2016年中考数学第二轮专题复习专题九
中考数学第二轮复习专题(14个)
中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。
2).方程x 2+y 2+4x -2y+5=0的解是 。
3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。
例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。
例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。
4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。
(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。
中考数学 函数图象与性质的探究题
y=1x 的图象交点的个数.
答图3
专题九 函数图象与性质的探究题
由图象可知,函数 y=x+x 2 与函数 y=x1 的图象只有一个交点, ∴方程 x+x 2=1x 的根的个数为 1.
专题九 函数图象与性质的探究题
3.探究函数性质时,我们经历了列表、描点、连线画出函数图象,
观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画
专题九 函数图象与性质的探究题
(3)类比延伸:利用题中的平面直角坐标系,在不解方程的情况下,
判断方程 x+x 2=1x 的根的个数. 解:由题意可知,反比例函数的图象也遵循
“上加下减”的平移规律.
如答图3,画出函数y=x+2 的图象,则方 x
程 x+2=1 的根的个数即函数y=x+2 与函数
xx
x
图1 明 明 发 现 , 随 着 点 C 位 置 的 改 变 , △ ODE 的 三 边 都 随 之 改 变 , 所 以,明明决定以BC的长度为自变量,设BC的长为x cm,借助学习函数 的经验来研究△ODE三边的变化规律,请你将下面的探究过程补充完 整.
专题九 函数图象与性质的探究题
(1)根据点C在OB上的不同位置,画出相应的图形,测量线段OD, DE的长度,得到下表中的几组对应值.
解:①3,2.②描点见答图1. ③图象见答图1.
答图 1
专题九 函数图象与性质的探究题
(3)结合画出的函数图象,解决问题:当图1中小正方形的边长约为 ___0_._5_6___dm时,盒子的体积最大,最大值约为____3_.0_3___dm3(结果精 确到0.01).
解:【提示】结合画出的函数图象,看最高点(0.56,3.03). 当答图1中小正方形的边长约为0.56 dm时,盒子的体积最大,最大 值约为3.03 dm3.
(河南省)聚焦中考数学复习课件:专题9-综合型问题(含答案)
则D的 y=172a,
坐标是(172a,172a),OA 的垂直平分线的解析式是 x=32a,则 C 的坐标是(32a,32a),则 k=
94a2.∵以 CD 为边的正方形的面积为27,∴2(172a-32a)2=27,则 a2=2(2015·钦州)如图,在平面直角坐标系中,以点 B(0,8)为端点的射线 BG∥x 轴,点 A 是射线 BG 上一个动点(点 A 与点 B 不重合),在射线 AG 上取 AD=OB,作线段 AD 的垂直平分线,垂足为 E,且与 x 轴交于点 F,过点 A 作 AC⊥OA,交直线 EF 于点 C, 连接 OC,CD.设点 A 的横坐标为 t.
点拨:作∠DAE=∠BAD 交 BC 于 E,作 DF⊥AE 交 AE 于 F,作 AG⊥BC 交 BC 于 G.∵∠C+∠BAD=∠DAC,∴∠CAE=∠ACB,∴AE=EC,∵tan∠BAD=47,∴设 DF= 4x,则 AF=7x,在 Rt△ADF 中,AD2=DF2+AF2,即( 65)2=(4x)2+(7x)2,解得 x1=-1(不 合题意,舍去),x2=1,∴DF=4,AF=7,设 EF=y,则 CE=7+y,则 DE=6-y,在 Rt△ DEF 中,DE2=DF2+EF2,即(6-y)2=42+y2,解得 y=53,∴DE=6-y=133,AE=236,∴设 DG=z,则 EG=133-z,则( 65)2-z2=(236)2-(133-z)2,解得 z=1,∴CG=12,在 Rt△ADG 中,AG= AD2-DG2=8,在 Rt△ACG 中,AC= AG2+CG2=4 13.故答案为:4 13
5.(2015·乌鲁木齐)如图,在直角坐标系 xOy 中,点 A,B 分别在 x 轴和 y 轴,OOAB= 34.∠AOB 的角平分线与 OA 的垂直平分线交于点 C,与 AB 交于点 D,反比例函数 y=kx的图 象过点 C.当以 CD 为边的正方形的面积为27时,k 的值是( D )
2016年中考数学第二轮专题复习
2016年中考数学第二轮复习 专题三规律探究性问题阜宁县东沟初级中学肖为丽【复习目标】 培养学生在一定条件下,探索发现有关数学对象所具有的规律性或不变性的能力。
要求学 生通过阅读、观察、分析、猜想来探索规律,体会从特殊到一般”的数学思想方法。
【教学过程】引入用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 _____ 块,第n 个图形中需要黑色瓷砖 _________ 块(用含n 的代数式表示)举一反三2、观察图给出的四个点阵,s表示每个点阵中的、专题解读 三、典型例题类型一、数与式变化规律例1、观察一组数:1 , 3 , 5 , 7,…,它们是按一定规律排列的, 2 4 6 8那么这一组数的第 n 个数是举一反三1、请你观察一组数的构成规律: 1, 2, 5, 10, 17, 26,…,根据这个规律,第 n 个数应为类型二、点阵变化规律例2、如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为请你探究出前n 行的点数和所满足的规律,若前n 行点数和为930,则n=(2, 4, 6,…,2n ,…, )•:翼A . 29B . 30C . 31D . 32点的个数,按照图形中的点的个数变化规律,猜想第 n 个点类型五、与坐标有关规律阵中的点的个数s 为( )A .3n — 2B .3n — 1C .4n+1D .4n — 3类型三、循环排列规律例3、观察下列图形,并判断照此规律从左向右第2016个图形是()举一反三3、下列一串梅花图案是按一定规律排列的,请你仔细观察,由® 0……在前2017个梅花图案中,共有类型四、图形生长变化规律“I ”图案.例4、如图,四边形 ABCD 中,AC = a , BD = b ,且AC 丄BD ,顺次连接四边形 ABCD 各边中点,得到四边形A i B 1C 1D 1,再顺次连接四边形 四边形A n B n C n D n .下列结论正确的有① 四边形A 2B 2C 2D 2是矩形;② 四边形A 4B 4C 4D 4是菱形;ab③ 四边形A n B n C n D n 的面积是一荷•2n 1A 1B 1C 1D 1各边中点,得到四边形 A 2B 2C 2D 2…,如此进行下去,得到)A 、①B 、②C 、②③D 、①②③D .4例 5、如图,已知 A l (1, 0), A (1 , 1), A 3 (- 1, 1) , A 4 (- 1,— 1), A 5 ( 2,— 1),….则点 A 2012 的坐标为 ______ .四、链接中考(2015山东聊城)如图,在x 轴正半轴上依次截取OA 1=A 1A 2= A 2A 3=・・・=A n -1A n (n 为正整数),过2 、y =- (x > 0)交于点 P 1、P 2、P 3、…、P n ,连 xP 1A 1、P 2A 2、…、P n -1A n -1作垂线段,构成的一一)五、课堂小结巩固练习1、 观察分析下列数据,寻找规律: 0, 3 , 6 , 3, 2 3 , 15 , 3-2,…那么第10个数据应是.2、 观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左上角D .第503个正方形的右下角n — 1 n 1 1 A . B .- C .— D.- n n + 12n 4r (it//雁ill Zrrts点A 1、A 2、A 3、…、A n 分别作x 轴的垂线,与反比例函数 接 P 1P 2、P 2P 3、…、P n -1Pn ,过点 P 2、P 3、…、P n 分别向 系列直角三角形(见图中阴影部分)的面积和是3、图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此 为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图 2),依此规律继续拼下去(如图3),…,则第n 个图形的周长是()5、如图,已知 A ABC 的周长为1,连接A ABC 三边的中点构成第二个三角形,再连接第二个三角形三边的方向是( )7、下列是三种化合物的结构式及分子式,请按其规律,写出后一种化合物的分子式为H1H1Tff H1 1円一—-C ——H 日一 -C- -C — -cs \11 1HH u6龟58、用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第( 3)个图形中2n ?n+1D 、 2n+24、如图是一组有规律的图案,第 1个图案由4个基础图形组成,第 2个图案由7个基础图形组成,中点构成第三个三角形, …,依此类推,则第10个三角形的周长为(106、探索规律:根据下图中箭头指向的规律,2004 到 2005 再到 2006, 箭头的圉14n第n (n 是正整数)个图案中由 _________ 个基础图形组成.AB、C D有黑色瓷砖 _____ 块,第n 个图形中需要黑色瓷砖 _________ 块(用含n 的代数式表示)至下依次为1 , 5, 13 , 25…,按照上述规律排上去,那么虚线框中的第 7个数是 ________10、图中的圆与正方形各边都相切,设这个圆的面积为 S i ;图2中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的面积之和为 S 2 ;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为 S 3,…依此规律,当正方形边长为2时,第n 个图中所有圆的面积之11、如图所示,直线 y = x + 1与y 轴相交于点A 1,以OA 1为边作正方形 OA 1B 1C 1,记作第一个正方形;然 后延长C 1B 1与直线y = x + 1相交于点A 2,再以C 1A 2为边作正方形 C 1A 2B 2C 2,记作第二个正方形;同样延 长C 2B 2与直线y = X + 1相交于点A 3,再以C 2A 3为边作正方形 C 2A 3B 3C 3,记作第三个正方形; …,依此类 推,则第n 个正方形的边长为 _________________________________.9、已知一列数: 1,— 2, 3,— 4, 5, - 6, 7, …将这列数排成下列形式:中间用虚线围的一列数,从上和S n =。
2016年中考数学二轮复习讲(原卷版):专题2.8+综合问题
第二篇 热点难点篇 专题08 综合问题(讲案)一讲考点——考点梳理1、数学综合题的重点都放在高中继续学习必须的函数问题上。
此类题在有起点不高、但要求较全面的特点。
常常以数与形、代数计算与几何证明、相似三角形和四边形的判定与性质、画图分析与列方程求解、勾股定理与函数、圆和三角比相结合的综合性试题。
2、考查初中数学中最重要的数学思想方法如数形结合的思想、分类讨论的思想和几何运动变化等数学思想。
3、融入了动态几何的变和不变,对给定的图形(或其一部分)施行平移、翻折和旋转的位置变化,然后在新的图形中分析有关图形之间的关系。
4、考查学生的实验、猜想、证明的探索能力,分析问题和解决问题的能力。
二讲题型——题型解析(一)函数型综合题例1、(2015·辽宁营口)如图,边长为n 的正方形OABC 的边OA 、OC 分别在x 轴和y 轴的正半轴上,A 1、A 2、A 3、…、A n-1为OA 的n 等分点,B 1、B 2、B 3、…、B n-1为CB 的n 等分点,连接A 1B 1、A 2B 2、A 3B 3、…、A n-1B n-1,分别交21y x n=(0x ≥)于点C 1、C 2、C 3、…、C n-1,当252525258B C C A =时,则n= .例2、(2015·辽宁沈阳)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,点B 的坐标为(60,0),OA =AB ,∠OAB =90°,OC =50.点P 是线段OB 上的一个动点(点P 不与点O 、B 重合),过点P 与y 轴平行的直线l 交边OA 或边AB 于点Q ,交边OC 或边BC 于点R ,设点P 横坐标为t ,线段QR 的长度为m .已知t =40时,直线l 恰好经过点C . (1)求点A 和点C 的坐标;(2)当0<t <30时,求m 关于t 的函数关系式; (3)当m =35时,请直接写出t 的值;(4)直线l 上有一点M ,当∠PMB +∠POC =90°,且△PMB 的周长为60时,请直接写出满足条件的点M 的坐标.例3、(2015·辽宁沈阳)如图,在平面直角坐标系中,抛物线224233y x x =--+与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A ,抛物线的顶点为D .(1)填空:点A 的坐标为( , ),点B 的坐标为( , ),点C 的坐标为( , ),点D 的坐标为( , ); (2)点P 是线段BC 上的动点(点P 不与点B 、C 重合)①过点P 作x 轴的垂线交抛物线于点E ,若PE =PC ,求点E 的坐标;②在①的条件下,点F 是坐标轴上的点,且点F 到EA 和ED 的距离相等,请直接写出线段EF 的长;③若点Q 是线段AB 上的动点(点Q 不与点A 、B 重合),点R 是线段AC 上的动点(点R 不与点A 、C 重合),请直接写出△PQR 周长的最小值.(二)几何型综合题例4、(2015·辽宁盘锦)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是()A. B. C. D.例5、(2015·黑龙江绥化)如图,在矩形ABCD中,AB=10 , BC=5 . 若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为()A. 10B. 8C. 53D. 6例6、.( 2015·湖北孝感)如图,四边形ABCD是矩形纸片,2AB.对折矩形纸片ABCD,使AD 与BC 重合,折痕为EF ;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕BM 与EF 相交于点Q ;再次展平,连接BN ,MN ,延长MN 交BC 于点G .有如下结论:① ︒=∠60ABN ; ②1=AM ; ③33=QN ;④△BMG 是等边三角形; ⑤P 为线段BM 上一动点,H 是BN 的中点,则PH PN +的最小值是3.其中正确结论的序号是 ☆ .例7、(2015·辽宁葫芦岛)在△ABC 中,AB =AC ,点F 是BC 延长线上一点,以CF 为边,作菱形CDEF ,使菱形CDEF 与点A 在BC 的同侧,连接BE ,点G 是BE 的中点,连接AG 、DG . (1)如图①,当∠BAC =∠DCF =90°时,直接写出AG 与DG 的位置和数量关系; (2)如图②,当∠BAC =∠DCF =60°时,试探究AG 与DG 的位置和数量关系, (3)当∠BAC =∠DCF =α时,直接写出AG 与DG 的数量关系.)16(题第三讲方法——方法点睛1、解题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
2016年中考数学专题复习
2016年中考数学专题复习第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数, 722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数 (a >0) (a <0) 0 (a=0)【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
专题九(动点型问题)
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练
③如图②, 当EO=EF时, 过点E作EH⊥y轴 于点H ,在△AOE和△BEF中, ∵∠EAO=∠FBE, EO=EF, ∠AOE=∠BEF, ∴△AOE≌△BEF(AAS)。∴BE=AO=2。 ∵EH⊥OB ,∴∠EHB=90°。 ∴∠AOB=∠EHB。 ∴EH∥AO。 ∴∠BEH=∠BAO=45°。
4
全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练
中考典例剖析 (二)以双动点为载体,探求结论开放性问题 4 例轴8,.O如A为图y,轴在建矩立形平A面B直CD角中坐,标AO系=3,,设taDn、∠EA分CB别= 是3.线以段OA为C、坐O标C上原的点动,点OC,为它x 们同时出发,点D以每秒3个单位的速度从点A向点C运动,点E以每秒1个单 位的速度从点C向点O运动.设运动时间为t(秒) (1)求直线AC的解析式; (2)用含t的代数式表示点D的坐标; (3)在t为何值时,△ODE为直角三角形? (4)在什么条件下,以Rt△ODE的三个顶点能确定一条对称轴平行于y轴的 抛物线?并请选择一种情况,求出所确定的抛物线的解析式.
