九年级数学一元二次方程4
最新人教版九年级上册数学第21章一元二次方程专题4 实际问题与一元二次方程
二、面积问题 3. (2019徐州)如图D21-4-1,有一块矩形硬纸板,长30 cm,宽20 cm. 在其四角各剪去一个同样的正方形,然 后将四周突出部分折起,可制成 一个无盖长方体盒子. 当剪去正 方形的边长取何值时,所得长方 体盒子的侧面积为200 cm2?
返回目录
解:设剪去正方形的边长为x cm,则做成无盖长方体盒 子的底面长为(30-2x) cm,宽为(20-2x) cm,高为x cm. 依题意,得2×[(30-2x)+(20-2x)]x=200. 解得x1= ,x2=10. 当x=10时,20-2x=0,不合题意,舍去. 答:当剪去正方形的边长为 cm时,所得长方体盒子 的侧面积为200 cm2.
解:设应邀请x支球队参加比赛. 由题意,得 x(x-1)=28. 解得x1=8,x2=-7(不合题意,舍去). 答:应邀请8支球队参加比赛.
返回目录
8. 某校为培育青少年科技创新能力,举办了动漫制作
活动,小明设计了点做圆周运动的一个雏形,如图D21-
4-4,甲、乙两点分别从直径的两端点A,B以顺时针、逆
返回目录
6. 某商场销售A,B两种新型小家电,A型每台进价40元, 售价50元,B型每台进价32元,售价40元,4月份售出A 型40台,且销售这两种小家电共获利不少于800元. (1)求4月份售出B型小家电至少多少台? 解:(1)设4月份售出B型小家电x台,根据题意, 得(50-40)×40+(40-32)x≥800. 解得x≥50. 答:4月始运动到第二次相遇时,它们运动了多 少时间?
(3)由图可知,甲、乙第二次相遇时走过的路程为三个半
圆的长度,
则 1 t2+ 3 t+4t=21×3,
2
人教版九年级上册数学课堂作业同步期中复习:一元二次方程应用题(四)
人教版九年级上册数学课堂作业同步期中复习:一元二次方程应用题(四)31.从5月份开始,水蜜桃和夏橙两种水果开始上市,根据市场调查,水蜜桃售价为20元/千克,夏橙售价为15元/千克.(1)某水果商城抓住商机,开始销售这两种水果.若第一周水蜜桃的平均销量比夏橙的平均销量多100千克,要使该水果商城第一周销售这两周水果的总销售额不低于9000元,则第一周至少销售水蜜桃多少千克?(2)若该水果商城第一周按照(1)中水蜜桃和夏橙的最低销量销售这两种水果,并决定第二周继续销售这两种水果.第二周水蜜桃售价降低了,销量比第一周增加了2a%,夏橙的售价保持不变,销量比第一周增加了a%.结果两种水果第二周的总销售额比第一周增加了,求a的值.32.巴蜀中学在厦天到来之际,很多学生需要更换夏季校服,欲购买校服T恤.男生的T恤每件价格50元,女生的T恤每件价格45元,第一批共购买600件.(1)第一批购买的校服的总费用不超过28000元,求女生T恤最少购买多少件?(2)箅二批购买校服,男女生购买校服的件数比为3:2,价格保持第一批的价格不变;第三批购买男生的价格在第一批购买的价格上每件减少了元,女生的价格比第一批购买的价格上每件增加了元,男生T恤的数量比第二批增加了m%,女生T恤的数量比第二批减少了m%,第二批与第三批购买校服的总费用相同,求m的值.33.手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率为20%•进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为,三月底可使用的自行车达到7752辆,求a的值.34.中秋节前夕,某公司的李会计受公司委派去超市购买若干盒美心月饼,超市给出了该种月饼不同购买数量的价格优惠,如图,折线ABCD表示购买这种月饼每盒的价格y(元)与盒数x(盒)之间的函数关系.(1)当购买这种月饼盒数不超过10盒时,一盒月饼的价格为 元;(2)求出当10<x<25时,y与x之间的函数关系式;(3)当时李会计支付了3600元购买这种月饼,那么李会计买了多少盒这种月饼?35.“谁言寸草心,报得三春晖”,每年5月的第二个星期日为母亲节,某礼品商城经营A、B两种母亲节礼盒,礼盒A售价为每份200元,礼盒B售价为每份150元.(1)已知礼盒A的进价为120元,礼盒B的进价为100元,该礼品盒商城五月份第一周准备购进两种礼盒共200份,若将两种礼盒全部销售,要使总利润不低于13600元,求最多购进礼盒B多少份?(2)为了获得更多利润,根据销售情况和市场分析,该礼品商城第二周决定将礼盒A的售价下调%,礼盒B的售价保持不变,结果与(1)中获得最低利润时的销售量相比,礼盒A的销售量增加了2a%,而礼盒B的销售量增加了a%,最终第二周的销售额比第一周的销售额增加了a%,求a的值.36.4月份,重庆市果桑(俗称桑泡儿)将进入采摘期,预计持续1个月左右,届时全市25个成规模的果桑采摘园将陆续开园迎客,某区有一果园占地250亩,育有56个品种的果桑,其中台湾超长果桑因果形奇特、口感佳而大面积种植,售价30/斤,其它各个品种售价均为20元/斤(1)清明节当天,该果园一共售出500斤果桑,其中售出其它品种的果桑总重量不超过售出台湾超长果桑重量的3倍,问至少售出台湾超长果桑多少斤?(2)为了提高台湾超长果桑的知名度,商家对台湾超长果桑进行广告宣传,4月14日售出其它品种的果桑总重量是售出台湾超长果桑重量的2倍.4月15日起果园推出优惠政策,台湾超长果桑每斤降价a%,其余品种果桑价格保持不变,当日售后统计台湾超长果桑销售数量在前一日的基础之上增加了2a%,其余果桑销售数量在前一日基础之上减少了a%,若当日总销售额与前一日总销售额持平,求a的值.37.如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为18m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.38.某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年投入资金2880万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?39.长沙市市政绿化工程中有一块面积为160m2的矩形空地,已知该矩形空地的长比宽多6m.(1)请算出该矩形空地的长与宽;(2)规划要求在矩形空地的中间留有两条互相垂直且宽度均为1m的人行甬道(其中两条人行甬道分别平行于矩形空地的长和宽),其余部分种上草.如果人行甬道的造价为260元/m2,种草区域的造价为220元/m2,那么这项工程的总造价为多少元?40.2016年5月29日,中超十一轮,重庆力帆将主场迎战河北华夏幸福,重庆“铁血巴渝”球迷协会将继续组织铁杆球迷到现场为重庆力帆加油助威.“铁血巴渝”球迷协会计划购买甲、乙两种球票共500张,并且甲票的数量不少于乙票的3倍.(1)求“铁血巴渝”球迷协会至少购买多少张甲票;(2)“铁血巴渝”球迷协会从售票处得知,售票处将给予球迷协会一定的优惠,本场比赛球票以统一价格(m+20)元出售给该协会,因此协会决定购买的票数将在原计划的基础上增加(m+10)%,购票后总共用去56000元,求m的值.参考答案31.解:(1)设第一周夏橙销售量为x千克.则水蜜桃销售量为(x+100)千克,根据题意得:20(x+100)+15x≥9000,解得:x≥200,∴x+100≥300.答:第一周至少销售水蜜桃300千克.(2)根据题意得:20(1﹣a%)×300(1+2a%)+15×200(1+a%)=9000(1+ a%),令t=a%,原方程整理为5t2﹣t=0,解得:t1=,t2=0,∴a1=20,a2=0(舍去).答:a的值为20.32.解:(1)设购买女生T恤x件,则购买男生T恤(600﹣x)件,根据题意得:45x+50(600﹣x)≤28000,解得:x≥400.答:女生T恤最少购买400件.(2)设第二批购进女生T恤2y件,则购进男生T恤3y件,根据题意得:45×2y+50×3y=(45+m)×2y(1﹣m%)+(50﹣m)×3y (1+m%),整理得:m2﹣50m=0,解得:m1=0(舍去),m2=50.答:m的值为50.33.解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣1200)≥10%x,解得,x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣20%)+1200(1+4a%)](1﹣a%)=7752,化简,得a2﹣250a+4600=0,解得:a1=230,a2=20,∵a%<20%,解得,a<80,∴a=20,答:a的值是20.34.解:(1)∵当0≤x≤10时,y=240.故答案为:240.(2)当10<x<25时,设y=kx+b(其中k、b为常数且k≠0),将B(10,240)、C(25,150)代入y=kx+b中,得:,解得:,∴当10<x<25时,y=﹣6x+300.(3)∵3600÷240=15(盒),3600÷150=24(盒),∴收费标准在BC段.根据题意得:(﹣6x+300)x=3600,解得:x1=20,x2=30(不合题意,舍去).答:李会计买了20盒这种月饼.35.解:(1)设购进礼盒Bx份,则购进礼盒A(200﹣x)份,根据题意得:(200﹣120)(200﹣x)+(150﹣100)x≥13600,解得:x≤80.答:最多购进礼盒B80份.(2)根据题意得:200(1﹣a%)(200﹣80)(1+2a%)+150×80(1+a%)=[200×(200﹣80)+150×80]×(1+a%),令m=a%,则原方程整理得:5m2﹣2m=0,解得:m1=0,m2=,∴a1=0(不合题意,舍去),a2=40.答:a的值为40.36.解:(1)设售出台湾超长果桑x斤,则其它品种售出(500﹣x)斤,根据题意得:500﹣x≤3x,解得:x≥125.