八年级下册第二章不等式应用题
初二下册数学不等式练习题
初二下册数学不等式练习题不等式是我们在数学中经常遇到的一个概念,它在数学的各个领域中都有广泛应用。
掌握不等式的性质和解法对于我们提高数学水平至关重要。
在本文中,我将为大家提供一些初二下册数学不等式的练习题,帮助大家巩固相关知识和提高解题能力。
【练习题一】已知不等式:2x - 1 < 51. 请将不等式中的常数项移项并化简。
2. 写出化简后的不等式。
3. 求出不等式中的变量的取值范围。
【练习题二】已知不等式组:{x + y > 3, x - y < 2}1. 请将不等式组中的常数项移项并化简。
2. 写出化简后的不等式组。
3. 求出不等式组中变量 x 和 y 的取值范围。
【练习题三】已知不等式:(x + 2)(x - 3) > 01. 将不等式中的二次项展开并化简。
2. 根据已化简的不等式,画出数轴并标出相关点。
3. 根据数轴上的标点,确定不等式的解集。
【练习题四】已知不等式组:{2x - y > 1, 3x + y < 7}1. 将不等式组中的常数项移项并化简。
2. 写出化简后的不等式组。
3. 求出不等式组中变量 x 和 y 的取值范围。
【练习题五】已知不等式:|x - 3| > 21. 根据不等式的绝对值性质,将其拆分为两个不等式。
2. 画出数轴并标出相关点。
3. 根据数轴上的标点,确定不等式的解集。
通过练习以上题目,相信大家对初二下册数学不等式的解法和性质有了更深入的了解。
希望大家能在以后的学习中能够灵活运用不等式的知识,解决实际问题。
祝愿大家数学学业进步,取得优异的成绩!。
初二不等式练习题及答案
初二不等式练习题及答案1. 解不等式2x - 5 < 7。
解:首先将等号左边的表达式变成0,得到2x - 5 - 7 < 0。
然后合并同类项:2x - 12 < 0。
通过对序号相反的两个数字应用不等式规则,得到x < 6。
2. 解不等式3(4 - x) > 5x + 12。
解:首先将括号内的表达式进行分配,得到12 - 3x > 5x + 12。
然后通过对等式两侧的同类项进行移项,得到-3x - 5x > 12 - 12。
合并同类项,得到-8x > 0。
由于8x为负数,所以需要将不等号翻转,得到x < 0。
3. 解不等式2(3x - 1) ≤ 4(x + 2) - 1 + 5x。
解:首先将括号内的表达式进行分配,得到6x - 2 ≤ 4x + 8 - 1 +5x。
合并同类项,得到6x - 2 ≤ 9x + 7。
然后将未知数移动到等号的一侧,得到6x - 9x ≤ 7 + 2。
合并同类项,得到-3x ≤ 9。
由于系数为负数,所以需要将不等号翻转,得到x ≥ -3。
4. 解不等式-2x + 5 > 4 - 3x。
解:首先将未知数移动到等号的一侧,得到-2x + 3x > 4 - 5。
合并同类项,得到x > -1。
5. 解不等式2x - 8 < x + 3。
解:首先将未知数移动到等号的一侧,得到2x - x < 3 + 8。
合并同类项,得到x < 11。
答案:1. x < 62. x < 03. x ≥ -34. x > -15. x < 11通过对初二不等式练习题的解答,我们可以进一步巩固和加深对不等式的理解和应用。
熟练掌握不等式的求解方法和规则,能够帮助我们在数学问题中更加灵活地运用和处理不等式关系,解决实际问题。
初二不等式练习题附答案
初二不等式练习题附答案初二时代是学习数学的关键时期,不等式作为数学知识的重要一环,需要我们掌握和熟练运用。
为了帮助同学们更好地巩固不等式的知识,以下是一些初二不等式练习题及其答案,供大家参考和练习。
一、填空题1. 若 x + 3 > 7,求 x 的取值范围。
解答:x > 7 - 3,即 x > 4。
2. 若 2y - 5 < 13,求 y 的取值范围。
解答:2y < 13 + 5,即 2y < 18;又因为 2 > 0(正数),所以当 2y < 18 时,y 的取值范围为 y < 9。
3. 若 4x - 7 ≥ 5,求 x 的取值范围。
解答:4x ≥ 5 + 7,即4x ≥ 12;又因为 4 > 0,所以当4x ≥ 12 时,x的取值范围为x ≥ 3。
二、选择题1. 下列不等式中,与 x > 2 等价的不等式是:A) x < 2B) x ≥ 2C) x ≤ 2D) x ≠ 2解答:B) x ≥ 22. 若不等式 3 - 2x > 7 的解集为 S,下列解集中符合不等式的是:A) S = {x | x > 2}B) S = {x | x < -2}C) S = {x | x < 2}D) S = {x | x > -2}解答:B) S = {x | x < -2}三、简答题1. 解不等式 5x - 9 > 6 的过程。
解答:首先将不等式化简为 5x > 6 + 9,即 5x > 15。
然后除以 5(注意 5 > 0),得到 x > 15/5,即 x > 3。
所以解集为 {x | x > 3}。
2. 解不等式 -2y + 4 ≤ 8 的过程。
解答:首先将不等式化简为 -2y ≤ 8 - 4,即 -2y ≤ 4。
然后除以 -2(注意 -2 < 0),得到y ≥ 4 / -2,即y ≥ -2。
北师大版八年级数学下册第二章不等式应用题系统归纳题
不等式(组)应用题一、知识点归纳1.利用不等式解应用题一般步骤是:审清题意;找出等量关系;设未知数;列方程;解方程;检验;作答显性不等关系:不少于、不多于、不超过、至少等;隐性不等关系:原材料供应型,容器容量型等.题型一:分配方案的问题1、某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲商店,30件给乙商店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1W (元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求这批产品总利润不低于17 560元,请你为该公司设计出最优分配方案.2、康乐公司在A,B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A,B两地运往甲、乙两地的费用如下表:(1)若从x(台)的函数关系式,并求出x的取值范围;(2)若该公司要求总费用不超过16 300元,请你为该公司设计出最优调运方案.3、光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天租赁价格见表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,请你为该农机租赁公司设计出最优租赁方案.题型二:投资建设费用最低化4、随着私家车拥有量的增加,停车问题已经给人们的生活带来了很多不便.为了缓解停车矛盾,某小区开发商决定投资16万元,建造若干个停车位,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的3倍.据测算,建造费用及年租金如下表:(1)该开发商有哪几种符合题意的建造方案?写出解答过程.(2)若按表中的价格将两种车位全部出租,哪种方案获得的年租金最多?