统计规律性出发研究因变量Y 的统计性规律.一般地, 对任意区间I , 令})(|{I x g x C ∈=, 则},{})({}{C X I x g I Y ∈=∈=∈ }.{})({}{C X P I x g P I Y P ∈=∈=∈注: 随机变量Y 与X 的函数关系确定,为从X 的分布出发导出Y 的分布提供了可能.二、离散型随机变量函数的分布 设离散型随机变量X 的概率分布为,2,1,}{===i p x X P i i易见, X 的函数)(X g Y =显然还是离散型随机变量.如何由X 的概率分布出发导出Y 的概率分布? 其一般方法是:先根据自变量X 的可能取值确定因变量Y 的所有可能取值, 然后对Y 的每一个可能取值,,2,1, =i y i 确定相应的},)(|{i j j i y x g x C ==于是},{})({}{i i i i C X y x g y Y ∈==== .}{}{}{∑∈==∈==ij C x ji i x X P C X P y Y P从而求得Y 的概率分布.三、 连续型随机变量函数的分布一般地, 连续型随机变量的函数不一定是连续型随机变量, 但我们主要讨论连续型随机变量的函数还是连续型随机变量的情形, 此时我们不仅希望求出随机变量函数的分布函数, 而且还希望求出其概率密度函数.设已知X 的分布函数)(x F X 或概率密度函数)(x f X , 则随机变量函数)(X g Y =的分布函数可按如下方法求得:}.{})({}{)(y Y C X P y X g P y Y P y F ∈=≤=≤=其中}.)(|{y x g x C y ≤=而}{y C X P ∈常常可由X 的分布函数)(x F X 来表达或用其概率密度函数)(x f X 的积分来表达:⎰=∈yC X y dx x f C X P )(}{进而可通过Y 的分布函数)(x F Y , 求出Y 的密度函数.定理1 设随机变量X 具有概率密度),(),(+∞-∞∈x x f X ,又设)(x g y =处处可导且恒有0)(>'x g (或恒有0)(<'x g ), 则)(X g Y =是一个连续型随机变量,其概率密度为⎩⎨⎧<<'=其它,0|,)(|)([)(βαy y h y h f y f Y其中)(y h x =是)(x g y =的反函数, 且)).(),(max()),(),(min(+∞-∞=+∞-∞=g g g g βα例题选讲:离散型随机变量函数的分布例1(讲义例1)设随机变量X 具有以下的分布律, 试求2)1(-=X Y 的分布律.4.01.03.02.02101i p X -连续型随机变量函数的分布例2(讲义例2)对一圆片直径进行测量, 其值在[5, 6]上均匀分布, 求圆片面积的概率分布密度.例3(讲义例3)设⎩⎨⎧<<=其它,040,8/)(~x x x f X X , 求82+=X Y 的概率密度.例4 设)1,0(~N X , 求2X Y =的密度函数.例5(讲义例4)已知随机变量X 的分布函数)(x F 是严格单调的连续函数, 证明)(X F Y =服从]1,0[上的均匀分布.例6(讲义例5)的线性函数试证明设随机变量X N X ).,(~2σμb aX Y +=)0(≠a 也服从正态分布.例7 (讲义例6) 设随机变量X 在)1,0(上服从均匀分布, 求X Y ln 2-=的概率密度.例8 (讲义例8) (对数正态分布) 随机变量X 称为服从参数为2,σμ的对数正态分布, 如果X Y ln =服从正态分布),(2σμN . 试求对数正态分布的密度函数.注: 在实际中, 通常用对数正态分布来描述价格的分布, 特别是在金融市场的理论研究中, 如著名的期权定价公式(Black —Scholes 公式), 以及许多实证研究都用对数正态分布来描述金融资产的价格. 设某种资产当前价格为0P , 考虑单期投资问题, 到期时该资产的价格为一个随机变量, 记作1P , 设投资于该资产的连续复合收益率为r , 则有re P P 01=从而0101ln ln lnP P P P r -== 注意到0P 为当前价格, 是已知常数,因而假设价格1P 服从对数正态分布实际上等价于假设连续复合收益率r 服从正态分布.例9(讲义例7)设随机变量X 服从参数为λ的指数分布, 求}2,min{X Y =的分布函数.课堂练习1. 设X 的分布列为10/310/110/110/15/12/52101i p X -试求: (1) 2X 的分布列; (2) 2X 的分布列.2. 设随机变量X 的概率密度为⎩⎨⎧<<=.,0,0,/2)(2其它ππx x x f求X Y sin =的概率密度.。
概率论知识点总结
概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。
相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为B A BA =-。
互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时B A ⋃可记为A +B 。
对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂ 第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时 概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -= (4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB) 第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可. 第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B). 乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则 第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立. 三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
清华大学《概率论与数理统计》第二章 - 原
.
