IS THE QUADRATURE OSCILLATOR A MULTIVIBRATOR
最新文档-Chapter 4 Oscillator - UniMAP Portal4章子-德艺门-PPT精品文档
Square wave
Sawtooth wave
Types of oscillators
1. RC oscillators
Wien Bridge Phase-Shift
2. LC oscillators
Hartley Colpitts Crystal
3. Unijunction / relaxation oscillators
The types of RC oscillators that we will discuss are the Wien-bridge and the phase-shift
Wien-bridge Oscillator
It is a low frequency oscillator which ranges from a few kHz to 1 MHz.
The feedback oscillator relies on a positive feedback of the output to maintain the oscillations.
The relaxation oscillator makes use of an RC timing circuit to generate a nonsinusoidal signal such as square wave
(including computers), and test equipment make use of oscillators
Introduction
An oscillator is a circuit that produces a repetitive signal from a dc voltage.
HarmonicOscillators
Harmonic Oscillators1IntroductionThis is a simple overview of the basic properties of damped harmonic oscillators.It is meant to provide a simple guide for the various types of harmonic oscillators,including undamped, underdamped,overdamped,and critically damped.2Undamped OscillatorsConsider a mass on a spring that slides on a frictionless surface.At rest,define its position at equilibrium to be y=0.We will represent the position of the mass at time t by y(t).If y(t)<0 then the spring is compressed and if y(t)>0the spring is being stretched,as illustrated below.Recall from Newton’s Second Law thatF=ma(1) where F is Force,m is the mass of an object,and a is the acceleration of the mass in motion.We know thatv(t)=ddty(t)is the velocity of the mass at time t and also,a(t)=d2y dt2is the acceleration of the mass at time t.Substituting this value of a into Equation1gives usF=m d2ydt2(2)But we must keep in mind that our system also falls under Hooke’s Law,which saysF=−kywhere k is the spring constant.Summing the forces on the mass yieldsF=m d2ydt2=−ky(3)We can rearrange this equation to obtaind2y dt2+kmy=0(4)This second-order differential equation models the motion of an undamped mass-spring system. It can be broken down into a system offirst-order differential equations as follows:dydt=v(5)dv dt =d2ydt2=−kmySo how do we solve this system of differential equations?We begin by taking y(t)=eλt as our ansatz.We calculate y (t)=λeλt and y (t)=λ2eλt.We can now try substituting our ansatz into the original equation to solve forλ:d2y dt2+kmy=λ2eλt+λeλt=0eλt(λ2+1)=0λ2=−1λ=−i,iThis yields the general solutiony(t)=G1e it+G2e−itUsing Euler’s Formula we can give the general solution asy(t)=C1cos t+C2i sin t(6) The values of the constants C1and C2will depend on the initial conditions of the system(we can solve for them if we know what the initial conditions are).Since the solution is a function of cosine and sine the mass will oscillate forever with a constant amplitude.3Damped Harmonic Oscillators3.1Deriving the EquationNow that we know how to model an undamped oscillator(that is,one that does not take resistive forces into account)let us now look at damped harmonic oscillators.To take resistive (i.e.damping)forces into account,we will say that they are proportional to the velocity of the mass.We will represent them by a”coefficient of damping”which we will call b.We will assume b is positive.We can modify Equation3to model the forces on the system:m d2ydt2=−ky−bdydt(7)This equation can be expressed asm d2ydt2+bdydt+ky=0(8)and we shall refer to this equation as the equation for a damped harmonic oscillator.It can be broken into a system offirst-order equations,similar to the undamped system:dydt=v(9)dv dt =−kmy−bmvSolving this equation is similar to solving the undamped case.We again guess our ansatz to be y(t)=eλt.Substituting this into the equations results in:mλ2eλt+bλeλt+keλt=0eλt(mλ2+bλ+k)=0and by the Zero Property,eλt can never be zero somλ2+bλ+k=0λ=−b±√b2−4mk2mThere are three types of damped harmonic oscillators,and they will be determined by the value of discriminant ofλ,since this determines what type of number the root will be(i.e.Real or Complex).3.2Underdamped OscillatorsWhen b2−4mk<0,we are dealing with an underdamped oscillator.In this case,we havecomplex roots whose real part is−b2m .The motion of the mass is oscillation about the restposition,but unlike the undamped system,the amplitude decreases as time goes on.To help visualize the motion,consider the following example.We have an underdamped system with the following initial conditions:m=1,b=1,k=1,y(0)=1,and v(0)=1Using the program Maple we canfind the general solution,the values ofλ,plot the motion of the mass as a function of time,and also view the directionfield(or phase plane)of the system with the given initial conditions.This is all shown on the following two pages.Thefigure on the previous page was the phase plane of the system.The phase plane plots both y(t)and v(t)over time.Note how the vectors in the phase plane move in a gradual spiral towards the origin.This indicates that the mass is gradually coming to rest.If we wanted to get an idea of the motion of the mass from this phase plane,we would start at an initial point and follow the direction of the vectors.This would give us a good feel for how fast the mass returns to it’s equilibrium point(by seeing how fast the vectors tend towards the origin).Notice from the y-t plot how the mass initially moves upwards.This is because of our choice of initial conditions.We chose to give the system an initially positive velocity.Also not how the mass only goes through one and a half full oscillations.This is because of the relatively high damping constant(relative to4mk).If we decrease the value of b we willfind that the mass experiences less resistance and so it will oscillate more times.This can be seen in the following Maple outputs,where everything from thefirst example remains the same except we change b=0.3.Notice how the spiral in the phase plane becomes more gradual.That is,the spirals becomes more”circle-like”in shape.This shows that if we were to start on the same initial point in both examples(as indeed we did),then following the path of the second set of arrows would take us longer to reach the origin than thefirst set(hence more oscillations about the initial state).So it should now be clear to see how the phase plane helps us to determine the mass’behavior over time.3.3Overdamped OscillatorsWe will now move on to the case of overdamped oscillators,where b2−4mk>0.In this case there are two distinct real roots.There is no real oscillation for an overdamped system.the mass just returns to equilibrium.It may be helpful to visualize the mass as being suspended in a big jar of honey.The density of the honey obviously provides a great resisting force on the mass.If we were to remove the mass from its equilibrium point,it would simply return to its original position without oscillating past equilibrium.This idea can be seen in the following example,again illustrated with the help of Maple.We have an overdamped system with the following initial conditions:m=1,b=3,k=1,y(0)=1,and v(0)=1We canfind the general solution,the values ofλ,plot the motion of the mass as a function of time,and also view the directionfield of the system with the given initial conditions.This is all shown on the following two pages.Notice how the mass made a gradual return to its equilibrium point in the position graph.This motion can be further illustrated in the phase plane graph.Unlike the underdamped system that eventually spiraled to the origin,this overdamped system approaches a line in the plane that the vectors approach and then follow directly to the origin.In order to see how the system behaves for higher damping constants,let us examine what happens when b=9.All the other initial conditions remain the same.Note that the motion of the mass does not change dramatically,it only returns to origin much slower than when b=3. Also,the slope of the line the vectors approach in the phase plane is different.3.4Critically Damped OscillatorsThe last type of damped oscillator is one that is said to be critically damped.So far,we have considered the systems for the cases of b2−4mk<0and b2−4mk>0.Only one case remains, and that is when b2−4mk=0.The system is said to be”critically”damped because a slight change of b’s value in either direction will cause the system to become either overdamped(if b is increased)or underdamped(if b is decreased).Systems of this type have only one root andit is−b2m .The motion of a critically damped oscillator is very similar to that of the overdampedoscillator.It does not oscillate about the origin,it simply returns to its original position.As we have done with the other systems,we will look at an example with the help of Maple. Consider the following system:m=1,b=2,k=1,y(0)=1,and v(0)=1As before,we willfind the general solution,the values ofλ,plot the motion of the mass as a function of time,and also view the directionfield of the system with the given initial conditions.We can see that this system is very similar to the overdamped examples.But perhaps the biggest difference to notice is that the line the vectors approach in the critical system has a slope of-1, whereas the lines from the overdamped systems did not.4ConclusionWe have now covered all the types of harmonic oscillators,how to derive their equations,and what their basic properties are.I hope this has provided a useful guide in understanding the differences in the various systems and what makes them each unique.。
(320)A Phase Tracking System for Three Phase Utility Interface Inverters
Fig. 1. Block diagram of threNTRODUCTION S increasing demands for the high quality, reliability, and usability of electric power source, the utility interface operation of power converters is often used in advanced power conversion and conditioning systems such as the static VAR compensators, active power filters, uninterruptible power supplies (UPS’s), and grid-connected photovoltaic or wind power generation systems [3]. Since the control of the power factor is common goal of these systems and requires the accurate phase information of the utility voltages, the phase tracking system is one of the most important parts of these systems. The phase-locked loop (PLL) technique has been used as a common way of recovering and synthesizing the phase and frequency information in electrical systems [1], [2]. In the area of power electronics, the PLL technique has been adopted in the speed control of electric motors [5], [6]. This is also available for synchronizing the utility voltages and the controlled currents or voltages in utility interface operation of power electronic systems. A simple method of obtaining the phase information is to detect the zero crossing point of the utility voltages [1]. However, since the zero crossing point can be detected only at every half cycle of the utility frequency, the phase tracking action is impossible between the detecting points and thus the fast dynamic performance can not be obtained. An improved method is the technique using the quadrature of the input waveform shifted by 90 [1]. This technique has been often employed in the var-
半导体行业专业术语
半导体行业专业术语.txt都是一个山的狐狸,你跟我讲什么聊斋,站在离你最近的地方,眺望你对别人的微笑,即使心是百般的疼痛只为把你的一举一动尽收眼底.刺眼的白色,让我明白什么是纯粹的伤害。
悬赏太少了吧~嘎嘎不过尽管如此还是分享下俺的资料(有19800个字,这里发不下,如果还需要就给我小消息~~~):)移动通讯词汇(中英)A安全地线 safe ground wire安全特性 security feature安装线 hook-up wire按半周进行的多周期控制 multicycle controlled by half-cycle按键电话机 push-button telephone set按需分配多地址 demand assignment multiple access(DAMA)按要求的电信业务 demand telecommunication service按组编码 encode by groupB八木天线 Yagi antenna白噪声 white Gaussian noise白噪声发生器 white noise generator半波偶极子 halfwave dipole半导体存储器 semiconductor memory半导体集成电路 semiconductor integrated circuit半双工操作 semi-duplex operation半字节 Nib包络负反馈 peak envelop negative feed-back包络延时失真 envelop delay distortion薄膜 thin film薄膜混合集成电路 thin film hybrid integrated circuit保护比(射频) protection ratio (RF)保护时段 guard period保密通信 secure communication报头 header报文分组 packet报文优先等级 message priority报讯 alarm备用工作方式 spare mode背景躁声 background noise倍频 frequency multiplication倍频程 actave倍频程滤波器 octave filter被呼地址修改通知 called address modified notification被呼用户优先 priority for called subscriber本地PLMN local PLMN本地交换机 local exchange本地移动用户身份 local mobile station identity ( LMSI)本地震荡器 local oscillator比功率(功率密度) specific power比特 bit比特并行 bit parallel比特号码 bit number (BN)比特流 bit stream比特率 bit rate比特误码率 bit error rate比特序列独立性 bit sequence independence必要带宽 necessary bandwidth闭环电压增益 closed loop voltage gain闭环控制 closed loop control闭路电压 closed circuit voltage边瓣抑制 side lobe suppression边带 sideband边带非线性串扰 sideband non-linear crosstalk边带线性串扰 sideband linear crosstalk边带抑制度 sideband suppression边角辐射 boundary radiation编号制度 numbering plan编解码器 codec编码 encode编码律 encoding law编码器 encoder编码器输出 encoder output编码器总工作时间 encoder overall operate time编码效率 coding efficiency编码信号 coded signal编码约束长度 encoding constraint length编码增益 coding gain编译程序 compiler鞭状天线 whip antenna变频器 converter变频损耗 converter conversion loss变容二极管 variable capacitance diode变形交替传号反转 modified alternate mark inversion便携电台 portable station便携设备 portable equipment便携式载体设备 portable vehicle equipment标称调整率(标称塞入率) nominal justification rate (nominal stuffing rate)标称值 nominal value标称呼通概率 nominal calling probability标准码实验信号 standard code test signal (SCTS)标准模拟天线 standard artificial antenna标准频率 standard frequency标准时间信号发射 standard-time-signal emission标准实验调制 standard test modulation标准输出功率 standard power output标准输入信号 standard input signal标准输入信号电平 standard input-signal level标准输入信号频率 standard