答:至少售出台湾超长果桑125斤.(2)设4月14日售出的台湾超长果桑y斤,则售出其它品种果桑2y斤,根据题意得:30(1﹣a%)y(1+2a%)+20×2y(1﹣a%)=30y+20×2y,令a%为m,则原方程整理得:4m2﹣m=0,解得:m1=0,m2=,∴a1=0(不合题意,舍去),a2=25.答:a的值为25.37.解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长18m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为18米,10米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长18m,满足条件的花园面积不能达到200m2.38.解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=2880解得:x1=,x2=﹣(不合题意,应舍去),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意得:1000×8×400+(a﹣1000)×5×400≥5000000解得:a≥1900答:今年该地至少有1900户享受到优先搬迁租房奖励.39.解:(1)设该矩形空地的长为x m,则宽为(x﹣6)m,由题意可得:x(x﹣6)=160.化简得:x2﹣6x﹣160=0,解得x1=16,x2=﹣10(不合题意,舍去)当x=16时,x﹣6=16﹣6=10(m).答:该矩形空地的长为16 m,宽为10 m;(2)由题意可得:(16﹣1)(10﹣1)=135(m2),160﹣135=25(m2),135×220+25×260=29700+6500=36200(元),答:这项工程的总造价为36200元.40.解:(1)设:购买甲票x张,则购买乙票(500﹣x)张.由条件得:x≥3(500﹣x)∴x≥375,故:“铁血巴渝”球迷协会至少购买375张甲票.(2)由条件得:500[1+(m+10)%](m+20)=56000∴m2+130m﹣9000=0∴m1=50,m2=﹣180<0(舍)故:m的值为50.。
九年级一元二次方程常见题型及解析
九年级一元二次方程常见题型及解析一、基础概念和定义1. 一元二次方程的定义在数学中,一元二次方程是指一个未知数的二次方程,它的一般形式为ax^2+bx+c=0,其中a、b、c是已知数且a≠0。
2. 一元二次方程的解一元二次方程可以通过因式分解、配方法、公式法等多种方法求解。
二、一元二次方程的基本形式1. 一元二次方程的标准形式通常把一元二次方程化为ax^2+bx+c=0的形式,其中a、b、c分别为系数。
2. 一元二次方程的一般形式一元二次方程的一般形式是指包含a、b、c的未知数x的二次方程。
三、一元二次方程的常见题型及解法1. 二次方程的求解通过因式分解、配方法或者使用求根公式可以求解一元二次方程。
2. 一元二次方程的应用一元二次方程在实际生活中有许多应用,比如物体的抛射运动、面积和周长的问题等。
四、习题及解析1)例题一求解方程x^2+3x-4=0。
解析:使用因式分解法,将x^2+3x-4=(x-1)(x+4),得到x=1或x=-4两个解。
2)例题二一个长方形的长比宽多3米,长方形的面积是30平方米,求长和宽各是多少米?解析:设长为x+3,宽为x,根据面积公式x(x+3)=30,解一元二次方程得到x=5,长为8,宽为5。
3)例题三某人闲逛河边捡到一叶扁舟,用量尺测得船头离船尾22cm,水面外露8cm,则该船的吃水深度是多少?解析:设船的全长为x,吃水深度为(x-22),根据勾股定理得到(x-22)^2+64=x^2,解一元二次方程得到x=40,吃水深度为18cm。
五、总结与回顾1. 通过以上例题的解析,我们可以发现一元二次方程的求解需要掌握多种方法,而且能够应用到实际问题中。
2. 在解题过程中,我们需要灵活运用因式分解、配方法、公式法等多种方法,并且要注意问题转化和模型建立的能力。
3. 九年级一元二次方程作为数学的重要内容,需要我们在学习中多加练习,加强对知识的理解和掌握。
六、个人观点在学习九年级一元二次方程的过程中,我认为重点在于掌握基本解法的要能够将数学知识与实际生活相结合,灵活运用公式和方法解决问题,这样才能更好地掌握数学知识,提高解决问题的能力。
人教版数学九年级上册 同步练习课件第21章 第12课时 实际问题与一元二次方程(4)(营销问题)
(2)应将每件售价定为多少元时,才能使每天利润为 2720 元? 解:设每件商品价格应提高 x 元,则每天可售出(460-40x)件,
(15-10+x)(460-40x)=2720, x1=3,x2=3.5, ∴15+x=18 或 15+x=18.5. 答:应将每件售价定为 18 元或 18.5 元.
(2)若每天盈利 1600 元,则每件应降价多少元? 解:(44-x)(20+5x)=1600,
(x-4)(x-36)=0, x1=4,x2=36. 答:应降价 4 元或 36 元.
水果超市销售某种水果,其进价为 6 元/千克,根据市场预测, 该水果每千克售价 8 元时,每星期能出售 400 千克,并且售价 每上涨 1 元,其销售量将减少 20 千克,为了维护消费者利益, 物价部门规定,该水果的售价不能超过 15 元/千克,若要使水 果超市销售该种水果每星期能盈利 2240 元,那么该种水果的 售价应上涨多少元?
二级 某商品的进价为 10 元/件,按 30 元/件售出,平均每天可售出 20 件.调查发现,商品单价每涨 1 元,平均每天少售出 2 件.设 商品涨价后的售价为 x 元/件(x>30),则该商品的销售量为 [2[02-0-22(x(x--3300))]] 件 , 总 利 润 为 (x-(x1-0)1[200)-[202-(x-2(3x0-)] 30)] 元.(用含 x 的代数式表示)
水果专柜以每斤 2 元的价格购进苹果若干斤,以每斤 5 元的价 格出售,每天可售出 100 斤.调查发现,这种水果每斤的售价 每降低 0.2 元,每天可多售出 40 斤.设这种水果每斤的售价 降低 x 元,则每天的销售量是 ((110000++220000xx)) 斤,总利润是 (3(3--xx)()1(1000++220000xx)) 元(用含 x 的代数式表示).
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试(包含答案解析)(4)
一、选择题1.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14D .k >-14且k ≠0 2.一个菱形两条对角线的长是方程28120x x -+=的两个根,则该菱形的面积为( ) A .12 B .6或12C .8D .6 3.关于x 的一元二次方程()21210k x x +-+=有实数根,则k 满足( )A .0k ≥B .0k ≤且1k ≠-C .0k <且1k ≠-D .0k ≤ 4.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +=( ) A .2- B .3- C .4-D .6- 5.一元二次方程20x x +=的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.下列方程中,是一元二次方程的是( ) A .12x += B .21x y += C .243x x -=D .35-=xy 7.下列一元二次方程中,有两个不相等实数根的是( ) A .2690x x ++= B .2230x x -+=C .22x x -=D .23420x x -+= 8.若关于x 的一元二次方程2(2)20a x x --+=有实数根,则整数a 的最大值为( ) A .−2 B .−1 C .1 D .29.请你判断,320x x x -+=的实根的个数为( )A .1B .2C .3D .410.如果方程220x x --=的两个根为α,β,那么22αβαβ+-的值为( ) A .7 B .6 C .2- D .011.新冠肺炎传染性很强,曾有2人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后128人患上新冠肺炎,则x 的值为( )A .10B .9C .8D .7 12.关于x 的方程()()223x x a -+=(a 为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根一个负根D .无实数根二、填空题13.已知a ,b 是方程230x x --=的两个实数根,则2+1a b +的值为__________. 14.将23220x x --=配方成2()x m n +=的形式,则n =__________.15.某种植基地2018年蔬菜产量为100吨,预计2020年蔬菜产量达到150吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为_________________. 16.等腰ABC 中,4AB AC ==,30BAC ∠=︒,以AC 为边作等边ACD △,则点B 到CD 的距离为________.17.用换元法解方程221x x -﹣21x x -=1,设y =21x x-,那么原方程可以化为关于y 的整式方程为_____.18.若关于x 的一元二次方程2(1)20x m x +++=的一个根是1-,则另一个根是_________.19.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m ,设雕像下部高为m x ,则可得到方程______.20.