45
多维随机变量
由定义可知
二维离散型随机变量(X, Y )的联合分布律
满足
pij 0 ,
pij 1
ij
.
46
多维随机变量
定义2.2.3
设(x, y)的联合分布为P((X,Y) = (xi , yj )) = pij (i, j ≥ 1)。
(1)
称
P
(X
=
xi)
= pij j
为
X
的边缘分布,
称 P (Y = yi) = pij 为 Y 的边缘分布。 j
(2) 当P (Y = yj ) > 0, ∀ j ≥1给定,称
P X xi Y y j
P X xi ,Y y j P Y yj
1 若取得合格产品 X 0 若取得不合格产品
则X服从参数为0.95的二点分布。
.
18
二点分布是最简单的一种分布类型,它可描述 一切只有或只关心两种可能结果的随机事件。
比如产品合格与不合格,新生婴儿是男是女, 比赛中的胜与负,电信号的正与负,种子是否 发芽等等。
.
19
(2)二项分布(Binomial distribution) 以X表示n重贝努利试验中A发生的次数,易知 X是一个随机变量,其可能取值为0,1,2,…,n。 由于各次试验相互独立,故在n次试验中A发 生k次的概率
解: 将每次射击看作一次独立试验,则整个试验可 看作一个400次的贝努利试验。设击中的次数为 X,则X ~B (400,0.02)。
.
23
X的分布率为:
P( X k) C4k00 0.02k0.98400k , k 0,1,2,...,400.
则所求概率为 : P(X 1)=1 P(X 0)=1 0.98400 0.9997
第二节 离散型随机变量及其分布1
广
东
工
业
广
大 学
东 工 业
主讲教师:
大 学
上页 下页 返回
第二章 随机变量
§1 随机变量及其分布函数 §2 离散型随机变量及其分布 §3 连续型随机变量及其分布 §4 随机变量函数的分布
广 东 工 业 大 学
上页 下页 返回
§2 离散型随机变量及分布
一、离散型随机变量的定义
有些随机变量,它全部可能取的值只有有限 个,或者,虽然有无限多个可能的值,但这些值 可以无遗漏地一个接一个地排列出来(即可列 个),称这种随机变量为离散型随机变量。
二项分布描述的是n重贝努里试验中出现
“成功”(事件A发生)次数ξ的概率分
布.
在解应用题时需要注意判断问题是否
为贝努利概型,可否用二项分布求解. 广 东 工 业 大 学
上页 下页 返回
例 医生对5个人作某疫苗接种试验,设已知对试验反应呈阳性的
概率为p=0.45,且各人的反应相互独立。若以 记反应为阳性的人数。 (1)写出 的分布律;(2)恰有3人反应为阳性的概率;(3)至少有2
0.453(1
0.45)2
0.276;
广
(3)至 少 有2人 反 应 呈 阳 性 的 概 率 是
东 工
P( 2) 1 p( 0) p( 1)
业 大
1
(1
0.45)
5
C
1 5
0.45(1
0.45)4 0.744.
上页 下页
返回
学
若X : b(n,p),则明显地成立以下公式:
1.在n重贝努利 试验中,事件A发生的次 数在k1与k2之间的概 率是
下面求P{ξ=k}
第二节中心极限定理
概率统计
定理3表明 正态分布是二项分布的极限分布, 表明, 注: ▲ 定理 表明,正态分布是二项分布的极限分布, 当 n 充分大时可以用正态分布来计算二项分 布的概率. 布的概率. ▲ 在第二章中已介绍当 n →∞ 时,二项分布以 泊松分布为极限分布; 泊松分布为极限分布;而在本章中二项分布又 以正态分布为极限分布. 两者的区别是 以正态分布为极限分布.这两者的区别是: 泊松定理中要求 在泊松定理中要求 np → λ (λ为常数 ) 中心极限定理中要求 在中心极限定理中要求 np → ∞ 所以在实际计算中, 所以在实际计算中,如果 n 很大但 np或 nq 不 或 大 ( 即 p 很小或 q =1-p 很小 ),那么应该用泊 , 松定理去近似; 都较大, 松定理去近似;如果 n,np 或 nq 都较大,那 , 么应该用中心极限定理去近似. 么应该用中心极限定理去近似.