input-signal frequency标准信躁比 standard signal to noise表面安装 surface mounting表示层 presentation layer并串变换器 parallel-serial converter (serializer)并馈垂直天线 shunt-fed vertical antenna并行传输 parallel transmission并行终端 parallel terminal拨号错误概率 dialing mistake probability拨号后延迟 post-dialing delay拨号交换机 dial exchange拨号线路 dial-up line拨号音 dialing tone拨号终端 dial-up terminal波动强度(在给定方向上的) cymomotive force (c. m. f)波段覆盖 wave coverage波峰焊 wave soldering波特 baud泊送过程 Poisson process补充业务 supplementary service (of GSM)补充业务登记 supplementary service registration补充业务询问 supplementary service interrogation补充业务互连 supplementary service interworking捕捉区(一个地面接收台) capture area (of a terrestrial receiving station) 捕捉带 pull-in range捕捉带宽 pull-in banwidth捕捉时间 pull-in time不连续发送 discontinuous transmission (DTX)不连续干扰 discontinuous interference不连续接收 discontinuous reception (DRX)不确定度 uncertainty步谈机 portable mobile stationC采样定理 sampling theorem采样频率 sampling frequency采样周期 sampling period参考边带功率 reference side band power参考差错率 reference error ratio参考当量 reference equivalent参考点 reference point参考结构 reference configuration参考可用场强 reference usable fiend-strength参考灵敏度 reference sensibility参考频率 reference frequency参考时钟 reference clock参考输出功率 reference output power残余边带调制 vestigial sideband modulation残余边带发射 vestigial-sideband emission操作维护中心 operation maintenance center (OMC)操作系统 operation system (OS)侧音消耗 sidetone loss层2转发 layer 2 relay (L2R)插入组装 through hole pachnology插入损耗 insertion loss查号台 information desk差错控制编码 error control coding差错漏检率 residual error rate差分脉冲编码调制(差分脉码调制) differential pulse code modulation (DPCM) 差分四相相移键控 differential quadrature phase keying (DQPSK)差分相移键控 differential phase keying (DPSK)差模电压,平衡电压 differential mode voltage, symmetrical voltage差拍干扰 beat jamming差频失真 difference frequency distortion长期抖动指示器 long-term flicker indicator长期频率稳定度 long-term frequency stability场强灵敏度 field intensity sensibility场效应晶体管 field effect transistor (FET)超长波通信 myriametric wave communication超地平对流层传播 transhorizon tropospheric超地平无线接力系统 transhorizon radio-relay system超高帧 hyperframe超帧 superframe超大规模集成电路 very-large scale integrated circuit (VLSI)超再生接收机 super-regenerator receiver车载电台 vehicle station撤消 withdrawal成对不等性码(交替码、交变码)paired-disparity code (alternative code, alternating code)承载业务 bearer service城市交通管制系统 urban traffic control system程序设计技术 programming technique程序设计环境 programming environment程序优化 program optimization程序指令 program command充电 charge充电率 charge rate充电效率 charge efficiency充电终止电压 end-of charge voltage抽样 sampling抽样率 sample rate初级分布线路 primary distribution link初始化 initialization处理增益 processing gain传播时延 propagation delay传播系数 propagation coefficient传导干扰 conducted interference传导杂散发射 conducted spurious emission传递函数 transfer function传递时间 transfer time传声器 microphone传输保密 transmission security传输层协议 transport layer protocol传输集群 transmission trunking传输结束字符 end of transmission character传输媒体 transmission medium传输损耗 transmission loss传输损耗(无线线路的) transmission loss (of a radio link)传输通道 transmission path传输信道 transmission channel传真 facsimile, FAX船舶地球站 ship earth station船舶电台 ship station船舶移动业务 ship movement service船上通信电台 on-board communication station ,ship communication station 船用收音机 ship radio串并变换机 serial to parallel (deserializer)串并行变换 serial-parallel conversion串话 crosstalk垂直方向性图 vertical directivity pattern唇式传声器 lip microphone磁屏蔽 magnetic shielding次级分布线路 secondary distribution link猝发差错 burst error猝发点火控制 burst firing control存储程序控制交换机 stored program controlled switching systemD大规模集成电路 large scale integrated circuit (LSI)大信号信躁比 signal-to-noise ratio of strong signal带成功结果的常规操作 normal operation with successful outcome 带宽 bandwidth带内导频单边带 pilot tone-in-band single sideband带内谐波 in-band harmonic带内信令 in-band signalling带内躁声 in-band noise带通滤波器 band-pass filter带外发射 out-of-band emission带外功率 out-of-band power带外衰减 attenuation outside a channel带外信令 out-band signalling带状线 stripline单边带发射 single sideband (SSB) emission单边带发射机 single side-band (SSB) transmitter单边带调制 single side band modulation单边带解调 single side band demodulation单边带信号发生器 single side band signal generaltor单端同步 single-ended synchronization单工、双半工 simplex, halfduplex单工操作 simplex operation单工无线电话机 simplex radio telephone单呼 single call单频双工 single frequency duplex单频信令 single frequency signalling单相对称控制 symmetrical control (single phase)单相非对称控制 asymmetrical control (single phase)单向 one-way单向的 unidirectional单向控制 unidirectional control单信道地面和机载无线电分系统 SINCGARS单信道无绳电话机 single channel cordless telephone单信号方法 single-signal method单音 tone单音脉冲 tone pulse单音脉冲持续时间 tone pulse duration单音脉冲的单音频率 tone frequency of tone pulse单音脉冲上升时间 tone pulse rise time单音脉冲下降时间 tone pulse decay time单音制 individual tone system单元电缆段(中继段) elementary cable section (repeater section)单元再生段 elementary regenerator section (regenerator section)单元增音段,单元中继段 elementary repeater section当被呼移动用户不回答时的呼叫转移 call forwarding on no reply (CFNRy)当被呼移动用户忙时的呼叫转 calling forwarding on mobile subscriber busy (CFB) 当漫游到原籍PLMN国家以外时禁止所有入呼 barring of incoming calls when roaming outside the home PLMN country (BIC-Roam)当前服务的基站 current serving BS当无线信道拥挤时的呼叫转移calling forward on mobile subscriber not reachable (CENRc)刀型天线 blade antenna导频 pilot frequency导频跌落pilot fall down倒L型天线 inverted-L antenna等步的 isochronous等幅电报 continuous wave telegraph等权网(互同步网) democratic network (mutually synchronized network)等效比特率 equivalent bit rate等效地球半径 equivalent earth radius等效二进制数 equivalent binary content等效全向辐射功率 equivalent isotropically radiated power (e. i. r. p.)等效卫星线路躁声温度 equivalent satellite link noise temperature低轨道卫星系统 LEO satellite mobile communication system低气压实验 low atmospheric pressure test低时延码激励线性预测编码 low delay CELP (LD-CELP)低通滤波器 low pass filter低温实验 low temperature test低躁声放大器 low noise amplifier地-空路径传播 earth-space path propagation地-空通信设备 ground/air communication equipment地波 ground wave地面连线用户 land line subscriber地面无线电通信 terrestrial radio communication地面站(电台) terrestrial station第N次谐波比 nth harmonic ratio第二代无绳电话系统 cordless telephone system second generation (CT-2)第三代移动通信系统 third generation mobile systems点波束天线 spot beam antenna点对地区通信 point-area communication点对点通信 point-point communication点至点的GSM PLMN连接 point to point GSM PLMN电报 telegraphy电报电码 telegraph code电波衰落 radio wave fading电池功率 power of battery电池能量 energy capacity of battery电池容量 battery capacity电池组 battery电磁波 electromagnetic wave电磁波反射 reflection of electromagnetic wave电磁波饶射 diffraction of electromagnetic wave电磁波散射 scattering of electromagnetic wave电磁波色射 dispersion of electromagnetic wave电磁波吸收 absorption of electromagnetic wave电磁波折射 refraction of electromagnetic wave电磁场 electromagnetic field电磁发射 electromagnetic field电磁辐射 electromagnetic emission电磁干扰 electromagnetic interference (EMI)电磁感应 electromagnetic induction电磁环境 electromagnetic environment电磁兼容性 electromagnetic compatibility (EMC)电磁兼容性电平 electromagnetic compatibility level 电磁兼容性余量 electromagnetic compatibility margin 电磁脉冲 electromagnetic pulse (EMP)电磁脉冲干扰 electromagnetic pulse jamming电磁敏感度 electromagnetic susceptibility电磁能 electromagnetic energy电磁耦合 electromagnetic coupling电磁屏蔽 electromagnetic shielding电磁屏蔽装置 electromagnetic screen电磁骚扰 electromagnetic disturbance电磁噪声 electromagnetic noise电磁污染 electromagnetic pollution电动势 electromotive force (e. m. f.)电话机 telephone set电话局容量 capacity of telephone exchange电话型电路 telephone-type circuit电话型信道 telephone-type channel电离层 ionosphere电离层波 ionosphere wave电离层传播 ionosphere propagation电离层反射 ionosphere reflection电离层反射传播 ionosphere reflection propagation电离层散射传播 ionosphere scatter propagation电离层折射 ionosphere refraction电离层吸收 ionosphere absorption电离层骚扰 ionosphere disturbance电流探头 current probe电路交换 circuit switching电屏蔽 electric shielding电视电话 video-telephone, viewphone, visual telephone电台磁方位 magnetic bearing of station电台方位 bearing of station电台航向 heading of station电文编号 message numbering电文队列 message queue电文格式 message format电文交换 message switching电文交换网络 message switching network电文结束代码 end-of-message code电文路由选择 message routing电小天线 electronically small antenna电信管理网络 telecommunication management network (TMN)电信会议 teleconferencing电压变化 voltage change电压变化持续时间 duration of a voltage change电压变化的发生率 rate of occurrence of voltage changes电压变化时间间隔 voltage change interval电压波动 voltage fluctuation电压波动波形 voltage fluctuation waveform电压波动量 magnitude of a voltage fluctuation电压不平衡 voltage imbalance, voltage unbalance电压浪涌 voltage surge电压骤降 voltage dip电源 power supply电源电压调整率 line regulation电源抗扰性 mains immunity电源持续工作能力 continuous operation ability of the power supply 电源去耦系数 mains decoupling factor电源骚扰 mains disturbance电子干扰 electronic jamming电子工业协会 Electronic Industries Association (EIA)电子系统工程 electronic system engineering电子自动调谐 electronic automatic tuning电子组装 electronic packaging电阻温度计 resistance thermometer跌落试验 fall down test顶部加载垂直天线 top-loaded vertical antenna定长编码 block code定期频率预报 periodical frequency forecast定时 clocking定时超前 timing advance定时电路 timing circuit定时恢复(定时抽取) timing recovery (timing extration)定时截尾试验 fixed time test定时信号 timing signal定数截尾试验 fixed failure number test定向天线 directional antenna定型试验 type test动态频率分配 dynamic frequency allocation动态信道分配 dynamic channel allocation动态重组 dynamic regrouping动态自动增益控制特性 dynamic AGC characteristic抖动 jitter独立边带 independent sideband独立故障 independent fault端到端业务 teleservice短波传播 short wave propagation短波通信 short wave communication短路保护 short-circuit protection短期抖动指示器 short-term flicker indicator短期频率稳定度 short-term frequency stability短时间中断(供电电压) short interruption (of supply voltage)段终端 section termination对称二元码 symmetrical binary code对地静止卫星 geostationary satellite对地静止卫星轨道 geostationary satellite orbit对地同步卫星 geosynchronous satellite对讲电话机 intercommunicating telephone set对空台 aeronautical station对流层 troposphere对流层波道 troposphere duct对流层传播 troposphere propagation对流层散射传播 troposphere scatter propagation多次调制 multiple modulation多点接入 multipoint access多电平正交调幅 multi-level quadrature amplitude modulation (QAM) 多分转站网 multidrop network多服务器队列 multiserver queue多工 multiplexing多工器 nultiplexer多功能系统 MRS多级处理 multilevel processing多级互连网络 multistage interconnecting network多级卫星线路 multi-satellite link多径 multipath多径传播 multipath propagation多径传播函数 nultipath propagation function多径分集 multipath diversity多径时延 multipath delay多径衰落 multipath fading多径效应 multipath effect多路复接 multiplexing多路接入 multiple access多路信道 multiplexor channel多脉冲线性预测编码 multi-pulse LPC (MPLC)多频信令 multifrequency signalling多普勒频移 Doppler shift多跳路径 multihop path多信道选取 multichannel access (MCA)多信道自动拨号移动通信系统multiple-channel mobile communication system with automatic dialing 多优先级 multiple priority levels多帧 multiframe多址呼叫 multiaddress call多址联接 multiple access多重时帧 multiple timeframe多用户信道 multi-user channelE额定带宽 rated bandwidth额定射频输出功率 rated radio frequency output power额定使用范围 rated operating range额定音频输出功率 rated audio-frequency output power额定值 rated value爱尔兰 erlang恶意呼叫识别 malicious call identification (MCI)耳机(受话器) earphone耳机额定阻抗 rated impedance of earphone二十进制码 binary-coded decimal (BCD) code二十进制转换 binary-to-decimal conversion二十六进制转换 binary-to-hexadecimal conversion二进制码 binary code二进制频移键控 binary frequency shift keying (BFSK)二进制数 binary figure二频制位 binary digit(bit)二频制 two-frequency system二维奇偶验码 horizontal and vertical parity check code二线制 two-wire system二相差分相移键控 binary different phase shift keying (BDPSK) 二相相移键控 binary phase shift keying (BPSK)F发报机 telegraph transmitter发射 emisssion发射(或信号)带宽 bandwidth of an emission (or a signal)发射机 transmitter发射机边带频谱 transmitter sideband spectrum发射机额定输出功率 rated output power of transmitter发射机合路器 transmitter combiner发射机冷却系统 cooling system of transmitter发射机启动时间 transmitter attack time发射机效率 transmitter frequency发射机杂散躁声 spurious transmitter noise发射机之间的互调 iner-transmitter intermodulation发射机对答允许频(相)偏transmitter maximum permissible frequency(phase) deviation 发射类别 class of emission发射频段 transmit frequency band发射余量 emission margin发送 sending发送响度评定值 send loudness rating (SLR)繁忙排队/自动回叫 busy queuing/ callback反馈控制系统 feedback control system反射功率 reflection power反射卫星 reflection satellite反向话音通道 reverse voice channel (RVC)反向控制信道 reverse control channel (RECC)泛欧数字无绳电话系统 digital European cordless telephone方舱 shelter方向性系数 directivity of an antenna防爆电话机 explosion-proof telephone set防潮 moisture protection防腐蚀 corrosion protection防霉 mould proof仿真头 artificial head仿真耳 artificial ear仿真嘴 artificial mouth仿真天线 dummy antenna放大器 amplifier放大器线性动态范围 linear dynamic range of amplifier放电 discharge放电电压 discharge voltage放电深度 depth of discharge放电率 discharge rate放电特性曲线 discharge character curve非等步的 anisochronous非归零码 nonreturn to zero code (NRZ)非均匀编码 nonuniform encoding非均匀量化 nonuniform quantizing非连续干扰 discontinuous disturbance“非”门 NOT gate非强占优先规则 non-preemptive priority queuing discipline非受控滑动 uncontrolled slip非线性电路 nonlinear circuit非线性失真 nonliear distortion非线性数字调制 nonlinear digital modulation非占空呼叫建立 off-air-call-set-up (OACSU)非专用控制信道 non-dedicated control channel非阻塞互连网络 non-blocking interconnection network分贝 decibel (dB)分辨力 resolution分布参数网络 distributed parameter network分布式功能 distributed function分布式数据库 distributed database分别于是微波通信系统 distributed microwave communication system 分布式移动通信系统 distributed mobile communication system分布路线 distribution link分段加载天线 sectional loaded antenna分机 extension分集 diversity分集改善系数 diversity improvement factor分集间隔 diversity separation分集增益 diversity gain分集接收 diversity reception分接器 demultiplexer分频 frequency division分散定位 distributed chann13。
组织学与胚胎学单词