全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练 全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练 全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练 全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练 全效学习中考学练测
全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练
中考数学 专题九 综合型问题复习1
专题九 综合型问题
综合题,各地中考常常作为压轴题进行考查,这类题目难度大, 考查知识多,解这类习题的关键就是善于利用几何图形的有关性质 和代数的有关知识,并注意挖掘题目中的一些隐含条件,以达到解 题目的.
近几年中考试题中的综合题大多以代数几何综合题的形式出现, 其解题关键是借助几何直观解题,运用方程、函数的思想解题,灵 活运用数形结合,由形导数,以数促形,综合运用代数和几何知识 解题.值得注意的是,近年中考几何综合计算的呈现形式多样,如 折叠类型、探究型、开放型、运动型、情境型等,背景鲜活,具有 实用性和创造性,在考查考生计算能力的同时,考查考生的阅读理 解能力、动手操作能力、抽象思维能力、建模能力,力求引导考生 将数学知识运用到实际生活中去.
点拨::设 OA=3a,则 OB=4a,设直线 AB 的解析式是 y=kx+b,则
根据题意得:3ba=k+4ab,=0,解得:kb= =4-a43,,则直线 AB 的解析式是 y=-43x
+4a,直线 OD 是∠AOB 的平分线,则 OD 的解析式是 y=x.根据题
意得:yy= =x-,43x+4a,解得:yx==117722aa,,则 D 的坐标是(172a,172a),OA
解 : (1)AE = CE. 理 由 : 连 接 AE , DE , ∵ ∠ ABC = 90° , ∴∠ABE=90,∴∠ADE=∠ABE=90°.∵AD=DC,∴AE= CE
(2)连接 AE,ED,∵∠ABE=90°,∴AE 是⊙O 的直径.∵EF 是⊙O 的 切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°.又∵∠DAE=∠EAF,
CF=
aCD(a>0)时,sin∠CAB= aa++22.提示:∵CF=aCD,AD=DC,∴AF= AD+DC+CF=(a+2)CD,∴AE2=DC·(a+2)DC=(a+2)DC2,∴AE=
初中数学中考复习备考方案
初中数学中考复习备考方案初中数学中考复习备考方案1数学中考复习,将围绕数学考纲要求,大致分三轮进行:第一轮复习:系统复习。
时间:3月至4月中旬。
复习内容:按代数、几何、统计与概率三个版块进行。
巩固基础知识,理顺知识点、考点,强化选择填空题的准确率。
系统复习期间,交叉进行系统测试,培养学生知识的系统性,构建初中数学的知识体系。
第二轮复习:专题复习。
时间4月中旬至5月底。
复习内容:根据黄石中考考点,按有理数计算、化简求值、解方程组、概率计算、圆的证明与计算、解直角三角形、函数应用题、直线型综合、二次函数综合九个专题进行,巩固提高学生解答题得分率。
专题复习期间,交叉进行系统知识测试,检测学生综合运用知识的能力,提高准确率。
第三轮复习;中考模拟训练。
时间:6月前三周。
复习内容:模拟测试为主,对学生掌握的知识查缺补漏。
训练学生考试的适应能力。
主要复习资料:1、系统复习教辅资料2、往年全国各地中考试卷3、自编专题练习、测试试卷初中数学中考复习备考方案2一、复习措施1.认真钻研教材、课标要求、吃透考试大纲,确定复习重点。
确定复习重点可从以下几方面考虑:⑴根据教材的教学要求提出四层次的基本要求:了解、理解、掌握和熟练掌握。
这是确定复习重点的依据和标准。
⑴熟识每一个知识点在初中数学教材中的地位、作用;⑴熟悉近年来试题型类型,以及考试改革的情况。
2.正确分析学生的知识状况、和近期的思想状况。
(1)是对平时教学中掌握的情况进行定性分析;(2)每天对学生的作业及时批改,复习过程侧重评讲(3)是对每周所复习的知识进行测试,及时发现问题和解决问题。
(4),将学生很好的分类,牢牢的抓在手中。
(5)备课组成员每人出好两套模拟试题,优化及共享资源。
3.根据知识重点、学生的知识状况及总复习时间制定比较具体详细可行的复习计划。
二、切实抓好“双基”的训练。
初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。
2016年中考数学(第02期)大题狂做系列 专题02(含解析)
2016年中考数学大题狂做系列 专题021.是一轮二轮备考中,学生自我测试,查缺补漏的利器;2.资料由一线名校名师按照实用高效的目标设计,限时限量,精选优选,是一套不可或缺的备考精品,欢迎下载使用!中考大题天天练 备考成绩步步高!数学部分说明:根据15年中考试题的数量,一共分为3期,大题狂做每期为2套。
由10道解答题组成,时间为50分钟。
1.(2015内江,第17题,7分)计算:0212(2015)()2sin 60122π----+-+.【答案】5【解析】考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.2.(2015眉山,第20题,6分)计算:1121222-+÷+--x x x x x x . 【答案】1x . 【解析】试题分析:将每个分式的分子、分母分解因式后将除法变为乘法后约分即可.试题解析:原式=2(1)(1)1(1)(1)x x x x x x +--⋅-+=1x. 考点:分式的乘除法.3.(2015南充,第19题,8分)如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE .求证:(1)△AEF ≌△CEB ;(2)AF =2CD .【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】考点:全等三角形的判定与性质;等腰三角形的性质.4.(2015宜宾,第21题,8分)如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为1)米,求供水站M分别到小区A、B的距离.(结果可保留根号)【答案】供水站M到小区A的距离是600米,到小区B的距离是【解析】试题分析:过点M作MN⊥AB于N,设MN=x米,由∠BAM=30°,∠ABM=45°,AB=1)米,得到AN,BN,根据AN+BN=AB,建立方程,即可求出MA与MB的长.试题解析:过点M作MN⊥AB于N,设MN=x米.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,∴MA=2MN=2x,AN MN=.在Rt△AMN中,∵∠BNM=90°,∠MBN=45°,∴BN=MN=x,+=1),∴x=300,∴MA=2x=600,MB.∵AN+BN=AB,∴xMB=M到小区A的距离是600米,到小区B的距离是米.考点:解直角三角形的应用-方向角问题.5.(2015绵阳,第23题,11分)南海地质勘探队在南沙群岛的一小岛发现很有价值的A,B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总费用为y元,若使用甲货船x艘,请写出y和x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.【答案】(1)y=100x+1200(30-x).(2)3种方案,甲货船25艘,乙货船5艘,最低费用为31000元.【解析】考点:一次函数的应用;一元一次不等式组的应用;方案型;最值问题.6.(2015攀枝花,第18题,6分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.【答案】(1)50;(2)2250;(3)16.【解析】(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P =212=16. 考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.7.(2015遂宁,第21题,9分)阅读下列材料,并用相关的思想方法解决问题. 计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++; (2)解方程22(51)(57)7x x x x ++++=.【答案】(1)12015;(2)10x =,25x =-. 【解析】考点:换元法解一元二次方程;有理数的混合运算;换元法;阅读型;综合题.8.(2015雅安,第22题,10分)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象相交于点A (1,5)和点B ,与y 轴相交于点C (0,6).(1)求一次函数和反比例函数的解析式;(2)现有一直线l 与直线y kx b =+平行,且与反比例函数m y x=的图象在第一象限有且只有一个交点,求直线l 的函数解析式.【答案】(1)6y x =-+,5y x=;(2)y x =-+ 【解析】试题解析:(1)∵点A (1,5)在m y x =的图象上,∴51m =,解得:m =5,∴反比例函数的解析式为:5y x =,∵一次函数y kx b =+的图象经过A (1,5)和点C (0,6),∴56k b b +=⎧⎨=⎩,解得:16k b =-⎧⎨=⎩,∴一次函数的解析式为:6y x =-+;(2)设直线l 的函数解析式为:y x t =-+,∵反比例函数m y x=的图象在第一象限有且只有一个交点,∴5y x y x t⎧=⎪⎨⎪=-+⎩,化简得:250x tx -+=,∴△=2200t -=,解得:t=±t=-不合题意,∴直线l的函数解析式为:y x =-+ 考点:反比例函数与一次函数的交点问题.9.(2015资阳,第22题,9分)如图,在△ABC 中,BC 是以AB 为直径的⊙O 的切线,且⊙O 与AC 相交于点D ,E 为BC 的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)连接AE ,若∠C =45°,求sin ∠CAE 的值.【答案】(1)证明见试题解析;(2【解析】试题解析:(1)连接OD ,BD ,∴OD =OB ,∴∠ODB =∠OBD ,∵AB 是直径,∴∠ADB =90°,∴∠CDB =90°,∵E 为BC 的中点,∴DE =BE ,∴∠EDB =∠EBD ,∴∠ODB +∠EDB =∠OBD +∠EBD ,即∠EDO =∠EBO ,∵BC 是以AB 为直径的⊙O 的切线,∴AB ⊥BC ,∴∠EBO =90°,∴∠ODE =90°,∴DE 是⊙O 的切线;(2)作EF ⊥CD 于F ,设EF =x ,∵∠C =45°,∴△CEF 、△ABC 都是等腰直角三角形,∴CF =EF =x ,∴BE =CE ,∴AB =BC =,在RT △ABE 中,AE ,∴sin ∠CAE =EF AE .考点:切线的判定;勾股定理;解直角三角形;综合题;压轴题.10.(2015自贡,第23题,12分)如图,已知抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =-,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.【答案】(1)3+=x y ,322+--=x x y ;(2)M (-1,2);(3)P 的坐标为(-1,-2)或(-1,4) 或(-1,2173+) 或(-1,2173-). 【解析】(2)设直线BC 与对称轴1x =-的交点为M ,则此时MA+MC 的值最小.把1x =-代入直线3+=x y 得y 的值,即可求出点M 坐标;(3)设P (﹣1,t ),又因为B (﹣3,0),C (0,3),所以可得2BC =18,2PB =22(13)t -++=24t +,2PC =22(1)(3)t -+-=2610t t -+,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.试题解析:(1)依题意得:⎪⎪⎩⎪⎪⎨⎧==++-=-`3012c c b a a b ,解之得:⎪⎩⎪⎨⎧=-=-=321c b a ,∴抛物线解析式为322+--=x x y ,∵对称轴为x =-1,且抛物线经过A (1,0),∴B (-3,0),把B (-3,0)、C (0,3)分别代入直线y mx n =+,得:⎩⎨⎧==+-303n n m ,解之得:⎩⎨⎧==31n m ,∴直线y mx n =+的解析式为3+=x y ;(3)设P (-1,t ),又B (-3,0),C (0,3),∴2BC =18,2PB =22(13)t -++=24t +,2PC =22(1)(3)t -+-=2610t t -+, ①若点B 为直角顶点,则222BC PB PC +=,即:18+18+24t +=2610t t -+,解之得:2t =-, ②若点C 为直角顶点,则222BC PC PB +=,即:18+2610t t -+=24t +,解之得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:24t ++2610t t -+=18,解之得:1t =2173+,2t =2173-, 综上所述P 的坐标为(-1,-2)或(-1,4) 或(-1,2173+) 或(-1,2173-).考点:二次函数综合题;最值问题;动点型;压轴题;分类讨论.。
2016年中考数学总复习第二轮专题复习_《填空题》复习题