概率统计
定理2表明 当 充分大时,随机变量: 表明, 注: ▲ 定理 表明, n 充分大时,随机变量:
Bn n 即,∑ X k = Bn Z n + ∑ k 近似服从正态分布
n
Zn =
∑ X ∑
k =1 k k =1
n
n
k
近似服从标准正态分布. 近似服从标准正态分布.
N ~ ( ∑ k , Bn 2 )
概率统计
= P(
10 0.1n 0.3 n
≤
X 0.1n 0.3 n 10 0.1 n
≤3 n)
准则, 由3σ准则, 准则 Φ (3 n )为 1
概率统计
研究的问题: 研究的问题: 研究独立随机变量之和所特有的规律性问题. 研究独立随机变量之和所特有的规律性问题.当 之和所特有的规律性问题 n 无限增大时,这个和的极限分布是什么?在什 无限增大时,这个和的极限分布是什么? 么条件下极限分布会是正态的呢? 么条件下极限分布会是正态的呢? 在概率论中, 在概率论中,习惯于把和的分布收敛于正态分 布这一类定理都叫做中心极限定理. 布这一类定理都叫做中心极限定理.故: 在一定条件下,大量的随机变量之和的概率分布 在一定条件下,大量的随机变量之和的概率分布 随机变量之和 以正态分布为极限的定理称为中心极限定理. 以正态分布为极限的定理称为中心极限定理.
《概率论》 第二章 基本定理
第一节
基本定理
加法定理
定理1 若A1 , A2 ,, An是两两互斥的事件, 则有
P ( A1 A2 An ) P ( A1 ) P ( A2 ) P ( An ).
概率的可加性 推论1 对任一事件A,有 P ( A) 1 P ( A). 推论2 若A,B为任意两事件,则P(A-B)=P(A)-P(AB)
12 0.12 100 12 12 P ( B A) 0.15 P ( A B ) 0.6 80 20 P ( AB ) P ( AB ) , P ( B A) . 注 可看出 P ( A B ) P( B) P ( A)
P ( AB )
二、乘法定理
定理1 若 P(A)>0,则有 P ( AB ) P ( A) P ( B A). 若 P(B)>0,则有 P ( AB ) P ( B) P ( A B). 即有 P ( AB) P ( A) P ( B A) P ( B) P ( A B).
实际上依经验也可知道A、B是相互独立的.
又如: 一批产品共n件,从中抽取2件, 设Ai ={第i 件是合格品} i=1,2 (1)若抽取是有放回的,则A1与A2独立. 因为第二次抽取的结果不受第一次抽取的影响.
(2)若抽取是无放回的,则A1与A2不独立.
因为第二次抽取的结果受到第一次抽取的影响.
定理3 若事件A与B独立,则A与B, A与B, A 与B 中的 每一对事件都独立. 证
例4(传染病模型)已知一罐中盛有m个白球, n个黑球。现从中任取一只,记下颜色后放回, 并同时加入与被取球同色球a个,试求接连取球 3次,3次均为黑球的概率. 解 设 Ai ( i 1,2,3) 表示事件“第i次取到黑球”, 则所求即为 P ( A1 A2 A3 ) . P ( A1 A2 A3 ) P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 )
概率论与数理统计2
x0 x0
1 ( 2)当 x 时, f 2 ( x ) cos x 0, 不是 2 2
( 3)
f 3 ( x )dx 2,
不是
例
设随机变量X的概率密度为
ke 3 x f ( x) 0 x0 x0
试确定常数k, 并求X的分布函数及 P(X>0.1)。
第二章 随机变量及其分布
第一节 一维随机变量及分布
第二节 第三节 第四节 离散型随机变量 连续型随机变量 随机变量函数的分布
第三节、 连续型随机变量
第三节 连续型随机变量
一 连续型随机变量及其概率密度函数
二 常见的连续型随机变量的分布
1 均匀分布 2 指数分布
3 正态分布
1、概率密度的概念与性质
S1
x1
f ( x)d x
1
o
x1 x2
S1
x
1.2 概率密度函数的性质
(1) f(x)0, xR, 表明密度曲线在 x轴上方。
f ( x)
1
o
(2)
x
f ( x)dx 1
这表明介于密度曲线 y f ( x)与x轴之间的面积为1。
( 3 )
P ( x 1 X x 2 ) F ( x 2 ) F ( x1 )
x
U(a,b)的分布函数为
x a, 0, x a F ( x) , a x b, b a x b. 1,
F ( x)
应用模型 在区间上“等可能投 点”“随机投点”的试 验的数学模型。
1
a o
b
x
概率论与数理统计 --- 第二章{一维随机变量及其分布} 第二节:离散型随机变量
第二节 离散型随机变量
离散型随机变量及其分布律 离散型随机变量表示方法 三种常见分布
一、离散型随机变量及其分布律
例1 从中任取3 个球 取到的白球数X是一个随机变量 . (1) X 可能取的值是0,1,2 ; (2) 取每个值的概率为:
3 P { X 0} 3 5 1 3 10 5 6 3 10 5 3 3 10
2) 二项分布的泊松近似
定理(泊松定理):在n重伯努利试验中,
概率论
事件A在每次试验中发生的概率为p, 如果n 时,np ( 0为常数 ), 则对任意给定的非负整数k,有: n k n k lim p 1 p = e n k k!