如果关于x 的一元二次方程220k x kx +=的一个根是2-,那么k =_______.三、解答题21.夏天到来,气温升高,小风扇的需求量越来越大.6月初某超市购进A 、B 两款小风扇共450个进行销售,其中A 款每个售价10元,B 款每个售价20元.6月底全部售完这批风扇,销售总额为7000元.(1)6月初A 款风扇与B 款风扇各购进多少个?(2)7月份该超市进行促销活动,A 款风扇比6月的价格优惠%a ,B 款风扇比6月的价格优惠2%a .活动期间,小风扇的销量明显增加,结果7月售出的A 款风扇数量比6月售出的A 款数量增加了8%5a ,售出的B 款风扇数量比6月售出的B 款数量增加了9%2a .结果7月的总销售额比6月的销售总额增加了29%50a ,求a 的值. 22.按要求解下列方程:用配方法解:(1)x 2﹣4x +1=0.用公式法解:(2)2104x -=. 23.解方程:(1)22150x x --=;(2)()()421321x x x +=+24.已知关于x 的一元二次方程(m ﹣3)x 2﹣6x +m 2﹣9=0的常数项为0,求m 的值及此方程的解.25.某住宅小区在住宅建设时留下一块1248平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带.请你计算出游泳池的长和宽.26.解方程:(1)(x +2)2﹣25=0;(2)x 2+4x ﹣5=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一元二次方程的定义以及根的判别式的意义得出k 2≠0,且△=b 2-4ac ≥0,建立关于k 的不等式组,求出k 的取值范围.【详解】解:由题意知,k 2≠0,且△=b 2-4ac =(2k +1)2-4k 2=4k +1≥0.解得k ≥-14且k ≠0. 故选:B .【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.D解析:D【分析】利用因式分解法求得方程的两根,进而根据菱形面积=12对角线的积求解即可. 【详解】解:28120x x -+=,(x-6)(x-2)=0,∴x 1=6,x 2=2,∵菱形的两条对角线长分别为6,2,∴菱形面积为162=62⨯⨯, 故选:D .【点睛】综合考查了菱形的性质及解一元二次方程;得到菱形的对角线长是解决本题的突破点;用到的知识点为:因式分解法解一元二次方程;菱形面积=12对角线的积. 3.B解析:B【分析】根据根的判别式计算即可.【详解】解:∵关于x 的一元二次方程()21210k x x +-+=有实数根, ∴()244410b ac k ∆=-=-+≥,10k +≠,∴4440k --≥,1k ≠-,解得:0k ≤,1k ≠-;故答案选B .【点睛】本题主要考查了一元二次方程根的判别式,准确计算是解题的关键.4.A解析:A【分析】把1x =代入方程,得到a 与b 的式子,整体代入即可.【详解】解:把1x =代入220x ax b ++=得,120a b ++=,∴21a b +=-,∴242a b +=-,故选:A .【点睛】本题考查了一元二次方程的解和求代数式的值,解题关键是明确方程解的意义,树立整体代入思想.5.D解析:D【分析】确定a 、b 、c 计算根的判别式,利用根的判别式直接得出结论;【详解】∵20+=,x x∴△=1-0=1>0,∴原方程有两个不相等的实数根;故选:D.【点睛】本题考查了根的判别式、一元二次方程实数根的情况取决于根的判别式△,正确掌握△的值与根的个数的关系是解题的关键.6.C解析:C【分析】只含有一个未知数,并且未知数的最高次数是2的方程是一元二次方程,根据定义解答即可.【详解】A、是一元一次方程,不符合题意;B、是二元一次方程,不符合题意;C、是一元二次方程,符合题意;D、是二元二次方程,不符合题意;故选:C.【点睛】此题考查一元二次方程,熟记定义是解题的关键.7.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:A.x2+6x+9=0,则△=62-4×9=36-36=0,即该方程有两个相等实数根,故本选项不合题意;B.2230-+=,则△=(-2)2-4×3=4-12=-8<0,即该方程无实数根,故本选项不合题意;x xC.22-=,则△=(-1)2-4×(-2)=1+8=9>0,即该方程有两个不相等实数根,故本选项合题x x意;D.2-+=,则△=(-4)2-4×3×2=16-24=-8<0,即该方程无实数根,故本选项不合题x x3420意.故选C.【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.C解析:C【分析】根据一元二次方程有实数根,得到根的判别式大于等于0,求出a 的范围,确定出所求即可.【详解】解:∵关于x 的一元二次方程2(2)20a x x --+=有实数根,∴△=1−8(a−2)≥0,且a−2≠0,解得:a≤178且a≠2, 则整数a 的最大值为1.故选C .【点睛】此题考查了一元二次方程根的判别式,以及一元二次方程的定义,掌握一元二次方程根与判别式的关系是解本题的关键.9.C解析:C【分析】利用绝对值的几何意义,假设x >0或x <0,分别分析得出即可.【详解】解:当x >0时,2320x x -+=,解得:x 1=1;x 2=2;当x <0时,2320x x --=,解得:x 1(不合题意舍去),x 2=32, ∴方程的实数解的个数有3个.故选:C .【点睛】此题主要考查的是含有绝对值符号的一元二次方程的一般计算题,理解绝对值的意义是关键.10.A解析:A【分析】将α代入方程220x x --=,即可得22αα=+,即可推出22()22αβαβαβαβ+-=+-+,再由韦达定理即可求出结果.【详解】将α代入方程220x x --=得:220αα--=,即22αα=+∴2222()22αβαβαβαβαβαβ+-=++-=+-+.∵α、β是方程的两个根, ∴111αβ-+=-=,221αβ-==-. ∴()2212(2)27αβαβ+--=-⨯-+=. 故选:A .【点睛】本题考查一元二次方程根与系数的关系以及代数式求值.熟知韦达定理公式是解答本题的关键.11.D解析:D【分析】根据两天后共有128人患上流感,列出方程求解即可.【详解】解:依题意得2+2x +x (2+2x )=128,解得x 1=7,x 2=-9(不合题意,舍去).故x 值为7.故选:D .【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.12.C解析:C【分析】先将方程整理为一般形式,计算0∆>,得到方程有两个不相等的实数根,再根据两根之积为负数即可求解.【详解】解:整理关于x 的方程()()223x x a -+=得 2260x x a +--=,∴()22214162540a a ∆=-⨯⨯--=+>, ∴方程有两个不相等的实数根, ∴212601a x x --=<, ∴方程了两个根一正一负.故选:C【点睛】本题考查了一元二次方程根的判别式和根与系数的关系,熟知两个知识点是解题关键,注意在讨论一元二次方程根与系数的关系时首先要注意确保方程有实根.二、填空题13.5【分析】先根据根与系数的关系写出两根的和与积代入所求代数式计算即可【详解】解:∵是方程的两个实数根∴∴∴;故答案为:5【点睛】本题考查了一元二次方程的根与系数的关系掌握根与系数的关系是解决本题的关 解析:5【分析】先根据根与系数的关系,写出两根的和与积,代入所求代数式计算即可.【详解】解:∵a ,b 是方程230x x --=的两个实数根,∴230a a --=,111a b -+=-=, ∴23a a =+,∴2131()4145a b a b a b ++=+++=++=+=;故答案为:5.【点睛】本题考查了一元二次方程的根与系数的关系.掌握根与系数的关系是解决本题的关键.一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=b a -,x 1•x 2=c a. 14.【分析】先将二次项系数化为1再利用配方法变形即可得出答案【详解】解:∵3x2-2x-2=0∴∴∴故答案为:【点睛】本题考查了配方法在一元二次方程变形中的应用熟练掌握配方法是解题的关键 解析:79【分析】先将二次项系数化为1,再利用配方法变形即可得出答案.【详解】解:∵3x 2-2x-2=0, ∴222033x x --=, ∴221213939x x -+=+, ∴217()39x -=, 故答案为:79. 【点睛】 本题考查了配方法在一元二次方程变形中的应用,熟练掌握配方法是解题的关键.15.【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2设平均每次增长的百分率为x 根据从100吨增加到150吨即可得出方程【详解】解:设蔬菜产量的年平均增长率为x 则可列方程为100(1+x )2=解析:()21001150x +=【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2,设平均每次增长的百分率为x ,根据“从100吨增加到150吨”,即可得出方程.【详解】解:设蔬菜产量的年平均增长率为x ,则可列方程为100(1+x )2=150,故答案为:()21001150x +=.【点睛】此题考查了一元二次方程的应用(增长率问题).解题的关键在于熟知两次增长后的产量=增长前的产量×(1+增长率)2,根据条件列出方程. 16.或【分析】分两种情况讨论利用等边三角形的性质和勾股定理可求解【详解】解:当点D 在AC 的左侧时设AB 与CD 交于点E ∵△ACD 是等边三角形∴AC=AD=CD=4∠DAC=60°又∵∠BAC=30°∴∠D 解析:232-或423-【分析】分两种情况讨论,利用等边三角形的性质和勾股定理可求解.