2016年中考数学总复习第二轮专题复习******《填空题》复习题*****1.如图,矩形ABCD 沿着直线BD 折叠,使点C 落在C 1处,BC 1交AD 于点E,AD=10,AB=5,则DE 的长为 .2.如右图,正方形纸片ABCD 的边长为3,点E,F 分别在边BC,CD 上,将AB,AD 分别沿AE,AF 折叠,点B,D 恰好都落在点G 处.已知BE=1,则EF 的长为 .3.如图,AB=4,射线BM 和AB 互相垂直,点D 是线段AB 上的一个动点,点E 在射线BM 上,DB BE 21=,作EF ⊥DE 并截取EF=DE,连结AF 并延长交射线BM 于点C.设x BE =,y BC =,则y 关于x 的函数解析式是4.如图,现有两个边长为1:2的正方形ABCD 和A /B /C /D /,已知点B 、C 、B /、C /在同一条直线上,通过截割、平移、旋转的方法,拼出两个相似比为1:3的三角形. (1)求=''''D C B A ABCD S S 正方形正方形 ;(2)借助原图拼图,并简要说明过程:5.有5个相同的小正方形组成的十字形纸片,现需要将该纸片剪拼成一个与它面积相等的大正方形的纸片,如果限定裁剪线为两条,能否做到 (填能或不能)若能:请确定裁剪线的位置;若不能:请简要说明理由.6.如图,△ABC 绕点A 顺时针旋转450得到△C B A ''若∠BAC=900,AB=AC=2,则图中阴影部分的面积等于 .7.如图,若双曲线xk y =与边长为5的等边△AOB 的边OA 、AB 分别相交于C 、D 两点,且OC=3BD,则实数k 的值为______8.如图,在扇形OAB 中,∠AOB=1100,半径OA=18,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在»AB 上的点D 处,折痕交OA 于点C,则»AD 的长等于9.如图,Rt △ABC 中,∠C=900,∠ABC=300,AB=6.点D 在AB 边上, (1)若D 为AB 三等分点,则CD= ;(2)点E 是BC 边上一点(不与点B 、C 重合),若DA=DE,则AD 的取值范围是___________________.10.小敏在数学课外小组活动中遇到这样一个问题: 如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=,CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °. 请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.11.(1)如图1,在四边形ABCD 中,AB=BC,∠ABC=800,∠A+∠C=1800,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转400,与CD 边交于点N ,请你补全图形,找出MN ,AM,CN 的数量关系 ;(2)如图2,正方形ABCD 的边长是1,点M ,N 分别在AD,CD 上,若△DMN 的周长为2,则△MBN 的面积最小值为 .12.已知)2()41()1-(321y C y B y A ,、,、,三点在1322++-=x x y 图象上,比较321y y y 、、的大小: (用“<”连接)13.如图,已知半径为4cm 的圆O,在折线A-B-C-D 的A 点处,AB//CD,AB=BC=CD=100cm,∠ABC=∠BCD=1200.(1)此圆O 的面积为 ;(2)将圆O 沿着A-B-C-D 方向滚动,到D 点结束,在这个滚动过程中,圆心O 运动的路程长为 .(保留π)15.如图,已知在平面直角坐标系中,有菱形OABC,点A 的坐标为(10,0),对角线OB 、AC 相交于点D,双曲线)0(>=x xky 经过点D,交BC 的延长线于点E ,且160=⋅AC OB ,有下列四个结论:①双曲线的解析式为)0(40>=x xy ; ②点E 的坐标是(5,8);③54sin =∠COA ; ④512=+OB AC .其中正确的结论有 (请写出全部正确的序号)16.如图,菱形纸片ABCD 中,∠A=600,(1)若菱形边长AB=3,则菱形ABCD 面积为 ;(2)将纸片折叠,点A 、D 分别落在A /、D /处,且A /D /经过B,EF 为折痕,当D /F ⊥CD 时,CF FD的值为 .17.如图,点P 在双曲线xy 6=上,以P 为圆心的⊙P 与两坐标轴都相切,E 为y 轴负半轴上的一点,PF ⊥PE 交x 轴于点F,则OF-OE 的值是__________18.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线)0(>=x xky 经过斜边OA 的中点C,与另一直角边交于点D.若S △OCD =9,则S △OBD 的值为 .19.如图,已知矩形ABCD 和边AB 上的点E,请按要求画图.(1)如图1,当点E 为AB 的中点时,请仅用无刻度的直尺在AD 上找出一点P(不同于点F),使得PE ⊥PC;(2)如图2,当点E 为AB 上任意一点时,请仅用无刻度的直尺和圆规在AD 上找出一点Q ,使得QE ⊥QC.请简要写出画图步骤:20.如图,在Rt △AOB 中,OA=8,OB=4,⊙O 的半径为2,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点).(1)三角形OAB 的边AB= ;(2)在P 点运动过程中,当切线PQ 的最小时,最小值为 .21.已知二次函数y =ax 2+bx +c 与自变量x 的部分对应值如下表:现给出下列说法:①该函数开口向上;②该函数图象的对称轴为过点(1,0)且平行于y 轴的直线; ③当x=4时,y<0.④方程ax 2+bx +c=0的正根在3与4之间. 其中正确的说法为 .(只需写出序号)22.如图1是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC 抽象为线段,有OA=OB=OC,且∠AOB=1200,折线NG-GH-HE-EF 表示楼梯,GH,EF 是水平线,NG,HE 是铅垂线,半径相等的小轮子圆A,圆B 与楼梯两边都相切,且AO//GH. (1)如图1①,若点H 在线段OB 上,则OHBH 的值是 ;(2)如果一级楼梯的高度cm HE )238(+=,点H 到线段OB 的距离d 满足条件cm d 3≤,那么小轮子半径r 的取值范围是23.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是)33,7(-,则D 点的坐标是 .24.如图4×5网格中,每个小正方形的边长为1,在图中找两个格点D 和E ,使∠ABE=∠ACD=900,则四边形BCDE 的面积为 .25.如图,点A 、B 、C 、D 在O e 上,点O 在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD= °.26.正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数)0(8>=x xy 的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数)0(8>=x xy 的图象上,顶点A 2在x 轴的正半轴上, 已知△OA 1B 1是等腰直角三角形.(1)点P 1坐标为 ;(2)求点P 3的坐标________27.如图,直线l :31y x =+交x 轴于点A ,交y 轴于点B ,点A 1、A 2、A 3在x 轴上,点B 1、B 2、B 3在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3均为等边三角形.则:(1)∠BAO 的度数是 ;(2)201520152014C B A ∆的周长是 . 28.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率. 图①表示甲、乙合作完成的工作量y (件)与工作时间t (时)的函数图象.图②分别表示甲完成的工作量y 甲(件)、乙完成的工作量y 乙(件)与工作时间t (时)的函数图象.则甲每小时完成 件,乙提高工作效率后,再工作 个小时与甲完成的工作量相等.29.如图,正方形ABCD 中,M 、N 分别为BC 、CD 的中点,连结AM 、AC 交BN 与E 、F,则EF:FN 的值是 .30.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC=2,则sin B 的值是 .31.如图,点A,B 在反比例函数4y x=()0x >的图像上,过点A 、B 作x 轴的垂线,垂足分别为C 、D ,延长线段AB 交x 轴于点E ,若OC=CD=DE,则△AOE 的面积为 .32.在平面直角坐标系xOy 中,点P(m ,0)为x 轴正半轴上的一点,过点P 做x 轴的垂线,分别交抛物线y=-x 2+2x 和y=-x 2+3x 于点M ,N .(1)当21=m 时,_____MNPM =;(2)如果点P 不在这两条抛物线中的任何一条上.当四条线段OP ,PM ,PN ,MN 中恰好有三条线段相等时,则m 的值为 .33.如图,一段抛物线:)30)(3(≤≤--=x x x y ,记为C1,它与x 轴交于点O,A1; 将C1绕点A1旋转1800得C2,交x 轴于点A2; 将C2绕点A2旋转1800得C3,交x 轴于点A3; 如此进行下去,…….若P (7,m )在第3段抛物线C 3上,则m=_________.若P(2015,m)在第672段抛物线C上,则m=_________.672。
【12份】2016年中考数学总复习专题提升测试及答案
【12份】2016年中考数学总复习专题提升测试及答案目录专题提升(一)数形结合与实数的运算 (1)专题提升(二)代数式的化简与求值 (4)专题提升(三)列方程(组)解应用题 (8)专题提升(四)一次函数图象与性质的综合应用 (11)专题提升(五)反比例函数图象与性质的综合应用 (19)专题提升(六)二次函数图象与性质的综合应用 (26)专题提升(七)统计与概率的综合运用 (35)专题提升(八)以特殊三角形为背景的计算与证明 (45)专题提升(九)以特殊四边形为背景的计算与证明 (50)专题提升(十)与圆有关的计算与证明 (60)专题提升(十一)巧用图形变换进行计算与证明 (65)专题提升(十二)以圆为背景的相似三角形的计算与证明 (70)专题提升(一)数形结合与实数的运算1.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是(D)(第1题图)A. 2.5B. 2 2C. 3D. 5 2.计算8³12+(2)0的结果为(C ) A. 2+ 2 B. 2+1 C. 3 D. 53.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是(C )(第3题图)A. m >0B. n <0C. mn <0D. m -n >04.定义一种运算☆,其规则为a ☆b =1a +1b ,根据这个规则,计算2☆3的值是(A )A. 56B. 15C. 5D. 65.如图,数轴上的A ,B ,C ,D 四点中,与表示数-3的点最接近的是(B )(第5题图)A. 点AB. 点BC. 点CD. 点D6.实数a ,b 在数轴上对应点的位置如图所示,则|a |>|b |(填“>”“<”或“=”).(第6题图)7.计算:|3-23|+(π-2016)0+⎝⎛⎭⎫12-18.已知a -1+|a +b +1|=0,则a b =__1__.9.按下面程序计算:输入x =3,则输出的答案是__12__.10.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的几个结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ;④若a ⊗b =0,则a =0.其中正确结论的序号是__①③__(在横线上填上你认为所有正确结论的序号). 11.设S 1=1+112+122,S 2=1+122+132,S 3=1+132+142,…,S n =1+1n 2+1(n +1)2.设S =S 1+S 2+…+S n ,则S =n 2+2nn +1(用含n 的代数式表示,其中n 为正整数).12.下面两个多位数1248624……,6248624……都是按照如下方法得到的:将第一位数字乘2,若积为一位数,将其写在第2位上;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是495.13.有一数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是8,第2次输出的结果是4……则第2015次输出的结果是__4__.(第13题图)解:由已知可得:第1次输出的结果为8,第2次输出的结果为4,第3次输出的结果为2,第4次输出的结果为1,第5次输出的结果为4……所以规律为从第2次开始每三次一个循环,(2015-1)÷3=671……1,所以第2015次输出的结果是4.14.计算:(π-5)0+38+(-1)2015-3tan60°. 解:原式=1+2-1-3³3=-1.15.计算:(3-2)0+⎝⎛⎭⎫13-1+4cos 30°-|3-27|.解:原式=1+3+4³32-23=4. 16.我们曾经研究过n ³n 的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0³1+1³2+2³3+…+(n —1)³n =13n (n +1)(n -1)时,我们可以这样做:(1)观察并猜想:12+22=(1+0)³1+(1+1)³2=1+0³1+2+1³2=(1+2)+(0³1+1³2) 12+22+32=(1+0)³1+(1+1)³2+(1+2)³3 =1+0³1+2+1³2+3+2³3 =(1+2+3)+(0³1+1³2+2³3)12+22+32+42=(1+0)³1+(1+1)³2+(1+2)³3+________________ =1+0³1+2+1³2+3+2³3+________________________________________________________________________=(1+2+3+4)+(__________________________) ……(2)归纳结论:12+22+32+…+n 2=(1+0)³1+(1+1)³2+(1+2)³3+…+(1+n -1)³n =1+0³1+2+1³2+3+2³3+…+n +(n -1)³n=(________________)+(______________) =__________________+________________=16³__________________ (3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是______________.解:(1)依次填:(1+3)³4;4+3³4;0³1+1³2+2³3+3³4.(2)依次填:1+2+3+…+n ;0³1+1³2+2³3++…+(n -1)³n ;12n (n +1);13n (n+1)(n—1);n(n+1)(2n+1).(3)338350.17.如图,点A,B在数轴上分别表示有理数a,b,且A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a-b|.(第17题图)回答下列问题:(1)在数轴上表示2和5的两点之间的距离是__3__,在数轴上表示1和-3的两点之间的距离是__4__.(2)在数轴上表示x和-5的两点之间的距离是|x+5|.(3)若x表示一个有理数,则|x-1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.解:(1)数轴上表示2和5的两点之间的距离是|5-2|=3,数轴上表示1和-3的两点之间的距离是|1-(-3)|=4.(2)根据绝对值的定义知:数轴上表示x和-5的两点之间的距离是|x-(-5)|=|x+5|或|-5-x|=|x+5|.(3)根据绝对值的定义知:|x-1|+|x+3|可表示点x到表示1与-3的两点的距离之和.根据几何意义分析可知:当x在-3与1之间时,|x-1|+|x+3|有最小值4.18.我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2²i=(-1)·i=-i,i4=(i2)2=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n²i=(i4)n²i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.