多元正态分布的参数估计
多元正态分布参数的估计与假设检验-判别分析
注 共轭分布族总是针对分布中的某个参数而言的 共轭分布族总是针对分布中的某个参数而言的.
三、贝叶斯风险
1、贝叶斯风险的定义 由第一小节内容可知,给定损失函数以后, 由第一小节内容可知,给定损失函数以后,风 险函数定义为
R(d ) = inf R(d ),
* d ∈D
∀d ∈ D
则称d * ( X )为参数θ的贝叶斯估计量
注 1、贝叶斯估计是使贝叶斯风险达到最小的决策 、 函数. 函数 2、不同的先验分布,对应不同的贝叶斯估计 、不同的先验分布, 2、贝叶斯点估计的计算 平方损失下的贝叶斯估计 定理4.2 定理 设θ的先验分布为π(θ)和损失函数为 的先验分布为π θ 和损失函数为
Θ
=∫
Θ
∫
Χ
L(θ , d ( x ))q( x | θ )π(θ )dxdθ
=∫
Θ
∫θ | x )g(x )dxdθ
Θ
= ∫ g(x ){ ∫ L(θ , d ( x ))h(θ | x )dθ }dx
Χ
四 、贝叶斯估计
1、贝叶斯点估计 定义4.6 若总体 的分布函数F(x,θ)中参数θ为随机 定义 若总体X的分布函数 中参数θ 的分布函数 θ 中参数 变量, θ 为 的先验分布,若决策函数类D中存在 变量,π(θ)为θ的先验分布,若决策函数类 中存在 一个决策函数使得对决策函数类中的任一决策函数 均有
第8.2节 节
判别分析
一、先验分布和后验分布 二、共轭先验分布 三、贝叶斯风险 四、贝叶斯估计
一、先验分布与后验分布
上一章提出用风险函数衡量决策函数的好坏, 上一章提出用风险函数衡量决策函数的好坏,但 是由于风险函数为二元函数,很难进行全面比较。 是由于风险函数为二元函数,很难进行全面比较。 贝叶斯通过引入先验分布, 的指标. 贝叶斯通过引入先验分布,给出了整体比较 的指标 1、先验信息 在抽取样本之前, 在抽取样本之前,人们对所要估计的未知参数 先验信息. 所了解的信息,通常称为先验信息 所了解的信息,通常称为先验信息 例1(p121例4.6) 某学生通过物理试验来确定当地 1(p121例 的重力加速度,测得的数据为(m/s²): 的重力加速度,测得的数据为 9.80, 9.79, 9.78, 6.81, 6.80 试求当地的重力加速度. 试求当地的重力加速度
多元正态分布下贝叶斯估计法
多元正态分布下贝叶斯估计法贝叶斯估计法是一种基于贝叶斯定理的参数估计方法,可以用于在已有数据的情况下估计未知参数的分布。
在统计学中,多元正态分布是一种常见的概率分布,描述了多个变量之间的关系。
本文将介绍多元正态分布下的贝叶斯估计法,并详细讨论其原理、应用和计算方法。
一、多元正态分布及其性质多元正态分布是一种连续型概率分布,用于描述多个随机变量之间的关系。
假设有一个d维随机向量x=(x₁, x₂, ..., x d)服从多元正态分布x(x, Σ),其中x是一个d维均值向量,Σ是一个d×d的协方差矩阵。
多元正态分布的概率密度函数可以表示为:x(x; x, Σ)=(2x)⁻ᵈ/²|Σ|⁻¹/²exp[−½(x−x)ᵀΣ⁻¹(x−x)] 其中x表示向量的转置,|Σ|表示协方差矩阵Σ的行列式。
多元正态分布具有许多重要的性质,例如,线性组合仍然服从多元正态分布,条件分布也是多元正态分布等。
这些性质使得多元正态分布在实际问题中的应用非常广泛。
二、贝叶斯估计法的原理贝叶斯估计法是一种基于贝叶斯定理的参数估计方法,通过引入先验分布和后验分布来估计未知参数的分布。
其基本思想是将参数视为随机变量,并基于已有数据对参数进行推断。
在多元正态分布中,我们通常需要估计的参数包括均值向量x和协方差矩阵Σ。
贝叶斯估计法假设这些参数服从先验分布,然后通过观测数据来更新先验分布,得到后验分布,进而对参数进行估计。
具体而言,假设我们有n个样本x₁, x₂, ..., x n,那么贝叶斯估计法的步骤如下:1.选择参数的先验分布。
通常先验分布会根据领域知识或经验进行选择,常见的先验分布包括共轭先验、非信息先验等。
2.根据先验分布和样本数据,计算参数的后验分布。
根据贝叶斯定理,后验分布可以表示为:x(x, Σ | x₁, x₂, ..., xn)∝x(x₁, x₂, ..., x n|x, Σ)x(x, Σ)其中x(x₁, x₂, ..., x n|x, Σ)表示给定参数x和Σ的情况下样本数据的似然函数。
第三讲多元正态分布
二元正态分布的密度曲面图
2 2 下图是当 1 2 , 0.75 时二元正态分布的钟形密
度曲面图。
多元正态分布性质
(1)、若 X ( X1, X 2 , X p )T ~ N p (, ), 是对角阵, 则 X1, X 2 , X p 相互独立。 (2)、若 X ~ N p (, ) , A 为 s p 阶常数阵,则
•有些现象服从多元正态分布
•许多多元统计分布的抽样分布是近似正态分布
23
多元正态分布
它是一元正态分布的推广
X ~ N p ,
设随机向量 X ( x1 , x2 ,, x p )' 服从P维正态分布,则有,