【详解】解:当点D 在AC 的左侧时,设AB 与CD 交于点E ,∵△ACD 是等边三角形, ∴AC=AD=CD=4,∠DAC=60°,又∵∠BAC=30°,∴∠DAE=∠BAC=30°, ∴AB ⊥CD ,∵∠BAC=30°,∴CE=12AC=2,22224223AC EC -=-=∴BE=AB-AE=423-;当点D 在AC 的右侧时,过点B 作BE ⊥CD ,交DC 的延长线于点E ,连接BD ,∵△ACD 是等边三角形, ∴AC=AD=CD=AB=4,∠DAC=60°,∴∠BAD=90°,∴22161642AB AD =+=+∵AB=AC ,∠BAC=30°,∴∠ACB=75°,∴∠BCE=180°-∠ACD-∠ACB=45°,∵BE ⊥CE ,∴∠BCE=∠CBE=45°,∴BE=CE ,∵BD 2=BE 2+DE 2,∴32=BE 2+(CE+4)2,∴BE=232-,综上所述:点B 到CD 的距离为32或423-.故答案为:32-或423-【点睛】本题考查了勾股定理,等边三角形的性质,利用分类讨论思想解决问题是本题的关键. 17.y2+y ﹣2=0【分析】可根据方程特点设y =则原方程可化为﹣y =1化成整式方程即可【详解】解:方程﹣=1若设y =把设y =代入方程得:﹣y =1方程两边同乘y 整理得y2+y ﹣2=0故答案为:y2+y ﹣2解析:y 2+y ﹣2=0【分析】可根据方程特点设y =21x x-,则原方程可化为2y ﹣y =1,化成整式方程即可. 【详解】解:方程221x x -﹣21x x-=1, 若设y =21x x-, 把设y =21x x-代入方程得:2y ﹣y =1, 方程两边同乘y ,整理得y 2+y ﹣2=0.故答案为:y 2+y ﹣2=0.【点睛】本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.18.-2【分析】把-1代入方程求m 再把m 代回方程解方程即可;或用根与系数关系可求【详解】解:方法一把-1代入方程得解得m=2代入原方程得解得故答案为:-2;方法二设另一个根是a 根据根与系数关系a×(-1解析:-2【分析】把-1代入方程求m ,再把m 代回方程,解方程即可;或用根与系数关系可求.【详解】解:方法一,把-1代入方程2(1)20x m x +++=,得,1(1)20m -++=,解得,m=2,代入原方程得,2320x x ++=,解得,121,2x x =-=-,故答案为:-2;方法二,设另一个根是a ,根据根与系数关系,a ×(-1)=2,a =-2,故答案为:-2【点睛】本题考查了一元二次方程的根和一元二次方程根与系数关系,选择不同方法解题,体现思维的灵活性,准确把握知识是解题关键.19.【分析】根据雕像的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比列方程整理为整式方程即可【详解】设雕像下部高为则可得到方程:整理得:故答案为:【点睛】此题考查一元二次方程的实际 解析:2240x x +-=【分析】根据雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,列方程22x x x -=,整理为整式方程即可. 【详解】 设雕像下部高为m x ,则可得到方程:22x x x -=, 整理得:2240x x +-=,故答案为:2240x x +-=.【点睛】 此题考查一元二次方程的实际应用,正确理解题意是解题的关键.20.【分析】把x=-2代入一元二次方程得到k 的一元二次方程解出k 的值即可【详解】一元二次方程的一个根是x=-2解得k=0或k≠0故答案为【点睛】本题考查的是一元二次方程的根即方程的解的定义逆用一元二次方 解析:12【分析】把x=-2代入一元二次方程220k x kx +=,得到k 的一元二次方程解出k 的值即可【详解】一元二次方程220k x kx +=的一个根是x=-2,∴ 2420k k -=解得k=0或12k = , k≠0 ∴12k = 故答案为12k =. 【点睛】本题考查的是一元二次方程的根即方程的解的定义,逆用一元二次方程解的定义易得出k 的值.三、解答题21.(1)6月初A 款风扇购进200个,B 款风扇购进250个;(2)a 的值为20.【分析】(1)设6月初A 款风扇购进x 个,B 款风扇购进y 个,根据“6月初该超市共售出450个小风扇,且销售总额为7000元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量结合7月的总销售额比6月的销售总额增加了2950a%,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设6月初A 款风扇购进x 个,B 款风扇购进y 个,依题意,得:45010207000x y x y +⎧⎨+⎩==, 解得:200250x y ⎧⎨⎩==. 答:6月初A 款风扇购进200个,B 款风扇购进250个.(2)依题意,得:10(1-a%)×200(1+85a%)+20(1-2a%)×250(1+92a%)=7000(1+ 2950a%), 整理,得:2a -20a=0,解得:12200a a ==,(不合题意,舍去).答:a 的值为20.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程. 22.(1) x 1=x 2=2;(2) x 1,x 2. 【分析】(1)利用配方法解一元二次方程,即可求出答案;(2)利用公式法解一元二次方程,即可求出答案.【详解】解:(1)2410x x -+=,∵x 2﹣4x =﹣1,∴x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,则x ﹣2=∴x 1=x 2=2(2)2104x --=, ∵a =1,b,c =﹣14, ∴△2﹣4×1×(﹣14)=3>0, 则x即x 1=2,x 2=2. 【点睛】本题考查了解一元二次方程,解题的关键是掌握配方法和公式法解一元二次方程. 23.(1)13x =-,25x =;(2)112x =-,234x = 【分析】(1)运用因式分解法分解成两个一元一次方程,求出方程的解即可;(2)移项后运用因式分解法分解成两个一元一次方程,求出方程的解即可.【详解】解:(1)22150x x --=, ()()530-+=x x ,30x +=,50x -=,∴13x =-,25x =.(2)()()421321x x x +=+()()4213210x x x +-+=,()()21430x x +-=,210x +=或430x -=, 所以112x =-,234x =. 【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键. 24.m =-3;x 1=0,x 2=−1.【分析】直接利用常数项为0,进而得出关于m 的等式,计算后可求出m 的值,利用所求m 的值则求出方程的解.【详解】解:由题意,得m 2−9=0,且m−3≠0,解得m =-3.当m =-3时,代入(m ﹣3)x 2﹣6x+m 2﹣9=0,得-6x 2-6x =0,-6x (x +1)=0解得x 1=0,x 2=−1.【点睛】此题主要考查了一元二次方程的一般形式以及一元二次方程的解法,掌握一元二次方程的定义及解法是解题的关键.25.游泳池的长为40米,宽为20米.【分析】设游泳池的宽为x米,而游泳池的长是宽的2倍,那么原来的空地的长为(2x+8),宽为(x+6),根据空地面积为1248平方米即可列出方程解题.【详解】解:设游泳池的宽为x米,依题意得(x+6)(2x+8)=1248整理得x2+10x﹣600=0,解得x1=20,x2=﹣30(负数不合题意,舍去),∴x=20,2x=40.答:游泳池的长为40米,宽为20米.【点睛】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.26.(1)x1=3,x2=-7;(2)x1=1,x2=-5.【分析】(1)用直接开方法解方程即可;(2)用配方法解方程即可.【详解】解:(1)(x+2)2﹣25=0;移项得,(x+2)2=25,两边开方得,x+2=±5,解得,x1=3,x2=-7;(2)x2+4x﹣5=0.移项得,x2+4x=5.两边加4得,x2+4x+4=9.配方得,(x+2)2=9.开方得,x+2=±3,解得,x1=1,x2=-5.【点睛】本题考查了一元二次方程的解法,解题关键是选择适当的方法解一元二次方程.。
人教版九年级上册数学教学设计《降次——解一元二次方程(4)》
【应用】
例:不解方程,判定方程根的情况
(1)16x2+8x=-3 (2)9x2+6x+1=0
(3)2x2-9x+8=0 (4)x2-7x-18=0
分析:不解方程,判定根的情况,只需用b-4ac的值大于0、小于0、等于0 的情况进行分析即可.
过程
方法
从具体到一般,给出三个结论并应用它们解决一些具体题目。
情感
态度
价值观
继续体会由未知向已知转化的思想方法.
教学重点
理解一元二次方程的根的判别式,并能用判别式判定根的情况.
教学难点
用根的判别式b2-4ac来判别ax2+bx+c=0(a≠0)的根的应用.
教学方法
讲练结合
教具准备
教学程序及教学内容
修订与完善
学校教学设计九年级数学
章课题
一元二次方程
主备教师
参备教师
授课教师
课题
21.2降次——解一元二次方程(4)
教
学
目
标
知识
技能
掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.