k 3 k
3 k
, k 0,1,2,3
=0.104
3. 泊松分布(Poisson Distribution)
1) 设随机变量X所有可能取的值为0 , 1 , 2 , … , 且概率分布为:
P( X k )
概率论
k
e
,
k 0,1,2,,
k!
其中 λ>0 是常数, 则称 X 服从参数为 λ 的泊松分布,记作X~π(λ).
概率论
随机变量 X 只可能取 0 与 1 两个值,其分布律为:
PX k p 1 p
k 1 k
,
k 0,1
0
p 1
或
X
0
q
1
p
pk
称 X 服从(0-1)分布或两点分布 或
X ~ b(1, p)
概率论
对于一个随机试验,如果它的样本空间只包含两个元 素,即 W {1 , 2 },我们总能在W上定义一个服从 (0-1)分布的随机变量.
概率论第二章
将 p = 0.5 代入,得
1 0 X ~ 0 .5 0.25 2 0.125 3 0 .0625 0 .0625 4
下面,重点介绍三种离散型随机变量的概率分 布。 (一)0-1分布 分布 若X 的分布律为 k 1− k P { X = k } = p (1 − p ) , k = 0 ,1 或者 0 1 X p pk 1− p 则称随机变量 X 服从参数为 的0-1分布 参数为p的 分布. 参数为 如果试验的结果只有两个:成功与失败,并且成 功的概率为p,则成功的次数 X 服从参数为p的0-1 分布。
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.99) − 20(0.01)(0.99) = 0.0169 设A为“四个人中至少有一个人来不及维修”这 一事件,则有
20 19
P( A) ≥ P{ X ≥ 2} = 0.0169
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.98)
400
− 400(0.02)(0.98)
399
直接计算上式比较麻烦,为此需要一个近似计算 公式。我们先引入一个重要的分布。
(三) 泊松分布 三 泊松分布(Poisson Distribution) 如果随机变量 X 的分布律为:
例6 社会上定期发行某种奖券,中奖率为p.某人 每次购买一张奖券,如果没有中奖则下次继续购买1 张,直至中奖为止.求该人购买次数的分布律. 解 设该人购买的次数为X ,则X的可能取值为
1, 2 , L .
{X = 1} 表示第一次购买就中奖,其概率为p.
第二节 极大似然估计(概率论与数理统计)
θr = gr (X1, X2,L, Xn )
r =1,2,L, k
r =1,2,L, k
为θ1, θ2,…, θk 的极大似然估计量
例7 设总体 X ~ N (,σ 2), x1, x2,…, xn 是 X 的样本值, 求 , σ 2 的极大似然估计. 解 L(x1, x2 ,L, xn ; ,σ )
分别是 a , b 的极大似然估计量.
问 题
1) 待估参数的极大似然估计是否一定存在 待估参数的极大似然估计是否一定存在? 2) 若存在 是否惟一 若存在, 是否惟一?