并求出此种方案的年租金.(不考虑其他费用)5、某学校八年级6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1 000元;若租用2辆大车1辆小车共需租车费1 100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2 300元,求最省钱的租车方案.6、某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1 820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40 880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的23,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?题型三:收费补贴问题(电费水费电话费)7、某省家电以旧换新政策规定,消费者在购买政策限定的新家电时,每台新家电可以用一台同类旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如表:价和售价如表:y元,商场所获利润W元.(利润=售价-进价)(1)请分别求出y与x和W与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?8、农村医疗保险制度中,医疗费的报销比例标准如下表:(1≤y 元,试求y与x的函数关系式;(2)若某农民一年内自付医疗费为2 600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费为多少元?(3)若某农民一年内自付医疗费不少于4 100元,则该农民当年实际医疗费至少为多少元?9、为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9 200元,则小王家6月份最多能用水多少吨?9、在篮球比赛中,小明共打了10场球.他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x 要高.若他所参加的10场比赛的平均得分超过18分,则:(1)用含x的代数式表示y;(2)小明在前5场比赛中,总分可达到的最大值是多少?(3)小明在第10场比赛中,得分可达到的最小值是多少?10、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一个笼无鸡可放,且最后一笼不足3只,问有多少个笼?多少只鸡?【参考答案】1.(1)共有三种建造方案:(2金为88 000元.2.(1)W=20x+16 800,10≤x≤40且x为整数;(2)最优分配方案为:3.(1)599y x=+;(2)84;(3)29.4.(1)大车租车费400元,小车租车费300元;(2)最省钱的租车方案:大车4辆,小车2辆.5.(1)y=100x+24 000;W=-100x+40 000;(2)共有6种进货方案.当购进30台电视,30台洗衣机,40台电冰箱时商场获得最大的利润.政府的补贴为:y=100×30+24000=27 000元.6.(1)y=710x-350;(2)该农民当年实际医疗费为7 500元;(3)该农民当年实际医疗费至少为13 750元.1.(1)50013300y x=+,3≤x≤17且x为整数.(2)。
2020-2021学年北师大版八年级下册 第2章《一元一次不等式与不等式组》实际应用常考题专练(二)
八年级下册第2章《一元一次不等式与不等式组》实际应用常考题专练(二)1.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满.问分配给该校九年级一班女生多少间宿舍,该班有多少名女生?2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?3.某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)4.阅读以下材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}=;min{﹣1,2,3}=﹣1;min{﹣1,2,a}=解决下列问题:(1)min{,,}=若min{2,2x+2,4﹣2x}=2,则x的范围为;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么(填a,b,c的大小关系)”.证明你发现的结论;③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,2x﹣y},则x+y=.5.某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务.该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元.(1)利用现有原料,该厂能否按要求完成任务?若能,按A、B两种花砖的生产块数,有哪几种生产方案?请你设计出来(以万块为单位且取整数);(2)试分析你设计的哪种生产方案总造价最低,最低造价是多少?6.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?7.某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A,B两种园艺造型共50个,摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明哪种方案成本最低,最低成本是多少元?8.为举办蔬菜博览会,某地有关部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉情况如下表所示:造型甲乙A90盆30盆B40盆100盆结合上述信息,解答下列问题(1)设需要搭配x个A种造型,则需要搭配个B种造型;(2)符合题意的搭配方案有哪几种?(3)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明选用(1)中哪种方案成本最低?9.某单位谋划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠.该单位选择哪一家旅行社支付的费用较少?10.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区已知一辆甲种货车同时可装蔬菜18吨,水果10吨:一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?11.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.12.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区.已知一辆甲种货车同时可装蔬菜18吨,水果10吨;一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,请写出具体的租车方案?