二、探索新知
【问题情境】
从前面的具体问题,我们已经知道b2-4ac>0(<0,=0)与根的情况,现在你把这个问题一般化,从求根公式的角度来分析来得出结论。
人教版数学九年级上册第二十一章《一元二次方程》简介
第二十一章“一元二次方程”简介课程教材研究所章建跃一元二次方程是刻画数量关系的重要数学模型。
一元二次方程的解法和实际应用是初中阶段的核心内容。
前面已经学习了一元一次方程、二元一次方程组以及分式方程等,本章学习一元二次方程的解法,讨论与方程的根有关的几个基本问题(判别式与方程的根、根与系数的关系等),在此基础上学习利用一元二次方程模型解决简单的实际问题。
本章的学习将为后续的勾股定理、二次函数等打下学习基础,在学生的“四基”、“四能”的发展,特别是在运算能力、推理能力、模型思想和应用意识的培养上可以发挥较大作用。
本章教学时间约需13课时,具体分配如下(仅供参考):21.1 一元二次方程1课时21.2 解一元二次方程 7课时21.3 实际问题与一元二次方程 3课时数学活动小结2课时一、教科书内容和本章学习目标1.本章知识结构现实生活中,许多问题中的数量关系可以抽象为一元二次方程。
因此,从深化数学模型思想、加强应用意识的角度看,从实际问题中抽象出数量关系,列出一元二次方程,求出它的根进而解决实际问题,是本章学习的一条主线。
学生已经学习一元一次方程的解法和实际应用,知道可以利用运算律、等式的基本性质,通过去括号、移项、合并同类项等求出它的解。
学生还学过二元一次方程组以及三元一次方程组的解法和实际应用,知道可以通过消元,将它们转化为一元一次方程。
从数学知识的内部发展看,二元、三元一次方程组可以看成是对一元一次方程在“元”上的推广。
自然地,如果在次数上做推广,首先就是一元二次方程。
类比二(三)元一次方程组的解法,可以想到:能否将一元二次方程转化为一元一次方程?如何转化?因此,利用什么方法将“二次”降为“一次”,这是本章学习的另一条主线。
与一元一次方程、二元一次方程组的解法相比,一元二次方程的解法涉及更多的知识,可以根据方程的具体特点,选择相关的知识和方法,对方程进行求解。
这是培养学生的思维品质,特别是思维的敏捷性、灵活性、深刻性的机会。
2021-2022学年九年级数学(人教版)专题04《一元二次方程因式分解法》重难点专练
专题04因式分解法重难点专练(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·陕西九年级一模)如图,在矩形ABCD 中,AB =10,P 是CD 边上一点,M 、N 、E 分别是P A 、PB 、AB 的中点,以下四种情况,哪一种四边形PMEN 不可能为矩形( )A .AD =3B .AD =4C .AD =5 D .AD =62.(2021·温州绣山中学九年级二模)如图是清朝李演撰写的《九章算术细草图说》中的“勾股圆方图",四边形ABCD ,四边形EBGF ,四边形HNQD 均为正方形,BG ,NQ ,BC 是某个直角三角形的三边,其中BC 是斜边,若:8:9,2HM EM HD ==,则AB 的长为( )A .114B .2910C .3 D.3.(2021·山东烟台市·九年级其他模拟)关于x 的一元二次方程()2235230k x x k k ++++-=的一个根是0,则k 的值是( )A .−3或1B .1C .−3D .1-4.(2021·山东九年级一模)已知关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根,若m 为非负整数,且该方程的根都是整数,则m 的值为( )A .1B .0C .0或1D .2m <5.(2021·广东九年级一模)对于实数m ,n ,先定义一种新运算“⊗”如下:m ⊗n =22()()m m n m n n m n m n ⎧++≥⎨++<⎩,,,若x ⊗(﹣2)=10,则实数x 等于( )A .3B .﹣4C .8D .3或86.(2021·河南八年级期末)如图,正方形ABCD 的边长为2,点,E F 分别为边,AD BC 上的点,点,G H分别为ABCD 边上的点,连接GH ,若线段GH 与EF 的夹角为45,GH ︒=EF 的长为( )A B C D 7.(2021·长沙麓山国际实验学校九年级其他模拟)对任意实数x ,点()2,2P x x x +一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限 8.(2020·浙江八年级期中)若关于x 的方程kx 2-(k +1)x +1=0的根是整数,则满足条件的整数k 的个数为( )A .1个B .2个C .3个D .4个9.(2021·安徽合肥38中)如图,在矩形ABCD 中,AB =14,BC =7,M 、N 分别为AB 、CD 的中点,P 、Q 均为CD 边上的动点(点Q 在点P 左侧),点G 为MN 上一点,且PQ =NG =5,则当MP +GQ =13时,满足条件的点P 有( )A .4个B .3个C .2个D .1个10.(2021·湖南九年级一模)方程340x x -=的解是( )A .2或0B .±2或0C .2D .-2或0二、填空题11.(2021·天津九年级一模)如图,在ABC 中,AB AC =,AD BC ⊥,垂足为D ,DE AB ⊥,垂足为E ,F 是边AC 的中点,连接DF .若10AC =,4DE =,则BE 的长为_____.12.(2021·山东九年级一模)已知m 、n 、4分别是等腰三角形(非等边三角形)三边的长,且m 、n 是关于x 的一元二次方程2620x x k -++=的两个根,则k 的值等于______________.13.(2021·内蒙古九年级二模)若a 满足220a a --=,则13()(2)22a a a a +÷-+=++__________. 14.(2021·山东九年级一模)将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如()32x x x x px q =⋅=-=,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,且x >0,则4323x x x -+的值为______.15.(2021·四川中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.16.(2021·浙江中考真题)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:结合他们的对话,请解答下列问题:(1)当a b =时,a 的值是__________.(2)当a b 时,代数式b a a b+的值是__________. 17.(2021·江苏九年级二模)若一组数据2,3,4,5,x 的方差是2,那么x 的值为____.18.(2021·安徽八年级期末)若x ,y 都是实数,且满足2222()(1)12x y x y ++-= ,则22x y +的值为____.19.(2021·北京八年级期末)为了满足不同顾客对保温时效的要求,保温杯生产厂家研发了甲、乙两款保温杯.现从甲、乙两款中各随机抽取了5个保温杯,测得保温时效(单位:h )如表:如果甲、乙两款保温杯保温时效的方差是相等的,那么x =___.20.(2021·辽宁沈阳市·九年级期末)方程x 2﹣2x=0的解为_____________21.(2019·全国)若关于x 的方程 ()()2240x x x m --+= 有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则 m 的取值范围是________.22.(2019·上海市建虹高级中学七年级月考)已知:(x 2+y 2)(x 2+y 2-4)-12=0,则x 2+y 2的值为_____________.23.(【新东方】fbk2038数学)已知正整数,x y 满足:2271,880xy x y x y xy ++=+=,则22x y +值为___________.24.(【新东方】义乌初中数学初二下【00019】)如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长( OA OB <)是关于x 的方程218720x x -+=的两个实数根,C 是线段的OB 中点.(1)求直线AC 的解析式______;(2)若P 是直线AC 上的点,求平面内使O 、A 、P 、Q 为顶点的四边形是菱形的点Q 坐标_____.25.(2021·天津红桥区·)如图,在平行四边形ABCD 中,2AD =,AB =B 是锐角,AE BC ⊥于点E ,F 是AB 的中点,连结,DF EF .若90EFD ∠=︒,则AE 的长为__________.26.(2021·山东青岛市·九年级一模)(问题提出):将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?(问题探究):要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;为了便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此底第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=3个.即:第二行平行四边形共有2×3个.所以如图1,平行四边形共有2×3+3=9=(2+1)2.我们再研究菱形的个数:分析:边长为1的菱形共有22个,边长为2的菱形共有12个,所以:如图1,菱形共有22+12=5=16×2×3×5个.探究二:将一个边长为3的菱形的四条边分别3等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;(2)第二行有斜边长为1,底长为1~2的平行四边形,共有3+2+1=6个;底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个,即:第二行平行四边形共有2×6个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;底在第三行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个.底在第三行还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=6个,即:第三行平行四边形共有3×6个.所以如图2,平行四边形共有3×6+2×6+6=(3+2+1)×6=(3+2+1)2.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=16×3×4×7个.探究三:将一个边长为4的菱形的四条边分别4等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个;(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个;底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=10个,即:第二行平行四边形共有2×10个.(3)模仿上面的探究,第三行平行四边形总共有个.(4)按照上边的规律,第四行平行四边形总共有个.所以,如图3,平行四边形总共有个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=16×个,(仿照前面的探究,写成三个整数相乘的形式)(问题解决)将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是和菱形个数分别是16×.(用含n的代数式表示)(问题应用)将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,若得出该菱形被剖分的网格中的平行四边形的个数是441个,则n=.