英文单词:组织学与胚胎学(白皮)Histology 组织学[hɪˈstɒlədʒi] Embryology 胚胎学[embriˈɒlədʒi]tissue 组织[ˈtɪʃu:]Extracellular matrix 细胞外基质[ˌekstrəˈseljuləˈmeɪtrɪks] Light microscope 光学显微镜[lait ˈmaikrəskəup] Electron microscope 电子显微镜[iˈlektrɔn ˈmaikrəskəup] Paraffin sectioning 石蜡切片[ˈpærəfɪn ˈsekʃən] Hematoxylin cosin staining 苏木精-伊红染剂[hi:məˈtɔksilin ˈi:əusin ˈsteini]Histochemistry 组织化学Immunohistochemistry 免疫组织化学[ɪmjʊnəʊhɪstəʊ'kemistri] Cell culture 细胞培养[sel ˈkʌltʃə]Tissue engineering 组织工程Epithelium 上皮[ˌepɪ'θi:lɪəm] Endothelium 内皮[ˌendəʊ'θi:lɪəm] Mesothelium 间皮[ˌmezə'θi:lɪəm] Exocrine gland 外分泌腺[ˈeksəukrain ɡlænd] Endocrine gland 内分泌腺[ˈendəukrain ɡlænd] Acinus 腺泡['æsɪnəs]Serous cell 浆液细胞[ˈsiərəs sel]Mucous cell 粘液细胞[ˈmju:kəs sel]Serous demilune 浆液半月[ˈsiərəs ˈdemilu:n]Micro villus 微绒毛[maɪkrəʊ'vɪləs]Cilium 纤毛['sɪlɪəm]Desmosome 桥粒['desməsəm] Junctional complex 连接复合体Basement membrane 基膜[ˈbeismənt ˈmemˌbreɪn] Basal lamina 基板[ˈbeisəl ˈlæminə] Reticular lamina 网板[riˈtikjuləˈlæminə]loose connective tissue 疏松结缔组织[kəˈnektɪv ˈtisju:] Connective tissue proper 固有结缔组织[kəˈnektɪv ˈtisju: ˈprɔpə] Mesenchyme 间充质['mezənkaɪm] Fibroblast 成纤维细胞['faɪbrəblæst] Fibrocyte 纤维细胞['faɪbroʊsaɪt]Plasma cell 巨噬细胞[ˈplæzmə sel] Macrophage 浆细胞[ˈmækrəfeɪdʒ]mast cell 肥大细胞[mɑ:st sel]fat cell 脂肪细胞[fat sel] mesenchymal cell 间充质细胞[mes'eŋkɪməl][sel] Collagenous fiber 胶原纤维[kɒ'lɑ:dʒenəs]['faɪbə] Elastic fiber 弹性纤维[iˈlæstik ˈfaibə]Reticular fiber 网状纤维[rɪ'tɪkjʊlə]['faɪbə]Groung substance 基质[ɡraund ˈsʌbstəns] Adipose tissue 脂肪组织[ˈædɪpəʊs][ˈtɪʃu:] Reticular tissue 网状组织[rɪ'tɪkjʊlə][ˈtɪʃu:]plasma 血浆[ˈplæzmə]Serum 血清[ˈsɪərəm]wright staining 瑞氏染色[rait][steɪnɪŋ]erythrocyte ,red blood cell 红细胞[ɪˈrɪθrəsaɪt] Hemoglobin 血红蛋白[ˌhi:məʊ'gləʊbɪn] erythrocyte membrane skeleton 红细胞膜骨架[ɪˈrɪθrəsaɪt] ['membreɪn][ˈskelɪtn]Hemolysis 溶血[hɪ'mɒlɪsɪs] reticulocyte 网织红细胞[rɪ'tɪkjʊləsaɪt] leukocyte,white blood cell 白细胞['lu:kəˌsaɪt] neutrophilic granulocyte ,neutrophil 中性粒细胞[nju:trə'fɪlɪk] ['grænjʊləsaɪt],['nju:trəfɪl]azurophilic granule 嗜天青颗粒[æʒʊərə'fɪlɪk][ˈgrænju:l]specific granule 特殊颗粒[spəˈsɪfɪk][ˈgrænju:l] basophilic granulocyte 嗜碱性颗粒[bæsə'fɪlɪk]['grænjʊləsaɪt]eosinophilic granulocyte,eosinophil 嗜酸性颗粒[ˌi:əˌsɪnə'fɪlɪk] ['grænjʊləsaɪt],[ˌi:ə'sɪnəfɪl]monocyte 单核细胞['mɒnəsaɪt] lymphocyte 淋巴细胞[ˈlɪmfəsaɪt]blood platelet 血小板[blʌd] [ˈpleɪtlət] bone marrow 骨髓[bəʊn] [ˈmæro] hemopoietic stem cell 造血干细胞[ˌhi:məpɔɪ'i:tɪk] [stem] [sel]multipotential stem cell 多能干细胞[mʌltɪpəʊ'tenʃl] [stem] [sel]Cartilage tissue 软骨组织[ˈkɑ:tlɪdʒˈtisju:] Chondrocyte 软骨细胞[kʌdrɒsɪt]Cartilage lacuna 软骨陷窝[ˈkɑ:tlɪdʒləˈkju:nə] Isogenous group 同源细胞群[aiˈsɔdʒinəs ɡru:p Cartilage capsule 软骨囊[ˈkɑ:tlɪdʒˈkæpsju:l] Hyaline cartilage 透明软骨[ˈhaiəli:n ˈkɑ:tlɪdʒFibrous cartilage 纤维软骨[ˈfaɪbrəs]Elastic cartilage 弹性软骨[ɪˈlæstɪk]Chondroblast 成软骨细胞['kɒndrəʊblɑ:st] Osseous tissue 骨组织[ˈɔsi:əs ˈtisju:]Bone matrix 骨基质[bəun ˈmeɪtrɪks]Osteoid 类骨质['ɒstɪɔɪd]Bone lamella 骨板[bəun ləˈmelə]Osteoprogenitor cell 骨祖细胞Osteoblast 成骨细胞['ɒstɪəblæst]Matrix vesicle 基质小炮[ˈvɛsɪkəl]Osteocyte 骨细胞['ɒstɪəsaɪt]Bone lacuna 骨陷窝[bəun ləˈkju:nə]Bone canaliculus 骨小管[bəun ˌkænəˈlikjuləs] Osteoclast 破骨细胞Perforating canal 穿通管Circumferential lamella 环骨板[səˌkʌmfəˈrenʃəl ləˈmelə]Haversian system 哈弗斯系统[həˈvə:ʃən ˈsistəm] Osteon 骨单位['ɒstɪɒn]Skeletal muscle 骨骼肌[ˈskelitl ˈmʌsl]Cardiac muscle 心肌[ˈkɑ:diæk]Smooth muscle 平滑肌Myofibril 肌原纤维[ˌmaɪə'faɪbrəl]Sarcomere 肌节['sɑ:kəmɪə]Sarcoplasm 肌浆['sɑ:kəʊˌplæzəm] Sarcoplasmic reticulum 肌浆网['sɑ:kəʊˌplæzəm][rɪ'tɪkjʊləm] Intercalated disk 闰盘Transverse tubule 横小管[ˈtrænzvɜ:s]['tju:bju:l] Longitudinal tubule 纵小管[ˌlɒŋgɪˈtju:dɪnl]['tju:bju:l]Terminal cisternae 终池[si'stə:ni:]Triad 三联体[ˈtraɪæd]Thick filament 粗肌丝[θik ˈfɪləmənt]Thin filament 细肌丝[θin ˈfɪləmənt]nervous tissue 神经组织[ˈnə:vəs ˈtisju:] neuron 神经元[ˈnʊərˌɔn, ˈnjʊər-]Neuroglial cell 神经胶质细胞[n'jʊərəʊɡlɪəl ‘ sel] Nissl body 尼氏体[ˈbɒdi] Neurotransmitter 神经胶质[ˈnjʊərəʊtrænzmɪtə(r)]Neurofibril 神经原纤维[ˌnjʊərə'faɪbrɪl] Dendrite 树突[ˈdendraɪt]Axon 轴突[ˈæksɒn]Axolemma 轴膜['æksəʊlemə] Axoplasm 轴浆[æk'sɒplæzəm] Pseudounipolar neuron 假单极神经元[sju:dəʊnaɪ'pəʊlə][ˈnʊərˌɔn, ˈnjʊər-]Synapse 突触['saɪnæps] Presynaptic element 突触前成分[prisiˈnæptik ˈelimənt] Synaptic cleft 突触间隙[sɪˈnæptɪk kleft] Postsynaptic element 突触后成分[pəustsiˈnæptik ˈelimənt]Postsynaptic membrane 突触后膜[pəustsiˈnæptik ˈmemˌbreɪn]presynaptic membrane 突触前膜[prisiˈnæptik ˈmemˌbre ɪn]Synaptic knob 突触小体[sɪˈnæptɪk nɔb] Astrocyte 星形胶质细胞['æstrəsaɪt] Oligodendrocyte 少突胶质细胞['ɒlɪgəʊ'dendrəsaɪt] Ependymal cell 室管膜细胞[e'pendɪməl ‘sel] Schwann cell 施万细胞[ʃwɔn ‘sel]Myelin sheath 髓鞘[ˈmaiəli(:)n ʃi:θ] Myelinated nerve fiber 有髓神经纤维[ˈmaiəlineitid nə:v ˈfaɪb ə]Ranvier node 郎飞结[‘ræviə‘nəʊd] Internode 中间体['ɪntənəʊd]Tactile corpuscle 触觉小体[ˈtæktəl ˈkɔ:pəsəl] Lamellar corpuscle 环层小体[lə'melə][ˈkɔ:pʌsl] Neuromuscular junction 神经肌连接[ˌnjʊərəʊ'mʌskjʊlə'dʒʌŋkʃn]epineurium 神经外膜[ˌepɪ'njʊərɪəm] perineurium 神经束膜[ˌperə'nju:rɪəm] endoneurium 神经内膜[endəʊ'nju:rɪəm] motor end plate 运动终板[ˈməutəend pleit]tunica intima 内膜[ˈtju:nikəˈintimə]Tunica media 中膜[ˈtju:nikəˈmi:djə]Tunica adventitia 外膜[ˈtju:nikəˌædvenˈtiʃjə] Endocardium 心内膜[endəʊ'kɑ:dɪəm] Myocardium 心肌膜[maɪə'kɑ:dɪəm] Epicardium 心外膜[ˌepɪ'kɑ:dɪəm]arteriole 微动脉[ɑ:ˈtɪəriəʊl]Venule 微静脉['venju:l]Capillary 毛细血管[kəˈpɪləri]elastic membrane 弹性膜[iˈlæstik ˈmemˌbreɪn] Pericyte 周细胞[peri:'saɪt]continuous capillary 连续毛细血管[kənˈtinjuəs ˈkæpəˌleri:]Fenestrated capillary 有孔毛细血管[fiˈnestreitid ˈkæpəˌleri:] Sinusoid capillary 血窦['saɪnəsɔɪd ˈkæpəˌleri:]Purkinje fiber 浦肯野纤维[pu ken ye~(就是音译)'faɪbə]Microcirculation 微循环[maɪkrəʊsɜ:kjʊ'leɪʃn] skin 皮肤[skɪn]epidermis 表皮[,epɪ'dɜːmɪs] keratinocyte 角质形成细胞[kə'rætinəsait]stratum basale 基底层[ˈstrɑ:təm] [beɪseɪl] stratum spinosum 棘层[ˈstrɑ:təm][spaɪ'nəʊsʌm]stratum granulosum 颗粒层[ˈstrɑ:təm]stratum lucidum 透明层[ˈstrɑ:təm] ['lu:si:dəm] stratum corneum 角质层[ˈstrɑ:təm]['kɔ:niəm] melanocyte 黑素细胞['melənəsaɪt]langerhans cell 朗格汉斯细胞[sel]dermis 真皮['dɜːmɪs]hair 毛[heə]sebaceous gland 皮脂腺[sɪ'beɪʃəs][glænd] sweat gland 汗腺[swet][glænd] recirculation of lymphocyte 淋巴细胞再循环[ri:'sɜ:kjʊ'le ɪʃən] [ˈlɪmfəsaɪt]mononuclear phagocytic system 单核吞噬细胞系统[mɒnəʊn'ju:klɪər][fægə'sɪtɪk][ˈsɪstəm]dendritic cell 树突状细胞[ˌden'drɪtɪk][sel]Diffuse lymphoid tissue 弥散淋巴组织[dɪˈfju:s]['lɪmfɔɪd][ˈtɪʃu:]Lymphoid nodule 淋巴小结[ˈnɒdju:l]Germinal center 生发中心[ˈdʒə:minl]['sentə] Thymic lobule 胸腺小叶['θaɪmɪk] ['lɒbju:l]Thymocyte 胸腺细胞['θaɪməsaɪt]Thymic corpuscle 胸腺小体[ˈθaimik ˈkɔ:pəsəl]Blood-thymus barrier 血胸屏障[ˈθaɪməs][ˈbæriə(r)] Supercial cortex 浅层皮质[ˌsu:pəˈfɪʃl][ˈkɔ:teks] Paracortex zone 副皮质区[pærə'kɔ:teks]Cortical sinus 皮质淋巴窦['kɔ:tɪkl]Medullary cord 髓索['medələrɪ]Medullary sinus 髓窦['medələrɪ]White pulp 白髓[pʌlp]Red pulp 红髓[pʌlp]Periarterial lymphatic sheath 动脉周围淋巴鞘[pɪə'rɪətɪərɪəl][lɪm'fætɪk][ʃi:θ]Marginal zone 边缘区Splenic cord 脾索['splenɪk][kɔ:d]Splenic sinus 脾血窦['splenɪk][ˈsaɪnəs] endocrine system 内分泌系统[ˈendəukrain ˈsistəm]hormone 激素['hɔ:məʊn]paracrine 旁分泌[pəræk'raɪn]thyroid follicle 甲状旁腺滤泡[ˈθaɪˌrɔɪd ˈfɔlɪkəl] parafollicular cell 滤泡旁细胞[pærə'fɒlɪkjʊlə]zona glomerulosa 球状带['zoʊnə][ɡlɒmrjʊ'loʊzə]zona fasciculate 束状带['zoʊnə][fə'sɪkjʊˌleɪt] zona reticularis 网状带['zoʊnə]chromaffin cell 嗜铬细胞[ˈkroməfɪn sɛl]pars distalis 远侧部[pɑ:z] [dɪs'təlɪs]acidophil 嗜酸性细胞['æsɪdoʊˌfɪl]basophil 嗜碱性细胞[bæsə'fɪl]chromophobe cell 嫌色细胞[ˈkroməˌfob sɛl] herring body 赫令体[ˈhɛrɪŋ]gonadotroph 促性腺激素细胞[ɡənədət'rɒf] pituicyte 垂体细胞[pɪ'tju:ɪˌsaɪt] somatotroph 生长激素细胞['soʊmətətroʊf] hypophyseal portal system 垂体门脉系统[haɪ'pɒfəsi:l]['pɔ:tl] Digestive system 消化系统[daɪˈdʒestɪv ˈsistəm] Mucosa 粘膜[mju:'kəʊsə] Submucosa 粘膜下层[sʌbmju:'kəʊsə] Muscularis 肌层['mʌskjʊlærɪs] Adventitia 外膜[ˌædvən'tɪʃɪə]Plica 皱襞['plaɪkə]Serosa 浆膜[sɪ'rəʊsə]Gastric area 胃小凹[ˈgæstrɪk ˈɛəriə] Fundic gland 胃底腺[ˈfʌndik ɡlænd]Parietal cell 壁细胞[pəˈraiətəl sel]Oxyntic cell 泌酸细胞['ɒksɪntɪk sel]Chief cell 主细胞[tʃi:f sel]Intracellular secretory canaliculus 细胞内分泌小管[ˌɪntrəˈseljələsiˈkri:təri ˌkænəˈlikjuləs]Intestinal villus 肠绒毛[ɪnˈtestənəl ˈviləs] Absorptive cell 吸收细胞[əbˈsɔ:ptiv sel]Paneth cell 潘氏细胞Duodenal gland 十二指肠腺[ˌdju(:)əuˈdi:nl ɡlænd] Central lacteal 中央乳糜管[ˈsentrəl ˈlæktiəl] digestive gland 消化腺[daɪˈdʒestɪv ɡlænd] intercalated duct 闰管[ɪntɜ:kə'leɪtɪd dʌkt] centroacinar cells 泡心细胞pancreas islet 胰岛[ˈpæŋkri:əs ˈailit] hepatic lobule 肝小叶[hɪˈpætɪk ˈlɔbju:l] central vein 中央静脉[ˈsentrəl vein] Hepatocyte 肝细胞['hepətəsaɪt]hepatic plate 肝板[hɪˈpætɪk pleit]Kupffer cell 肝巨噬细胞perisinusoidal space 窦周隙bile canaliculi 胆小管[baɪl kænə'likjulai]portal area 门管区[ˈpɔ:təl ˈɛəriə]respiratory system 呼吸系统[ˈrespərəˌtɔ:ri]['sɪstəm] trachea 气管[trə'ki:ə]brush cell 刷细胞[brʌʃ][sel]ciliated cell 纤毛细胞['sɪlɪeɪtɪd][sel]bronchus 支气管[ˈbrɒŋkəs]lung 肺[lʌŋ]respiratory bronchiole [ˈrespərəˌtɔ:ri]alveolar duct 肺泡管[ælˈvi:ələ(r)][dʌkt]alveolar sac 肺泡囊[ælˈvi:ələ(r)][sæk] pulmonary alveolus 肺泡[ˈpʌlmənəri][ælˈvi:ələs] alveolar septum 肺泡隔[ælˈvi:ələ(r)][ˈseptəm] pulmonary macrophage 肺巨噬细胞[ˈpʌlmənəri][ˈmækrəfeɪdʒ] blood-air barrier 气-血屏障[blʌd] [eə(r)] [ˈbæriə(r)] Nephron 肾单位['nefrɒn]Medullary ray 髓放线[meˈdʌləri rei] Uriniferous tubule 泌尿小管['jʊərə'nɪfərəs]['tju:bju:l]Renal corpuscle 肾小体[ˈri:nəl ˈkɔ:pəsəl] Glomerulus 血管球[gləʊ'meərjʊləs]Renal capsule 肾小囊[ˈri:nəl ˈkæpsju:l]Renal tubule 肾小管[ˈri:nəl ˈtju:bju:l] Podocyte 足细胞[pɒdə'saɪt]Proximal tubule 近端小管[ˈprɔksiməl ˈtju:bju:l] Distal tubule 远端小管[ˈdistəl ˈtju:bju:l] Brush border 刷状缘[ˈdistəl ˈtju:bju:l] Macula densa 致密斑['mækjʊlə]Filtration barrier 滤过屏障[filˈtreiʃən ˈbæriə]Renin 肾素Juxtaglomerular complex 球旁复合体[ˌdʒʌkstəˌɡlɔˈmeruləˈkɔmpleks]seminiferous tubule 生精小管[ˌsemə'nɪfərəs]['tju:bju:l] Spermatozoa 精子细胞[ˌspɜ:mətəˈzəʊə] spermatogonium 精原细胞[ˌspɜ:mətə'gəʊnɪəm] Spermatocyte 精母细胞[spə'mætəsaɪt] spermatogenesis 精子发生[spɜ:mətəʊ'dʒenɪsɪs] spermatogenic cell 生精细胞[ˌspə:mətəˈdʒenik sel] Acrosome 顶体['ækrəˌsəʊm] Sperminogenesis 精子形成[ˌspɜ:mɪəʊ'dʒenəsɪs] Epididymis 附睾Sustentacular cell 支持细胞[ˌsʌstenˈtækjulə sel] Prostate 前列腺[ˈprɒsteɪt]Blood-testis barrier 血-睾屏障[ˈtestɪs]Testicular interstitial cell 睾丸间质细胞Androgen binding protein 雄激素结合蛋白[ˈændrədʒən ˈbaɪndɪŋˈprəuti:n]Female reproductive system 女性生殖系统['fi:meɪl][ˌri:prəˈdʌktɪv]['sɪstəm]Vary 卵巢['veərɪ]Follicle 卵泡[ˈfɒlɪkl]Primordial follicle 原始卵泡[praɪˈmɔ:di:əl ˈfɔlɪkəl] Primary follicle 初级卵泡[ˈpraiməri ˈfɔlɪkəl] Follicular theca 卵泡膜[fəˈlikjuləˈθi:kə] Secondary follicle 次级卵泡[ˈsekəndəri ˈfɔlɪkəl] Mature follicle 成熟卵泡[məˈtjuəˈfɔlɪkəl] Oogonia 卵原细胞Secondary oocyte 次级卵母细胞[ˈsekəndəri ˈəuəsait] Ovulation 排卵[ˌɒvjʊ'leɪʃn]Ovum 卵细胞[ˈəʊvəm]Zona pellucida 透明带[ˈzəʊnəpəˈlu:sɪdə, pel ˈju:-]Corona radiata 放射冠[kə'rəʊnə]Corpus luteum 黄体['kɔ:pəs][ˈlu:ti:əm] Granulosa lutein cell 颗粒黄体细胞[grænjʊ'ləʊsə]['lu:tɪɪn][sel] Theca lutein cell 膜黄体细胞[ˈθi:kəˈlu:tiin sel]Uterus 子宫['ju:tərəs]Uterine gland 子宫腺[ˈju:tərain ɡlænd]Mammary gland 乳腺[ˈmæməri ɡlænd] Germ cell 生殖细胞[dʒə:m sel]Gamete 配子[ˈgæmi:t]Capacitation 获能[kəpæsɪ'teɪʃən] Fertilization 受精[ˌfɜ:təlaɪ'zeɪʃn] Acrosome reaction 顶体反应['ækrəˌsəʊm riˈækʃn]Zone reaction 透明带反应[zəʊn riˈækʃn]Male pronucleus 雄原核[meil prəˈnju:kliəs] Female pronucleus 雌原核[ˈfi:meil prəˈnju:kliəs] Fertilized ovum/zygote 受精卵/合子[ˈfɜ:təlaɪzd ˈəʊvəm/ˈzaɪgəʊt]Cleavage 卵裂[ˈkli:vɪdʒ] Blastomere 卵裂球[blɑ:stə'mɪə]Morula 桑椹胚['mɔ:rʊlə]Blastocyst 胚泡['blæstəsɪst]blastocoele 胚泡腔[blɑ:stəʊ'kəʊl] Trophoblast 滋养层['trɒfəblæst]Inner cell mass 内细胞群[ˈinəsel mæs] Implantation/imbed 植入/着床[ˌɪmplɑ:n'teɪʃn]/[imˈbed]Syncytiotrophoblast 合体滋养层[sɪnsɪti:əʊt'rɒfəʊblæst]Cytotrophoblast 细胞滋养层[saɪtəʊ'trɒfəblæst] Decidua 蜕膜[dɪ'sɪdjʊə] Decidual cell 蜕膜细胞[dɪsɪd'jʊəl]Decidua basalis 基蜕膜[dɪ'sɪdjʊə'beɪsəlɪs ]Decidua capularis 包蜕膜[dɪ'sɪdjʊə?] Decidua parietalis 壁蜕膜[dɪ'sɪdjʊə?] Embryonic disc 胚盘[ˌembri:ˈɔnɪk disk] Epiblast 上胚层['epɪblæst]Hypoblast 下胚层['haɪpəblæst]body stalk 体蒂['bɒdɪ] [stɔːk] primitive streak/node/pit 原条['prɪmɪtɪv][stri:k]/[nəʊd]/[pɪt] intraembryonic mesoderm 胚内中胚层[ɪntrə,embrɪ'ɒnɪk] ['mesədɜ:m]mesoderm 中胚层['mesədɜ:m] ectoderm 外胚层['ektəʊˌdɜ:m] endoderm 内胚层['endəʊdɜ:m] notochord 脊索['nəʊtəˌkɔ:d] neural plate/groove/fold/tube 神经板/沟/褶/管[ˈnjʊərəl][pleɪt][fəʊld][tju:b]neural crest 神经嵴[ˈnjʊərəl] [krest] mesenchyme 间充质['mezənkaɪm]paraxial mesoderm 轴旁中胚层[pæ'ræksɪəl]['mesədɜ:m] intermediate mesoderm 间质中胚层[ˌɪntəˈmi:diət] ['mesəd ɜ:m]lateral mesoderm 侧中胚层[ˈlætərəl]['mesədɜ:m] parietal mesoderm 体壁中胚层[pə'raɪɪtl]['mesədɜ:m] visceral mesoderm 脏壁中胚层[ˈvɪsərəl]['mesədɜ:m] afterbirth 衣胞[ˈɑ:ftəbɜ:θ]fetal membrane 胎膜['fi:tl][ˈmembreɪn] chorion 绒毛膜['kɔ:rɪɒn]amnion 羊膜['æmnɪən]amniotic fluid 羊水[ˌæmnɪ'əʊtɪk][ˈflu:ɪd] yolk sac 卵黄囊[jəʊk][sæk]umbilical cord 脐带[ʌm'bɪlɪkəl][kɔ:d] placenta 胎盘[pləˈsentə]placental septum 胎盘隔[pləˈsentl][ˈseptəm] placental membrane /placental barrier 胎盘膜/胎盘屏障[pləˈsentl][ˈmembreɪn]/[pləˈsentl][ˈbæriə(r)]twins 双胎[twɪnz]multiplets 多胎['mʌltɪpləts]conjoined twins 联体双胎[kən'dʒɔɪnd] [twɪnz] Frontonasal process 额鼻[f'rʌntəʊnəsl][ˈprəʊses] Heart process 心突[ˈprəʊses]Branchial arch/groove 鳃弓/沟[b'rɑ:nkɪəl] [gru:v] Pharyngeal pouch 咽囊[fəˈrɪndʒiəl] [paʊtʃ] Branchial membrane/apparatus 鳃膜/器[b'rɑ:nkɪəl][ˈmembreɪn]/ [ˌæpəˈreɪtəs]Maxillary/mandibular process 上/下颌突[mæk'sɪlərɪ]/[mæn'dɪbjʊlə] Stomodeum 口凹/原始口腔[stəmɒ'di:əm]Nasal placode/pit 鼻扳/窝[ˈneɪzl] ['plækəʊd]/[pɪt] Median palatine process 正中腭突[ˈpælətaɪn]Lateral palatine process 外侧腭突[ˈlætərəl][ˈpælətaɪn] Dental lamina 牙扳[ˈdentl] ['læmənə]Tooth bud 牙蕾[tu:θ bʌd]Enamel organ 造釉器[iˈnæməl ˈɔ:ɡən] Ameloblast 成釉质细胞[æmə'lɒblæst]Dental papilla 牙乳头[ˈdentl][pə'pɪlə]Limb bud 上/下肢牙[lim‘bʌd]Cleft lip 唇裂[kleft lip]Cleft palate 腭裂[ˈpælət]Oblique facial 面斜裂[əˈbli:k]primitive digestive duct 原始消化管[ˈprɪmətɪv daɪˈdʒestɪv dʌkt]foregut 前肠['fɔ:gʌt]midgut 中肠['mɪdgʌt]hindgut 后肠['haɪndgʌt] midgut loop 中肠袢[ˈmidˌgʌtlu:p]caecal bud 盲肠突/盲肠芽['si:kəbʌd] umbilical coelom 脐腔[ˌʌmbiˈlaikəl ˈsi:ləm]cloaca 泄殖腔[kləʊ'eɪkə] urorectal septum 尿直肠隔[ˈseptəm] urogenital sinus 尿生殖窦[juərəuˈdʒenitl ˈsaɪn əs]urogenital membrance 尿生殖膜[juərəuˈdʒenitlˈmembreɪn]anal menbrance 肛膜[ˈeɪnlˈmembreɪn]hepatic diverticulum 肝憩室[hɪˈpætɪk ˌdaivə:ˈtikjuləm]ventral pancreatic bud 腹胰芽[ˈventrəl ˌpæŋkriˈætik bʌd]dorsal pancreatic bud 背胰芽[ˈdɔ:səl ˌpæŋkriˈætik bʌd]thyroglossal cyst 甲状舌管囊肿[θaɪ'roʊɡlɒsl]Meckel's diverticulum 梅克尔憩室[ˌdaɪvɜ:'tɪkjʊləm] umbilical