(2)若甲种货车每辆需付燃油费1400元,乙种货车每辆需付燃油费1000元,则应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?13.列不等式(组)解应用题:一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.14.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具5套B玩具6套,则需950元,A类玩具3套B玩具2套,则需450元(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店购进B类玩具比A类玩具的2倍多4套,且B类玩具最多可购进40套,若玩具店将销售1套A类玩具获利30元,销售1套B类玩具获利20元,且全部售出后所获得利润不少于1200元,问有几种进货方案?如何进货?15.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?参考答案1.解:设分配给该校九年级一班女生x间宿舍,则该班有(4x+3)名女生,根据题意得:,解得:<x<,∵x为正整数,∴x=5,4x+3=23.答:分配给该校九年级一班女生5间宿舍,该班有23名女生.2.解:设有x个学生,那么共有(3x+8)本书,则:,解得5<x≤6.5,所以x=6,共有6×3+8=26本.答:有26本书,6个学生.3.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.4.解:(1)min{,,}=;由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1.(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,即,∴x=1②证明:由M{a,b,c}=min{a,b,c},可令,即b+c=2a⑤;又∵,解之得:a+c≤2b⑥,a+b≤2c⑦;由⑤⑥可得c≤b;由⑤⑦可得b≤c;∴b=c;将b=c代入⑤得c=a;∴a=b=c.③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4.5.解:(1)设生产A种花砖数x万块,则生产B种花砖数50﹣x万块,由题意:,解得:30≤x≤32.∵x为正整数∴x可取30,31,32.∴该厂能按要求完成任务,有三种生产方案:甲:生产A种花砖30万块,则生产B种花砖20万块;乙:生产A种花砖31万块,则生产B种花砖19万块;丙:生产A种花砖32万块,则生产B种花砖18万块;(2)方法一:甲种方案总造价:1.2×30+1.8×20=72,同理,生产乙种方案总造价为71.4万元,生产丙种方案总造价70.8万元,故第三种方案总造价最低为70.8万元.方法二:由于生产1万块A砖的造价较B砖的低,故在生产总量一定的情况下,生产A 砖的数量越多总造价越低,故丙方案总造价最低为1.2×32+1.8×18=70.8万元.答:丙方案总造价最低为70.8万元.6.解:设个植树小组有x人去植树,共有y棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的少(但有树植)”得:,将y=4x+20代入第二个式子得:0<4x+20﹣8(x﹣1)<8,5<x<7.答这个植树小组有6人去植树,共有4×6+20=44棵树.7.解:(1)设搭配A种造型x个,则B种造型为(50﹣x)个,依题意得,解这个不等式组得:31≤x≤33,∵x是整数,∴x可取31,32,33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)设总成本为W元,则W=200x+360x(50﹣x)=﹣160x+18000,∵k=﹣160<0,∴W随x的增大而减小,则当x=33时,总成本W取得最小值,最小值为12720元.8.解:(1)设需要搭配x个A种造型,则需要搭配(50﹣x)个B种造型;故答案为:(50﹣x);(2)依题意有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(3)总成本为:1000x+1200(50﹣x)=60000﹣200x,显然当x取最大值32时成本最低,为60000﹣200×32=53600.答:第一种方案成本最低,最低成本是53600.9.解:设甲旅行社有x人更优惠,0.75x<(x﹣1)•0.8,x>16.当人数超过16人小于等于25人时,甲优惠,等于16人花钱一样多,小于16人大于等于10人时,乙优惠.10.解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得y=1600x+1200(16﹣x),=400x+19200,∵400>0,∴y随x值增大而增大,当x=5时,y有最小值,∴y=400×5+19200=21200元;最小方法二:当x=5时,16﹣5=11辆,5×1600+11×1200=21200元;当x=6时,16﹣6=10辆,6×1600+10×1200=21600元;当x=7时,16﹣7=9辆,7×1600+9×1200=22000元.答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是21200元.11.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.12.解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得y=1400x+1000(16﹣x),=400x+16000,∵400>0,∴y随x值增大而增大,当x=5时,y有最小值,=400×5+16000=18000元.∴y最小13.解:设租用甲型汽车x辆,则租用乙型汽车(6﹣x)辆,依题意得:,解得2≤x≤4,∵x的值是整数∴x的值是2,3,4.∴该公司有三种租车方案:①租用甲型汽车2辆,租用乙型汽车4辆,费用为5000元;②租用甲型汽车3辆,租用乙型汽车3辆,费用为4950元;③租用甲型汽车4辆,租用乙型汽车2辆,费用为4900元.∴最低的租车费用为4900元.14.解:(1)设A种玩具每套进价为x元,B种玩具每套进价为y元,根据题意得:,解得:.答:A种玩具每套进价为100元,B种玩具每套进价为75元.(2)设购进A种玩具m套,则购进B种玩具(2m+4)套,根据题意得:,解得:16≤m≤18,∴共有3种进货方案:①购进A种玩具16套,购进B种玩具36套;②购进A种玩具17套,购进B种玩具38套;③购进A种玩具18套,购进B种玩具40套.15.解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3∴2≤a≤3.∵a是正整数,∴a=2或a=3.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;。
不等式应用题
一分配问题1.把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