例9设 X ~ U ( a – , a + ), x1, x2,…, xn 是 X的一个样本, 求 a 的极大∑xi 令 1 n dlnL i=1 i=1 = =0 p = xi = x dp p 1 p n i=1
∑xi
n
n
∑
d2lnL ∑xi n ∑xi i=1 2 = i=1 2 < 0 2 (1 p) p dp
n n
所以
p = x 为所求 p 的估计值.
一般, 设 X 为离散型随机变量, 其分布律为
P( X = x) = f (x,θ ), x = u1,u2 ,L,θ ∈Θ
则样本 X1, X2,…, Xn的概率分布为
P( X1 = x1, X2 = x2,L Xn = xn ) ,
= f (x1,θ ) f (x2 ,θ )Lf (xn ,θ )
记为
= L(x1, x2 ,L, xn ,θ ) = L(θ )
221?nxxxl????i???nix222221n2?22211??2???1iixn?n2e12?21?ln22?ln22?ln2122???nnxlni??i????2?????exxniimlemle???1n?1???似然方程组为01ln12???i????????????nixl??0221ln?212222????i????????????nxlnini1??i???2imlexxn12???2的极大似然估计量分别为1iixxn?1n??2121bxxnni??i??极大似然估计方法1写出似然函数l2求出k?????2?1?使得???
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作极坐标变换x cos , y sin ,得
1 d c R d
0 0
2
R
1 R3 c 3
3 所以, c . 3 R
第二章 随机变量及其分布函数
例 4(续)
P , G
x 2 y 2 r 2
f x, y dxdy d r dr
3 0 0
2
2
2 1
所以不是.
第二章 随机变量及其分布函数
例 4 设二维随机变量, 的密度函数为
c R x 2 y 2 , x 2 y 2 R 2 f x, y 0, 其它
2)二维正态分布
f x, y
设二维随机变量, 的密度函数为
1 2 1 2 1 r 2
2 2 x 1 2r x 1 y 2 y 2 1 exp 2 2 2 1 2 2 1 2 1 r
第二章 随机变量及其分布函数
例 5(续)
P 1
1
x y 1
f x, y dxdy
2
y
x=1 y=2
2 1 dx x xy dy 3 0 1 x
5 3 4 2 1 65 x x x dx 6 3 2 72 0
需考虑多维 r.v.及其取值规律—多维分布.
一. 二维分布函数及其基本性质
定义 若随机变量 1 ( ), 2 ( ),n ( ) 定义在同一概 率空间 (, F , P)上,则称
ξ( ) (1 ( ), 2 ( ),n ( ))
构成一个n维随机变量或n维随机向量. 把它们作为一个随机向量,我们不仅能研究各个分 量的性质,而且可以考察它们之间的联系,对许多问 题来说,这是十分必要的.
则称随机变量 , 服从参数为 1, 1; 2, 2;r
, ~ N 1,1;2, 2;r i i 1, 2 i 0 i 1, 2 1 r 1
的 二维正态分布,记作
第二章 随机变量及其分布函数
y
,
(x, y)
o
第二章 随机变量及其分布函数
联合分布函数具有以下的基本性质:
1) F (x , y )对每个变量是不减函数,即 对于任意固定的 y , 当 x1< x2时, F ( x1 , y) F ( x2 , y); 对于任意固定的 x , 当 y1< y2时, F ( x, y1 ) F ( x, y2 ); 2) 0 F ( x, y ) 1, 且 对于任意固定的 y , 对于任意固定的 x ,
1
2
1
O
1
x
x+y=1
第二章 随机变量及其分布函数
两种常见的二维连续型分布:
1 )二维均匀分布
设 D 是平面上的有界区域,其面积为 A.
如果二维随机变量, 的密度函数为
1 , f x, y A 0,
x, y D x, y D
则称, 服从区域 D上的 二维均匀分布.
第二章 随机变量及其分布函数
连续型的二维随机变量 对于二维随机变量 ( , )的联合分布函数 F (x , y ),如果存在非负函数 f (x , y ),使对于 任意实数 x,y有:
则称 ( , ) 是连续型的二维随机变量,函数
f (x , y )称为 ( , )的联合(概率)密度函数.
r
第二章 随机变量及其分布函数
例5
设二维随机变量 , 的密 度函数为
2 1 x xy, 0 x 1,0 y 2 f x, y 3 0, 其它
2
y
x=1 y=2
试求概率 P + 1 .