f ( X ) 2
p 2
1 2
1 1 exp x x 2
12
随机向量的数字特性
随机向量的均值
E ( X 1 ) 1 E( X 2 ) 2 E( X ) E( X ) p p
性质
E ( AX ) AE( X ) E ( AXB) AE( X ) B E ( AX BY ) AE( X ) BE(Y )
15
性质
1)若(x1,x2,…,xp)’ 和(y1,y2,…,yq)’不相关。则
cov(x1 , y1 ) cov(x1 , y2 ) cov(x1 , yq ) cov(x2 , y1 ) cov(x2 , y2 ) cov(x2 , yq ) 0 cov(x , y ) cov(x , y ) cov(x , y ) p 1 p 2 p q
(1) q
多元正态分布
(
xi1
x1)(xip
x
p
)
n (xi2 x1)(xi1 x2)
i1
(
xip
xp )(xi1
x1)
(xi2 x2)2
(xip xp )(x2 x2)
(xi2 x1)(xip xp )
(xip xp )2
组内组间水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响如果原假设成立
第一章多元正态分布及其参数估计
多元正态分布的重要性: (1)多元统计分析中很多重要的理论和方法都是直接或间接
地建立在正态分布 基础上的,许多统计量的极限分布往往和 正态分布有关。 (2)许多实际问题涉及的随机向量服从多元正态分布或近似 服从正态分布。因此多元正态分布是多元统计分析的基础。
一、多元正态分布的定义 定义1:若p维随机向量 X (X1,X p) 的密度函数为:
(1 0,2 0, 1)
为X1和X2的相关系数。
当 0 时X1与X2不相关,对于正态分布来说不相关和独立
等价。因为:
X1, X 2
第1章多元正态分布的参数估计(精)
第一章 多元正态分布的参数估计一、填空题1.设X 、Y 为两个随机向量,对一切的u 、v ,有)v (p )u (p )uv (p =,则称X 与Y 相互独立。
2.多元分析处理的数据一般都属于 横截面 数据。
3.多元正态向量()'=X X X p ,,1 的协方差阵∑是 对角阵 ,则X 的各分量是相互独立的随机变量。
4.一个p 元函数()p x x x f ,,,21 能作为p R 中某个随机向量的密度函数的主要条 件是 p 'p 21p 21R )x ,,x ,x (,0)x ,,x ,x (f ∈∀≥和1dx dx dx )x ,,x ,x (f p 21-p 21-=⎰⎰+∞∞+∞∞ 。
5.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= ),n (W k1i i p ∑∑=。
二、判断题1.多元分布函数()x F 是单调不减函数,而且是右连续的。
正确2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布。
错误3.μ是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B 正确4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。
正确5.一般情况下,对任何随机向量()'=X X X p ,,1 ,协差阵∑是对称阵,也是正定阵。
错误6.多元正态向量()'=X X X p ,,1 的任意线性变换仍然服从多元正态分布。
正确7.多元正态分布的任何边缘分布为正态分布,反之一样。
错误8.多元样本中,不同样品之间的观测值一定是相互独立的。
正确9.多元正态总体参数均值μ的估计量X 具有无偏性、有效性和一致性。
第二章 多元正态分布及参数的估计
27
北大数学学院
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
y BxB
0 0 1
1 0 0
100 110
1 2 0
003 100
0 0 1
1 0 0
1 0 1
2 0 1
003 100
2
北大数学学院
第二章 多元正态分布及参数的估计
目录
§2.1 随机向量 §2.2 多元正态分布的定义与
基本性质
§2.3 条件分布和独立性 §2.4 随机矩阵的正态分布 §2.5 多元正态分布的参数估计
3
北大数学学院
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
例2.1.1
f (x1, x2
()X1,X212)的e联 12合( x12密 x22度) [1函数x为1 x2e
1 2
(
x12
x22
)
]
我们从后面将给出的正态随机向量的联合密
度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出:
本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)要求大家 自已复习.