⑴如果有x间宿舍,那么可以列出关于x的不等式组:⑵可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1 爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2.用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
B型抽水机比A型抽水机每分钟约多抽多少吨水?3.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?1.商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
北师大版八年级下册数学第二章 不等式应用专项练习(含答案解析)
北师大八下数学第二章不等式应用专项练习1(2015无锡)某工厂以80 元/箱的价格购进60 箱原材料,准备由甲、乙两车间全部用于生产A 产品.甲车间用每箱原材料可生产出A 产品12 千克,需耗水4 吨;乙车间通过节能改造,用每箱原材料可生产出的A 产品比甲车间少2 千克,但耗水量是甲车间的一半.已知A 产品售价为30 元/千克,水价为5 元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200 吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w 最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)2 书生中学小卖部工作人员到路桥批发部选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒数量x(个)之间的函数关系如图所示,当购进的甲、乙品牌的文具盒中,甲有120 个时,购进甲、乙品牌文具盒共需7 200 元.(1)根据图象,求y 与x 之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货价;(3)若小卖部每销售1 个甲种品牌的文具盒可获利4 元,每销售1 个乙种品牌的文具盒可获利9 元,根据学校后勤部决定,准备用不超过6 300 元购进甲、乙两种品牌的文具盒,且这两种文具盒全部售出后获利不低于1 795 元,问小卖部工作人员有几种进货方案?哪种进货方案能使获利最大?最大获利为多少元?3.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100 块,共花费5600 元.已知彩色地砖的单价是80元/块,单色地砖的单价是40 元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60 块,且采购地砖的费用不超过3200 元,那么彩色地砖最多能采购多少块?4.“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?5.小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.(1)求两种型号的地砖的单价各是多少元/块?(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少决?6.某校为进行危房改造,政府最近将在某校搭建板房,从某厂调拔了用于搭建板房的板材5600m3和铝材2210m3,计划用这些材料在某校搭建甲、乙两种规格的板房共100间.若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如表所示:板房规格板材数量(m3)铝材数量(m3)甲型乙型40603020请你根据以上信息,设计出甲、乙两种板房的搭建方案.7.某加工厂投资兴建2 条全自动生产线和1 条半自动生产线共需资金26 万元,而投资兴建1 条全自动生产线3 条半自动生产线共需资金28 万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测:2015 年每条全自动生产线的毛利润为26 万元,每条半自动生产线的毛利润为16 万元,这一年,该加工厂共投资兴建10 条生产线,若想获得不少于120 万元的纯利润,则2015 年该加工厂至少需投资兴建多少条全自动生产线?(纯利润=毛利润﹣成本)8.东风商场文具部出售某种毛笔每支25 元,书法练习本每本5 元.为促销,该商场制定了两种优惠.方案一:买一支毛笔就赠送一本练习本;方案二:按购买金额打九折销售.某校书法兴趣小组购买达种毛笔10 支,书法练习本x (x≥10)本.问:①若按方案一购买,则需要多少元,按方案二购买,需要多少元.(用含x 的代数式表示)②购买多少本书法练习本时,两种方案所花费的钱是一样多?③购买多少本书法练习本时,按方案二付款更省钱?9.北京昌平临川学校政教处刘颖华主任为初二女学生安排住宿,如果每间住4 人,那么将有30 人无法安排,如果每间住8 人,那么有一间宿舍不空也不满.求宿舍间数和初二女学生人数?10.我市某西瓜产地组织40 辆汽车装运完A,B,C 三种西瓜共200 吨到外地销售.按计划,40 辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:A B C每辆汽车运载量(吨)4 5 6每吨西瓜获利(百元)16 10 12(1)设装运A 种西瓜的车辆数为x 辆,装运B 种西瓜的车辆数为y 辆,求y 与x 的函数关系式;(2)如果装运每种西瓜的车辆数都不少于10 辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要是此次销售获利达到预期利润25 万元,应采取怎样的车辆安排方案?11.我县黄泛区农场有A、B两个果园,分别收获水果380件,320件,现需把这些水果全部运往甲、乙两个销售点,每件运费如图所示。
八年级下学期不等式和不等式组及应用题期末复习(北师大版)
不等式和不等式组及应用题【知识回顾】:1、不等式的解法:2、不等式的性质:3、不等式组的解法:【典型例题】:例1、求不等式组⎩⎨⎧≤->+1083152x x 的整数解,并把解集在数轴上表示出来.例2、解不等式组⎩⎨⎧+>>-12026x x x ,并把解集在数轴上表示出来.例3、解不等式1315>--x x ,并将解集在数轴上表示出来.例4、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?32O 例5、近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?例6、解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来.例7、和谐商场销售甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.例8、某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.【随堂练习】:一、填空题:1、请你写出一个满足不等式612<-x 的正整数x 的值:。