fistula 脐瘘;脐粪瘘[ˌʌmbiˈlaikəl ˈfistjulə]congenital umbilical hernia 先天性脐疝[kənˈdʒenɪtl ˌʌmbiˈlaikəl ˈhə:njə]laryngotracheal groove 喉气管沟[ˌləriŋɡəuˌtrəˈkiəl ɡru:v]laryngotracheal diverticulum 喉气管憩室[ˌləriŋɡəuˌtrəˈkiəl ˌdaivə:ˈtikjuləm]lung bud 肺芽[lʌŋbʌd] tracheoesophageal fistula 气管食管瘘[treikiəui:ˌsɔfəˈdʒi:əl ˈfistjulə]hyaline membrane disease 透明膜病[ˈhaiəli:n ˈmemˌbreɪn diˈzi:z]nephrotome 生肾节['nefrəˌtəʊm] urogenital ridge 尿生殖嵴[juərəuˈdʒenitl ridʒ] mesonephric ridge 中肾嵴[mi:sə'nefrɪk ridʒ] genital ridge 生殖腺嵴[ˈdʒenitl ridʒ] pronephros 前肾[prəʊ'nefrɒs] mesonephros 中肾[ˌmesəʊ'nefrəs] metanephros 后肾[ˌmetə'nefrɒs] mesonephric duct/Wolffian duct 中肾管[mi:sə'nefrɪk]ureteric bud 输尿管芽[bʌd] metanephrogenic tissue 生后肾组织[metənɪfrəd'ʒenɪk] primordial germ cell 原始生殖细胞[praɪˈmɔ:di:əl dʒə:m sel]paramesonephric duct 中肾旁管Blood island 血岛[blʌd ˈailənd] Primitive cardiovascular system 原始心血管系统[ˈprɪmətɪv ˌkɑ:diəʊˈvæskjələ(r) 'sɪstəm]Vitelline artery 卵黄动脉[viˈtelin ˈɑ:təri] Umbilical artery 脐动脉[ˌʌmbiˈlaikəl ˈɑ:təri]Aortic artery 弓动脉[eɪ'ɔ:tɪk ˈɑ:təri] Anterior cardinal vein 前主静脉[ænˈtɪəri:əˈkɑ:dinl vein] Posterior cardinal vein 后主静脉[pɔˈstɪəri:əˈkɑ:dinl vein] Common cardinal vein 总主静脉[ˈkɔmən ˈkɑ:dinl vein]Vitelline vein 卵黄静脉[viˈtelin vein]Umbilical vein 脐静脉[ˌʌmbiˈlaikəl vein] Pericardial coelom 围心腔[ˌperiˈkɑ:diəl ˈsi:ləm] Cardiogenic plate 生心扳[ˌkɑ:diəuˈdʒenik pleit] Cardiogenic tube 心管Myoepicardial mantle 心肌外套层[ˌmaɪə'kɑ:dɪəl][ˈmæntl] Cardiac jelly 心胶质[ˈkɑ:di:ˌæk ˈdʒeli:] Bulbus cordis 心球['bʌlbʌs 'kɔ:dɪs] Sinus venosus 静脉窦[vi:ˈnəʊsəs]Truncus arteriosus 动脉干[ˈtrʌŋkəs] Bulboventricular loop 球室袢[bʌlbʌvent'rɪkjʊləlu:p] Atrioventricular canal 房室管[ˌeitriəuvenˈtrikjuləkəˈnæl]Endocardial cushion 心内膜垫[ˌendəʊ'kɑ:dɪəl ˈku ʃənz]Foramen ovale 卵圆孔[əʊˈvæli:, -ˈveɪli:, -ˈv ɑ:-]Truncal ridge 动脉干嵴['trʌŋkl rɪdʒ]Bulbar ridge 球嵴[ˈbʌlbəridʒ]Aorico-pulmonary septum 主动脉肺动脉隔[eɪɔ:tɪkəʊ'pʌlmənərɪˈseptəm]Atrial septal defect 房间隔缺损[ˈeitriəl ˈseptl diˈfekt] Ventricular septal defect 室间隔缺[venˈtrikjuləˈseptl diˈfekt] Tetralogy of Fallot 法络四联症[te'trælədʒɪ] [fæˈləʊ]。
Oscillator
Locking area
V inj V0
0.1 0.12 0.14 0.16 0.18 0.2
If NOT locked Large amplitude variations (periodic beat notes)
December 10, 2004 Slide 5
Amplitude Variations (unlocked driven oscillator)
Proof: linear models (LTI/LTV) cannot capture injection locking
December 10, 2004 Slide 9
Nonlinear phase macromodel (PPV)
Nonlinear scalar differential equation
0
-0.005
-0.01 -1
-0.5
0
0.5
1
Voltage >
December 10, 2004 Slide 16
LC osc: Max locking range vs injection strength Nonlinear
0.15
高二英语生物分类单选题50题
高二英语生物分类单选题50题1. Which of the following belongs to the phylum Arthropoda?A. EarthwormB. StarfishC. ButterflyD. Sponge答案:C。
解析:节肢动物门(Arthropoda)的典型特征包括具有分节的附肢等。
蝴蝶(Butterfly)属于节肢动物门。
蚯蚓(Earthworm)属于环节动物门 Annelida)。
海星 Starfish)属于棘皮动物门Echinodermata)。
海绵 Sponge)属于多孔动物门 Porifera)。
2. The organism which is classified in the class Mammalia should have the following feature:A. Gills for breathingB. Feathers on the bodyC. Hair or fur and produce milk to feed their youngD. Scales on the body答案:C。
解析:哺乳纲(Mammalia)的生物具有毛发或皮毛并且能够产奶哺育幼崽。
用鳃呼吸(Gills for breathing)是鱼类等水生生物的特征,它们属于鱼纲等,不属于哺乳纲。
身上有羽毛(Feathers on the body)是鸟类的特征,鸟类属于鸟纲(Aves)。
身上有鳞片(Scales on the body)是爬行动物等的特征,爬行动物属于爬行纲(Reptilia)。
3. Which kingdom does the mushroom belong to?A. AnimaliaB. PlantaeC. FungiD. Protista答案:C。
解析:蘑菇属于真菌界(Fungi)。
动物界(Animalia)的生物具有能运动、异养等特点。
公众对讲机原理图
ATLANTIC-I Ricetrasmettitore marino portatile Handheld marine transceiverCod.603774 Via R. Sevardi42010 Reggio Emilia – Italywww.cte.itA). GENERAL DESCRIPTIONThe Atlantic Marine radio is a self-contained transceiver unit with integral antenna intended for use as a general communication tool. The useable range, while dependent upon terrain and other radio propagation principles, is typically five miles. The Atlantic uses the maximum transmit power allowed to help ensure the maximum communication range.Features include: Channels, 10 channels Weather radio, Channel Monitor, Page and LCD Display. The unit is equipped with an external Headset option connector. Four AA alkaline batteries that are readily available in retail outlets supply operating power. An automatic power savings feature allows the typical standby battery life to extend to more than 10 days. B). FREQUENCY DETERMINING CIRCUITSThe fundamental frequency for both the transmitter and the receiver local oscillators are controlled by a phase lock loop (PLL) circuit IC201 (Toshiba TB31202, or equipvalent). The frequency of operation of the FRS voltage controlled oscillator (VCO), composed of Q301 and Q302 operating in cascade is phase locked to a voltage controlled crystal reference (VCXO) operating at 20.95MHz (X202).The VCO is locked to the fundamental of the transmit signal in the transmit mode and is locked to the receive 1st LO (Fundamental channel frequency minus 21.4MHz) in the receive mode. The crystal reference frequency is shared with the 2nd LO of 20.95MHz.C). TRANSMITTER CIRCUITSThe transmitter amplifies the 0 dBm signal from the VCO to approximately 27dBm that is fed to the antenna. The transmitter is a three stage amplifier composed of Q1,3,4 and Q11. The first two stages are operated class A and the final is operated class B in full saturation to help prevent unwanted amplitude modulation. The fundamental transmit signal is fed through an elliptical low pass filter (5-pole, 2 zero) in order to suppress the harmonics to below –50 dBc. The desired frequency modulation of the carrier is accomplished by modulating the current in the VCO directly with the microphone audio signal. The microphone audio is conditioned with a three-pole high pass filter at 300 Hz (IC5C,D), a hard clipper circuit (IC5B) to limit maximum deviation to +/- 2.5 kHz and a three-pole low pass or splatter filter at 2.8 kHz (IC5AD). RECEIVER CIRCUITSThe received signal from the antenna is band limited to 200Mhz by the transmitter harmonic filter. The desired signal is fed to a low noise amplifier (LNA – Q6) centered from 156MHz to 164MHz that provides approximately 10 dB of gain. The output of the LNA is filtered with a Band Pass filter (SF1) with pass-band of 156 to 164MHz and stopband attenuation of 50 dB. The filtered receive signal is one input to the 1st mixer (Q8), the other mixer input (1st LO) is the output of the VCO at the desired channel frequency minus 21.4MHz. The output of the mixer is tuned to the 1st IF of 21.4 MHz.The 1st IF is transformer coupled for impedance matching to a X-tal filter centered at 21.4MHz with a bandwidth of +/-3.75Hz. The filtered 1st IF is then amplified by Q9 and fed to the 2nd mixer input of the multi-function receiver IC (IC1). The 2nd LO (20.95 MHz) is generated by VCXO that is the reference frequency for the PLL. The 2nd mixer output of 450 kHz is filtered through a 4 section ceramic filter that in combination with the 21.4MHz X-tal filter provides approximately 50 dB of adjacent channel attenuation. The 450 kHz 2nd IF is then amplified, limited and fed to a quadrature detector for FM demodulation. The resulting audio output signal is bandpass filtered from 300 to 3 kHz (Q22) and amplified to provide 150mW of audio power (IC2). A squelch circuit is provided (IC1 pins 10 through 11) to mute the receiver noise under low signal conditions. The squelch circuit amplifies and detects noise in a narrow bandwidth at approximately 5 kHz. When the detected noise exceeds a threshold set to trigger at approximately 9 dB SINAD receive signal strength, the audio output is muted.E). TRANSMIT/RECEIVE SWITCHWhen the radio is in the transmit mode, pin diode switches D13 and D1 are both turned on (representing less than 0.7 ohms). D13 allows the transmit signal to pass to the antenna and D1 shorts one leg of a T matching network (L3, L15 and C4) to ground in the receive path. This results in a parallel tuned circuit high impedance being presented to the transmit signal so that the receive path does not load the transmit signal. In the receive mode, both D13 and D1 are off, resulting in the antenna signal being coupled into the receive LNA through the 50 ohm T matching network and the unwanted load of the transmit final amplifier is reduced to less than 1 pF by D1.F). RADIO CONTROL CIRCUITA microprocessor (CPU1) is used to control the transceiver. User stimuli is provided through a tack switch for PTT (push to talk), along with the keypad for channel selection, channel monitor, receive volume, and page. Pressing the PTT switch instructs CPU1 to switch to the transmit mode. This is accomplished by loading the proper channel counter information through a 3-wire serial link to the PLL IC (IC201), turning on power to the PLL and VCO, microphone and transmit audio circuits and the transmit RF amplifiers.Pressing the call switch causes the microcontroller to transmit a warbling tone for approximately 3 seconds on the current channel selected that is used to notify another person with Marine radio that you wish to communicate. Pressing the channel Up/Down buttons (active in receive mode only) instructs CPU1 to increment or decrement respectively the channel frequency by one channel from the channel previously selected.In receive mode the microcontroller periodically switches on the VCO and receiver power and checks for a valid received signal by monitoring the squelch circuit output. If a valid signal is present, the audio output is turned on and receive power is maintained for the duration of the valid signal. If the valid signal is removed or no valid signal was present, the microcontroller removes power from the VCO and receiver, waits for approximately 100 ms and then checks again. This periodic cycling of the power to the receiver circuits results in a much longer battery life vs. leaving power on continuously. The total period of the cycling is selected such that the worst case delay in ‘seeing’ a valid receive signal is not disruptive to normal two-way voice communications.Midland ATLANTIC-I Test and Alignment ProcedureREVISION SHEETRev. Code Rev. Date Revision Revised By:TABLE OF CONTENT1. RECOMMENDED EQUIPMENT (4)2. TEST PREPARATION (4)3. CRYSTAL SELECT (4)4. VCO ADJUSTMENT (4)5. TRANSMITTER FREQUENCY ALIGNMENT (5)6. TRANSMITTER OUTPUT POWER CHECK (5)7. TRANSMITTER DEVIATION ADJUSTMENT (5)8. RECEIVER ALIGNMENT (6)9. SQUELCH THRESHOLD AND HYSTERISIS (6)10. VOX TEST (6)11. LOW BATTERY LEVEL TEST (6)12. CHARGING TEST (6)1. RECOMMENDED TEST EQUIPMENT1.1 HP8920A,B Radio Communication Tester or equivalent1.2 Fluke 187 Digital Voltmeter or equivalent1.3 HPE3615A Power Supply or equivalent2. TEST PREPARATION2.1 Connect a 6.0Vdc power supply to the positive battery terminal input point and thenegative battery terminal input point (GND) into the negative terminal.2.3 Connect the HP8920A,B RF Output port to the ANT point.2.4 TP12 should be connected to the Audio In Hi and Spkr (-) should be connected tothe GND of the HP8920B.2.5 Set the unit at Ch1.3. CRYSTAL SELECT4.1 X202 crystal is marked with red, blue, and no color marking. Matching capacitorsC223,C223A, and C223B that are in PCB will be determined by the markings and are as follows:Note : Below are matching matrix for each grade of X202Crystal C223A C223BA Red 3P 3PB NOCOLOR 3P NCC Blue NC NC4. VCO ADJUSTMENT5.1 Set the unit at Ch1 and connect a digital voltmeter to TP1 (VCO PD).5.2 Press the PTT Button so the unit is in transmit mode.5.3 Adjust CT1 until the voltmeter reads 1.3 to 1.6Vdc (without VCO Plate). CT1 islocated under the shieldcan.Solder VCO Plate and let temperature stabilize. Recheck TX VCO at Ch1, should be 1.0~1.5 Vdc5.4 Release the PTT switch so the unit will be in receive mode.5.5 Observe the voltage at TP1, the voltage should be 0.6~3.0Vdc.5.6 Set the unit at CH88.5.7 Press the PTT switch so the unit is in transmit mode.5.8 Observe the voltage at TP1, the voltage should be 0.6~3.0Vdc.5.9 Release the PTT switch so the unit will be in receive mode.5.10 Observe the voltage at TP1, the voltage should be 0.6~3.0Vdc.NOTE : Above Specifications are measured with VCO Plate soldered.5. TRANSMITTER FREQUENCY ALIGNMENT6.1 Set the unit at Ch1. Press the PTT button so the unit will be in transmit mode.6.2 Adjust CT201 trimmer capacitor until such that the output frequency is equal to thechannel frequency with maximum error of +/-200Hz (OQA Limit of +/-800Hz).Production will control as follows:- PCBA Alignment : +/-200Hz- Casing Test : +/-500Hz- OQA Limit : +/-800Hz6. TRANSMITTER OUTPUT POWER CHECK7.1 Set the unit at Ch1. Set the Power Supply at 6Vdc. Power is at Hi condition (useshort cable)7.2 Press the PTT button so the unit is in transmit mode. Make sure Batt. Voltage is at6Vdc during PTT.7.3 Transmit Power should be >4.5W.7.4 Set the unit at Power Lo condition.7.5 Press the PTT button so the unit is in transmit mode. Ensure the TX Power is within0.3~1.0W.7. TRANSMITTER DEVIATION ADJUSTMENT8.1 Connect an audio generator (600ohms) to the microphone terminal pads. The audiofrequency should be set at 1kHz with a level of 200mVrms.8.2 Connect an FM Deviation Meter (on the HP8920B) on ANT point. Set the monitor toread (Pk to Pk)/2 deviation. Set Filter 1 to <20Hz and Filter 2 to 15kHz. De-emphasis should be set to Off.8.3 Press the PTT button so the unit will be in transmit mode.8.4 Adjust RV2 and observe the reading at the Deviation Meter, the reading should bebetween 3.9 to 4.1kHz. Checking at all condition should be 3.7 ~ 4.3kHz.8.5 Decrease the audio generator level until the deviation reads +/-3.0kHz. Thegenerator level should be between 