三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则
E(AX)=A·E(X) E(AXB)=A·E(X)·B
6
厦门大学《应用多元统计分析》第02章_多元正态分布的参数估计
•
设 X ~ F ( x)F (x1, x2 , , xp ) , 若 存 在 一 个 非 负 函 数
f (x1, x2 ,, x p ) , 使 得 对 一 切 x (x1, x2, , xp ) Rp 有
x1
xp
F(x)F(x1, x2, , xp )
f (t1,t2, ,t p )dt1 dt p (2.3)
矩阵。
• 定义 2.7 设 X ( X1, X 2 , , X p ) ,Y (Y1,Y2 , ,Yp ) , 称 D( X )E( X E( X ))( X E( X ))
Cov( X1, X1) Cov( X 2, X1)
Cov( X p , X1)
Cov( X1, X 2 ) Cov( X 2, X 2 )
阵为
Cov( X ,Y )E( X E( X ))(Y E(Y ))
Cov( X1,Y1)
Cov(
X
2
,
Y1
)
Cov( X1,Y2 ) Cov( X 2,Y2 )
•
Cov( X p ,Y1) Cov( X p ,Y2 )
当 X = Y 时,即为 D( X ) 。
Cov( X1,Yp )
应用多元统计分析课后习题答案高惠璇第二章部分习题解答
22 14
12
2 2
22
2 1
21 212
65
2
4211
22 22
22 14
12
4 3
13
第二章 多元正态分布及参数的估计
故X=(X1,X2)′为二元正态随机向量.且
E(
X
)
4 3
,
D(
X
)
1 1
21
解三:两次配方法
(1)第一次配方: 2x12 2x1x2 x22 (x1 x2 )2 x12
2
]
g( y1, y2 )
设函数 g( y1, y2 ) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
Y
YY12
~
N2
7 4
,
I2
(4) 由于
X
X X
1 2
0 1
11
Y1 Y2
CY
0 1
11 74
34
,
0 1
11
I
2
0 1
11
1 1
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ,Σ),Σ>0,X的密度函数记为 f(x;μ,Σ).(1)任给a>0,试证明概率密度等高面
多元统计分析多元正态分布
因子分析可以用于数据的降维、分类和解释变量之间的复杂关系。
03
04
多元正态分布的聚类分析
K-means聚类
一种无监督的机器学习算法,通过迭代过程将数据划分为K个集群,使得每个数据点与其所在集群的中心点之间的平方距离之和最小。
总结词
K-means聚类是一种常见的聚类分析方法,其基本思想是:通过迭代过程将数据划分为K个集群,使得每个数据点与其所在集群的中心点之间的平方距离之和最小。具体步骤包括:随机选择K个中心点,将每个数据点分配给最近的中心点所在的集群,然后重新计算每个集群的中心点,并重复此过程直到中心点不再发生变化或达到预设的迭代次数。
定义与性质
性质
定义
均值向量
描述多元正态分布的期望值,表示分布的中心位置。
协方差矩阵
描述多元正态分布的各变量之间的方差和协方差,表示分布的散布程度和变量间的相关性。
维数
描述多元正态分布中随机变量的个数,不同维数的多元正态分布具有不同的形态和性质。
多元正态分布的参数
统计分析
多元正态分布在统计分析中广泛应用,如回归分析、因子分析、聚类分析等。
KNN分类
06
多元正态分布的可视化技术
总结词
主成分分析(PCA)是一种常用的多元统计分析方法,用于降维和数据可视化。
总结词
PCA可视化能够揭示数据中的模式和趋势,帮助我们理解数据的内在结构和关系。
详细描述
通过将数据投影到主成分上,我们可以将高维数据可视化为一组二维或三维图形,从而更直观地观察数据的分布、中心、离群值和聚类等特征。
逻辑回归分类
VS
支持向量机(SVM)是一种有监督学习算法,用于解决分类问题。在多元正态分布的背景下,支持向量机通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。
第二章多元正态分布的参数估计
第二章多元正态分布的参数估计多元正态分布是在多个随机变量之间存在相互依赖关系时使用的一种概率分布。
它在许多统计分析和机器学习领域中都有广泛的应用。
在实际应用中,我们通常需要使用样本数据对多元正态分布的参数进行估计。