新北师大版八年级数学下第二章不等式与不等式组测试题
不等式与不等式组一、选择题1. 如果a 、b表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1ﻩ(C)b a 11< (D)ab <12. a 、b 是有理数,下列各式中成立的是( ).(A)若a>b ,则a 2>b 2 (B )若a 2>b 2,则a >b(C)若a ≠b,则|a|≠|b | (D)若|a |≠|b |,则a ≠b3. |a |+a的值一定是( ).(A)大于零ﻩ(B)小于零 (C)不大于零 (D)不小于零4. 若由x <y 可得到ax >ay ,应满足的条件是( ).(A )a ≥0ﻩ(B)a ≤0 (C)a >0ﻩ(D)a <05. 若不等式(a+1)x >a +1的解集是x <1,则a 必满足( ).(A )a <0ﻩ(B)a >-1 (C )a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人ﻩ(B)3人ﻩ(C)4人ﻩ(D)5人7. 若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2ﻩ(B)k ≥2ﻩ(C)k <1(D )1≤k <2 8. 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A )m ≤2ﻩ(B )m ≥2 (C)m ≤1(D )m ≥1 9. 对于整数a,b,c ,d,定义bd ac c d b a -=,已知3411<<d b ,则b +d 的值为_________. 10. 如果a 2x>a 2y (a≠0).那么x ______y.11. 若x是非负数,则5231x -≤-的解集是______. 12. 已知(x -2)2+|2x -3y-a |=0,y 是正数,则a 的取值范围是______.13. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 14. 若m >5,试用m 表示出不等式(5-m )x>1-m 的解集______.15. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.16. k满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y小于1. 二、解下列不等式17. ⋅-->+22531x x ⋅-≥--+612131y y y18. .151)13(21+<--y y y ﻩ .15)2(22537313-+≤--+x x x 三、解不等式组19. ⎪⎩⎪⎨⎧⋅>-<-322,352x x x x ﻩ ⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x 四、变式练 20. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.21. 已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围. 22. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集. 23. 已知A=2x 2+3x+2,B=2x 2-4x -5,试比较A 与B的大小.24. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y满足0<y -x <1,求k 的取值范围. 25. 已知a是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.26. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.27. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.五、解答题28. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?29. 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?30. 某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?31. 某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?32. 一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?33. 某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?34.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?35.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?36.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?37.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.38.--39.(1)。
不等式练习题初二下册
不等式练习题初二下册解答如下:不等式练习题初二下册1. 解不等式a) 2x - 5 < 10解:首先,将不等式转化为等式,得到 2x - 5 = 10;然后,解这个等式,得到 x = 7.5;最后,确定解的范围,由于不等号是小于号,所以解集为(-∞,7.5)。
b) 3(y + 2) ≥ 9解:首先,将不等式进行展开,得到3y + 6 ≥ 9;然后,解这个简化后的方程,得到y ≥ 1;最后,确定解的范围,由于不等号是大于等于号,所以解集为[1, +∞)。
2. 求不等式的并集和交集a) 2x - 7 > 5 与 3 - x > 2解:首先,分别解这两个不等式得到 2x > 12 和 x < 1;然后,确定并集,取两个不等式解集的并集,得到 x > 12 或 x < 1;最后,确定交集,取两个不等式解集的交集,得到 x < 1。
b) 4 - x ≥ 2 或 x + 3 < 6解:首先,分别解这两个不等式得到 -x ≥ -2 和 x < 3;然后,确定并集,取两个不等式解集的并集,得到 -x ≥ -2 或 x < 3;最后,确定交集,取两个不等式解集的交集,得到 x < 3。
3. 图形表示不等式解集a) 绘制不等式x + y ≤ 5 的图形解:首先,绘制直线 x + y = 5;然后,确定不等式解集的位置,由于不等号是小于等于号,所以解集在直线以下与包括直线;最后,用阴影表示不等式解集。
b) 绘制不等式 2x - y > 3 的图形解:首先,绘制直线 2x - y = 3;然后,确定不等式解集的位置,由于不等号是大于号,所以解集在直线上方;最后,用阴影表示不等式解集。
4. 不等式的应用a) 解决实际问题:小明每小时可以跑步6公里以上。