求i+i2+i3+i4+…+i2015+i2016的值.解:由题意得,i1=i,i2=-1,i3=i2·i=(-1)·i=-i,i4=(i2)2=(-1)2=1,i5=i4·i =i,i6=i5·i=-1,故可发现4次一循环,一个循环内的和为0.∵2016÷4=504,即2016是4的整数倍.∴i+i2+i3+i4+…+i2015+i2016=0.专题提升(二)代数式的化简与求值1.下列计算正确的是(C)A. -3x2y²5x2y=2x2yB. -2x2y3²2x3y=-2x5y4C. 35x3y2÷(5x2y)=7xyD. (-2x-y)(2x+y)=4x2-y22.下列各式的变形中,正确的是(A)A. (-x-y)(-x+y)=x2-y2B. 1x -x =1-x xC. x 2-4x +3=(x -2)2+1D. x ÷(x 2+x )=1x+13.已知1a -1b =13,则2aba -b 的值是(D )A. 16B. -16 C. 6 D. -64.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为(A )(第4题图)A. 7B. -7C. 2a -15D. 无法确定5.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为(C ) A. 9 B. ±3 C. 3 D. 56.化简⎝⎛⎭⎫2x x +2-x x -2÷xx 2-4的结果为x -6.7.已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2016+y 2016=__2__.8.若1(2n -1)(2n +1)=a 2n -1+b 2n +1,对任意自然数n 都成立,则a =__12__,b=__12__;计算:m =11³3+13³5+15³7+…+119³21=__1021__.解:∵1(2n -1)(2n +1)=12(2n -1)-12(2n +1)=a 2n -1+b 2n +1,∴a =12,b =12.∴m =11³3+13³5+15³7+…+119³21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=12-142=1021. 9.已知|6-3m |+(n -5)2=3m -6-(m -3)n 2,则m -n __-2__.10.观察下列等式:第一个等式:a 1=31³2³22=11³2-12³22; 第二个等式:a 2=42³3³23=12³22-13³23;第三个等式:a 3=53³4³24=13³23-14³24; 第四个等式:a 4=64³5³25=14³24-15³25. 按上述规律,回答以下问题:(1)用含n 的代数式表示第n 个等式: a n =n +2n (n +1)·2n 1=1n ·2n -1(n +1)·2n +1; (2)计算:a 1+a 2+a 3+…+a 20.解:(1)用含n 的代数式表示第n 个等式: a n =n +2n (n +1)·2n +1=1n ³2n -1(n +1)·2(n +1).(2)a 1+a 2+a 3+…+a 20=11³2-12³22+12³22-13³23+13³23-14³24+…+120³220-121³221=12-121³221. 11.先化简,再求值:(a +b )(a -b )+b (a +2b )-b 2,其中a =1,b =-2. 解:原式=a 2-b 2+ab +2b 2-b 2=a 2+ab .当a =1,b =-2时,原式=12+1³(-2)=1-2=-1.12.先化简,再求值:m 2-2m +1m 2-1÷⎝ ⎛⎭⎪⎫m -1-m -1m +1,其中m = 3. 解:原式=m 2-2m +1m 2-1÷(m -1)(m +1)-(m -1)m +1=(m -1)2(m -1)(m +1)·m +1m 2-1-m +1 =m -1m +1·m +1m 2-m =m -1m 2-m =m -1m (m -1)=1m. 当m =3时,原式=1m =13=33.13.先化简,再求值:⎝⎛⎭⎫1x -1-1x +1÷x +2x 2-1,其中x 满足2x -6=0.解:原式=x +1-x +1(x -1)(x +1)÷x +2x 2-1=2(x -1)(x +1)·(x +1)(x -1)x +2=2x +2. ∵2x -6=0,∴x =3. 当x =3时,原式=2x +2=25.14.已知A =x 2+2x +1x 2-1-xx -1.(1)化简A .(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0且x 为整数时,求A 的值.解:(1)A =x 2+2x +1x 2-1-x x -1=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1.(2)解x -1≥0,得x ≥1;解x -3<0,得x <3,∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2. 当x =1时,分式无意义. 当x =2时,A =12-1=1.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab ,其中a ,b 满足a +1+|b -3|=0.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2=⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b 2=ba -b·a (a -b )b 2=ab. ∵a +1+|b -3|=0, ∴a +1=0,b -3=0, 解得a =-1,b = 3.当a =-1,b =3时,原式=-13=-33.16.为鼓励学生努力学习,某校拿出了b 元资金作为奖学金,其中一部分作为奖学金发给了n 个学生.奖金分配方案如下:首先将n 个学生按学习成绩、思想道德评价(假设n 个学生的综合评分均不相同)从高到低,由1到n 排序,第1位学生得奖金bn 元,然后再将余额除以n 发给第2位学生,按此方法将奖金逐一发给了n 个学生.(1)假设第k 个学生得到的奖金为a k 元(1≤k ≤n ),试用k ,n 和b 表示a k .(2)比较a k 和a k +1的大小(k =1,2,…,n -1),并解释此结果就奖学金设置原则的合理性.解:(1)a k =b n⎝⎛⎭⎫1-1n k -1.(2)∵a k =b n ⎝⎛⎭⎫1-1n k -1,a k +1=b n ⎝⎛⎭⎫1-1n k,∴a k +1=⎝⎛⎭⎫1-1n a k <a k , 说明排名越靠前获得的奖学金越多.专题提升(三) 列方程(组)解应用题一、一元一次方程的应用1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是(A ) A. 100元 B. 90元 C. 810元 D. 819元2.某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问:一月份每辆电动车的售价是多少元?解:设一月份每辆电动车的售价是x 元,根据题意,得 100x +12200=(x -80)³100³(1+10%), 解得x =2100.答:一月份每辆电动车的售价是2100元.3.现有甲、乙两种金属的合金10 kg ,如果加入甲种金属若干,那么重新熔炼后的合金中乙种金属占2份,甲种金属占3份,如果加入的甲种金属是第一次加入的2倍,那么重新熔炼后的合金中乙种金属占3份,甲种金属占7份,第一次加入的甲种金属多少?原来这块合金中甲种金属的百分比是多少?解:设原来这块合金中甲种金属的百分比是x ,则甲种金属有10x (kg),乙种金属有(10-10x )kg ,根据题意,得(10-10x )÷310-10=2³[(10-10x )÷25-10],解得x =40%.则(10-10³40%)÷25-10=5(kg).答:第一次加入的甲种金属是5 kg ,原来这块合金中甲种金属的百分比是40%. 二、二元一次方程(组)的应用4.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(B )A. 7,6,1,4B. 6,4,1,7C. 4,6,1,7D. 1,6,4,7 5某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付1118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?解:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得①⎩⎪⎨⎪⎧12x +10y =1118,8(x +y )=816,解得⎩⎪⎨⎪⎧x =49,y =53. ②⎩⎪⎨⎪⎧12x +10y =1118,10(x +y )=816,解得⎩⎪⎨⎪⎧x =151,y =-69.4.(不合题意舍去) 答:七年级(1)班有49人、七年级(2)班有53人. (2)七年级(1)班节省的费用为(12-8)³49=196(元), 七年级(2)班节省的费用为(10-8)³53=106(元).6.由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?解:设1辆大车一次运货x 吨,1辆小车一次运货y 吨.根据题意,得⎩⎪⎨⎪⎧3x +4y =22,2x +6y =23,解得⎩⎪⎨⎪⎧x =4,y =2.5.则x +y =4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨. 三、一元二次方程的应用7.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是(B )A. (1+x )2=1110B. (1+x )2=109C. 1+2x =1110D. 1+2x =1098.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m 的住房墙,另外三边用25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m 2?(第8题图)解:设矩形猪舍垂直于住房墙一边长为x (m),则平行于墙的一边的长为(25-2x +1)m ,由题意,得x (25-2x +1)=80,化简,得x 2-13x +40=0,解得x 1=5,x 2=8.当x =5时,26-2x =16>12(舍去); 当x =8时,26-2x =10<12,答:所围矩形猪舍的长为10 m 、宽为8 m.9.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率.(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 解:(1)设增长率为x ,根据题意,得 2500(1+x )2=3025,解得x =0.1=10%或x =-2.1(不合题意,舍去). 答:这两年投入教育经费的平均增长率为10%. (2)3025³(1+10%)=3327.5(万元).答:根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元. 四、分式方程的应用10.现有纯农药一桶,倒出20升后用水补满,然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3∶5,则桶的容积为40升.11.扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,则原计划每天栽树多少棵?解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)棵.由题意,得1200x -1200(1+20%)x=2,解得x =100.经检验,x =100是原分式方程的解,且符合题意. 答:原计划每天种树100棵.12.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600 m 道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10 h 完成任务.(1)按原计划完成总任务的13时,已抢修道路_________________m.(2)问:原计划每小时抢修道路多少米?解:(1)按原计划完成总任务的13时,已抢修道路3600³13=1200(m),故答案为1200.(2)设原计划每小时抢修道路x (m), 根据题意,得1200x +3600-1200[(1+50%)x ]=10,解得x =280.经检验,x =280是原方程的解,且符合题意. 答:原计划每小时抢修道路280 m.专题提升(四) 一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是(C )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是(A ),(第2题图))(第14题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 (C )A. 94B. 3C. 4D. 54.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是(C )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是(C )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为y =-2x -2.,(第6题图))7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=__5032014__. 解:令x =0,则y =1n +2; 令y =0,则-n +1n +2x +1n +2=0,解得x =1n +1.∴S n =12·1n +1·1n +2=12⎝⎛⎭⎫1n +1-1n +2,∴S 1+S 2+S 3+…+S 2012=12³⎝⎛12-13+13-14+14-15+…+12013-⎭⎫12014=12³⎝⎛⎭⎫12-12014=5032014. 8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第__四__象限.9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__(43,0)__.(第9题图)10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10(1)求y 关于x 的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35=4.2k +b ,40=8.2k +b ,解得⎩⎪⎨⎪⎧k =54,b =29.75.∴y =54x +29.75.