3 to 10mV.8.6 Set the Modulation @ 2.0kHz, check that the transmit audio distortion is less than5%.8. RECEIVER ALIGNMENT9.1 Set the RF Generator level to –47dBm. The generator should be set for 3.0kHzdeviation at 1kHz modulation.Filter 1 to 25Hz and Filter 2 to 15kHz.9.2Set9.3 Set the Volume at 50mW Output.9.4 Confirm that the RX Distortion is less than 5%.9.5 Reduce the RF Generator signal level until a 12dB Sinad reading is achieved. TheRF Generator level should be less than –120dBm (nominal -123dBm).9.6 Set the RF Generator level to –47dBm, and set the unit Volume Level to maximum.9.7 Check the maximum Audio Output Level, should be 1.8~2.2Vrms (w/o load@6.0Vdc).9. SQUELCH THRESHOLD AND HYSTERISIS10.1 Set unit same as 9.1.10.2 Set the RF Generator level to -124dBm.10.3 Adjust RV1 until the unit squelches (RX Off).10.4 Slowly increase the RF Signal Generator level until the unit un-squelches (RX On),confirm that the sensitivity is between 6~16dB Sinad.10. VOX TEST11.1 Set the unit into VOX Mode (Level 2). The VOX icon should be displayed on theLCD.11.2 Connect an audio generator into the microphone terminal. The audio frequencyshould be set for 1kHz frequency with a level of 1mVrms and the output should beturned off.11.3 Turn on the output of the audio generator.11.4 Increase the Audio Generator level until unit goes into TX Mode.11.5 Check the Generator level, it should be between 1.5~3.0mV.11. LOW BATTERY LEVEL TEST12.1 Set the unit into receive mode or standby mode.12.2 Set the Power Supply voltage to 5.0Vdc.12.3 Slowly decrease the Power Supply Voltage until the Low Battery icon appears andblink in the LCD Display.12.4 Observe the Power Supply Level. The level must be 4.0 to 4.4Vdc.12. CHARGING TEST13.1 Connect a charged Ni-MH Battery Pack (~6.0Vdc) into the unit.13.2 Connect a MW904 Wall Charger into the Mic/Chg Jack13.3 Monitor the current on the Battery (+) line.13.4 Confirm the Charging Current is 135~165mA (unit is at Power Off condition).HKD/RMB Amount Q3BFQ67W Transistor Chip 1Visay Array Q4BFQ67W Transistor Chip 1Visay Array IC6 3.5Vdc Detector IC 1Torex Bluesky IC3XC6201IC Regulator 4V 1Torex Bluesky IC2AZ386M IC Speaker 1AAC Britestone L439NH Inductor Chip 04021Ceratec Englory L14 1.2UH(03)Inductor Chip 06031Ceratec Englory L300 2.2UH(03)Inductor Chip 06031Ceratec Englory L5220NH(03)Inductor Chip 06031Ceratec Englory L922nH(03)Inductor Chip 06031Ceratec Englory L1033NH(03)Inductor Chip 06031Ceratec Englory L1582NH(03)Inductor Chip 06031Ceratec Englory L11 5.6UH(03)Inductor Chip 06031Sunlord Sunlord L302 5.6UH(03)Inductor Chip 06031Sunlord Sunlord L210UH(05)Inductor Chip 08051Ceratec Englory L12 5.6UH(05)Inductor Chip 08051Ceratec Englory L30347NH Inductor Chip 08051Sunlord Sunlord L180.3X1.0X5T(R)Inductor Air 1Fine Fine L10.45X2.0X6T(R)Inductor Air 1Fine Fine L160.45X2.0X6T(R)Inductor Air 1Fine Fine L70.45X2.0X6T(R)Inductor Air 1Fine Fine L80.45X2.0X8T(L)Inductor Air 1Fine Fine L60.4X1.7X3T(R)Inductor Air 1Fine Fine L30.4X2.0X8T(L)Inductor Air 1Fine Fine CX201 4 MHz X-tal D4.00C(20pF) HS-49/S 1Dtron GL X20220.95MHZ X-tal DA20.950TF(16pF) HC-49/S 1Dtron GL CF121.4MHZ X-tal filter 21.4MHz +/-3.75KHz UM51Dtron GL IC13361IC IF 1Samsung AV concept IC4S324IC OP 1AUK GL IC5S324IC OP 1AUK GL IC201TB31202IC PLL 1Toshiba GL Q3012SC4226 (R25)Transistor Chip 1NEC GL Q3022SC4226 (R25)Transistor Chip 1NEC GL Q62SC4226 (R25)Transistor Chip 1NEC GL Q82SC4226 (R25)Transistor Chip 1NEC GL CT20110P (Trimmer) 3 dia STC3M10-T11STD GL LED1LTST-S320GKT Chip LED 1Hualight Hualight C12710UF(3X5)Capacitor Elect 1Hunan Fareast Hunan Fareast C13310UF(3X5)Capacitor Elect 1Hunan Fareast Hunan Fareast C6910UF(3X5)Capacitor Elect 1Hunan Fareast Hunan Fareast C43220/6.3(5X11)Capacitor Elect 1Hunan Fareast Hunan Fareast C70220/6.3(5X11)Capacitor Elect 1Hunan Fareast Hunan Fareast C13147uF/6.3(4X7)Capacitor Elect 1Hunan Fareast Hunan Fareast CMIC1F9745AP342-34Condensor Mic 1Innovation Innovation D1KDS114E Diode Chip 1KEC KEC D13KDS114E Diode Chip 1KEC KEC D3KDS114E Diode Chip 1KEC KEC D301KDS114E Diode Chip 1KEC KEC D4KDS114E Diode Chip 1KEC KEC D5KDS114E Diode Chip 1KEC KEC D6KDS115Diode Chip 1KEC KEC D2KDS120Diode Chip 1KEC KEC D302KDV258Diode Chip 1KEC KEC Q13KRA226S Transistor Chip 1KEC KEC Q16KRA226S Transistor Chip 1KEC KEC Q22KRA304E Transistor Chip 1KEC KEC Q14KRA306E Transistor Chip 1KEC KEC Q29KRA306E Transistor Chip 1KEC KEC Q10KRC401E Transistor Chip 1KEC KEC Q19KRC401E Transistor Chip 1KEC KEC Q28KRC401E Transistor Chip 1KEC KEC Q12KRC404E Transistor Chip 1KEC KEC Q25KRC404E Transistor Chip 1KEC KEC Q30KRC404E Transistor Chip 1KEC KEC Q5KRC404E Transistor Chip 1KEC KEC Q15KRC405E Transistor Chip 1KEC KEC Q17KRC405E Transistor Chip 1KEC KEC Q20KRC405E Transistor Chip 1KEC KEC Q23KRC405E Transistor Chip 1KEC KEC Q26KRC405E Transistor Chip 1KEC KEC Q7KTA2014E Transistor Chip 1KEC KEC Q21KTC4075E Transistor Chip 1KEC KEC CPU1W742C81A-XXXXX (MTP-W742E81A)IC CPU 1Winbond Linpo PCB1PCB 4-layer 1Multi Multi RV1200K(B)Semifixed Resistor 3dia 1Noble Noble RV2 4.7K(B)Semifixed Resistor 3dia 1Noble Noble Q1NE5511279A FET PA 1NEC Numata C94Tantal 100UF 3.2x1.6 T-A Type 1Philconic Philconic C96Tantal 33UF 3.2x1.6 T-A Type 1Philconic Philconic VR1093V SN-1 15F A10K Volume Switch 1Philconic Philconic Q112SC4083Transistor Chip 1Rohm Rohm Q92SC4083Transistor Chip 1Rohm Rohm J9-A EXT MIC ST-171-021S&A S&A C410P Capacitor Ceramic 0402 NP01Murata Asung C4510P Capacitor Ceramic 0402 NP01Murata Asung C11512P Capacitor Ceramic 0402 NP01Murata Asung C31212P Capacitor Ceramic 0402 NP01Murata Asung C30715P Capacitor Ceramic 0402 NP01Murata Asung C5915P Capacitor Ceramic 0402 NP01Murata Asung C8615P Capacitor Ceramic 0402 NP01Murata Asung C17918P Capacitor Ceramic 0402 NP01Murata Asung C201P Capacitor Ceramic 0402 NP01Murata Asung C306220P Capacitor Ceramic 0402 NP01Murata Asung C22422P Capacitor Ceramic 0402 NP01Murata Asung C30922P Capacitor Ceramic 0402 NP01Murata Asung C31122P Capacitor Ceramic 0402 NP01Murata Asung C4122P Capacitor Ceramic 0402 NP01Murata Asung Ref.NoDescription 1st Vendor U/Price Q'ty Manufacturer ItemsC1904P Capacitor Ceramic 0402 NP01Murata Asung C2185P Capacitor Ceramic 0402 NP01Murata Asung C12868P Capacitor Ceramic 0402 NP01Murata Asung C22268P Capacitor Ceramic 0402 NP01Murata Asung C187P Capacitor Ceramic 0402 NP01Murata Asung C3037P Capacitor Ceramic 0402 NP01Murata Asung C3047P Capacitor Ceramic 0402 NP01Murata Asung C224A8P Capacitor Ceramic 0402 NP01Murata Asung C1250,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1450,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C150,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C220,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C2210,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C420,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C670,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C80,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C800,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C820,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C830,001Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1380,0018Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1090,0022Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1110,0022Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C160,0022Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C320,0022Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C870,0022Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C920,0022Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C930,0022Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1000,0047Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C580,0047Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C900,0047Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C970,0047Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C130,01Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1670,01Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1680,01Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C270,01Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C500,01Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C770,01Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1100,022Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1120,022Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1460,033Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1300,039Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C380,047Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C480,047Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C50,056Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C29220P(X7R)Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C31220P(X7R)Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C91330P(X7R)Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C1470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C10470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C104470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C105470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C11470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C116470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C118470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C119470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C120470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C121470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C122470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C123470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C126470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C129470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C132470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C136470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C137470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C14470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C140470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C141470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C142470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C143470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C144470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C160470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C162470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C165470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C166470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C169470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C170470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C172470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C173470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C174470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C177470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C178470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C180470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C181470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C182470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C183470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C184470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C185470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C186470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C188470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C19470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C207470P Capacitor Ceramic 0402 X7R +/-10%1Murata Asung C213470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC54470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC56470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC61470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC62470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC63470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC65470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC66470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC68470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC7470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC73470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC74470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC76470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC79470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC81470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC85470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC95470P Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC108820P(X7R)Capacitor Ceramic 0402 X7R +/-10%1Murata AsungC1010,1Capacitor Ceramic 0402 Y5V1Murata AsungC1020,1Capacitor Ceramic 0402 Y5V1Murata AsungC1070,1Capacitor Ceramic 0402 Y5V1Murata AsungC1130,1Capacitor Ceramic 0402 Y5V1Murata AsungC1170,1Capacitor Ceramic 0402 Y5V1Murata AsungC1340,1Capacitor Ceramic 0402 Y5V1Murata AsungC1350,1Capacitor Ceramic 0402 Y5V1Murata AsungC1710,1Capacitor Ceramic 0402 Y5V1Murata AsungC2110,1Capacitor Ceramic 0402 Y5V1Murata AsungC240,1Capacitor Ceramic 0402 Y5V1Murata AsungC30,1Capacitor Ceramic 0402 Y5V1Murata AsungC3010,1Capacitor Ceramic 0402 Y5V1Murata AsungC330,1Capacitor Ceramic 0402 Y5V1Murata AsungC340,1Capacitor Ceramic 0402 Y5V1Murata AsungC400,1Capacitor Ceramic 0402 Y5V1Murata AsungC4010,1Capacitor Ceramic 0402 Y5V1Murata AsungC520,1Capacitor Ceramic 0402 Y5V1Murata AsungC550,1Capacitor Ceramic 0402 Y5V1Murata AsungC570,1Capacitor Ceramic 0402 Y5V1Murata AsungC600,1Capacitor Ceramic 0402 Y5V1Murata AsungC710,1Capacitor Ceramic 0402 Y5V1Murata AsungC720,1Capacitor Ceramic 