多元正态分布由均值向量和协方差矩阵两个参数来描述。
均值向量表示各个随机变量的平均值,而协方差矩阵表示各个随机变量之间的协方差。
参数估计的目标就是通过样本数据来估计这两个参数。
首先,我们需要收集一个具有充分样本量的数据集。
对于一个具有n个样本的多元正态分布,我们可以将样本数据表示为一个n行d列的矩阵X,其中每一行是一个d维的样本向量。
其中n表示样本数量,d表示随机变量的个数。
接下来,我们可以根据样本数据来估计多元正态分布的均值向量和协方差矩阵。
1.均值向量的估计:多元正态分布的均值向量可以通过样本均值向量来估计。
样本均值向量的计算公式如下:μ = (1/n) * Σxi其中μ是估计得到的均值向量,xi表示样本矩阵X的第i行。
2.协方差矩阵的估计:多元正态分布的协方差矩阵可以通过样本协方差矩阵来估计。
Σ=(1/(n-1))*(X-μ)'*(X-μ)其中Σ是估计得到的协方差矩阵,X是样本矩阵,μ是估计得到的均值向量。
需要注意的是,在计算协方差矩阵时,我们使用的是样本协方差矩阵而不是总体协方差矩阵。
这是因为样本协方差矩阵能更好地反映样本数据的真实情况。
以上就是多元正态分布的参数估计方法。
通过样本数据,我们可以使用样本均值向量和样本协方差矩阵来估计多元正态分布的参数。
这些参数估计能为我们提供关于多元正态分布的统计属性和特征,进而用于进一步的分析和应用。
应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
X
X X
(1) (2)
~
N2 p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立.
(2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
解 :(1) 令
Y
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
4
第二章 多元正态分布及参数的估计
(2) 因
Y
X1 X1
第十二讲多元正态分布的参数估计与检验
H 0:? ? ? 0,H 1:? ? ? 0
令F
?
n (n ? p
p)( X
?
? 0 )T S ?1 ( X
?
? 0 ),
则可以证
明当 H 0 成立时,即 ? ? ? 0时,F ~ F ( p, n ? p)
而当
H
不成立时,
0
F
有偏大的趋势。因此,对
给定的显著性水平 ? ,当
F
?
n (n ?
?
?
)T V
?1(X
?
?
)?? ?
则称随机向量 X 为 p维正态随机向量,其中 ?
称为均值向量,V 为协方差矩阵(协差阵),且
V ? 0. 对于一般情形V ? 0, 仍可定义多维正
态随机向量, 记为X ~ N p(? ,V )。 当 V ? 0时,
X有前面的密度表示,而当 |V |? 0 时, X 的分 布是退化的正态分布。
且相互独立, 故 ? 2 ? 分布的定义知 Y TY ~ ? 2 ( p).
二、参数的估计
在此给出多元正态分布的参数 ? 和V的估
计。为简单计,仅考虑 V ? 0 的情形。 设 X 1, X 2 ,? , X n (n ? p) 是来自多元正态总
体 N p (? ,V )的简单样本,令
? X
?
1 n
Y ~N p ( A? ? b, AVA T ).
(4) X 为 p 维正态随机向量的充要条件为对任
一 p维向量c, cT X 是一维正态随机变量。
(5)
设X
?
(
X
T 1
,
X
T 2
)T
为多维正态随机向量,
【教学课件】第一章 多元正态分布
k个变量是两两不相关,另一方面,
在尽可能保持原有信息的基础上,使
得 k尽可能的小。
.
16
定理3.2.1 设 的 p 个顺序特征值为
1 p 0, 1 2 p ,
其中
j
(
j
1,2,,
p)是对应于
的标准
j
正交特征向量,则 I , X 的第 j 个
主成分 Yj 表达式的系数向量 a j j ,
X)(Xi
X)( 样 本 协 方 差 )
.
11
或检验统计量
F n p T2 p(n1)
当F
F
(
p,n
p)时 , 拒 绝 H 0
注T : 2p n (n p 1 )F (p ,np )
.
12
两个多元正态总体均值成组比较
设X1, X2,, Xn1和Y1,Y2,,Yn2分别取
自于p维正态总体Np (1, )和Np (2 , )
即Y j
j X ,且D(Yj )
。
j
.
17
贡献率
p
定义3.2.1 称j j 为主成分Yj的 j1
k
p
贡献率,称j j 为前k个主成分
j1
j1
Y1,Y2 ,,Yk的累积贡献率。
.