∴y 关于x 的函数关系式为y =54x +29.75.(2)当x =6.2时,y =³6.2+29.75=37.5.答:此时体温计的读数为37.5 ℃.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =kx 的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD .(1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.解:(1)如解图,过点A 作AE ⊥x 轴于点E .(第11题图解)∵点A (m ,2),tan ∠AOE =13,∴tan ∠AOE =AE OE =2m =13,∴m =6,∴点A (6,2).∵y =kx 的图象过点A (6,2),∴2=k6,∴k =12,∴反比例函数的表达式为 y =12x .∵点B (-4,n )在 y =12x 的图象上,∴n =12-4=-3,∴点B (-4,-3).∵一次函数y =ax +b 过A ,B 两点,∴⎩⎪⎨⎪⎧6k +b =2,-4k +b =-3,解得⎩⎪⎨⎪⎧k =12,b =-1. ∴一次函数的表达式为y =12x -1.(2)对于y =12x -1,当x =0时,y =-1,∴点C (0,-1). 当y =-1时,-1=12x ,∴x =-12,∴点D (-12,-1), ∴S 四边形OCDB =S △ODC +S △BDC=12³|-12|³|-1|+12³|-12|³|(-3)-(-1)| =6+12 =18.12.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象.(第12题图)(1)求出图中m ,a 的值.(2)求出甲车行驶路程y (km)与时间x (h)的函数表达式,并写出相应的x 的取值范围. (3)当乙车行驶多长时间时,两车恰好相距50 km? 解:(1)由题意,得 m =1.5-0.5=1.120÷(3.5-0.5)=40, ∴a =40³1=40. ∴a =40,m =1. (2)∵260÷40=6.5,6.5+0.5=7,∴0≤x ≤7.当0≤x ≤1时,设y 与x 之间的函数表达式为y =k 1x ,由题意,得 40=k 1, ∴y =40x ;当1<x ≤1.5时, y =40;当1.5<x ≤7时,设y 与x 之间的函数表达式为y =k 2x +b ,由题意,得⎩⎪⎨⎪⎧40=1.5k 2+b ,120=3.5k 2+b , 解得⎩⎪⎨⎪⎧k 2=40,b =-20.∴y =40x -20.∴y =⎩⎪⎨⎪⎧40x (0≤x ≤1),40(1<x ≤1.5),40x -20(1.5<x ≤7).(3)设乙车行驶的路程y 与时间x 之间的函数表达式为y =k 3x +b 3,由题意,得⎩⎪⎨⎪⎧0=2k 3+b 3,120=3.5k 3+b 3, 解得⎩⎪⎨⎪⎧k 3=80,b 3=-160.∴y =80x -160.当40x -20-50=80x -160时, 解得x =94.当40x -20+50=80x -160时, 解得x =194.94-2=14,194-2=114. 答:乙车行驶14 h 或114h ,两车恰好相距50 km.13.经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度³车流密度).求大桥上车流量y 的最大值.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b , 解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x ≤220时,v =-25x +88,当x =100时,v =-25³100+88=48(千米/小时).(2)由题意,得⎩⎨⎧-25x +88>40,-25x +88<60,解得70<x <120.∴应控制大桥上的车流密度在70~120辆/千米范围内. (3)设车流量y 与x 之间的关系式为y =v x , 当0≤x ≤20时, y =80x .∵k =80>0,∴y 随x 的增大而增大, ∴x =20时,y 最大=1600; 当20≤x ≤220时y =(-25x +88)x =-25(x -110)2+4840,∴当x =110时,y 最大=4840. ∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值,是每小时4840辆. 14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,设享受医保的某居民一年的大病住院医疗费用为x 元,按上述标准报销的金额为y 元. (1)直接写出x ≤50000时,y 关于x 的函数表达式,并注明自变量x 的取值范围. (2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元? 解:(1)由题意得:①当x ≤8000时,y =0;②当8000<x ≤30000时,y =(x -8000)³50%=0.5x -4000;③当30000<x ≤50000时,y =(30000-8000)³50%+(x -30000)³60%=0.6x -7000. (2)当花费30000元时,报销钱数为y =0.5³30000-4000=11000, ∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为y =11000+20000³0.6=23000(元), 故住院医疗费用小于50000元.故把y =20000代入y =0.6x -7000中,得 20000=0.6x -7000, 解得x =45000.答:他住院医疗费用是45000元.15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?解:(1)设甲、乙两种油茶树苗每株的价格分别为x 元,y 元,由题意,得⎩⎪⎨⎪⎧y =x +3,100x =160y ,解得⎩⎪⎨⎪⎧x =5,y =8.答:甲、乙两种油茶树苗每株的价格分别为5元,8元.(2)设购买甲种树苗a 株,则购买乙种树苗(1000-a )株,由题意,得 5a +8(1000-a )=5600,解得a =800,∴乙种树苗购买株数为1000-800=200株.答:购买甲种树苗800株,购买乙种树苗200株.(3)设购买甲种树苗b 株,则购买乙种树苗(1000-b )株,设购买的总费用为W 元,由题意,得90%b +95%(1000-b )≥1000³92%, 解得b ≤600.易得W =5b +8(1000-b )=-3b +8000, ∵k =-3<0,∴W 随b 的增大而减小,∴当b =600时,W 最低=6200元.答:购买甲种树苗600株,购买乙种树苗400株时,费用最低,最低费用是6200元. 16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的变化趋势如图①,每个无人售票窗口售出的车票数y 2(张)与售票时间x (h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.(1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)解:(1)设y 2=ax 2,当x =2时,y 1=y 2=40,把点(2,40)的坐标代入y 2=ax 2,得 4a =40, 解得a =10, ∴y 2=10x 2.(2)设y 1=kx +b (1≤x ≤3),把点(1,0),(2,40)的坐标分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧k +b =0,2k +b =40,解得⎩⎪⎨⎪⎧k =40,b =-40. ∴y 1=40x -40.∴当x =3时,y 1=80,y 2=90.设需要开放m 个普通售票窗口,由题意,得 80m +90³5≥900,∴m ≥558.∵m 取整数, ∴m ≥6.答:至少需要开放6个普通售票窗口.专题提升(五) 反比例函数图象与性质的综合应用(第1题图)1.反比例函数y =mx 的图象如图所示,有以下结论:①常数m <-1;②在每个象限内,y 随x 的增大而增大;③若点A (-1,h ),B (2,k )在图象上,则h <k ;④若点P (x ,y )在图象上,则点P ′(-x ,-y )也在图象上. 其中正确的是(C ) A. ①② B. ②③ C. ③④ D. ①④2.下列函数中,当x >0时,y 随x 的增大而增大的是(B ) A. y =-x +1 B. y =x 2-1 C. y =1xD. y =-x 2+13.已知圆柱的侧面积是20π cm 2,若圆柱底面半径为r (cm),高为h (cm),则h 关于r 的函数图象大致是(A )(第4题图)4.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为(A )A. -4B. 4C. -2D. 2(第5题图)5.如图,在反比例函数y =-6x (x <0)的图象上任取一点P ,过点P 分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为__6__.6.反比例函数y =2a -1x 的图象有一支位于第一象限,则常数a 的取值范围是__a >12__.(第7题图)7.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数y =kx (x >0)的图象经过该菱形对角线的交点A ,且与边BC 交于点F .若点D 的坐标为(6,8),则点F 的坐标是⎝⎛⎭⎫12,83.(第8题图)8.如图,反比例函数y =kx 的图象经过点(-1,-22),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .(1)k(2)在点A 运动过程中,当BP 平分∠ABC 时,点C(第9题图)9.如图,在直角坐标系xOy 中,一次函数y =k 1x +b 的图象与反比例函数y =k 2x 的图象交于A (1,4),B (3,m )两点.(1)求一次函数的表达式. (2)求△AOB 的面积.解:(1)把点A (1,4)代入y =k 2x 得,k 2=4.∴反比例函数的表达式为y =4x .把点B (3,m )代入y =4x 得,m =43∴点B 的坐标为(3,43).把点A (1,4),B (3,43)的坐标代入y =k 1x +b 得,⎩⎪⎨⎪⎧k 1+b =4,3k 1+b =43,解得⎩⎨⎧k 1=-43,b =163. ∴一次函数的表达式为y =-43x +163.(2)∵直线y =-43x +163与x 轴的交点坐标为(4,0),∴S △AOB =12³4³4-12³4³43=163.10.人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50 km/h 时,视野为80度.如果视野f (度)是车速v (km/h)的反比例函数,求f ,v 之间的关系式,并计算当车速为100 km/h 时视野的度数.解:设f ,v 之间的关系式为f =kv (k ≠0). ∵v =50时,f =80,∴80=k 50. 解得k =4000. ∴f =4000v .当v =100时,f =4000100=40(度).答:f =4000v ,当车速为100 km/h 时视野为40度.11.某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万m 3.(1)写出运输公司完成任务所需的时间y (天)与平均每天的工作量x (万m 3)之间的函数表达式,并给出自变量x 的取值范围.(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000 m 3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?解:(1)由题意,得y =360x .把y =120代入y =360x ,得x =3;把y =180代入y =360x ,得x =2.∴自变量x 的取值范围是2≤x ≤3. ∴y =360x(2≤x ≤3).(2)设原计划平均每天运送土石方x (万m 3),则实际平均每天运送土石方(x +0.5)万m 3, 由题意,得360x -360x +0.5=24化简,得x 2+0.5x -7.5=0.解得x 1=2.5,x 2=-3,经检验,x 1=2.5,x 2=-3均为原方程的根,但x 2=-3不符合实际意义,故舍去. 又∵2≤x ≤3,∴x 1=2.5满足条件,即原计划平均每天运送土石方2.5万m 3,实际平均每天运送土石方3万m 3.(第12题图)12.工匠制作某种金属工具需要进行材料煅烧和锻造两道工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min 时,材料温度降为600 ℃.煅烧时温度y (℃)与时间x (min)成一次函数关系;锻造时,温度y (℃)与时间x (min)成反比例函数关系(如图).已知该材料初始温度是32 ℃.(1)分别求出材料煅烧和锻造时y 关于x 的函数表达式,并且写出自变量x 的取值范围. (2)根据工艺要求,当材料温度低于480 ℃时,须停止操作.那么锻造的操作时间有多长?解:(1)停止加热时,设y =kx(k ≠0),由题意,得600=k8,解得k =4800,∴y =4800x.当y =800时,4800x=800,解得x =6,∴点B 的坐标为(6,800).材料加热时,设y =ax +32(a ≠0), 由题意,得800=6a +32, 解得a =128.∴材料加热时,y 关于x 的函数表达式为y =128x +32(0≤x ≤6). 停止加热进行操作时,y 关于x 的函数表达式为y =4800x (6<x ≤20).(2)把y =480代入y =4800x ,得x =10,10-6=4(min).答:锻造的操作时间为4 min.(第13题图)13.如图,已知点A ,P 在反比例函数y =kx (k <0)的图象上,点B ,Q 在直线y =x -3上,点B 的纵坐标为-1,AB ⊥x 轴(点A 在点B 下方),且S △OAB =4.若P ,Q 两点关于y 轴对称,设点P 的坐标为(m ,n ).(1)求点A 的坐标和k 的值.(2)求n m +mn的值.解:(1)∵点B 在直线y =x -3上,点B 的纵坐标为-1, ∴当y =-1时,x -3=-1,解得x =2, ∴点B (2,-1).设点A 的坐标为(2,t ),则t <-1,AB =-1-t . ∵S △OAB =4, ∴12(-1-t )³2=4, 解得t =-5,∴点A 的坐标为(2,-5).∵点A 在反比例函数y =kx (k <0)的图象上,∴-5=k2,解得k =-10.(2)∵P ,Q 两点关于y 轴对称,点P 的坐标为(m ,n ), ∴点Q (-m ,n ), ∵点P 在反比例函数y =-10x的图象上,点Q 在直线y =x -3上, ∴n =-10m ,n =-m -3,∴mn =-10,m +n =-3,∴n m +m n =m 2+n 2mn =(m +n )2-2mn mn =(-3)2-2³(-10)-10=-2910.