0402 Y5V1Murata AsungC750,1Capacitor Ceramic 0402 Y5V1Murata AsungC780,1Capacitor Ceramic 0402 Y5V1Murata AsungC880,1Capacitor Ceramic 0402 Y5V1Murata AsungC890,1Capacitor Ceramic 0402 Y5V1Murata AsungC980,1Capacitor Ceramic 0402 Y5V1Murata AsungC990,1Capacitor Ceramic 0402 Y5V1Murata AsungC33310P(03)Capacitor Ceramic 0603 NP01Murata AsungC910P(03)Capacitor Ceramic 0603 NP01Murata AsungC3A18P(03)Capacitor Ceramic 0603 NP01Murata AsungC1722P(03)Capacitor Ceramic 0603 NP01Murata AsungC18939P(03)Capacitor Ceramic 0603 NP01Murata AsungC2470P(03)Capacitor Ceramic 0603 NP01Murata AsungC3047P(03)Capacitor Ceramic 0603 NP01Murata AsungC668P(03)Capacitor Ceramic 0603 NP01Murata AsungC530.1(X7R)Capacitor Ceramic 0603 X7R +/-10%1Murata AsungC360,33Capacitor Ceramic 0603 Y5V1Murata AsungC121UF Capacitor Ceramic 0603 Y5V1Murata AsungC3151UF Capacitor Ceramic 0603 Y5V1Murata AsungC841UF Capacitor Ceramic 0603 Y5V1Murata AsungR1180K Resistor Chip 0402 +/-1%1Samsung Samsung R433K Resistor Chip 0402 +/-1%1Samsung Samsung R79470K Resistor Chip 0402 +/-1%1Samsung Samsung R3382K Resistor Chip 0402 +/-1%1Samsung Samsung R2060Resistor Chip 0402 +/-5%1Samsung Samsung R292,2Resistor Chip 0402 +/-5%1Samsung Samsung R442,2Resistor Chip 0402 +/-5%1Samsung Samsung R514,7Resistor Chip 0402 +/-5%1Samsung Samsung R30110Resistor Chip 0402 +/-5%1Samsung Samsung R7710Resistor Chip 0402 +/-5%1Samsung Samsung R3212Resistor Chip 0402 +/-5%1Samsung Samsung R22622Resistor Chip 0402 +/-5%1Samsung Samsung R30733Resistor Chip 0402 +/-5%1Samsung Samsung R8347Resistor Chip 0402 +/-5%1Samsung Samsung R9447Resistor Chip 0402 +/-5%1Samsung Samsung R6582Resistor Chip 0402 +/-5%1Samsung Samsung R202100Resistor Chip 0402 +/-5%1Samsung Samsung R224100Resistor Chip 0402 +/-5%1Samsung Samsung R300100Resistor Chip 0402 +/-5%1Samsung Samsung R91100Resistor Chip 0402 +/-5%1Samsung Samsung R78150Resistor Chip 0402 +/-5%1Samsung Samsung R86150Resistor Chip 0402 +/-5%1Samsung Samsung R87150Resistor Chip 0402 +/-5%1Samsung Samsung R100220Resistor Chip 0402 +/-5%1Samsung Samsung R306220Resistor Chip 0402 +/-5%1Samsung Samsung R8220Resistor Chip 0402 +/-5%1Samsung Samsung R11560Resistor Chip 0402 +/-5%1Samsung Samsung R135680Resistor Chip 0402 +/-5%1Samsung Samsung R55680Resistor Chip 0402 +/-5%1Samsung Samsung R96680Resistor Chip 0402 +/-5%1Samsung Samsung R7770 ohm Resistor Chip 0402 +/-5%1Samsung Samsung R14 1.8K Resistor Chip 0402 +/-5%1Samsung Samsung R39 1.8M Resistor Chip 0402 +/-5%1Samsung Samsung R47 1.8M Resistor Chip 0402 +/-5%1Samsung SamsungR19100K Resistor Chip 0402 +/-5%1Samsung Samsung R204100K Resistor Chip 0402 +/-5%1Samsung Samsung R22100K Resistor Chip 0402 +/-5%1Samsung Samsung R35100K Resistor Chip 0402 +/-5%1Samsung Samsung R36100K Resistor Chip 0402 +/-5%1Samsung Samsung R40100K Resistor Chip 0402 +/-5%1Samsung Samsung R48100K Resistor Chip 0402 +/-5%1Samsung Samsung R50100K Resistor Chip 0402 +/-5%1Samsung Samsung R88100K Resistor Chip 0402 +/-5%1Samsung Samsung R93100K Resistor Chip 0402 +/-5%1Samsung Samsung R12910K Resistor Chip 0402 +/-5%1Samsung Samsung R13010K Resistor Chip 0402 +/-5%1Samsung Samsung R13410K Resistor Chip 0402 +/-5%1Samsung Samsung R1610K Resistor Chip 0402 +/-5%1Samsung Samsung R20310K Resistor Chip 0402 +/-5%1Samsung Samsung R3810K Resistor Chip 0402 +/-5%1Samsung Samsung R4110K Resistor Chip 0402 +/-5%1Samsung Samsung R4610K Resistor Chip 0402 +/-5%1Samsung Samsung R5910K Resistor Chip 0402 +/-5%1Samsung Samsung R8210K Resistor Chip 0402 +/-5%1Samsung Samsung R90120K Resistor Chip 0402 +/-5%1Samsung Samsung R31180K Resistor Chip 0402 +/-5%1Samsung Samsung R73180K Resistor Chip 0402 +/-5%1Samsung Samsung R80180K Resistor Chip 0402 +/-5%1Samsung Samsung R421K Resistor Chip 0402 +/-5%1Samsung Samsung R721K Resistor Chip 0402 +/-5%1Samsung Samsung R2071M Resistor Chip 0402 +/-5%1Samsung Samsung R211M Resistor Chip 0402 +/-5%1Samsung Samsung R2161M Resistor Chip 0402 +/-5%1Samsung Samsung R10 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R131 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R15 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R160 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R23 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R26 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R3 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R302 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R309 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R34 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R52 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R53 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R56 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R57 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R60 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R64 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R70 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R92 2.2K Resistor Chip 0402 +/-5%1Samsung Samsung R102 2.2M Resistor Chip 0402 +/-5%1Samsung Samsung R13 2.7K Resistor Chip 0402 +/-5%1Samsung Samsung R37 2.7K Resistor Chip 0402 +/-5%1Samsung Samsung R17220K Resistor Chip 0402 +/-5%1Samsung Samsung R97220K Resistor Chip 0402 +/-5%1Samsung Samsung R5422K Resistor Chip 0402 +/-5%1Samsung Samsung R2727K Resistor Chip 0402 +/-5%1Samsung Samsung R25 3.3K Resistor Chip 0402 +/-5%1Samsung Samsung R49 3.3K Resistor Chip 0402 +/-5%1Samsung Samsung R5 3.3K Resistor Chip 0402 +/-5%1Samsung Samsung R304 3.9K Resistor Chip 0402 +/-5%1Samsung Samsung R43330K Resistor Chip 0402 +/-5%1Samsung Samsung R10739K Resistor Chip 0402 +/-5%1Samsung Samsung R893M Resistor Chip 0402 +/-5%1Samsung Samsung R112 4.7K Resistor Chip 0402 +/-5%1Samsung Samsung R113 4.7K Resistor Chip 0402 +/-5%1Samsung Samsung R311 4.7K Resistor Chip 0402 +/-5%1Samsung Samsung R45 4.7K Resistor Chip 0402 +/-5%1Samsung Samsung R81 4.7K Resistor Chip 0402 +/-5%1Samsung Samsung R9 4.7K Resistor Chip 0402 +/-5%1Samsung Samsung R114 4.7M Resistor Chip 0402 +/-5%1Samsung Samsung R18470K Resistor Chip 0402 +/-5%1Samsung Samsung R401470K Resistor Chip 0402 +/-5%1Samsung Samsung R67470K Resistor Chip 0402 +/-5%1Samsung Samsung R76470K Resistor Chip 0402 +/-5%1Samsung Samsung R10647K Resistor Chip 0402 +/-5%1Samsung Samsung R21447K Resistor Chip 0402 +/-5%1Samsung Samsung R40247K Resistor Chip 0402 +/-5%1Samsung Samsung R6247K Resistor Chip 0402 +/-5%1Samsung Samsung R6647K Resistor Chip 0402 +/-5%1Samsung Samsung R9947K Resistor Chip 0402 +/-5%1Samsung Samsung R109 5.6K Resistor Chip 0402 +/-5%1Samsung Samsung R303 5.6K Resistor Chip 0402 +/-5%1Samsung Samsung R58 5.6K Resistor Chip 0402 +/-5%1Samsung Samsung R6 5.6K Resistor Chip 0402 +/-5%1Samsung Samsung R71 5.6K Resistor Chip 0402 +/-5%1Samsung Samsung R20560K Resistor Chip 0402 +/-5%1Samsung Samsung R28 6.8K Resistor Chip 0402 +/-5%1Samsung Samsung R63680K Resistor Chip 0402 +/-5%1Samsung Samsung R1268K Resistor Chip 0402 +/-5%1Samsung Samsung R1058.2K Resistor Chip 0402 +/-5%1Samsung Samsung R7820K Resistor Chip 0402 +/-5%1Samsung Samsung R3091K Resistor Chip 0402 +/-5%1Samsung Samsung R7491K Resistor Chip 0402 +/-5%1Samsung Samsung R247Resistor Chip 0603 +/-5%1Samsung Samsung R24 3.3K(03)Resistor Chip 0603 +/-5%1Samsung Samsung R68Thermistor 100NSM3101J280J3Z1HDK Shinsang CT110P(TM) 2dia TZY2Z100A001R00 10P(TM)1Murata Stock SPK1speaker (MD36B-858)Speaker 36 dia 8ohm1Wabony Wabony LCD1GXM1 LCD1Wooho。
MEMS微陀螺仪振动分析---优秀毕业论文参考文献可复制黏贴
作者签名: 日 期:
南京航空航天大学硕士学位论文
摘要
随着人类对 MEMS 微陀螺仪的探索日益深入,作为一类新兴发展的惯性传感器,它的发展 和应用正受到广泛关注和重视。本文针对微机械振动陀螺仪的机-电耦合振动问题进行研究,主 要内容如下。
首先,分析了一硅微机械振动陀螺仪的结构与工作机理,将其简化成质量-弹簧-阻尼器力 学模型,建立振动微分方程。通过驱动模态和感应模态的运动,揭示了微陀螺仪设计过程中模 态匹配的重要性。然后,分析了由于加工非理想性产生的不等弹性、阻尼不对称和质量不平衡 产生误差的信号,建立了机械耦合误差信号和数学模型,并定量分析了 z 轴硅微陀螺仪的机械 耦合误差信号。结果表明,机械耦合误差信号包含了正交耦合误差与有用信号同相位的误差信 号,其中正交耦合误差为主要误差信号,且主要由不等弹性产生。
中图分类号:O327 学科分类号:080104
论文编号:1028701 12-S046
硕士学位论文
MEMS 指导教师
徐寅 工程力学 振动控制与振动利用 金栋平 教授
南京航空航天大学
研究生院 航空宇航学院
二О一一年十二月
Nanjing University of Aeronautics and Astronautics The Graduate School
最后,为解决该设计可能出现的机电耦合缺陷,本文在驱动框的外侧设计了检测电容和静 电力反馈电容,以实现驱动闭环控制,提高了输出精度和检测灵敏度。
关键词:硅微陀螺仪,耦合误差,机-电耦合,非线性振动,闭环反馈控制
本文工作在机械结构力学及控制国家重点实验室完成。
I
MEMS 微陀螺仪振动分析
ABSTRACT
高三英语天文观测设备单选题50题
高三英语天文观测设备单选题50题1. The astronomers in the Greenwich Observatory often use a large _____ to observe distant stars.A. microscopeB. telescopeC. binocularsD. magnifier答案:B。
解析:本题考查天文观测设备的基础概念。
telescope是望远镜,是用于观测遥远星体的设备,这与天文台(observatory)的观测功能相匹配。
microscope是显微镜,用于观察微小的物体,如细胞等,与观测星体无关。
binoculars是双筒望远镜,一般用于较近距离的观测,不太适合天文台对遥远星体的观测。
magnifier是放大镜,主要用于放大较小的物体,不用于天文观测。
2. Many important astronomical discoveries were made in the Yerkes Observatory. One of the key tools there is a powerful _____.A. spectrometerB. barometerC. telescopeD. altimeter答案:C。
解析:在叶凯士天文台 Yerkes Observatory)进行天文观测,关键的工具之一是望远镜 telescope)。
spectrometer是光谱仪,主要用于分析光谱,不是天文台最主要的观测工具。
barometer是气压计,用于测量气压,与天文观测无关。
altimeter是高度计,用于测量高度,也与天文观测不相关。
3. The Hubble Space Telescope has made remarkable contributions to astronomy. Which of the following best describes the function of a telescope?A. It measures the weight of celestial bodies.B. It collects and focuses light from distant objects.C. It changes the color of celestial bodies.D. It creates artificial stars.答案:B。
同时同频全双工数字域自干扰抵消技术
摘要摘要同时同频全双工(Co-time Co-frequency Full Duplex, CCFD)概念的提出,意在通过改变无线通信技术来缓解快速增长的业务需求与有限的频谱资源之间日益紧张的关系。
理论上,CCFD通信模式能够在同一频率的信道上同时进行信号的发送与接收,使频谱利用率提高到目前的两倍。
然而,由于CCFD系统中存在严重的自干扰问题,且具体的解决方案尚在研究优化过程中,因此CCFD技术在5G的白皮书中仅被列为潜在的关键技术。
目前,关于自干扰抵消的研究主要可以分为三个方面:空域、模拟域以及数字域。
其中,数字域因其极高的灵活性和强大的信号处理能力,近年来得到国内外无线通信领域的广泛关注。
本论文围绕如何优化数字域的自干扰抵消技术进行展开,并且与空域、模拟域相结合,实现CCFD系统的自干扰抵消。
已有的自干扰抵消技术虽然已经能够提供一定的自干扰抑制能力,基本保证简单CCFD系统的正常通信。
但是在实际的全双工系统中,仅通过线性抵消不可能实现自干扰的完全抑制,收发链路中存在的器件损耗还会引入一些非理想因素,比如:非线性失真、相位噪声、量化噪声、高斯噪声、IQ不平衡等。
本文首先将发射链路中功率放大器(Power Amplifier, PA)的非线性效应考虑在内,分析了当输入为宽带信号时的非线性特征,对比后选择并联Hammerstein模型来近似PA的非线性失真。
然后基于单发单收全双工收发系统,根据最小二乘(Least Square, LS)准则对信道进行离线估计,实现数字域的非线性自干扰抵消。
仿真结果证明,与线性自干扰抵消相比,该方案能够在数字域获取更高的干扰抵消比。
然后在此基础上,针对时变信道,又提出了基于自适应滤波的数字域非线性自干扰抵消方案。
在考虑PA非线性失真的前提下,采用自适应滤波原理,根据最小均方(Least Mean Square, LMS)准则,对信道实时进行跟踪,保证信道估计的准确度,从而确保数字域的自干扰抵消能力。
振荡器模拟
12This chapter shows the basics of simulating oscillators to determine several basic specifications.Lab 12: Oscillator SimulationsLab 12: Oscillator Simulations12-2About this lab exercise : This lab exercise is in two parts:Part 1: You use a prebuilt example oscillator file and perform one simulation.Part 2: You build an VHF VCO and preform several simulations.OBJECTIVES• Use OscTest Element to get frequency and S-parameter information.• Build an oscillator and simulate numerous performance tests.PART 1: PROCEDURE – Oscillator Example1. Create a new project named: oscillator2. Copy the example design into your directoryFrom the Main window , use the Copy Design command. When the dialog box appears, browse the example directory and copy from:examples \ tutorial \ LearnOSC_prj \ networks \ Osctest_VCO.dsn To Path: oscillator_prj \ networks\3. Open the new oscillator schematic designa. Zoom in on the device and notice that it has two emitters. You can remove the pin labels in the Pin/Tee tab of the Options>Preferences dialog. Notice that the unconnected emitter is showing red (unconnected pin) – this is OK.OstTest is used to determine if the circuit oscillates.Lab 12: Oscillator Simulations12-3b. Notice the Os cTest component is named: OscTickler. Go to the S-parameter palette and locate this component. Basically, this component is an S-parameter simulation controller specifically designed to be inserted in series with the resonator. Therefore, you can simulate without another controller or ports.4. Simulate (dataset name: osc_test) and Display the results a. Open a data display (save as: osc_basics) and plot S-11 on a polar plot.b. Put a marker on the trace where it crosses zero on the x-axis as shown.While this point indicates a frequency where phase is zero, it is not necessarily the desired frequency of oscillation. However, at the location where S11 = 1 + J0, a trace that circles this point indicates oscillation and that is the concept that OscTest validates.c. Insert a rectangular plot of phase and you will see that near 1.8 GHz(designed value) the phase is not at zero either. But this is OK.Lab 12: Oscillator Simulations12-45. Replace the OscTest with an OscPort (use default settings) from Harmonic Balance6. Insert a Harmonic Balance simulation controller a. Insert a HB controller.b. Set the Freq and Order as shown where 7 harmonics of the freq are chosen because 3, 7, 15, 31, etc are better for memory allocation during simulation which uses binary 2, 4, 8, 16, etc. Therefore, the DCcomponent [0] plus 7 more fit better for 8 places of data storage.c. Go to the Display tab and click the StatusLevel, OscMode, andOscPortName boxes and then set them as shown. Increasing the status level to 3will output more information to the status window, as you will see.7. Simulate (dataset: osc_port) and display the results a.Simulate and watch the status window.OscPort HB simulation attempts to find the correct frequency using loop gain and current in loop.Lab 12: Oscillator Simulations12-5b. In the data display, write two equations: 1) current in the loop which is index [0] at the I probe and 2) frequency of oscillation from the HB oscillator simulation result as shown.Note on freq[1] value: Index value freq [1] in the case of an oscillator simulation,using the OscPort and HB, means the calculated frequency of oscillation and not the Freq [1] setting in the HB controller as you will see.c. List the