18
原始变量与主成分的相关系数
因子负荷量
(Xi,Yj)
coX vi,Yj
Va XirVaYjr
j ij
1
.
20
第四章 因子分析
正交因子模型
因子模型的参数估计
因子旋转
因子得分
应用实例
.
21
有关记号
多元统计分析 课后部分习题答案 第二章
x1 y2 (2)第二次配方.由于 x2 y1 y2
14
第二章
2 1 2 2 2 1 2 1 2 2
多元正态分布及参数的估计
2 x x 2 x1 x2 22 x1 14 x2 65 y y 22 y2 14( y1 y2 ) 65 y 14 y1 49 y 8 y2 16 ( y1 7) ( y2 4)
1 1 2 2 f ( x1 , x2 ) exp (2 x1 x2 2 x1 x2 22 x1 14 x2 65) 2 2
试求X的均值和协方差阵. 解一:求边缘分布及Cov(X1,X2)=σ12
1 f1 ( x1 ) f (x1 , x2 )dx2 e 2
1 1 2 1 1 1 因ΣY CC 1 1 1 1 1 0 2 1 1 1 1 2 2(1 ) 1 1 0 2(1 ) 1 1
O 2(1 2 ) O 2(1 2 )
由定理2.3.1可知X(1) +X(2)和X(1) -X(2) 相 互独立.
7
第二章
(2) 因
(1) ( 2)
多元正态分布及参数的估计
(1) ( 2) 2(1 2 ) O X X Y (1) ( 2) ~ N 2 p (1) ( 2) , O 2(1 2 ) X X
4 1 1 E ( X ) , D( X ) 3 1 2
1 1 1 ( x )] 且f ( x1 , x2 ) exp[ ( x ) 2 2 故X=(X1,X2)′为二元正态分布.
多元正态分布的定义与性质详解演示文稿
2. 风险函数
由于损失函数L与决策函数d(x)有关,而决策函数 是随机变量,因而损失函数也为随机变量。这样损失函 数与样本X的取值有关,因而需要构造一个更好的指标 来衡量决策函数的好坏. 这就是风险函数.
定义4.2 设样本空间和分布族分别为和F * ,决
策空间为,损失函数为L( , d ),决策函数为d( X ),
R( , d1) R( , d2 ),
且存在一些使得不等式严格成立,即R( , d1)
R(
,
d
2
),则称决策函数d1一致优于d
,如果等式
2
成立即R( , d1)=R(ห้องสมุดไป่ตู้, d2 ), ,则二者等价.
定义4.4 设D {d( X )}是一切定义在样本空间 上取值于决策空间上的决策函数的全体,若存 在一个决策函数d*( X )(d*( X ) D), 使得对任意一 个d( X ) D,都有
例4(p118) 设总体X服从正态分布N (, 2 ), 2为已知,
( X1, X2 , , Xn)T取自X的样本,试求参数点估计
和区间估计的决策函数.
解 根据上一章的结论,参数点估计的决策函数为
d( x)
x
1 n
n i 1
xi
参数区间估计的决策函数为
d ( x) [ x u
2
n
,
x
u
2
] n
决策 对每个统计问题的具体回答,就称为一个决策.
例如,参数的点估计,每一个估计值就是一个决策. 决策空间 一个统计问题中,可能选取得全部决策 组成的集合为决策空间,记为 R.