(第14题图)14.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (时)变化的函数图象,其中BC 段是反比例函数y =kx 图象的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度为18 ℃的时间有多少小时? (2)求k 的值.(3)当x =16时,大棚内的温度约为多少度?解:(1)恒温系统在这天保持大棚温度18 ℃的时间为10 h.(2)∵点B (12,18)在反比例函数y =kx 的图象上,∴18=k12,∴解得k =216.(3)当x =16时,y =21616=13.5,∴当x =16时,大棚内的温度约为13.5 ℃.15.已知双曲线y =1x (x >0),直线l 1:y -2=k (x -2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y =-x + 2.(1)若k =-1,求△OAB 的面积S .(2)若AB =522,求k 的值.(第15题图)(3)设N (0,22),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM +PN 最小值,并求PM +PN 取得最小值时点P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB =(x 1-x 2)2+(y 1-y 2)2.解:(1)当k =-1时,l 1:y =-x +22,联立⎩⎪⎨⎪⎧y =-x +22,y =1x ,化简,得x 2-22x +1=0,解得x 1=2-1,x 2=2+1.设直线l 1与y 轴交于点C ,则C (0,22). S △OAB =S △BOC -S △AOC =12³22(x 2-x 1)=2 2.(2)根据题意,得⎩⎪⎨⎪⎧y -2=k (x -2),y =1x,整理,得kx 2+2(1-k )x -1=0(k <0),∵Δ=[2(1-k )]2-4³k ³(-1)=2(1+k 2)>0, ∴x 1,x 2 是方程的两个根,∴⎩⎨⎧x 1+x 2=2(k -1)k ①,x 1·x 2=-1k ,∴AB =(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+⎝⎛⎭⎫1x 1-1x 22=(x 1-x 2)2⎝⎛⎭⎫1+1x 12·x 22 =[(x 1+x 2)2-4x 1·x 2]⎝⎛⎭⎫1+1x 12·x 22将①代入,得AB =2(k 2+1)2k 4=2(k 2+1)k 2(k <0), ∴2(k 2+1)k 2=522,解得k =63(舍去),或 k =-63.(第15题图解)(3)易得点F (2,2),如解图: 设点P ⎝⎛⎭⎫x ,1x , 则点M ⎝⎛⎭⎫-1x +2,1x , 则PM =x +1x - 2=⎝⎛⎭⎫x +1x -22=x 2+1x2-22⎝⎛⎭⎫x +1x +4. ∵PF =(x -2)2+⎝⎛⎭⎫1x -22=x 2+1x2-22⎝⎛⎭⎫x +1x +4, ∴PM =PF .∴PM +PN =PF +PN ≥NF =2,当点P 在NF 上时等号成立,此时NF 对应的函数表达式为y =-x +22, 由(1)知此时点P (2-1,2+1),∴当点P 的坐标是(2-1,2+1)时,PM +PN 的值最小,最小值是2.专题提升(六) 二次函数图象与性质的综合应用(第1题图)1.如图是二次函数y =ax 2+bx +c 的图象,下列结论: ①二次三项式ax 2+bx +c 的最大值为4;②4a +2b +c <0;③一元二次方程ax 2+bx +c =1的两根之和为-1; ④使y ≤3成立的x 的取值范围是x ≥0. 其中正确的个数有(B ) A. 1个 B. 2个 C. 3个 D. 4个(第2题图)2.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;②b 2-4ac 4a >0;③ac -b +1=0;④OA ·OB =-ca .其中正确结论的个数是(B )A. 4B. 3C. 2D. 13.对于抛物线y =-12(x +1)2+3,有下列结论:①抛物线的开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④x >1时,y 随x 的增大而减小.其中正确结论的个数为(C )A. 1B. 2C. 3D. 4(第4题图)4.二次函数y =-x 2+bx +c 的图象如图所示,若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是(B )A. y 1 ≤y 2B. y 1 <y 2C. y 1 ≥y 2D. y 1 >y 25.已知A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y =-(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为(A )A. y 1>y 2>y 3B. y 1>y 3>y 2C. y 3>y 2>y 1D. y 3>y 1>y 26.已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是(A )。
【9份】2016中考数学(广西专版)复习题型专项集训
题型专项
二次函数中的多结论选填题是二次函数中综合性比较强的题目,解决此类题目不仅要掌握二次函数的图象与性质、抛物线位置与字母系数的关系、二次函数与方程、不等式的关系等知识,还要学会代入特殊值的方法并结合二次函数的图象去验证一些不等式的正误;几何中的多结论选填题则结合了三角形、四边形、圆的有关性质和判定,是几何中综合性很强的题目,掌握三角形、四边形、圆的有关性质并能熟练的运用才能解决此类问题.
A.5个
B.4个
C.3个
D.2个
【思路点拨】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以==,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④而CD与AD的大小不知道,于是tan∠CAD的值无法判断,故④错误;⑤根据△AEF∽△CBF得到==,求出S△AEF=S△ABF,S△ABF=S矩形ABCD,S四边形CDEF=S△ACD-S△AEF=S矩形ABCD-S矩形ABCD=S矩形ABCD,即可得到S四边形CDEF=S△ABF,故⑤正确.故选B.
其中正确的有()
A.①②③B.①③④
C.②④D.①③
3.(2015·岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()
A.①②B.①③C.②④ D.③④
3.(2013·贺州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是________(填正确015·贵港)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF,其中正确的结论有()
中考数学几何模型专题专题九—相似三角形
专题九相似三角形模型47 “A”字模型模型展示基础模型正“A字”型怎么用?1、找模型在三角形中遇到“平行”,则考虑正“A字”模型2、用模型“A字”模型用相似三角形结题结论分析结论:△ADE~△ABC证明:△DE△BC,△△ADE=△ABC,△AED=△ACB.△△ADE~△ABC,△ADAB =AEAC=DEBC模型拓展斜“A字”型(共角)满分技法在△ABC中,点D、E分别是AB、AC 上的点,若△ADE与△ABC相似,则分两种情况:△△ADE=△ABC,此时为正“A字”型;△△ADE=△ACB,此时为斜“A字”型,然后再结合已知条件求解.巧学巧记相似三角形的对应线段(高、中线、角平分线)的比等于相似比,周长比等于相似比,面积比等于相似比的平方.典例小试例1 如图,在上体育课时,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,且头部影子重合于点A,(点拔:影子平行,则DE△BC)已知甲、乙同学相距1米,甲身高1.8米,乙身高1.5米,(点拔:CD=1米,BC=1.8米,DE=1.5米)则甲的影长是( )A.4米B.5米C.6米D.7米考什么?相似三角形的判定与性质思路点拨根据题意得到DE与BC的位置关系,再直接使用结论即可求解.例2 如图,在△ABC中,△BAC=△CBD,(点拔:在三角形中,遇一组角相等,再找一组等角,利用相似解题)CD=2,AC=6,则BC的长为( )A.√3B.2√3C.3√3D.4√3考什么?相似三角形的判定与性质例3 如图,在ABCD(点拨:AD∥BC,AD=BC,AB∥CD,AB=CD)中,点E 在边AD上,且AE=ED,连接BE并延长交CD的延长线于点F,则△FED与ABCD 的面积之比为( )A.1:2B.1:3C.1:4D.1:5考什么?平行四边形的性质,全等三角形的判定,相似三角形的判定思路点拨根据平行四边形的性质及AE=ED,可得到△AEB与△DEF的关系,再剥离出模型即可解题,自己快动手试一试吧!思路点拔根据平行四边形的性质及AE=ED,可得到△AEB与△DEF的关系,再剥离出模型即可解题,自己快动手试一试吧!实战实演1.如图,在△ABC中,△B=45°,过点A作AD△AB交BC于点D,过点D作DE△AD 交AC于点E,若AB=4,DE=2,则CD的长为()A B . C . D . 2. 在△ABC 中,点D ,E 分别是AB ,AC 上的点,若△ADE 与△ABC 相似,AD =2,BD =4,AE =3,则CE 的长为( )A .1B .2或6C .6D .1或63. 如图,在⊙O 中,AB 是⊙O 的直径,CD 是⊙O 的切线,若AC =2,AB =32CD ,则⊙O 的半径为( )A . 54B . 32C . 2D . 2 4. 如图,在△ABC 中,点D 在边AB 上,连接CD ,AD =9,BD =7,AC =12,△ABC 的角平分线AE 交CD 于点F .(1)求证:2=AC AB AD ;(2)若AF =8,求AE 的长。
2016届九年级(下)第二次段考数学试卷(解析版)
九年级(下)第二次段考数学试卷学校:班级:教师:科目:得分:一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有理数﹣2016的相反数是()A.2016 B.﹣2016 C. D.﹣2.某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为()A.3.1×106元B.3.1×105元C.3.2×106元D.3.18×106元3.下列运算正确的是()A.a3•a2=a6B.(a3)2=a5C.(a﹣b)(a+b)=a2﹣b2D.(a+b)2=a2+b24.函数y=中,自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠15.下列说法正确的是()A.在一次抽奖活动中,“中奖概率是”表示抽奖100次就一定会中奖B.随机抛一枚硬币,落地后正面一定朝上C.同时掷两枚均匀的骰子,朝上一面的点数和为6D.在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是6.已知圆锥底面半径为2,母线长为5,则圆锥的侧面积是()A.10πB.20πC.4πD.5π7.不等式组的解集是()A.x>1 B.x<3 C.1<x<3 D.无解8.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m9.如图所示的△ABC中,∠ABC=90°,∠ACB=40°,AC∥BD,∠ABD=()A.40°B.50°C.140°D.130°10.二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是()A.a<0 B.abc<0 C.a+b+c>0 D.b2﹣4ac>0二、填空题(本大题共8小题,每小题3分,满分24分)11.化简: = .12.化简: = .13.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是度(填度数).14.甲、乙两台机床生产同一种零件,并且每天产量相等,在6天中每天生产零件中的次品数依次是:甲:3、0、0、2、0、1;乙:1、0、2、1、0、2.则甲、乙两台机床中性能较稳定的是.15.若m﹣n=2,m+n=5,则m2﹣n2的值为.16.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有(把你认为说法正确的序号都填上).17.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠FCD的度数为.18.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.三、解答题(本大题共8小题,满分60分)19.计算:.20.解二元一次方程组.21.如图,在△ABC中,AD是中线,分别过点B、C作AD延长线及AD的垂线BE、CF,垂足分别为点E、F .求证:BE=CF.22.为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有人.23.如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.(1)判断CD与⊙O的位置关系并说明理由;(2)若∠ACB=120°,OA=2.求CD的长.24.如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.25.如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式.(3)在原图中,连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)26.已知抛物线.(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x﹣1与抛物线交于A、B两点,并与它的对称轴交于点D.①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M 、N为顶点的四边形是平行四边形?2015-2016学年九年级(下)第二次段考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有理数﹣2016的相反数是()A.2016 B.﹣2016 C. D.﹣【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2016的相反数是2016,故选:A.2.某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为()A.3.1×106元B.3.1×105元C.3.2×106元D.3.18×106元【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:3185800≈3.2×106.