equation results in the data display.d. Plot dbm of Vout and you will see that the x-axis is given as an index value named harmindex, instead of frequency. This is because the calculated values from the OscPort HB simulation must be plottedagainst the calculated values of freq and not the freq variable settings in the HB controller. Insert a list of freq and you will see.Note on converting harmindex to freq: To plot the spectrum (freq) against thevalue in dBm, you will have to use the vs function (next step).Lab 12: Oscillator Simulations12-6e. Insert a new plot of the dBm of Vout vs freq. The spectrum should look like this where the marker is on the frequency of oscillation.8. Set up a sweep of the tuning voltagea. Modify the current HB controller or insert another (deactivate HB1),setting start, stop, and step as shown.b. Edit the VarEqn to add Vtune and be sure to set: Vdc = Vtune.Lab 12: Oscillator Simulations12-79. Simulate (dataset: osc_tune) and plot the results using an equation a. After simulating with a new dataset name, insert a plot of freq and edit the trace to index freq to: [1]. This will result in a plot of the oscillation frequency at each value of Vtune.b. Increase the tuning range to 18 volts and watch the plot update. As you will see, near 12 volts, the oscillator is no longer working in a linear manner. In fact, it appears that the diode is now strictly a resistorinstead of a variable capacitance. This is because the breakdown of thisdiode is exactly 12 volts in the model.Lab 12: Oscillator Simulations12-810. Frequency pushing by varying the biasa. Add another variable Vbias initialized to 12 volts (original value) and assign it to the Vdc bias source as shown here.b. Set the HB controller to sweep Vbias instead of Vtune as shown.c. Simulate with the dataset name: osc_push.d. Plot the oscillation frequency = freq [1]. You will see that it varies withthe variation in bias voltage as shown.Lab 12: Oscillator Simulations12-9PART 2: PROCEDURE for VHF VCODIRECTIONS: This part of the lab has few instructions. So, be careful and use all the skills you have learned so far in the course to construct and test this transistor-based VHF production oscillator. The transistor is from the ADS analog parts library and the diodes (stability) are also from the library. Also, note the save VarEqn used to set the values of bias and tuning.THE NEXT PAGE HAS SOME SUGGESTED STEPS FOR BUILDING THIS CIRCUIT.It takes about 15 minutes to build this circuit.Lab 12: Oscillator Simulations12-10Suggested steps to start building the circuit left to right:a. Find the library diode and transistor: Click on the library icon and then click the find icon and type in the first few numbers and letters as shown.b. Insert 4 diodes and 1 transistor. Connect and wire the diodes as shown and position the transistor to the left of the diodesc. Insert eight (8) capacitors from left to right, wire them together, and putgrounds as shown.4 diodes1Use F5 to move the component text if desired.d.Refer back to the first step showing the entire schematic and continuebuilding by inserting the inductors and then the resistors in the same left to right manner. Also, add all the grounds and sources. Then wire thecircuit together as shown in the schematic. Don’t forget the Vout nodename.Finish the circuit and check it - assign all the values and variables.11.Insert the OSC TEST and Simulate to check for oscillationa.Insert an OSCTEST in the emitter leg of the transistor, after the resistor,as shown here.b.Set the simulation from 100 MHz to 200 MHz at 101 points. Simulate andplot the results. As you can see, the trace encircles the reflectioncoefficient real value of 1. Therefore, the circuit oscillates. Also, themarker is at 131 MHz which is the designed value for Vtune = 2 V.c.You can also plot the mag and phase results if desired.12.OSCPORT HB simulationsa.Replace the OscTest with an OscPort and insert a HB controller.Remember that the Freq[1] value should be close to the oscillationfrequency or the HB simulator will have difficulty converging on asolution.b.Set a dataset name (Osc_VHF_port) and simulate.c.Plot dBm of Vout vs freq and your results should be similar to the resultsshown here, close to 127 MHz which is slightly different than thedesigned value of 131 MHz.d.Plot the waveform using the ts function on Vout with markers and anequation to verify the frequency as shown.Harmonics show some distortion but it ismore visible when the ts function is used.13.Sweep voltagesa.Sweep the tuning voltage 0 to 12 volts in 0.25 volt steps to check therange and plot the results. Remember to set up a dataset name and plot freq [1].b.Sweep the bias voltage and plot the results.14. Oscillator Phase Noisea. To do this test, put a 50 ohm resistor on the RF output. Set the HB controller as shown:b. Simulate and watch the status window for all the results and information that OscPort provides. Then plot the phase noise results: pnfm (1/f noise) and pnmx in a log plot.Marker showsdivergence betweennoise data.Edit the HB controller and set the noise from 1to 10 MHz using 5 points per decade instead ofsteps.EXTRA EXERCISES:1.In Part 2, try putting a 50 ohm resistor on the Vout node and note any differenceswith this load. Then sweep the load and look at the results.2.In Part 2, try setting the HB controller over sampling to 3 or 4 and also set thenumber of harmonics to 15 and see if the oscillator harmonics or waveformimprove with the simulation.3.In Part 2, try redesigning the oscillator to have better harmonic roll off.4.In Part 1, try measuring phase noise.THIS PAGE IS INTENTIONALLY BLANK.。
Signal Hound VSG25A 矢量信号生成器用户手册说明书
VSG25A Vector Signal Generator User ManualSignal Hound VSG25A User Manual© 2023, Signal Hound, Inc.1502 SE Commerce Ave, Suite 101Battle Ground, WA USAPhone 360.217.0112This information is being released into the public domain in accordance with the Export AdministrationRegulations 15 CFR 734Contents1 Introduction (1)2 Understanding the Hardware (1)3 Capabilities (2)4 Calibration (5)5 Adjustments (5)6 VSG25A Specifications (5)7 Warranty and disclaimer (12)8 Appendix A: Bit Mapping for Digital Modulation (13)1 IntroductionThe Signal Hound VSG25A Vector Signal Generator is capable of producing many of the complex signals used in today’s ever-evolving wireless communications industry. Featuring a frequency range of 100 MHz to 2.5 GHz, output amplitude from -40 dBm to +10 dBm, and 100 MHz of modulation bandwidth, the VSG25A covers most telecom frequencies, as well as two major ISM bands (902-928 MHz and 2.4 to 2.5 GHz). It may be used down to 80 MHz, and -80 dBm to +13 dBm with reduced performance. It is USB-powered, weighs 5 ounces, and is small enough to carry in a pocket.2 Understanding the HardwareAt the heart of the VSG25A is a quadraturemodulator driven by an arbitrary waveformgenerator consisting of 2, 12-bit DAC channels,a direct digital synthesizer (DDS), and patternmemory. The waveforms represent the I and Qchannels of the complex signal to be produced.Inside the arbitrary waveform generator, there istightly coupled pattern memory of 4k words.These words may represent an instantaneous frequency, or an I or Q value. This may not seem like a lot, but when combined with the flexibleDAC clock, this can represent 512, QAM-256 symbols with a root raised cosine filter applied, at virtually any data rate from 16 kSPS to 45 MSPS.There is approximately 47 dB of gain control available for full 12-bit resolution. By using fewer bits, over 80 dB of gain control is possible.The waveform period may be set longer than the pattern length as well. This is great for generating periodic shaped pulses. The pattern memory is clocked at a rate from 800 kHz to 180 MHz, divided by a prescaler (1 to 15). The pattern period shares the 800 kHz to 180 MHz clock, but has a separate prescaler, and a 16 bit counter, for periods up to 15 * 65535 = 983025 clock cycles.3 CapabilitiesThe VSG25A is capable of producing a wide variety of signals, with a good degree of precision.AM / FM MODULATIONAmplitude modulation uses a fixed frequency, and varies the amplitude of the signal. Frequency modulation uses a fixed amplitude and varies the instantaneous frequency of the signal. Choose sine, triangle, square, ramp modulation. Modulation rates can be set from 30 Hz to 45 MHz. AM modulation depth may be set from 1% to 99%. FM peak deviation may be set up to 50 MHz. The AM and FM waveforms, being digitally generated, are quite accurate. Total harmonic distortion on an FM waveform with sine wave modulation is typically below 0.02%.For low frequency AM / FM, where the sine / square / triangle pattern repeats at a fixed rate, the pattern memory is typically filled with 2000 amplitudes or frequencies. For example, if you select 1 kHz AM, the sample clock will be set to 2000 kHz (2 MHz), and the I and Q buffers will be filled with the selected waveform.PULSE MODULATIONPulse modulation is single frequency signal than is “on” for a specified width, then “off” for the remainder of the specified period. The on/off ratio is the difference in amplitude between the “on” state and the “off” state.The typical rise time (10-90% amplitude) of 3.5 ns and fall time (90-10% amplitude) of 2.5 ns (tested at 2.45 GHz) make the VSG25A a good source for pulse modulation. These are independent of pulse width or pulse period.If these rise / fall times are too steep, they may be shaped using a custom CSV file for an arbitrary waveform. See section on custom modulation files.Capabilities|Multi-TonePulse modulation is clocked at a rate from 800 kHz to 180 MHz, where the pulse width is an integer number of clocks, divided by a prescaler (1 to 15). The pulse period shares the same 800 kHz to 180 MHz clock, but has a separate prescaler, and a 16 bit counter, for periods up to 15 * 65535 = 983025 clock cycles. This allows very low duty cycle pulses (10.2 ns on, 10 ms off). Based on your requested pulse width and pulse period, the VSG25A software will automatically select the best clock rate and prescaler values. Pulse modulation will always have an “on” state and “off” state of at least one clock cycle.The minimum pulse width is 6 nanoseconds, and can be adjusted in very small increments. The on/off ratio is typically >50 dB.MULTI-TONEThe multi-tone generator can produce between 2 and 1023 equally spaced tones. These frequencies are simultaneously and continuously output. The phase relationship between tones is either random, or parabolic for minimum peak-to-average power ratio. There is even a selectable center notch built in for tests like noise power ratio, and the LO feed-through can be manually nulledfor best notch performance.Evenly spaced tones are required because ofthe pattern memory limitations. The sampleclock is set to an integer multiple of the tonespacing. For tone spacing below 90 kHz, thismultiple is set to 2000.For noise power ratio, many sets of 1001 tones with random phase are required to adequately simulate a multi-channel carrier. Contact Signal Hound for additional information.The only pre-distortion that is applied is an inverse sinc filter for flattening tone amplitudes. The VSG25A’s two-tone third order intercept at the final amplifier is typically around +25 dBm, which may or may not be adequate for testing your amplifier. If additional predistortion is required for two-tone testing, a custom arbitrary waveform generator file may be used and adjusted until 3rd order products are nulled. See the section on Arbitrary / custom modulation.DIGITAL MODULATIONDigital modulation takes user-supplied binary data and modulatesthe carrier signal using a pre-defined modulation type. Forexample, binary phase shift keying (BPSK) encodes a “0” and aCapabilities|ASK / FSK Modulation“1” at two phases separated by 180 degrees (π radians). The binary sequence is continuously repeated without gaps.BPSK, DBPSK, QPSK, DQPSK, OQPSK, π/4 DQPSK, 8PSK, 16PSK, 16QAM, 64QAM, and 256QAM are supported. Symbol rates from 4 kHz (max 128 symbols) or 16 kHz (max 512 symbols), up to 45 MHz are supported. Raised cosine and root-raised cosine filtering are available, with selectable filter roll-off. Typical EVM for a π/4 DQPSK signal is below 1% RMS. A digital pattern editor, with the ability to add PN7 and PN9 sequences with one click, and save-load support, is included. When the number of bits is not evenly divisible by the number of bits per symbol, the data will be padded with zeros. For differentially encoded signals, the last symbol may be modified or an additional symbol may be appended for smooth pattern repetition.The software automatically converts the symbols to a repeating pattern of 1024 to 2048 samples, where each symbol is encoded into 4, 8, or 16 samples (depending on number of symbols and symbol rate). More samples per symbol means lower out-of-band spurious.ASK / FSK MODULATIONAmplitude- and frequency- shift keyed (ASK and FSK) modulation types are available, and use the same digital pattern editor as PSK / QAM. A Gaussian filter, with adjustable roll-off, may be turned on or off. For MSK modulation, simply set your modulation index to 0.5. For GMSK modulation, enable the Gaussian filter and set the filter coefficient (typically 0.3 to emulate GSM, 0.5 to emulate Bluetooth, etc.).CUSTOM / ARBITRARY WAVEFORM MODULATIONModulation using a custom / arbitrary waveform is also available. While the Signal Hound software does not have advanced signal generation