例如,设总体分布服从N (, 2 ), 对未知参数进行
估计,由于在(, )中取值,因而其决策空
第二章-多元正态分布的参数估计
11 Σ 21
31
12 22 32
13 23 33
Σ11
Σ
21
Σ12
22
则
X (1)
X1
X
2
~
N2 ( μ(1) ,
Σ11)
其中
μ (1)
1
2
Σ11
11 21
12
22
在此我们应该注意到,如果 X ( X1, X 2 ,L , X p ) 服从 p
X
X1 X2
,
μ
1 2
,
Σ
2 1
1 2
1 2
2 2
易见,ρ是X1和 X2的相关系数。当|ρ|<1时,可得X的
概率密度函数为:
f
x1,
x2
1
21 2
1
2
exp 2
1
1 2
x1 1 1
2
2
x1 1 1
x2 2 2
x2 2 2
2
二元正态分布的密度曲面图
X3
1
aμ
(0,1,
0)
2
2
3
11 12 aΣa (0,1, 0) 21 22
31 32
13 0
23
1
22
33 0
(2) 其中
AX
1
0
0 0
0 1
X X X
1 2 3
X1
X
3
~
N
(Aμ
,AΣA
)
Aμ
1 0
0 0
0 1
1 2 3
5 1
11
则X2和X3不独立,X1和(X2,X3)独立。
第2章多元正态分布的参数估计
第2章多元正态分布的参数估计多元正态分布是统计学中常用的一种概率分布模型,在实际应用中经常被用来描述多个变量之间的关系。
在参数估计的过程中,我们通常需要估计多元正态分布的均值向量和协方差矩阵。
本章将介绍多元正态分布的参数估计方法。
多元正态分布的均值向量和协方差矩阵分别用μ和Σ表示。
在参数估计的过程中,我们可以使用样本的均值向量和协方差矩阵来估计总体的均值向量和协方差矩阵。
首先,我们需要收集一个包含n个样本的数据集,其中每个样本有d 个变量。
我们将这个数据集表示为X=[x1, x2, ..., xn],其中xi是一个d维向量。
均值向量的估计可以通过计算样本向量的平均值来得到。
均值向量的估计公式为:μ̂ = (1/n) * Σxi其中,μ̂是均值向量的估计值。
协方差矩阵的估计可以通过计算样本向量之间的协方差来得到。
协方差矩阵的估计公式为:Σ̂ = (1/n) * Σ(xi - μ̂)(xi - μ̂)T其中,Σ̂是协方差矩阵的估计值。
这里需要注意的是,协方差矩阵是一个对称正定矩阵,因此需要对估计值进行修正,以保证估计出的协方差矩阵是对称正定的。
修正的常用方法有Ledoit-Wolf修正和修正。
在进行参数估计之后,我们还可以计算估计值的标准误差(standard error),以衡量估计值的可靠性。
在多元正态分布的参数估计中,均值向量估计值的标准误差为:SE(μ̂) = (√((2/n)(d(d+1)/2))) * (√(Σi î))协方差矩阵估计值的标准误差为:SE(Σ̂) = (√((1/n)(d(d+1)/2))) * (√(Σi î(Σj ĵ -Σi ĵ^2)))其中,Σi î表示协方差矩阵估计值的第i个对角元素,Σi ĵ表示协方差矩阵估计值的第i行第j列元素。
参数估计的过程中,还需要考虑到样本量的大小。
当样本量较大时,参数估计的精度会提高;而当样本量较小时,参数估计的精度会降低。
多元正态分布的参数估计
多元正态分布的参数估计参数估计是根据观测到的随机样本,通过对概率模型的估计得到未知参数的估计值。
对于多元正态分布,参数估计的问题包括均值向量和协方差矩阵的估计。
对于多元正态分布的均值向量的估计,最简单的估计是样本均值向量,即将每个变量的样本观测值求平均。
记有n个样本观测,每个观测有p个变量,那么第j个变量的样本均值为:(1/n) * Σ(xij),其中i=1到n,j=1到p其中xij表示第i个样本的第j个变量的观测值。
用样本均值向量估计多元正态分布的均值向量是一种无偏估计,即其期望等于真实均值向量。
对于多元正态分布的协方差矩阵的估计,可以使用样本协方差矩阵。
样本协方差矩阵是由各变量之间的样本协方差组成的矩阵。
第i行第j列的元素是第i个变量和第j个变量的样本协方差。
样本协方差的计算公式为:(1/(n-1)) * Σ((xi - μ)(xi - μ)T)其中xi表示第i个样本向量,μ表示均值向量,T表示转置。
样本协方差矩阵的估计是协方差矩阵的无偏估计。
然而,如果样本量较小的话,样本协方差矩阵可能不可逆,这会导致参数估计的困难。
为了克服这个问题,可以使用正则化方法,如Ledoit-Wolf估计方法或迹范数估计方法。
Ledoit-Wolf估计方法通过引入一个收缩系数对样本协方差矩阵进行正则化,并与单位矩阵进行加权平均。
这个收缩系数可以根据样本大小来选择,以平衡估计的方差和偏差。
迹范数估计方法通过对样本协方差矩阵的特征值进行调整,使其满足一定的迹范数条件。
迹范数是将矩阵的特征值求和得到的值,可以作为矩阵的一种度量。
除了样本均值向量和样本协方差矩阵,还有其他的参数估计方法,如极大似然估计、贝叶斯估计等。
这些方法可以根据不同的假设条件和观测数据来选择合适的参数估计方法。
在实际应用中,参数估计对于多元正态分布是非常重要的。
可以利用参数估计来推断各个变量之间的相关性和平均值,并进行统计推断、预测和建模分析。
因此,对参数估计的准确性和稳定性的研究是非常有价值的课题。
多元正态分布及参数估计
2019/11/6
应用统计方法
22
2、性质 1) 设为常数,则 E (a X )a(E X ); 2)设 A,B,C 分别为常数矩阵,则
E ( A C X ) A E ( X B ) B C
3)设 X 1,X 2, ,X n为 n个同阶矩阵,则