故选C.3.下列运算正确的是()A.a3•a2=a6B.(a3)2=a5C.(a﹣b)(a+b)=a2﹣b2D.(a+b)2=a2+b2【考点】平方差公式;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;平方差公式;完全平方公式对各选分析后利用排除法求解.【解答】解:A、a3•a2=a5,故本选项错误;B、(a3)2=a6,故本选项错误;C、(a﹣b)(a+b)=a2﹣b2,正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.4.函数y=中,自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x+3≥0且x﹣1≠0,解得x≥﹣3且x≠1.故选B.5.下列说法正确的是()A.在一次抽奖活动中,“中奖概率是”表示抽奖100次就一定会中奖B.随机抛一枚硬币,落地后正面一定朝上C.同时掷两枚均匀的骰子,朝上一面的点数和为6D.在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是【考点】概率的意义.【分析】概率是表征随机事件发生可能性大小的量,是事件本身所固有的不随人的主观意愿而改变的一种属性.了解了概率的定义,然后找到正确答案.【解答】解:A、概率是针对数据非常多时,趋近的一个数,所以概率是,也不能够说明是抽100次就能抽到奖.故本选项错误.B、随机抛一枚硬币,落地后正面怎么一定朝上呢,应该有两种可能,故本选项错误.C、同时掷两枚均匀的骰子,朝上一面的点数和有多种可能性,故本选项错误.D、在一副没有大小王的扑克牌中任意抽一张,抽到6的概率是.故选D.6.已知圆锥底面半径为2,母线长为5,则圆锥的侧面积是()A.10πB.20πC.4πD.5π【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:圆锥的侧面积=•2π•2•5=10π.故选A.7.不等式组的解集是()A.x>1 B.x<3 C.1<x<3 D.无解【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1,解不等式x﹣3<0,得:x<3,∴不等式组的解集为:1<x<3,故选:C.8.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m【考点】解直角三角形的应用-坡度坡角问题.【分析】由河堤横断面迎水坡AB的坡比是1:,可得到∠BAC=30°,所以求得AB=2BC,得出答案.【解答】解:河堤横断面迎水坡AB的坡比是1:,即tan∠BAC===,∴∠BAC=30°,∴AB=2BC=2×5=10m,故选:A.9.如图所示的△ABC中,∠ABC=90°,∠ACB=40°,AC∥BD,∠ABD=()A.40°B.50°C.140°D.130°【考点】平行线的性质.【分析】根据直角三角形两锐角互余的性质求出∠A,再根据两直线平行,内错角相等解答.【解答】解:∵∠ABC=90°,∠C=40°,∴∠A=90°﹣∠C=90°﹣40°=50°,∵BD∥AC,∴∠ABD=∠A=50°.故选:B.10.二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是()A.a<0 B.abc<0 C.a+b+c>0 D.b2﹣4ac>0【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A、函数开口向下,则a<0正确;B、先由图象开口向下判断出a<0,由对称轴在y轴右侧得出b>0,与y轴交于负半轴,则c <0,故abc>0,故命题错误;C、当x=1时对应的点在想轴的上方,则函数值一定是正数,且当x=1是函数值是a+b+c,则a+b+c>正确;D、函数与x轴有两个不同的交点,则b2﹣4ac>0正确.故选B.二、填空题(本大题共8小题,每小题3分,满分24分)11.化简: = 1 .【考点】分式的加减法.【分析】根据同分母得分是加减运算法则计算即可求得答案.【解答】解: ===1.故答案为:1.12.化简: = 2﹣.【考点】分母有理化.【分析】本题需先找出分母的有理化因式,然后将分子、分母同时乘以分母的有理化因式进行计算.【解答】解: ==2﹣.故答案为:2﹣.13.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是90度(填度数).【考点】钟面角.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:从上午6时到上午9时,共3个小时;时针旋转了圆周,故旋转角是90度.14.甲、乙两台机床生产同一种零件,并且每天产量相等,在6天中每天生产零件中的次品数依次是:甲:3、0、0、2、0、1;乙:1、0、2、1、0、2.则甲、乙两台机床中性能较稳定的是乙.【考点】方差.【分析】先计算出甲乙的平均数,甲的平均数=乙的平均数=1,再根据方差的计算公式分别计算出它们的方差,然后根据方差的意义得到方差小的性能较稳定.【解答】解:甲的平均数=(3+0+0+2+0+1)=1,乙的平均数=(1+0+2+1+0+2)=1,∴S2甲= [(3﹣1)2+3×(0﹣1)2+(2﹣1)2+(1﹣1)2]=S2乙= [(2×(1﹣1)2+2×(0﹣1)2+2×(2﹣1)2]=,∴S2甲>S2乙,∴乙台机床性能较稳定.故答案为乙.15.若m﹣n=2,m+n=5,则m2﹣n2的值为10 .【考点】平方差公式;有理数的乘法.【分析】首先把多项式m2﹣n2利用平方差公式分解因式,然后代入已知条件即可求出其值.【解答】解:∵m2﹣n2=(m+n)(m﹣n),而m+n=5,m﹣n=2,∴m2﹣n2=5×2=10.故答案为10.16.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有①②③(把你认为说法正确的序号都填上).【考点】一次函数的性质;一次函数的图象;一次函数与一元一次方程.【分析】根据一次函数的性质,结合一次函数的图形进行解答.【解答】解:①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确③因为一次函数的图象与x轴的交点为(2,0),所以当y=0时,x=2,即关于x的方程kx+b =0的解为x=2,故本项正确故答案为①②③.17.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠FCD的度数为20°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理得出弧DE等于弧DF,再利用圆周角定理得出∠FCD=20°.【解答】解:∵⊙O的直径CD过弦EF的中点G,∴=,∴∠DCF=∠EOD,∵∠EOD=40°,∴∠FCD=20°,故答案为:20°.18.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为7 .【考点】翻折变换(折叠问题);勾股定理.【分析】先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.【解答】解:∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC===4,∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案为:7.三、解答题(本大题共8小题,满分60分)19.计算:.【考点】负整数指数幂.【分析】直接利用绝对值的性质以及负整数指数幂的性质分别化简求出答案.【解答】解:原式=3﹣+=3.20.解二元一次方程组.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①+②得,2x=2,解得x=1,把x=1代入①得,﹣1+y=7,解得y=8,故方程组的解为.21.如图,在△ABC中,AD是中线,分别过点B、C作AD延长线及AD的垂线BE、CF,垂足分别为点E、F .求证:BE=CF.【考点】全等三角形的判定与性质.【分析】利用CF∥BE和D是BC边的中点可以得到全等条件证明△BDE≌△CDF,从而得出结论.【解答】证明:∵D是BC边上的中点,∴BD=CD,又∵分别过点B、C作AD延长线及AD的垂线BE、CF,∴CF∥BE,∴∠E=∠CFD,∠DBE=∠FCD∴△BDE≌△CDF,∴CF=BE.22.为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为40% ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有16 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有128 人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用1减去其它各组的百分比,据此即可求解;(2)根据优秀的人数是8,所占的百分比是16%即可求得调查的总人数,利用总人数乘以对应的百分比即可求解;(3)利用总人数400乘以对应的百分比即可求解.【解答】解:(1)“合格”的百分比为1﹣12%﹣16%﹣32%=40%,故答案是:40%;(2)抽测的总人数是:8÷16%=50(人),则抽测结果为“不合格”等级的学生有:50×32%=16(人).故答案是:16;(3)该校九年级体质为“不合格”等级的学生约有400×32%=128(人).故答案是:128.23.如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.(1)判断CD与⊙O的位置关系并说明理由;(2)若∠ACB=120°,OA=2.求CD的长.【考点】切线的判定与性质;勾股定理;垂径定理;圆周角定理.【分析】(1)连接OC,证明OC⊥DC,利用经过半径的外端且垂直于半径的直线是圆的切线判定切线即可;(2)利用等弧所对的圆心角相等和题目中的已知角得到∠D=30°,利用解直角三角形求得CD的长即可.【解答】解:(1)CD与⊙O相切.理由如下:如图,连接OC,∵CA=CB,∴=∴OC⊥AB,∵CD∥AB,∴OC⊥CD,∵OC是半径,∴CD与⊙O相切.(2)∵CA=CB,∠ACB=120°,∴∠ABC=30°,∴∠DOC=60°∴∠D=30°,∴OC=OD∵OA=OC=2,∴D0=4,∴CD==224.如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.【考点】反比例函数与一次函数的交点问题.【分析】(1)设直线AB的解析式为y=kx+b(k≠0),将A与B坐标代入求出k与b的值,确定出直线AB的解析式,将D坐标代入直线AB解析式中求出a的值,确定出D的坐标,将D坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;(2)联立两函数解析式求出C坐标,过C作CH垂直于x轴,在直角三角形OCH中,由OH与HC的长求出tan∠COH的值,利用特殊角的三角函数值求出∠COH的度数,在三角形AOB中,由OA与OB的长求出tan∠ABO的值,进而求出∠ABO的度数,由∠ABO﹣∠COH即可求出∠ACO的度数.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),将A(0,2),B(2,0)代入得:,解得:,故直线AB解析式为y=﹣x+2,将D(﹣1,a)代入直线AB解析式得:a=+2=3,则D(﹣1,3),将D坐标代入y=中,得:m=﹣3,则反比例解析式为y=﹣;(2)联立两函数解析式得:,解得:或,则C坐标为(3,﹣),过点C作CH⊥x轴于点H,在Rt△OHC中,CH=,OH=3,tan∠COH==,∠COH=30°,在Rt△AOB中,tan∠ABO===,∠ABO=60°,∠ACO=∠ABO﹣∠COH=30°.25.如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式.(3)在原图中,连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)【考点】相似形综合题.【分析】(1)假设存在,从存在出发得到△PBC∽△DAP,利用相似三角形得到=,从而得到有关t的方程,求解即可得到答案;(2)由已知 PQ⊥PD,所以只有当DP=PQ时,△PQD为等腰三角形,根据等腰三角形的性质求得结论即可;(3)根据题意分△ABC∽△DAP和△PBQ∽△ABC两种情况列出比例式后即可用含有m的代数式表示出线段BQ的值即可.【解答】解:(1)假设当m=10时,存在点P使得点Q与点C重合(如下图),设AP=x∵PQ⊥PD∴∠DPC=90°,∴∠APD+∠BPC=90°,又∠ADP+∠APD=90°,∴∠BPC=∠ADP,又∠B=∠A=90°,∴△PBC∽△DAP,∴=,∴,∴x2﹣10x+16=0解得:x=2或8,∴存在点P使得点Q与点C重合,出此时AP的长2 或8.(2)由已知 PQ⊥PD,所以只有当DP=PQ时,△PQD为等腰三角形(如图),∴∠BPQ=∠ADP,又∠B=∠A=90°,∴△PBQ≌△DAP,∴PB=DA=4,AP=BQ=m﹣4,∴以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式为:S四边形PQCD=S矩形ABCD﹣S△DAP﹣S△QBP=DA×AB﹣×DA×AP﹣×PB×BQ=4m﹣×4×(m﹣4)﹣×4×(m﹣4)=16.(3)如下图,∵PQ∥AC,∴∠BPQ=∠BAC,∵∠BPQ=∠ADP,∴∠BAC=∠ADP,又∠B=∠DAP=90°,∴△ABC∽△DAP,∴=,即=,∴AP=.∵PQ∥AC,∴∠BPQ=∠BAC,∵∠B=∠B,∴△PBQ∽△ABC,=,即,∴BQ=4﹣.═══════题干有误吗?若有,请说明一下,若无,请解答一下,谢谢.═══════26.已知抛物线.(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x﹣1与抛物线交于A、B两点,并与它的对称轴交于点D.①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M 、N为顶点的四边形是平行四边形?【考点】二次函数综合题.【分析】(1)从函数的判别式出发,判别式总大于等于3,而证得;(2)①由直线y=x﹣1与抛物线交于A、B两点,求得点A,代入抛物线解析式得m,由直线AD的斜率与直线PC的斜率相等,求得点P坐标;②求得MN的坐标,从MN与CD的位置关系解得.【解答】解:(1)该函数的判别式=m2﹣4m+7=(m﹣2)2+3≥3∴该抛物线与x轴总有两个不同的交点.