如果小明跑步不少于4小时,他能跑多远?解:首先,设小明跑步的小时数为 x;然后,确定不等式表达式,得到6x ≥ 4;最后,解这个不等式,得到x ≥ 2/3;故小明跑步不少于4小时时,他能跑的距离至少为 4 * 6 = 24公里。
八年级下--不等式应用题
不等式应用题1、用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()2.为了加快教学手段的现代化,某校计划购置一批电脑,已知甲公司的报价是每台5800元,优惠条件是购买10台以上,则从第11台开始按报价的70%计算;乙公司的报价也是每台5800元,优惠条件是每台均按报价的85%计算.假如你是学校有关方面负责人,在电脑品牌、质量、售后服务等完全相同的前提下,你如何选择?请说明理由?3.(2008年临沂市)某商场欲购进A、B两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.⑴求y关于x的函数关系式?⑵如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-成本)4.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上那种购买方案?5.(2008年襄樊市,改编)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.则该小学有几个班级,奥运福娃共有几套.6.(2008年青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B 两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件.已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A、B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?8. 小明和小亮共下了10盘围棋,小明胜一盘记1分,小亮胜一盘记3分.当他俩下完第9盘后,小明的得分高于小亮;等下完第10盘后,小亮的得分高过小明.他们各胜过几盘?(已知比赛中没有出现平局)9. 关于x 、y 的二元一次方程组⎩⎨⎧=+=+232,73y x k y x 的解都是正数,你能求出整数k 的值吗?动笔求一求.10. 某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元.(1)求挂式空调和电风扇每台的采购价各是多少元?(2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.该业主希望当这两种电器销售完时,所获得的利润不少于3500元.试问该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少?11.有一群猴子,一天结伴去偷桃子,在分桃子时,如果每个猴子分了3个,那么还剩59个;如果每一个猴子分5个,就都能分得桃子,但剩下一个猴子分得的桃子不够5个,你能求出有几只猴子,几个桃子吗?12、一群女生住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍住不满但也不空,问可能有多少间宿舍、多少名学生?(10分)1.若方程组3133x y k x y +=+⎧⎨+=⎩的解为x 、y ,且x +y >0,则k 的取值范围是( ).A .k >4B .k >-4C .k <4D .k <-42.不等式3x -a≤0只有2个正整数解,则a 的取值范围是______________.3.若一次函数y =(m -1)x -m+4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.4.当自变量x 时,函数y =5x +4的值大于0;当x 时,函数y =5x +4的值小于0.5.已知关于x 的不等式kx -2>0(k≠0)的解集是x >-3,则直线y =-kx +2与x•轴的交点是__________.6.如图,已知函数y =3x +b 和ax -3y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是_______________.7.已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是(•)A.y>0 B.y<0 C.-2<y<0 D.y<-2 8.已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是().A.x>5 B.x<12 C.x<-6 D.x>-69.直线1l:1y k x b=+与直线2l:2y k x=在同一平面直角坐标系中的图象如图所示,则关于x的不等式12+>的解k x b k x为()A.x>-1 B.x<-1C.x<-2 D.无法确定第9题图第10题图10.(2008年咸宁市)直线b x k y l+=11:与直线x k y l22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 . 11.若不等式组220x a b x ->⎧⎨->⎩,的解集是11x -<<,则()2006a b +=_________.12.已知关于x 的不等式组⎩⎨⎧>--≥-0125a x x 无解,则a 的取值范围是____________. 13.△ABC 的三边为3,1-2a,8,则a 的取值范围为 .14.已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 .15.已知关于x 的不等式3)1(>-x a 的解集为a x -13>,则a的取值范围是___________16、不等式()21m x ->的解集为12x m <-,那么m17.解不等式组3(1)5412123x x x x +>+⎧⎪⎨--⎪⎩ ①≤ ②,并将解集在数轴上表示出来.18.利用函数图象解不等式04x 2<+-. 19.已知关于x 的方程52361x m x m -=-+的解x 满足-<≤32x ,求m 的整数值.。
八年级数学下册第二章一元一次不等式与一元一次不等式组不等式习题新版北师大版