E ( X 1 X 2 X n ) E X 1 E X 2 E X n
对一切 x、y成立,则称 x和 y相互独立。
2、设 x和 y是两个连续随机向量, x和 y相互
独立,当且仅当
f(x|y)fx(x)或 F (x ,y ) F x(x )F y(y )
对一切
2019/11/6
x
、y
成立。 应用统计方法
19
3、设 x1,x2, ,xn是 n个随机向量,若
F ( x 1 , x 2 , , x m ) F 1 ( x 1 ) F 2 ( x 2 ) F m ( x m ) mn
2019/11/6
应用统计方法
23
二、协方差矩阵
1、定义:设 x (x 1 ,x2, ,xp)和 y (y 1 ,y2, ,y q)分 别为 p维和 q维随机向量,则其协方差矩阵为
Exx2 1 E E ((xx1 2))y1E(y1)
y2E(y2) yqE(yq)
降的右连续函数;
2019/11/6
应用统计方法
4
② 分布函数的取值范围为[0,1],即
0F(a1,a2, ,ap)1
③ 分布函数当变量取值为无穷大时,函数值收敛到1,即
F(,, ,)1
2019/11/6
应用统计方法
5
二、两个常用的离散多元分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 2 若 X ( X1, X2 , X3 ) ~ N3 ( μ, Σ )
其中,
1
2
3
11 12 21 22
31 32
设
a (0,1,0)
,
A
1 0
0 0
0 1
,则
13
23
33
( 1) 其中
X1
aX
(0,1,
0)
X
2
X2
~
N (aμ, aΣa)
l
X
间的最大相关系数称为
2
X1和X2
间的复(或多重)相关系数(multiple correlation
coefficient),记作ρ1∙2,⋯,p, 它度量了一个变量X1与一组
变量X2, ⋯,Xp间的相关程度。
可推导出
12,
,p
max l0
X1, lX 2
σ21
Σ
σ 1
22 21
11
1
k p
, k
Σ
Σ11 Σ 21
Σ12 k
Σ22
p
k
k pk
称
Σ11
2
Σ11
Σ12
Σ 1 22
Σ21
为给定X2时X1的偏协方差矩
阵。记 Σ11 2 ij k1, , p ,称 ij k1, , p 为偏协方差,
它是剔除了 X2 Xk1, , X p 的(线性)影响之后,
Xi和Xj之间的协方差。
给定X2时Xi 和Xj的偏相关系数(partial correlation
coefficient)定义为: ij k1, , p
ij k1, , p ii k1, , p jj k1,
,
,p
其中 Σ11 2 ij k1, , p 。
1 i, j k
ρij∙k+1,⋯,p度量了剔除Xk+1, ⋯,Xp的(线性)影响之后,Xi
X
4
4
41
42
43
44
则(i)
x1 1 1
2
2
x1 1 1
x2 2 2
x2 2 2
2
c2
;
(ii)
X1 X4
~
N2
1 4
,
11 41
14 44
;
(iii)
X4 X1
~
N
3
4 1
44
,
14
41 11
互不相关和相互独立是等价的。
(7)设X~N p (μ, Σ), Σ>0,则
X μ Σ 1 X μ ~ 2 p
例4 设X~N3(μ,Σ),其中
3 0 0
Σ
0 0
5 1
11
则X2和X3不独立,X1和(X2,X3)独立。
(8)设X~N p (μ, Σ), Σ>0,作如下剖分
X
X1 X2
一、X 的抽样分布
1.正态总体
设X~Np (μ, Σ), Σ>0 ,X1,X2, ⋯,Xn是从总体X中抽取的 一个样本,则
X
N
p
μ,
1 n
Σ
2.非正态总体(中心极限定理) 设X1,X2, ⋯,Xn是来自总体X的一个样本,μ和Σ存在,当 n很大且n相对于p也很大时,上式近似地成立。
设样本资料可用矩阵表示为
X(a) ( X a1, X a2 , , X ap ) , a 1, 2, , n 。
(1) 样本均值向量定义为
μˆ
X
1 n
n a 1
X (a)
(X1, X2,
, X p )
(2.10)
其中
X11 X 21
1
n
n a1
X(a)
1 n
X
12
X1
p
X
22
X
2
p
(3)样本协差阵定义为
V p p
1 n
S
1 n
n
(X(a)
a1
X )( X(a)
X n1
X
n2
X
np
X11 X 21
1
X12
X 22
n
X1
p
X2p
X n1
X
n2
X X
1 2
X
np
X p
(2)样本离差阵定义为
n
S p p ( X (a) X )( X (a) X ) (sij ) pp a 1 (2.11)
这里,
k p
, k
μ
μ1 μ2
k p
, k
Σ
Σ11 Σ 21
Σ12 k
Σ22
p
k
k pk
则给定X2时X1的条件分布为 N k μ12 , Σ112 ,其中
μ12
μ1
Σ12
Σ
1 22
x2 μ2
Σ112
Σ11
Σ12
Σ 1 22
Σ 21
μ1·2和Σ11·2分别是条件数学期望和条件协方差矩阵,
31
12 22 32
13 23 33
Σ11
Σ
21
Σ12
22
则
X (1)
X1
X
2
~
N2 ( μ(1) ,
Σ11)
其中
μ (1)
1
2
Σ11
11 21
12
22
在此我们应该注意到,如果 X ( X1, X 2 , , X p ) 服从 p
元正态分布,则它的每个分量必服从一元正态分布,因此
'
1 2
t
't
)
,
AA'.