(拓展延伸)将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,当该菱形被剖分的网格中的平行四边形的个数与菱形个数之比是135⊗19时,则n=.27.(2021·珠海市紫荆中学桃园校区九年级一模)如图⊗,在矩形ABCD中,AB AD>,对角线AC,BD 相交于点O,动点P由点A出发,沿A B C→→运动.设点P的运动路程为x,AOP的面积为y,y 与x的函数关系图象如图⊗所示,则AB边的长为________.28.(2021·浙江八年级期末)如图,在正方形ABCD 中,6AB =,E 是对角线 AC 上的一点,连结BE ,过点 E 作 EF BE ⊥交AD 于点F . BCE 和AEF 的面积分别为1S 和2S ,若1223S S =,则CE 的长为_____________.三、解答题29.解方程:(1)x 2﹣7x ﹣18=0(2)(2x ﹣3)2﹣2(2x ﹣3)﹣3=0.30.(2021·辽宁九年级一模)先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a 是方程x 2+2x ﹣3=0的一个根.31.(2021·北京九年级二模)已知关于x 的一元二次方程22(21)0x m x m +++=有两个不相等的实数根. (1)求m 的取值范围;(2)若该方程的两个根都是整数,写出一个符合条件的m 的值,并求此时方程的根.32.(2021·北京九年级二模)已知关于x 的一元二次方程240x x a -+=有两个不相等的实数根 (1)求a 的取值范围;(2)请你给出一个符合条件的a 的值,并求出此时方程的解.33.(2021·广东九年级二模)若关于x ,y 的二元一次方程组27123x y a x y a +=-⎧⎨-=-+⎩的解0x >,0y >. (1)求a 的取值范围;(2)若x 是一个直角三角形的直角边长,y 是其斜边长,此三角形另一条直角边的长为方程28160m m -+=的解,求这个直角三角形的面积.34.(2021·广东九年级二模)小明解关于x 的一元二次方程250x bx ++=时,在解答过程中写错了常数项,因而得到方程的两个根是4和2.(1)求b 的值;(2)若菱形的对角线长是关于x 的一元二次方程250x bx ++=的解,求菱形的面积.35.(2021·河南九年级一模)先化简,再求值2695222x x x x x ++⎛⎫÷+- ⎪++⎝⎭,其中x 是方程220x x +-=的解.36.(2021·北京九年级二模)已知关于x 的一元二次方程2220x x k ++-=有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为满足条件的最大的整数,求此时方程的解.37.(2021·四川中考真题)已知关于x 的一元二次方程22(21)0x k x k k -+++=.(1)求证:无论k 取何值,方程都有两个不相等的实数根.(2)如果方程的两个实数根为1x ,2x ,且k 与12x x 都为整数,求k 所有可能的值. 38.(2021·合肥市第四十二中学八年级期中)用适当方法解方程:3(2)2(2)x x x -=-.39.(2021·合肥市第四十二中学八年级期中)已知一元二次方程22530x x --=的正实数根也是一元二次方程22()30k x x --+=的根,求k 的值.40.(2021·内蒙古中考真题)先化简,再求值:2212(1)121x x x x x x +++-÷+++,其中x 满足220x x --=. 41.(2021·江苏九年级二模)(1)解方程:2340x x +-=(2)解不等式组:43(2)123x x x x +≤+⎧⎪⎨-<⎪⎩①②, 42. ()220x +-=.43.用因式分解法解下列方程:(1)3(x +2)2=2(x +2);(2)(2x +3)2-25=0.44.解方程243455121760x x x x x --+=---+ 45.解方程:x 2+2x ﹣262x x +=1. 46.(2021·河北九年级二模)对有序数对(),m n 规定运算:()22,m n f m n =-+.例如,()23,22293f =-+=.(1)求()2,5f -的结果;(2)若(),12f m m =-,求m 的值.47.(2021·上海九年级其他模拟)解方程组:232x y x xy -=⎧⎨+=⎩. 48.(2021·浙江杭州市·九年级二模)(1)计算:|﹣2|+3﹣1;(2)解方程:x 2﹣2x ﹣15=0.49.(2021·重庆八年级期末)如图1,一次函数142y x =-+的图象与x 轴、y 轴分别交于点A 、点B ,与正比例函数32y x =的图象交于点C ,将点C 向右平移1个单位,再向下平移6个单位得到点D . (1)求OAB ∆的周长和点D 的坐标;(2)如图2,点P 是y 轴上一动点,当CP PD +最小时,求点P 的坐标;(3)若点Q 是x 轴上一动点,当OQD ∆为等腰三角形时,直接写出点Q 的坐标.50.(2021·广东惠州市·九年级二模)已知关于x 的一元二次方程2(21)20x k x k -++=.(1)求证:方程总有两个实数根;(2)记该方程的两个实数根为1x 和2x 若以1x ,2x ,3为三边长的三角形是直角三角形,求k 的值. 51.(2021·山东八年级期末)(1)因式分解:3269x y x y xy -+;(2)解方程:24120x x --=.52.(2021·浙江八年级期末)我们定义:有一组对边相等,另一组对边不相等的凸四边形叫做“单等对边四边形”.(1)如图1,在ABCD 中,点E 为AB 上不与点A ,B 重合的一点,CE CB =.求证:四边形AECD 为单等对边四边形;(2)如图2,在810⨯的网格中,顶点A 、B 、C 均是格点,请在此网格内找格点D ,使四边形ABCD 为单等对边四边形,请你在网格中画出所有..满足条件的点D ; (3)如图3,在单等对边四边形ABCD 中,AB CD =,1BC =,5CD =,90BCD ∠=︒,若单等对边四边形ABCD 内有一点P ,使四边形ABCP 为平行四边形,且ABCP 与四边形ABCD 的面积比为1:3,求ABCP 的面积.53.(2021·北京八年级期末)关于x 的一元二次方程2320mx x -+=有两个实数根.(1)求m 的取值范围;(2)若m 为正整数,求此时方程的根.54.(2021·上海八年级期末)为庆祝建党100周年,某中学组织八年级学生进行徒步活动,从学校出发,步行至离校6千米的红色基地,返回时,由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.55.(2021·上海八年级期末)2021年5月22日,“祝融号”火星车安全驶离着陆平台,到达火星表面,开始巡视探测工作.着陆点附近的火星表面照片显示,最佳探测路线有两条,西线地势平坦,行程720米,东线地势稍有起伏,行程180米,走西线比走东线多用2小时,走西线的速度比走东线的速度每小时快60米.同时,为了确保安全,火星车的速度要小于100米/小时,问走东线、走西线的速度各是多少? 56.(2021·浙江八年级期末)小明设计了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数a 2+2b ﹣3.例如把(2,﹣5)放入共中,就会得到22+2×(﹣5)﹣3=﹣9.(1)若把实数对(﹣5,2)放入其中,得到的实数是多少?(2)若把实数对(m ,﹣3m )放入其中,得到实数4,求m 的值.(3)小明说,若把实数对(n ,3n ﹣1)放入其中,得到的实数可能小于﹣15.你认为小明的说法正确吗?为什么?57.(2021·上海八年级期末)闵行区政府为提高道路的绿化率,在道路两边进行植工程,计划第一期先栽种1500棵梧桐树. 为了加快进度,绿化队在实际栽种时增加了植树人员,每天栽种的梧桐树比原计划多200棵,结果提前2天完成任务.求实际每天栽种多少棵梧桐树?58.(2021·重庆八年级期末)若关于x 的一元二次方程(ax ﹣b )(cx ﹣d )=0(ac ≠0且a ≠﹣1,c ≠﹣1)的解x 1=b a =a ﹣b ,x 2=d c =c ﹣d ,则称该方程为二次“差解方程”.例如:(x ﹣12)(﹣3x +92)=0的解x 1=12,x 2=32,且12=1﹣12,32=﹣3﹣(﹣92),所以该方程(x ﹣12)(﹣3x +92)=0是二次“差解方程”.根据上述材料,解决下列问题:(1)判断方程(2x ﹣43)(﹣4x ﹣163)=0是否是二次“差解方程”,并说明理由; (2)若关于x 的方程(3x ﹣mn ﹣m )(﹣2x ﹣mn +n )=0是二次“差解方程”,求关于y 的一元二次方程m(y ﹣1)+n (y ﹣m )=22()4mn n y -的解. 59.(2021·北京八年级期末)解下列一元二次方程:(1)2160x -=;(2)230x x -=;(3)2450x x --=;(4)23520x x +-=.60.(2021·浙江八年级期末)(1)计算;(2)解方程:22730x x -+=.61.(2021·江苏八年级期末)(1)用配方法解一元二次方程除了课本的方法,也可以用下面的配方方式: 将20(a 0)++=≠ax bx c 两边同时乘以4a 并移项,得到22444a x abx ac +=-,两边再同时加上2b ,得()22______4b ac =-.请用这样的方法解方程:23510x x ++=;(2)华裔数学家罗博深在2019年提出了一种全新的一元二次方程解法,对于20x bx c ++=,将等式左边进行因式分解,得到以下形式:2()()x bx c x m x n ++=-⋅-(从这里可以看出方程的解为1x m =,2x n =)即22()x bx c x m n x mn ++=-++因为m n b +=-,所以m 、n 的平均数为2b -,不妨设2b m p =-+,2b n p =--, 利用12x x mn ⋅=,得22b b p pc ⎛⎫⎛⎫-+⋅--= ⎪ ⎪⎝⎭⎝⎭,所以222b p c ⎛⎫--= ⎪⎝⎭,即能求出p 的值. 举例如下:解一元二次方程2240x x --=,由于12b -=,所以方程的两个根为1p ±,而2214p -=-,解得p =11x =21x =.请运用以上方法解如下方程⊗240x --=;⊗21302x += 62.(2021·苏州市相城实验中学八年级月考)阅读题:一元二次方程20ax bx c ++=(其中0,0a c ≠≠)的二根为1x 和2x ,请构造一个新的一元二次方程,使方程的二根适是原方程二根的3倍.数学老师张老师给出了一种方法是:设新方程的根是y ,则3y x =,得3yx =代入原方程得2033y y a b c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭变形得2390ay by c ++=此方程即为所求,这种利用方程根的代换求方程的方法叫换根法.解答:(1)已知方程220x x +-=,求一个新方程使它的根分别是已知方程的相反数,所求方程为_________.(2)已知关于x 的一元二次方程20(a 0)++=≠ax bx c ,求一个一元二次方程,使它的根分别是原方程根的倒数.63.(2021·浙江八年级期末)解方程:(1)2230x x +=;(2)2890x x --=64.(2021·浙江八年级期末)用指定的方法解方程:(1)(x ﹣4)2=2(x ﹣4)(因式分解法);(2)2x 2﹣4x ﹣1=0(公式法).65.(2021·北京八年级期末)已知关于x 的方程2(1)0x a x a +++=.(1)不解方程,判断方程根的情况,并说明理由;(2)如果该方程有一个根大于0,求a 的取值范围.66.