《不等式》测试题填空题(每题2分,共计20分) ⑴用恰当的不等号表示下列关系:①x 的3倍与8的和比y 的2倍小: ; ②老师的年龄a 不小于你的年龄b : . ⑵不等式3(x+1)≥5x —3的正整数解是 ⑶当a 时,不等式(a —1)x >1的解集是x <11-a . ⑷已知x =3是方程2a x -—2=x —1的解,那么不等式(2—5a )x <31的解集是 ⑸已知函数y=2x —3,当x 时,y ≥0;当x 时,y <5.X+8<4x -1⑹若不等式组 的解集是x >3,则m 的取值范围是 x >mx -a ≥0⑺已知关于x 的不等式组 的整数解共有5个,则a 的取值范围是 3-2x >-1 2x -a <1⑻若不等式组 的解集为—1<x <1,那么(a —1)(b —1)的值等于 x -2b >3⑼小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔.⑽2001年某省体育事业成绩显著,据统计,在有关大赛中获得奖牌数如右表所示(单位:枚)如果只获得1枚奖牌的选手有57人,那么荣获3枚奖牌的选手最多有 人.(11)关于x 的方程2x+3k=1的解是负数,则x 的取值范围是_______. (12)若不等式(m-2)x>2的解集是x<22-m ,则x 的取值范围是_______二.选择题(每题4分,共计40分)1.已知“①x+y=1;②x >y ;③x+2y ;④x 2—y ≥1;⑤x <0”属于不等式的有 个.A.2;B. 3;C.4;D. 5.2.如果m<n<0,那么下列结论错误的是A.m -9<n -9;B.—m>—n ;C.n 1>m 1; D.nm>1. 3.设“●”、“▲”、“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■这三种物体按质量从大到小的顺序排列为 A.■、●、▲。
北师大版八年级数学下第二章一元一次不等式测试含复习资料
北师大版八年级数学下第二章一元一次不等式测试含答案一、选择题(每小题5分,共25分)1. 如图,数轴上表示的是某个不等式组的解集,则该不等式组可能是( )A .1020x x +⎧⎨-⎩≤≥B .1020x x +⎧⎨->⎩≤C .1020x x +⎧⎨->⎩≥D .1020x x +⎧⎨-⎩≥≥ 2. 若关于x 的不等式mx n <的解集为n x m>,则m 的取值范围是( ) A .0m ≥ B .0m >C .0m ≤D .0m < 3. 若a b >,且c ≠0,则下列关系一定成立的是( ) A .ac bc >B .1ab < C .c a c b ->- D .22a b c c > 4. 不等式56(3)62x x x ---≥的正整数解是( ) A .不存在B .1,2,3C .0,1,2D .0,1,2,3 5. 若关于x 的不等式组841x x x m+>-⎧⎨⎩≤的解集为3x <,则m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <二、填空题(每小题5分,共25分)6. 若关于x 的不等式组2311x n x m +>⎧⎨+<-⎩的解集是12x -<<,则m n -=__________.7. 某校将若干间宿舍分配给八年级(1)班女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,且有一间住不满.则该班有____________名女生.8. 如图,已知直线y kx b =+经过点A (3,1)和点B (6,0)则不等式组103kx b x <+<的解集为________________9. 若关于x 的不等式组2113x x a-⎧>⎪⎨⎪<⎩无解,则化简3a a -+-.10. 若关于x 的不等式组1532223x x x x a +⎧>+⎪⎪⎨-⎪+⎪⎩≤的整数解只有两个,则a 的取值范围是__________. 三、解答题(本大题共5小题,满分50分)11.(8分)下面是小明解不等式532122x x++-<的过程:①去分母,得5132x x+-<+,②移项、合并同类项,得22x-<-,③两边都除以2-,得1x>.先阅读以上解题过程,然后解答下列问题.(1)小明的解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是__________________________________________________________;(3)第③步的依据是________________________________________________________;(4)该不等式的解集应该是________________.12.(8分)解下列不等式(组),并把它们的解集分别表示在数轴上.(1)69251332x x x+-+-≤;(2)211132x+-<-<.13.(10分)某工厂现有甲种布料70米,乙种布料52米,计划利用这两种布料生产A,B两种型号的时装共80套.已知生产一套A型号的时装需甲种布料0.6米,乙种布料0.9米;生产一套B型号的时装需甲种布料1.1米,乙种布料0.4米.利用现有布料,工厂能否完成任务?若能,请设计出所有可能的生产方案;若不能,请说明理由.14.(12分)某公司在A,B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,已知从A,B两地运往甲、乙两地的费用如下表:(1)若从A y与x之间的函数关系式,并写出x的取值范围.(2)请你为该公司设计出使总费用最少的调运方案,并求出最少的总费用.15.(12分)某村庄计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积和可供使用农户数见下表:(1)如何合理分配建造A,B型号“沼气池”的个数才能满足条件?满足条件的方案有几种?通过计算分别写出各种方案.(2)若A型号“沼气池”每个造价2万元,B型号“沼气池”每个造价3万元,试说明在(1)中的各种建造方案中,哪种建造方案最省钱,最少的费用需要多少万元?参考答案一、选择题1.C 2.D 3.D 4.B 5.A 二、填空题6.1-7.308.36x<<9.52a-10.8 33a-<-≤三、解答题11.(1)①;(2)不等式的两边同时乘以2时,1-没有乘以2;(3)不等式的基本性质3;(4)12 x>.12.(1)1x-≥;(2)514x-<<.解集在数轴上的表示略.13.工厂能完成任务,共有5种生产方案.方案一,生产A型号时装36套,B型号时装44套;方案二,生产A型号时装37套,B型号时装43套;方案三,生产A型号时装38套,B型号时装42套;方案四,生产A型号时装39套,B型号时装41套;方案五,生产A型号时装40套,B型号时装40套.14.(1)50013300y x=+(317x≤≤,且x为整数)(2)总费用最少的调运方案为,从A地运往甲地3台,运往乙地14台;从B地运往甲地15台,运往乙地0台.最少的总费用为14 800元.15.(1)满足条件的方案有3种.方案一,建造7个A型号沼气池,13个B型号沼气池.方案二,建造8个A型号沼气池,12个B型号沼气池.方案三,建造9个A型号沼气池,11个B型号沼气池.(2)在(1)中的各种建造方案中,方案三最省钱,最少的费用需要51万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲:一元一次不等式组的应用
一、知识点精讲:
1、列不等式(组)解应用题的步骤:
(1)审题,找不等关系;(2)设未知数,列不等式;(3)解不等式;(4)根据实际问题,写出答案。
2、一次函数与一元一次不等式
(1)利用一次函数图象可以直接求解一元一次不等式,从而得到一元一次不等式的另一种解法。
(2)还可以运用一元一次不等式来帮助研究一次函数问题。
二、典型例题讲解及思维拓展:
例1、某种商品的进价800元,出售时标价1200元,后来该商品积压,商品准备打折出售.但要保持利润不低于5%.你认为该商品可以打几折?