(2)设X是一个p维随机向量,则X服从多元正态分布,
当且仅当它的任何线性函数 aX 均服从一元正态分布。
➢ 性质(2)常可用来证明随机向量服从多元正态分布。
(3)设X~N p (μ, Σ),Y=CX+b其中C为r×p 常数矩阵,
则
Y ~ Nr Cμ b,CΣC
➢该性质表明,(多元)正态变量的任何线性变换仍为
f ( x1, x2 ) 2 e 2 (1 sin x1 sin x2 ) x1, x2 R
§2.2 多元正态分布的性质
正态变量的线性组合未必就是正态变量。
证明: 反证法。若命题 “一元正态变量X1,X2, ⋯,Xn 的一切线性组合一定是一元正态变量” 成立,则由 性质(2)知,X1,X2, ⋯,Xn的联合分布必为多元正态 分布,于是命题“一元正态变量的联合分布必为多元 正态分布”成立,从而矛盾。
X
X1 X2
,
μ
1 2
,
Σ
2 1
1 2
1 2
2 2
易见,ρ是X1和 X2的相关系数。当|ρ|<1时,可得X的
概率密度函数为:
f
x1,
x2
1
21 2
1
2
exp 2
1
1 2
x1 1 1
2
2
x1 1 1
x2 2 2
x2 2 2
2
二元正态分布的密度曲面图
2
例4 随机变量X1,⋯,Xp的任一线性函数F=l1X1+⋯+ lp Xp
与X1,⋯,Xp的复相关系数为1。
证明:
F 1,
,p
max a0
F , a1X1
F , l1X1 lp X p 1
F 1, , p 1
ap X p
二、偏相关系数
将X, Σ(>0)剖分如下:
X
X1 X2
把某个分量的 n 个样品值作成直方图,如果断定不呈正态 分布,则就可以断定随机向量 X ( X1, X 2 , , X p ) 也不
可能服从 p 元正态分布。
例3 设X~N4(μ, Σ),这里
X1
1
11 12 13 14
X
X2
,
μ
2
,
Σ
21
22
23
24
X3
3
31 32 33 34
(由10000个二维随机数生成)
4
0
0
2
0
y
-2
|ρ|越-2 大,长0 轴越长2 ,短轴越短-2,即椭0 圆越扁2 平;4
x
x
|ρ|越小,长轴越短 ,短轴越长,即椭圆越圆;
|ρ|=1时椭圆退化为一条线段;|ρ|=0时即为圆。
§2.2 多元正态分布的性质
(1)多元正态分布的特征函数是:
X
(t
)
exp(it
n
( X (a) X )( X (a) X )
a 1
n
X a1 Xa2
X1 X2
(
X
a1
X1,
X
a2
X
2
,
a1
X ap X p
, X ap X p )
n
( X a1 X1)2
( X a2 X 2 )( X a1 X1)
a1
( X a1 X1)( X a2 X 2 ) (Xa2 X2)2
下图是当
2 1
2 2
,
0.75 时二元正态分布的钟形密
度曲面图。
二元正态分布等高线
等高(椭圆)线:
x1 1 1
2
2
x1 1 1
x2 2 2
x2 2 2
2
c2
上述等高线上的密度值
f
x1, x2
1
21 2
1
2
exp
2