(2021·安徽六安市·八年级期末)对于任意实数k ,方程()222212()40k x k a x k k b +-++++=总有一个根1.(1)求实数a ,b ;(2)当5k =时,求方程的另一个根.67.(2018·全国九年级课时练习)解方程:6x 4-35x 3+62x 2-35x +6=0.68.(2018·全国九年级课时练习)解方程:(x -2 013)(x -2 014)=2 015×2 016.69.(2019·重庆九年级期中)阅读下列材料计算:(1﹣12﹣1341-)×(12+111++345)﹣(1﹣12﹣111345--)(12+11+34),令12+11+34=t ,则:原式=(1﹣t )(t +15)﹣(1﹣t ﹣15)t =t +15﹣t 2﹣1455t -+t 2=15 在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(1﹣12﹣1132018--)×(12+111+++342019)﹣(1﹣12﹣1132019--)×(12+11++32018) (2)因式分解:(a 2﹣5a +3)(a 2﹣5a +7)+4(3)解方程:(x 2+4x +1)(x 2+4x +3)=370.(2019·深圳市明德外语实验学校八年级期中)阅读下列材料:1637 年笛卡儿(R .Descartes ,1596 − 1650)在其《几何学》中,首次应用待定系数法将 4 次方程分解为两个 2 次方程求解,并最早给出因式分解定理.他认为,若一个高于二次的关于 x 的多项式能被 (x a -) 整除,则其一定可以分解为 (x a -) 与另外一个整式的乘积,而且令这个多项式的值为 0 时, x = a 是关于 x 的这个方程的一个根.例如:多项式2910x x +- 可以分解为 (1x -) 与另外一个整式 M 的乘积,即 2910(1)x x x M +-=-⋅ 令29100x x +-=时,可知 x =1 为该方程的一个根.关于笛卡尔的“待定系数法”原理,举例说明如下: 分解因式:3223x x +-观察知,显然 x =1 时,原式 = 0 ,因此原式可分解为 (1x -) 与另一个整式的积.令:32223(1)()x x x x bx c +-=-++,则3223x x +-=32(1)()x b x c b x c +-+--,因等式两边 x 同次幂的系数相等,则有:1203b c b c -=⎧⎪-=⎨⎪-=-⎩,得33b c =⎧⎨=⎩,从而32223(1)(33)x x x x x +-=-++ 此时,不难发现 x= 1 是方程 32230x x +-= 的一个根.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)若1x + 是多项式31x ax ++ 的因式,求 a 的值并将多项式31x ax ++分解因式;(2)若多项式43334x ax bx ++- 含有因式1x +及2x - ,求a + b 的值.71.(2021·江苏省江阴市第一中学八年级月考)如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点(1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标;(3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.72.(2020·上海上外附中九年级月考)解方程:231213x x -=-73.(2021·全国九年级)已知a ,b ,c 为有理数,且多项式32x ax bx c +++能够写成()2344c x x x ⎛⎫+-- ⎪⎝⎭的形式.(1)求4a c +的值.(2)求22a b c --的值.(3)若a ,b ,c 为整数,且1c a ≥>,试求a ,b ,c 的值.74.(2021·扬州市江都区育才中学九年级期末)阅读下列材料:为解方程4260x x --=可将方程变形为()22260x x --=然后设2x y =,则()222x y =,原方程化为260y y --=⊗,解⊗得12y =-,23y =.当12y =-时,22x =-无意义,舍去;当23y =时,23x =,解得x =⊗原方程的解为1x =2x =; 上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题转化成简单的问题.利用以上学习到的方法解下列方程:(1)()222251060x x x x --++=;(2)23152x x ++=.75.(2021·河南平顶山市·九年级期末)已知关于x 的一元二次方程()21410k x x -++=有两个不相等的实数根.(1)求k 的取值范围.(2)当k 取满足条件的最大整数时,求方程的根.76.(2021·黑龙江九年级零模)已知:直线y =﹣43x +12交x 轴于点A ,交y 轴于点B ,经过点A 的直线y =13x +m 交y 轴于点C . (1)如图1,求点C 的坐标;(2)如图2,点D 为线段AB 上的一点,点E 在线段AC 上,连接DE ,延长DE 交y 轴于点F ,且DE =EF ,设点D 的横坐标为t ,线段OF 的长为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,过点A 作AG ⊗AC ,AG 交ED 的延长线于点G ,DE 交OA 于点H ,若DG =EH ,求d 的值.77.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义推证完全平方公式.将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1,这个图形的面积可以表示成:(a+b)2或a2+2ab+b2,⊗(a+b)2=a2+2ab+b2这就验证了两数和的完全平方公式.问题提出:如何利用图形几何意义的方法推证:13+23=32如图2,A表示1个1×1的正方形,即:1×1×1=13,B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23,而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形,由此可得:13+23=(1+2)2=32(1)尝试解决:请你类比上述推导过程,利用图形几何意义方法推证:13+23+33=(1+2+3)2(要求自己构造图形并写出推证过程)(2)类比归纳:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=(要求直接写出结论,不必写出解题过程)(3)实际应用:图3是由棱长为1的小正方体搭成的大正方体,图中大小正方体一共有多少个?为了正确数出大小正方体的总个数,我们可以分类统计,即分别数出棱长是1,2,3和4的正方体的个数,再求总和.例如:棱长是1的正方体有:4×4×4=43个,棱长是2的正方体有:3×3×3=33个,棱长是3的正方体有:2×2×2=23个,棱长是4的正方体有:1×1×1=13个,然后利用类比归纳的结论,可得:13+23+33+43=(1+2+3+4)2,图4是由棱长为1的小正方体成的大正方体,图中大小正方体一共有个.(4)逆向应用:如果由棱长为1的小正方体搭成的大正方体中,通过上面的方式数出的大小正方体一共有44100个,那么棱长为1的小正方体一共有个.78.(2021·浙江)已知若干张正方形和长方形硬纸片如图1所示.(1)若用1张边长为a 的正方形,2张边长为b 的正方形,3张边长分别为a 和b 的长方形拼成一个新的长方形(如图2).请用两种不同的方法计算图2长方形的面积并根据你的计算结果可以得到怎样的等式;(2)请通过拼图的方式画出一个面积为22252a ab b ++的长方形示意图,并写出其因式分解的结果; (3)在(2)的条件下,若拼成的长方形周长为66,图1中小长方形的面积为24,则拼成的长方形面积是多少?79.(2021·重庆一中八年级期中)直线1l :y x =-+与x 轴、y 轴分别交于A 、B 两点,C 是1l 上一点,且横坐标为3,将1l 绕C 点顺时针旋转90︒到2l ,2l 与x 轴、y 轴分别交于D 、E 两点.(1)求直线2l 的解析式;(2)如图1,在线段AC 上,有一动点P ,过P 点作//PQ y 轴,交2l 于点Q ,连接AQ ,当APQ 面积与ADQ △面积之比为1:3时,求P 点的坐标;(3)如图2,连接AE ,将线段AE 沿直线AB 方向平移,记AE 平移后的线段为11A E ,直线11A E 在平移过程中与x 轴交于点M ,坐标平面内是否存在一点N ,使得以O 、1A 、N 、M 为顶点的四边形是菱形,若存在,请直接写出N 点的坐标;若不存在,请说明理由.80.(2019·上海市培佳双语学校)解方程:(x-1)(x-2)(x-3)(x-4)=48.。
21-2.4 因式分解法解一元二次方程(4)
(3x+5)(3x-5)=0 3X+5=0 或 3x-5=0 练习展示 5 5 x1 , x 2 . 3 3
例4、解下列方程
2
x 5x 6 0
解 把方程左边分解因式,得
( x 2)(x 3) 0
因此,有 解得
练习展示
x 2 0或x 3 0
x 2, x 3.
50 50 x 49 49 教材导读
2 2
2
a = 4.9,b =-10,c = 0 b2-4ac = (-10)2-4×4.9×0=100
b b 2 4ac 10 10 x 2 4.9 2a
x
50 50 49 49 50 50 x 49 49
100 x1 , x2 0 49
100 x1 , x2 0 49
探究
10 x 4.9 x 0
2
如果a ·b = 0, 那么 a = 0或 b = 0。
x 10 4.9x 0
教材导读 x0
因式分解
两个因式乘积为 0,说明什么? 降次,化为两个一次方程 或 10 4.9 x 0
情景导课
把一个多项式分解成几个整式乘积 的形式叫做分解因式.
回顾与复习 2
分解因式的方法有那些? (1)提取公因式法: am+bm+cm=m(a+b+c). (2)公式法: a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
情景导课
(3)十字相乘法: x2+(a+b)x+ab= (x+a)(x+b).
运城市第五中学九年级数学上册第二章一元二次方程专题课堂四一元二次方程的实际应用课件新版北师大版
沿 A→D 方向以 2 cm/s 的速度向点 D 运动.设△ABP 的面积为 S1, 矩形 PDFE 的面积为 S2,运动时间为 t s,则当 t=__6__时,S1=2S2.
14.如下图 , 两艘船同时从A点出发 , 一艘船以15海里/小时的速度 向东北方向航行 , 另一艘船以20海里/小时的速度向东南方向航行 , 那么几小时后两船正好相距100海里 ?
C.x-23
2
=59
,x1=23
+
5 3
,x2=23
-
5 3
D.x-13 2 =1,x1=43 ,x2=-32
11.把方程x2-8x+3=0化成(x+m)2=n的形式 , 那么m , n的值是(C )
A.4 , 13
B.-4 , 19
C.-4 , 13
D.4 , 19
12.方程x2-6x+q=0可以配方成(x-p)2=7的形式 , 那么x2-6x+q=
2可以配方成以下的(B )
A.(x-p)2=5 B.(x-p)2=9
C.(x-p+2)2=9 D.(x-p+2)2=5
13.已知x , y为实数 , 且x2+y2+4x-6y+13=0 , 运用配方式可以求得
x , y的值分别为( C )
A.4 , 6 B.-2 , -3 C.-2 , 3 D.2 , -3
8.(4 分)将方程 x2-2x-4=0 配成(x+a)2=b 的形式为_(_x_-__1_)_2=__5__, 故方程的根为__x_=__1_±___5___.