(2)由直线y=x﹣1与抛物线交于A、B两点,∴点A(1,0)代入二次函数式则m=3故二次函数式为:当抛物线的对称轴为直线x=3时,则y=﹣2,即顶点C为(3,﹣2),把x=3代入直线y=x﹣1则y=2,即点D(3,2)则AD=AC=2设点P(x,)由直线AD的斜率与直线PC的斜率相等则解得:x=3或x=5则点P(3,﹣2)(与点D重合舍去)或(5,0)经检验点(5,0)符合,所以点P(5,0)②设直线AB解析式为y=kx+b,将A(1,0),D(3,2)代入得直线AB:y=x﹣1,设M(a,a﹣1),N(a, a2﹣3a+),当以C、D、M、N为顶点的四边形是平行四边形,MN=CD,即|(a﹣1)﹣(a2﹣3a+)|= 4,解得a=4±或3或5,故把直线CD向右平移1+个单位或2个单位,向左平移﹣1个单位,能使得以C、D、M、N为顶点的四边形是平行四边形.2016年8月20日节日热闹:盛况空前普天同庆欢聚一堂人声鼎沸人山人海欢呼雀跃欢声雷动熙熙攘攘载歌载舞红旗招展火树银花灯火辉煌张灯结彩锣鼓喧天金鼓齐鸣看:盯瞧瞅瞟瞥望睹观赏窥顾盼端详注视鸟瞰浏览张望阅览欣赏观赏月光:皎洁的月光明亮的月光清冽的月光清幽的月光朦胧的月光柔和的月光惨淡的月光凄冷的月光月光如水月光如雪月光如银希望:期望盼望渴望奢望指望得表扬:得意扬扬洋洋得意神采飞扬心花怒放乐不可支喜上眉梢春风得意眉开眼笑受批评:心灰意冷垂头丧气郁郁寡欢心灰意懒一蹶不振建筑:金碧辉煌玲珑剔透古色古香庄严肃穆庭院幽深巍然耸立绿瓦红墙描龙绣凤气势磅礴栩俯瞰窥视探望远眺审视环顾扫视瞻仰左顾右盼瞻前顾后袖手旁观先睹为快望眼欲穿东张西望屏息凝视目不转睛成语中的反义词:藕断丝连转危为安左顾右盼阴差阳错争先恐后冬暖夏凉大同小异轻重缓急天南地北舍本逐末比喻手法成语:星罗棋布鳞次栉比玉洁冰清蚕食鲸吞狐朋狗友狼吞虎咽锦衣玉食中国:中华华夏九州四海神州大地长城内外大江南北读书和学习:如饥似渴学而不厌学无止境学以致用博览群书博学多才学海无涯朋友:伙伴同伴旅伴伴侣战友密友故友好友挚友新朋好友良师益友梅花:腊梅墨梅素梅冰肌玉骨疏影横斜暗香浮动清香远溢幽香沁人小溪:波纹粼粼清澈见底终年潺潺柳树:垂柳青青婀娜多姿依依多情花儿好看:绚丽烂漫妖艳素雅争奇斗艳鲜艳夺目花蕾满枝琼花玉叶色彩斑斓花团锦簇灿如云锦花儿好闻:芬芳幽香芳香浓郁清香四溢香气袭人沁人心脾清香袅袅香气扑鼻香飘十里日子:丰衣足食太平昌盛日出而作日入而息守望相助走兽:四肢轻快互相追逐连蹦带跳小巧玲珑乖巧驯良扬蹄飞奔腾空跃起庞然大物生龙活虎威风凛凛万千气象:晚霞朝晖红霞满天霞光万道闲云迷雾云雾缭绕星光灿烂晓风残月月凉如水月色朦胧月淡风清月明星稀皓月当空栩如生造型逼真琼楼玉宇布局合理亭台楼阁历史悠久中西合璧龙腾虎跃打比方成语:如醉如梦如泣如诉如火如荼如饥似渴如兄似弟如胶似漆如花似锦如狼似虎死:去世逝世长眠安息千古永别永诀与世长辞遇难牺牲捐躯殉职夭折圆寂羽化驾崩。
2016届中考数学第二轮知识点总复习学案9
第三章函数第15课时待定系数法与抛物线的平移江苏2013~2015中考真题精选命题点1 二次函数解析式的确定(近3年39套卷,2015年考查3次,2014年考查4次,2013年考查1次)(2014连云港26(1)题3分)已知二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),交y轴于点C.直线l过点C,且交抛物线于另一点E(点E不与点A、B重合).求此二次函数关系式.命题点2 二次函数图象的平移(近3年39套卷,2014年考查3次)1. (2014宿迁7题3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. y=(x+2)2+3B. y=(x-2)2+3C. y=(x+2)2-3D. y=(x-2)2-32. (2014淮安16题3分)将二次函数y=2x2-1的图象沿y轴向上平移2个单位,所得图象对应的函数表达式为______.3. (2014南京24题8分)已知二次函数y=x2-2mx+m2+3.(m是常数)(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?【答案】命题点1 二次函数解析式的确定【思路分析】二次函数关系式中只有b和c未知,所以将点A,B坐标代入关系式可求出b,c,从而求出二次函数关系式.解:二次函数y=x2+bx+c的图象经过点A(1,0)和点B(3,0),根据题意列方程组:01093b cb c++++⎧⎨⎩==,解得43bc=-=⎧⎨⎩,∴二次函数关系式为y=x2-4x+3.……………………………………………………………(3分)命题点2 二次函数图象的平移1. B【解析】将抛物线y=x2向右平移2个单位可得y=(x-2)2,再向上平移3个单位可得y=(x-2)2+3.2. y=2x2+1【解析】∵二次函数y=2x2-1的图象沿y轴向上平移2个单位,∴所得图象对应的函数表达式为:y=2x2-1+2=2x2+1.3. (1)【思路分析】计算二次函数解析式中的b2-4ac,说明不论m 取任何值,b2-4ac的值均小于0,从而说明函数图象与x轴没有公共点.证明:∵b2-4ac=(-2m)2-4(m2+3)=-12<0,………………………………………………(2分)∴方程x2-2mx+m2+3=0没有实数根,∴不论m为何值,函数y=x2-2mx+m2+3的图象与x轴都没有公共点.…………………(4分)【一题多解】因为a=1>0,所以该函数的图象开口向上,又因为y=x2-2mx+m2+3=(x-m)2+3≥3.所以该函数的图象在x轴的上方,所以不论m为何值,该函数的图象与x轴都没有公共点.………………………………(4分)(2)【思路分析】将函数关系式配方变形为y=a(x-h)2+k,由平移后的图象与x轴只有一个公共点,故可得变形后式子的k值等于0即可. 解:y=x2-2mx+m2+3=(x-m)2+3,……………………………………………………………(5分)把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),∴这个函数的图象与x轴只有一个公共点,∴把函数y=x2-2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数图象与x轴只有一个公共点.………………………………………………………………………………(8分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题九方案设计型问题
一、中考专题诠释
方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。
二、解题策略和解法精讲
方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。
所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。
这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。
解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。
三、中考考点精讲
考点一:设计测量方案问题
这类问题主要包括物体高度的测量和地面宽度的测量。
所用到的数学知识主要有相似、全等、三角形中位线、投影、解直角三角形等。
例1 1.(2013•吉林)某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:
对应训练
则四边形ABEF 为矩形,
∴AF=BE ,EF=AB=3,
设DE=x ,
在Rt △CDE 中,CE=
tan 60DE o =33
x , 在Rt △ABC 中, ∵
13
AB BC =,AB=3, ∴BC=33, 在Rt △AFD 中,DF=DE-EF=x-3,
考点二:设计搭配方案问题
这类问题不仅在中考中经常出现,大家在平时的练习中也会经常碰到。
它一般给出两种元素,利用这两种元素搭配出不同的新事物,设计出方案,使获利最大或成本最低。
解题时要根据题中蕴含的不等关系,列出不等式(组),通过不等式组的整数解来确定方案。
对应训练 2.(2013•湘潭)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.
(1)小明一共有多少种可能的购买方案?列出所有方案;
(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.
2.解:(1)设购买康乃馨x 支,购买兰花y 支,由题意,得
53307
1x y x y x +≤⎧⎪+≥⎨⎪≥⎩
, ∵x 、y 为正整数,
当x=1时,y=6,7,8符合题意,
当x=2时,y=5,6符合题意,
当x=3时,y=4,5符合题意,
当x=4时,y=3符合题意,
当x=5时,y=1舍去,
当x=6时,y=0舍去.
共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案3:购买康乃馨1支,购买兰花8支;
方案4:购买康乃馨2支,购买兰花5支;
方案5:购买康乃馨2支,购买兰花6支;
方案6:购买康乃馨3支,购买兰花4支;
考点三:设计销售方案问题
在商品买卖中,更多蕴含着数学的学问。
在形形色色的让利、打折、买一赠一、摸奖等促销活动中,大家不能被表象所迷惑,需要理智的分析。
通过计算不同的销售方案盈利情况,可以帮助我们明白更多的道理。
近来还出现运用概率统计知识进行设计的问题。
例3 (2013•遂宁)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A 、B 两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A 公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B 公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x 人.
(1)分别写出学校购买A 、B 两公司服装所付的总费用y 1(元)和y 2(元)与参演男生人数x 之间的函数关系式;
(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.
思路分析:(1)根据总费用=男生的人数×男生每套的价格+女生的人数×女生每套的价格就可以分别表示出y 1(元)和y 2(元)与男生人数x 之间的函数关系式;
(2)根据条件可以知道购买服装的费用受x 的变化而变化,分情况讨论,当y1>y2时,当y 1=y 2时,当y 1<y 2时,求出x 的范围就可以求出结论.
解:(1)总费用y 1(元)和y 2(元)与参演男生人数x 之间的函数关系式分别是: y 1=0.7[120x+100(2x-100)]+2200=224x-4800,
y 2=0.8[100(3x-100)]=240x-8000;
(2)由题意,得
当y 1>y 2时,即224x-4800>240x-8000,解得:x <200
当y 1=y 2时,即224x-4800=240x-8000,解得:x=200
当y 1<y 2时,即224x-4800<240x-8000,解得:x >200
即当参演男生少于200人时,购买B 公司的服装比较合算;
当参演男生等于200人时,购买两家公司的服装总费用相同,可任一家公司购买; 当参演男生多于200人时,购买A 公司的服装比较合算.
点评:本题考查了根据条件求一次函数的解析式的运用,运用不等式求设计方案的运用,解答本题时根据数量关系求出解析式是关键,建立不等式计算优惠方案是难点. 对应训练
3.(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
解得m=100,
经检验,m=100是原分式方程的解,
所以,m=100;
(2)设购进甲种运动鞋x双,则乙种运动鞋(200-x)双,
根据题意得,
(240-100)(160-80)(200-)21700 (240-100)(160-80)(200-)22300
x x
x x a
+≥
⎧
⎨
+≤
⎩
①
②
,
解不等式①得,x≥95,
解不等式②得,x≤105,
所以,不等式组的解集是95≤x≤105,
∵x是正整数,105-95+1=11,
∴共有11种方案;
(3)设总利润为W,则W=(140-a)x+80(200-x)=(60-a)x+16000
(95≤x≤105),
①当50<a<60时,60-a>0,W随x的增大而增大,
所以,当x=105时,W有最大值,
即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;
②当a=60时,60-a=0,W=16000,(2)中所有方案获利都一样;
③当60<a<70时,60-a<0,W随x的增大而减小,
所以,当x=95时,W有最大值,
即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.
考点四:设计图案问题
图形的分割、拼接问题是考查动手操作能力与空间想能力的一类重要问题,在各地的中考试题中经常出现。
这类问题大多具有一定的开放性,要求学生多角度、多层次的探索,以展示思维的灵活性、发散性、创新性。
例4 (2013•无锡)下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.
(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;
(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;
(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表
面积与原正五边形的面积相等.
思路分析:(1)在正方形四个角上分别剪下一个边长为5的小正方形,拼成一个正方形作为直四棱柱的底面即可;
(2)在正三角形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正三角形,作为直三棱柱的一个底面即可;
(3)在正五边形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正五边形,作为直五棱柱的一个底面即可.
解:(1)如图1,沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可;
(2)如图,2,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可;(3)如图3,沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可.
点评:本题考查了图形的剪拼,解题的关键在于根据拼成棱柱的表面积与原图形的面
积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.
对应训练
4.(2013•深圳)如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿
图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()
A.8或B.10或C.10或D.8或
4.D。