例2.小明上午8:00步行出发郊游.10:00小亮在同一地点出发.已知小明的速度是4千米/小时,小亮要在10:40追上小明,小亮的速度至少是多少千米/小时?
例3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需调往A县10辆,调至B县8辆,已知从甲仓库调往A县和B县的费用分别40元和80元;从乙仓库调往A县和B县的费用分别为30元和50元.
(1)设从乙仓库调往A县农用车x辆.求总运费y与x的函数关系式。
(2)若要求总运费不超过900元.问共有几种调配方案?
(3)求出总运费最低的调运方案,最低运费是多少?
例4.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球.乒乓球拍每付定价20元.乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一付球拍赠送一盒乒乓球;乙店:按定价的9折优惠,某班级需购球拍4付、乒乓球若干盒(不少于4盒).请你用学过的知识说明怎样选购合算?
例5.某高一新生中,有若干住宿生,分住若干间宿舍,若每间住4人,则有21人无处住;若每间住7人,则有一间不空也不满.求住宿生人数。
例6.某城市的一种出租车起步价都是10元(即行驶路程在5公里以内都需付10元车费),达到或超过5公里后,每增加1公里加价1.2元(不足1公里部分按1公里计).现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地路程大约是多少?
例7.某工人制造机器零件,如果每天比预定的多做一件,那么8天所做的零件超过100件,如果每天比预定的少做一件,那么8天所做零件数不到90件.这个工人预定每天做几个零件。
三、课堂练习题:
1.若三角形的两边长分别为6,7.则第三边长a 的取值范围是 。
2.已知106<<a ,2
a ≤
b ≤2a ,b a
c +=,则( ) (A )c <9≤18 (B )309<<c (C )9≤c ≤30 (D )3015<<c
3.一次函数3
231+-=x y ,如果函数值的范围是||y ≤5,则自变量x 的取值范围是( ) (A )-10≤x ≤4 (B )-10≤x ≤17 (C )-4≤x ≤10 (D )-13≤x ≤17
4.要使函数)1()12(-+-=a x a y 的图象经过第一、二、三象限,则a 的取值范围是( )
(A )21>a (B )1>a (C )121<<a (D )2
1<a 5.已知关于x 的不等式组 a x x x x +<++>+3
23215 只有4个整数解,则a 的取值范围时( ) A. 3145-≤≤-x B. 3145-<≤-x C. 3145-≤<-x D. 3
145-<<-x 6.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了 道题。
7.有甲、乙两家通讯公司,甲公司每月通话(不区分通话地点)的收费标准如图所示;乙公司每月通话的收费如表所示,为这几项收费的总和。
(1)①观察图形,写出甲公司用户月通话时间不400分钟时应付的话费金额;
②坟出甲公司的用户通话400分钟后,每分钟的通话费;
(2)王先生由于工作需要,从4月份开始经常去外市出差,估计每月各种通话时间的比例是:
本地接听时间∶本地拔打时间∶外地通话时间=2∶1∶1,你认为王先生的能通话多少分钟时, 入乙通讯公司更合算?请说明理由?
月租费
本市接听费 本市拨打费 外市通话费 50 0元/月 0.10元/分 0.90元/分
8. 某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.
(1)求购买1块电子白板和一台笔记本电脑各需多少元?
(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?
(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?
9. 为支持抗震救灾,我市A、B两地分别的赈灾物资100吨和180吨。
需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨。
(1)求这批赈灾物资运往C、D两县的数量各是多少吨?
(2)设A地运往C县的赈灾物资为x吨(x为整数),若要B地运往C县的赈灾物资数量大于A地运往D 县的赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?
10. 为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?。