9.(12分)用配方式解以下方程. (1)x2+6x-7=0 ; 解 : x1=1 , x2=-7 ;
(2)x2-5x+6=0 ; 解 : x1=2 , x2=3 ;
九年级一元二次函数知识点
九年级一元二次函数知识点一元二次函数是九年级数学学习的重要内容之一。
它在解决实际问题中具有广泛的应用。
本文将从基本概念、图像与性质、解析式与判别式以及实际问题等方面,深入探讨九年级一元二次函数的相关知识点。
首先,我们来了解一元二次函数的基本概念。
一元二次函数是指形如f(x) = ax² + bx + c的函数,其中a、b、c为实数且a≠0。
其中,a决定抛物线的开口方向,正值使抛物线开口向上,负值则开口向下;b决定抛物线的位置,正值使抛物线向左平移,负值则向右平移;c为常数项,决定抛物线与y轴的交点。
接下来,我们来探讨一元二次函数的图像与性质。
一元二次函数的图像是一条抛物线。
当a>0时,抛物线开口向上,最低点称为顶点;当a<0时,抛物线开口向下,最高点称为顶点。
顶点的横坐标为x = -b/2a,纵坐标为f(-b/2a)。
抛物线在顶点对称,对称轴为x = -b/2a。
解析式与判别式是解一元二次方程的关键。
给定一元二次方程ax² + bx + c = 0,其中a、b、c是已知实数且a≠0。
一元二次函数的解析式为x = (-b±√(b²-4ac))/2a。
判别式Δ = b²-4ac,它可以判断一元二次方程的解的性质。
当Δ>0时,方程有两个不相等实数解;当Δ=0时,方程有两个相等实数解;当Δ<0时,方程没有实数解,但有两个共轭复数解。
最后,我们来看一元二次函数在实际问题中的应用。
一元二次函数的应用非常广泛,例如在物理学、经济学和几何学等领域。
以抛物线的运动轨迹为例,当一个物体被抛出时,其轨迹可以用一元二次函数来描述。
在经济学中,一元二次函数可以用来分析企业的成本、收益和利润等情况。
在几何学中,一元二次函数可以用来求解问题,如确定两个点之间的最短距离。
总结起来,九年级一元二次函数是一个非常重要的数学知识点。
它不仅在解决实际问题中具有广泛的应用,而且通过学习一元二次函数的基本概念、图像与性质、解析式与判别式以及实际问题等内容,可以帮助学生加深对数学的理解,并提高解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]在信托业务中,为了一定目的将其财产以信托的方式委托给受托人经营的人指的是()。A.委托人B.受托人C.第三方D.受益人 [单选,A2型题,A1/A2型题]牙冠上三面相交所成的角称()A.线角B.点角C.面角D.嵴角E.夹角 [单选]工程咨询作为一个独立的行业,是近代()的产物。A.城市化B.信息化C.知识化D.工业化 [单选,A2型题,A1/A2型题]渗透压测定的原理是根据()。A.比重高低B.黏度大小C.冰点下降D.沸点上升E.溶解度上升 [单选,A1型题]下列一组病案中,没有明显不当的是() [单选]点的正投影与侧投影同在()。A.一条垂线上B.一条水平线上C.宽度相等 [单选,A2型题,A1/A2型题]高度怀疑自发性蛛网膜下腔出血,而CT检查阴性时应选择()。A.MAIB.MRAC.头X-rayD.核素扫描E.腰穿 [单选,A2型题,A1/A2型题]以下不是癌痛药物治疗的基本原则的是()A.按阶梯给药B.按时给药C.按需给药D.无创给药E.个体化给药 [单选]计算机病毒是(1)。特洛伊木马一般分为服务器端和客户端,如果攻击主机为A,目标主机为B,则(2)。空白(2)处应选择()A为服务器端,B为客户端B.A为客户端,B为服务器端C.A既为服务器端又为客户端D.B既为服务器端又为客户端 [单选]根据营业税法律制度的规定,下列混合销售行为中,应当一并征收营业税的是()。A.贸易公司销售货物的同时负责安装B.百货商店销售商品的同时负责运输C.建筑公司提供建筑业劳务的同时销售自产货物并实行分别核算D.餐饮公司提供餐饮服务的同时销售酒水 [填空题]在计算地震作用时,建筑物重力荷载代表值为()之和。 [单选]目前我国流行性脑脊髓膜炎流行的主要菌群是()A.a群B.b群C.c群D.d群E.W135群 [单选,A1型题]关于臀位,哪项错误()A.为最常见的异常胎位B.胎儿病死率比枕前位高3~8倍C.多见于经产妇D.必须在妊娠28周左右行外转胎位术E.后出头困难时需产钳助产 [单选]辑合女西装前片里布的胸省、腋下省并烫向()。A.摆缝B.前C.随意D.A、B、C都对 [单选,A2型题,A1/A2型题]缺铁性贫血的改变顺序是()A.低血清铁--骨髓贮存铁减少--贫血B.低血清铁--贫血--骨髓贮存铁减少C.骨髓贮存铁减少--贫血--低血清铁D.贫血--骨髓贮存铁减少--低血清铁E.骨髓贮存铁减少--低血清铁--贫血 [单选]外业测量资料主要有()引测资料、各观测点的高程测量记录计算资料。A.观测点B.基准点C.仪器架设点D.立尺点 [单选]下列化学方程式或离子方程式正确的是()。A.常温下,将铁片置于浓硝酸中:Fe+6HNO3=Fe(NO3)3+3NO2↑+3H2OB.向氯化铵的稀溶液中加入少量NaOH:NH4++OH-=NH3↑+H2OC.向(NH4)2SO4溶液中加入适量Ba(OH)2:Ba2++SO42-=BaSO4↓D.向浓硝酸中加入铜片:Cu+4H++2NO3-= [单选]为明确上消化道大出血原因,首选的检查方法是()A.上消化道造影B型超声检查C.纤维内镜检查D.选择性动脉造影检查E.胸片 [单选]以下关于冠状动脉动脉瘤的描述哪项是正确的()A.扩张部位的直径超过病变近侧和远侧正常或相对正常的血管直径平均值1倍B.扩张部位的直径超过病变近侧和远侧正常或相对正常的血管直径平均值1.5倍C.扩张部位的直径超过病变近侧和远侧正常或相对正常的血管直径平均值2倍D.扩张 [单选,A2型题,A1/A2型题]关于临床生物化学的作用中,哪一个不正确()A.研究药物在体内的代谢B.阐明疾病发生发展过程中的生物化学变化C.阐明疾病生化诊断的原理D.论述疾病的生化机制E.阐明有关疾病的生物化学基础 [单选]根据营业税法律制度的规定,下列项目中,不免征营业税的是()。A.托儿所提供育养服务B.农场提供农田灌溉业务C.文化馆出租房屋业务D.保险公司为种植业提供保险业务 [单选]肺癌各病理类型的部位特点为()A.腺癌多为周围型B.鳞癌为周围型或中央型C.小细胞癌一般为周围型D.大细胞癌多起源于小支气管E.细支气管肺泡细胞癌部位在肺门 [单选]一般情况下,灯光的默认颜色是什么:()A.黑色B.蓝色C.白色D.红色 [单选]腹腔镜检查的适应证,错误的是()A.腹水原因待查B.各种原发或继发的不孕症C.生殖器发育异常D.弥漫性腹膜炎E.来源不明的腹腔内出血 [单选]船舶撤离时机应能确保自航施工船舶在()级大风范围半径到达工地5h前抵达防台锚地。A.6B.7C.8D.9 [单选]起货机油温高温报警传感器一般设在()。A.高压管B.回油管C.主泵吸口D.辅泵吸口 [单选]下列药物中哪一种可采用干砂埋藏法储存()。A.赤芍B.淮牛膝C.牡丹皮D.鲜芦根E.鲜石斛 [单选,A2型题,A1/A2型题]心理测量的误差主要来源有()A.施测条件B.主试者素质C.应试者动机D.应试者生理状态E.以上都是 [单选]一般情况下问卷应在多长时间内完成,否则会影响应答的效率()A.20分钟B.30分钟C.40分钟D.50分钟E.1小时 [问答题,简答题]广告媒体的种类? [单选]工程建设国家标准是由()发布的。A.国务院工程建设行政主管部门B.国务院标准化行政主管部门C.国务院D.国务院标准化行政主管部门和国务院工程建设行政主管部门联合 [单选,A2型题,A1/A2型题]”医乃仁术”是指()A.道德是医学活动中的一般现象B.道德是医学的本质特征C.道德是医学的个别性质D.道德是个别医务人员的追求E.道德是医学的非本质要求 [问答题,简答题]为什么在培训过程中的每个阶段都要重视评估问题? [填空题]湿法粉碎时,麦芽在预浸槽中用温水(20~60℃)浸泡10~20min,使麦芽含水量达到()%左右,然后对麦芽带水进行粉碎。 [单选,A2型题,A1/A2型题]检查咽部时,压舌板按压的位置正确的是()。A.舌前1/3处B.舌前2/3处C.舌后2/3处D.舌尖部E.舌根部 [问答题,简答题]什么叫临界减径率? [单选,A2型题,A1/A2型题]DSA要使一直径2mm的血管及其内径1mm的狭窄与一直径4mm的血管及其内径光量加倍C.将视野加倍D.将矩阵加倍E.将像素大小加倍 [单选]患者男,45岁,阵发性心房颤动2年,1个月发作2次,症状明显,有夜间阵发性睡眠呼吸困难,目前的抗心律失常药物治疗选择()A.口服阿替洛尔B.口服索他洛尔C.口服华法林D.口服胺碘酮E.口服普罗帕酮 [单选]《中华人民共和国船舶检验机构资质认可与管理规则》于哪年颁布实施?()A、2000B、2001C、2006D、2002 [单选]含膳食纤维最多的食物是()A.木耳B.魔芋C.海带D.豆渣E.洋葱