解:
积分区域如图所示,
1
O
1
x
x+y=1
第二章 随机变量及其分布函数
二维均匀分布几何意义
如果二维随机变量 , 服从区域 D上的 均匀分布,我们可以认为随机点 , 只 落在区域 D内;并且落在 D内任一个子区 域 D1 内的概率与该子区域的面积成正比, 而与 D1 的形状以及 D1 在 D 中的位置无关.
第二章 随机变量及其分布函数
性质 2 :
p
i,j
ij
1
第二章 随机变量及其分布函数
例 2 设随机变量 在 1,2,3,4四个数中等可能地取值,另一个 随机变量 在1~ 中等可能地取一整数值.试求 ( , ) 的 分布列.
1 1 解: P{ i, j} P{ j | i}P{ i} , i 4 其中 i 1, 2,3, 4, j i.
1 8 1 8 0 0
3
4
第二章 随机变量及其分布函数
二维离散型随机变量的联合分布函数
设, 是二维离散型随机变量,
其联合分布列为
pij P xi , y j
i,j 1, 2,
pij
则, 的联合分布函数为,
F x, y
xi x, y j y
第二章 随机变量及其分布函数
按定义,概率密度 f (x , y ) 具有以下性质:
10
2
0
f ( x, y ) 0 ;
+
+
f ( x, y)dxdy 1.
以上两个是基本性质.
30 若f ( x, y )在点( x, y )连续,则有 2 F ( x, y ) f ( x, y ). xy
x1
x2
y1 p11
p21
y2
p12 p22
… … … …
yj
p1 j
… … … …
p2 j
xi
pi1
pi 2
pij
第二章 随机变量及其分布函数
二维离散型随机变量联合分布列的性质
性质 1 :
对任意的i, j , i,j 1 , 2,
有 pij P xi , y j 0
第二章 随机变量及其分布函数
例 2(续)
1 1 P{ i, j} P{ j | i}P{ i} , i 4 其中 i 1, 2,3, 4, j i.
1 1 2 2 3
1 12 1 12 1 12 0
4
1 16 1 16 1 16 1 16
1 4 0 0 0
⑴.求常数c; ⑵.求 , 落入圆 x2 y 2 r 2 0 r R 内
的概率.
解:
⑴.由密度函数的性质 ,得
第二章 随机变量及其分布函数
例 4(续) 由
1
f x, y dxdy
x2 y2 R2
c R x 2 y 2 dxdy
1 1 1 0 1 0 故F(x, y)不能作为某二维 r.v.的分布函数.
第二章 随机变量及其分布函数
二维离散型随机变量 若二维随机变量 , 的所有可能的取值是有限对或
可列无穷多对,则称 , 为二维离散型随机变量.
设 , ~ N 0, ;0, ; 0
解:
,求P( )
P( )
x y
f (x,y)dxdy
1
2
x y
5 4
2
1
e
x2 y2 2 2
dxdy
x y
4
2
0 4
2
e
-
r2 2 2
1 rdrd 2
第二章 随机变量及其分布函数
§2.2
多维随机变量及其分布函数
二维分布函数及其基本性质
边缘分布
在实际问题中, 试验结果有时需要同 时用两个或两个以上的 r.v.来描述. 例如 用温度和风力来描述天气情况. 通过对含碳、含硫、含磷量的测定来研究 钢的成分. 要研究这些 r.v.之间的联系, 就
对于任意的n个实数 x1 , x2 , xn ,
定义 称 n 元函数 F ( x1 , x2 , xn ) P{1 ( ) x1 , 2 ( ) x2 ,, n ( ) xn } 为随机向量 1 ( ), 2 ( ),n ( ) 的(联合)分布函数.
f x, y dxdy
x2 y 2 r 2
3 2 2 R x y dxdy 3 R
作极坐标变换x cos , y sin ,得
P , G
3 R3
2
3r 2 2r d R d 2 1 R 3R 0 0
40 设 G 是平面上的一个区域,点 ( , )落在 G 内的概率为:P{( , ) G}
f ( x, y)dxdy.
G
例3 说明下列函数不是一个概率密度函数.
x y , x y 2 f x, y 0, 其他
2 2 2 2
解:因为
, 所有可能的取值为 xi , y j ,
pij P xi , y j
则称
i,j 1, 2,
为二维离散型随机变量, 的联合分布列.
第二章 随机变量及其分布函数
二维离散型随机变量的联合分布列
, 的联合分布列也可以由下表表示