software, I/Q waveforms can be built using other software packages, and then pasted into a CSV or text file. This input file, which can be modified in any spreadsheet software, controls center frequency, amplitude, baseband clock rate, number of samples, and signal period, followed by the actual samples. Several examples are provided, including a simple 1 MSPS, 8-bit unfiltered BPSK packet, a windowed sinc pulse, and a chirp radar signal. There are also some spreadsheet examples of how to generate these waveforms.SWEPT MODERamp Sweep frequency modulates the local oscillator, giving you a sweep of up to a 100 MHz span. However, due to pattern memory limitations, this sweep would be limited to 100 µs. Maximum ramp sweep time is inversely related to sweep span, so it must be ≤10 ms for a 1 MHz span, and ≤1 ms for a 10 MHz span, etc.Calibration|Talking to the HardwareStep sweep is just that. It operates as a CW generator at your first frequency. After an interval of at least dwell time, it steps to the next frequency, until all frequencies are complete, then it repeats. Even with a 1 ms dwell time, you may only get 8-10 steps per second.TALKING TO THE HARDWAREMost users will choose to use our included software to communicate with the VSG25A. If you need to develop your own software, an Application Programming Interface, or API, exposes all of the functions of the hardware and software. See the API manual for more information.4 CalibrationContact Signal Hound for calibration services or software.5 AdjustmentsTIMEBASEThe 24 MHz internal timebase is easily adjusted to within 1 ppm using a 1.8 mm or 1/16” slotted screwdriver, found in many common jewelers screwdriver kits. To accomplish this, generate a CW signal of known frequency (e.g. 1 GHz), and adjust using a spectrum analyzer, measuring receiver, or counter.Contact Signal Hound for any additional adjustments.6 VSG25A SpecificationsNote: For Option 15 (Reconstruction Filter), all modulation specifications are “typical” and will be affected by the addition of the reconstruction filter.FrequencyRange: 100 MHz to 2.5 GHz (useable down to 80 MHz with unspecified performance) Resolution: < 1 HzTimebase Accuracy (excluding temperature drift): ±5 ppm / yearTimebase drift over temperature: typically -0.2 ppm / o C.Timebase adjustable to ±1 ppm after 15 minute warmup, using 1.8mm slotted screwdriverBaseband I/Q Symbol ClockRange: 53.333 kHz to 180 MHzVSG25A Specifications|AmplitudeAccuracy: Timebase Accuracy + Clock PLL ErrorClock PLL error: zero for 3 ½ significant digits, and for standard communications ratesWorst case Clock PLL error: 0.07%. Software reports errors greater than 0.001%See Clock Notes for some examples.AMPLITUDECW Absolute Amplitude Accuracy: -40 to +10 dBm, +/- 1.5 dB (as measured by an RF power meter)Resolution 0.01 dBModulation Relative Amplitude AccuracyBandwidth (BW) ≤ 10 MHz, BW < 3% of Center frequency (CF): ±0.25 dB(Option 15: ±0.25 dB typical)For multi-tone and PSK/QAM, inverse sinc correction is applied automatically. Typical roll-off after correction is roughly parabolic, down 0.2 dB at 25 MHz offset from center and 0.8 dB at 50 MHz offset from center (Option 15 becomes 1 dB at 25 MHz offset and 2.4 dB at 50 MHz offset).All other modulation conditions: ±1 dB typical (Option 15 unspecified)Carrier feed-thru (0 dBm output power) < -45 dBc, <-60 dBc typicalVSWR100 MHz to 2.2 GHz, <2.0:1 typical80 MHz to 2.5 GHz, <3.0:1 typicalDEVICE CONFIGURATION TIME500 ms typicalSPECTRAL PURITYTypical SSB Phase NoiseTypical Phase Noise (1 GHz) Offset dBc/Hz 100 Hz -68 1 kHz -88 10 kHz -102 100 kHz -105 1 MHz-132HarmonicsHarmonic output filter: Single 2.7 GHz (nominal) low pass filterResidual Signals10 MHz to 2.5 GHz: < -80 dBm typicalBaseband Reconstruction FilterStandard: NoneOption 15: Elliptic Low Pass, full bandwidth. When the full 100 MHz bandwidth is used, spurs from DAC aliasing are reduced typically below -45 dBc. Modulation amplitude flatness is unspecified, but typically +0 / -2.4 dB across the full bandwidth.-60-50-40-30-20-10005001000150020002500H a r m o n i c A m p l i t u d e (d B c )Frequency (MHz)Typical VSG25A Harmonics (0 dBm output)2nd Harmonic 3rd HarmonicTypical Spurious from DAC Aliasing with no reconstruction filter:Note 1: Oversampling factor defined as (DAC clock rate) / (Bandwidth)VSG25A Specifications|Modulation modesSpurious from I/Q imbalance<-40 dBc typicalMODULATION MODESAMModulation Rate30 Hz to 40 MHz. Same accuracy as symbol clock accuracy.Modulation depth1% to 99%, ±1%Modulation shapes sine, triangle, square, and ramp.THD< 1% (1 kHz sine modulation)FMFM Modulation Rate30 Hz to 40 MHz. Same accuracy as symbol clock accuracy.Modulation deviation±1% (typically ±0.1%)Maximum Modulation Index (Deviation / Rate)Modulation Rate Max Modulation Index≤ 3 kHz15000>3 kHz, ≤ 12 kHz4000>12 kHz, ≤ 45 kHz1000>45 kHz, ≤ 75 kHz600> 75 kHz 300 (or 50 MHz)Please note that above 10% of maximum modulation index, spurious signals may be observed in nearby channels.Modulation shapes sine, triangle, square, and ramp.THD< 0.1% (100 kHz offset, 1 kHz rate sine modulation), 0.01% typical Step SweepFrequency accuracy Same as CWNumber of points 2 to 10,000VSG25A Specifications|PulsePULSEPulse width 6 ns to 25 msTypical rise time (10-90%) 3.5 ns at 2.4 GHz outputTypical fall time (90-10%) 2.5 ns at 2.4 GHz outputNote 1: Option 15 will significantly increase rise/fall times and cause overshoot.Pulse width resolution Typically better than 0.1%Pulse Period Must be rational function(1) of pulse width. 12 ns to 1 s.Duty cycle Minimum 0.00025% (pulse period ≤1.0 s), maximum 99.9% (“off” time > 6ns).Software reports actual pulse width and pulse period, which may vary slightly from requested values.On / off ratio> 45 dB (typically 60 dB)Note 2: Internally, pulse width must be 1 to 2047 * M clocks, where M is 1 to 15, and Pulse Period must be 2 to 65,535 * N clocks, where N is 1 to 15. Clock can be 800 kHz to 180 MHz.MULTI-TONETone count 2 to 1023Tone spacing 1 kHz to 10 MHz, accuracy same as symbol clock accuracy.Tone Phase Relationship P arabolic or random, where parabolic tone phases are π (k-1) 2 / N, whereN is the number of tones for the k'th tone from center.Maximum span100 MHzPSK / QAMModulation Type BPSK, QPSK, DQPSK, PI/4 DQPSK, OQPSK, 8-PSK, 16-PSK, 16 QAM,64 QAM, 256 QAM. Other modulation modes may be available.Filter Raised cosine or RRC (root Nyquist), alpha 0.01 to 1.0Pattern PN7, PN9, customVSG25A Specifications|Custom ModulationSamples per Symbol Max. symbol count Min. Symbol Rate Max. Symbol Rate4 512 (PN9) 16 kHz 45 MHz8 256 8 kHz 22.5 MHz16 128 (PN7) 4 kHz 11.25 MHzEVM (RMS), QPSK, 1 MSPS, < 1% typicalCUSTOM MODULATIONUser-defined continuous modulation patterns use a waveform memory of 2 to 2048 I/Q samples, and a period from 2 to 65535 samples, using a clock rate of 53.333 kHz to 180 MHz.When the active segment is shorter than the period, the first and last samples must match. This value (typically 0, 0) will be held during the "off" time.Amplitude accuracy: Same as digital modulation when RMS (I^2 + Q^2) = 1.0Input range-1. 5 to 1. 5DAC CLOCK NOTESDAC clock values to match your selected pattern are automatically selected for you, using the formula below. Where an exact match is not available, the software will select the set of values closest to the desired clock rate.DAC CLOCK = 24 MHz * N / (M * D * P), where N is 1 to 4095, D is 1 to 127, M is 1 to 511, P is 1 to 15, and 100 ≤ (24N/M) ≤ 200.Example 1: 13.4912 MHz (1.6864MHz x 8): (24 * 2108) / (375 * 10), 0 ppm errorExample 2: 2.1666667 MHz (270.833333 kHz x 8), GSM: (24 * 611) / (144 * 47), 0 ppm errorExample 3: 9.8304 MHz (1.2288 MHz x 8), CDMA: (24 * 768) / (125 * 15), 0 ppm errorExample 4: 1.0001 MHz: (24 * 1250) / (297 * 101), 0.01 ppm errorINPUTS / OUTPUTSData and Power USB 2.0 type BRF output SMA (F)Warranty and disclaimer|Mechanical / EnvironmentalMECHANICAL / ENVIRONMENTALPower Requirements: USB-powered, 4.75 – 5.25V, 450 mA typical. 4.75V-5.25V is required to meet published specifications. Typical behavior for USB voltages below 4.75V, such as tablet PCs, is increased rolloff and reduced amplitude for signals wider than 5 MHz bandwidth.Operating temperature (calibrated) 18 to 28 o C Operating temperature (uncalibrated): 0 o C to 50 o CSize 5.5” x 2.25” x 1”Weight 5 oz.7 Warranty and disclaimer©2013-2023 Signal Hound. All rights reserved.Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.allowed under the copyright laws.WARRANTYThe information contained in this manual is subject to change without notice. Signal Hound makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties or merchantability and fitness for a particular purpose. Signal Hound shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. This Signal Hound product has a warranty against defects in material and workmanship for a period of two years from date of shipment. During the warranty period, Signal Hound will, at its option, either repair or replace products that prove to be defective.WARRANTY SERVICEFor warranty service or repair, this product must be returned to Signal Hound. The Buyer shall pay shipping charges to Signal Hound and Signal Hound shall pay UPS Ground, or equivalent, shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes, to and from Signal Hound, for products returned from another country.LIMITATION OF WARRANTYThe foregoing warranty shall not apply to defects resulting from improper use by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outsideAppendix A: Bit Mapping for Digital Modulation|Exclusive Remediesof the environmental specifications for the product. No other warranty is expressed or implied. Signal Hound specifically disclaims the implied warranties or merchantability and fitness for a particular purpose.EXCLUSIVE REMEDIESThe remedies provided herein are the Buyer’s sole and exclusive remedies. Signal Hound shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.CERTIFICATIONSignal Hound certifies that, at the time of shipment, this product conformed to its published specifications.CREDIT NOTICEWindows® is a registered trademark of Microsoft Corporation in the United States and other countries.Intel® and Core™are trademarks or registered trademarks of the Intel Corp. in the USA and/or other countries.8 Appendix A: Bit Mapping for Digital ModulationQPSK8 PSK16-QAMNote: Positive I-axis is to the right, positive Q-axis is to the top.16-PSK is similar to 8-PSK, except for a phase step of π/8.Offset QPSK is the same as QPSK, except the Q is delayed by ½ symbol.64-QAM and 256-QAM are encoded similarly to 16-QAM (right-to-left, top-to-bottom).FSK / MSK data is type 2 (not differentially encoded). ASK data: “0” is low amplitude, “1” is high amplitude.。
光源拉钩的外科医学英语
光源拉钩的外科医学英语English:A light source retractor in surgical instruments is a device used to provide illumination and retract tissue during surgical procedures. It consists of a light source attached to a flexible arm, with a retractor or a speculum at the end of the arm. The light source provides bright, focused light to illuminate the surgical site, while the retractor or speculum holds the tissue or organ in place, allowing the surgeon to have a clear view and access to the area of interest. This tool is commonly used in a variety of surgical specialties, including ophthalmology, orthopedics, and gynecology, to assist the surgeon in performing procedures with precision and accuracy. The light source retractor plays a crucial role in enhancing visibility and maintaining a clear operative field, ultimately contributing to the success and safety of the surgical operation.中文翻译:光源拉钩在外科手术器械中是一种用于在外科手术中提供照明和撑开组织的设备。
Chapter 4 Oscillator - UniMAP Portal4章子-德艺门
A fsV V o ss1A A ssβs Asβsis known as loop gain
Basic principles for oscillation
Writing T sA sβsthe loop gain becomes; Af s1ATss
Basic principles for oscillation
An oscillator is an amplifier with positive feedback.
Vs
Ve A
Vo
+
Vf b
Ve Vs Vf (1)
Vf βVo (2)
V o A e A V V s V f A V s β o V (
The types of RC oscillators that we will discuss are the Wien-bridge and the phase-shift
Wien-bridge Oscillator
It is a low frequency oscillator which ranges from a few kHz to 1 MHz.
Tj0 1R R 1 2 3j0R1 C 1/ j0RC
the magnitude condition is;
1
1
R2 R1
1 3
or
R2 2 R1
To ensure oscillation, the ratio R2/R1 must be slightly greater than 2.
Thus, the condition for sinusoidal oscillation of
3B Scientific 可逆弦球实验说明书
3B S c i e n t i f i c ® E x p e r i m e n t s...g o i n g o n e s t e p f u r t h e r10111You can findtechnical information about the equipment at SUMMARYA reversible pendulum is a special design of a normal physical pendulum. It is able to swing from either of two mounting points and can be set up in such a way that the period of oscillation is the same from both these points. The reduction in the length of the pendulum then matches the distance between the two mounting points. This makes it easier to determine the local acceleration due to gravity from the period of oscillation and the reduced pendulum length. Matching of the reversing pendulum is achieved by moving a weight between the mounts as appropriate while a rather larger counterweight outside that length remains fixed.E X PERIMEN TPROCEDURE• C onfigure a reversible pendulum such that the periods of oscillation are the same from both mounting points.• D etermine the period of oscillation and calculate the local acceleration due to gravity.KATER’S REVERSIBLE PENDULUM MECH A NIC S / OSCIL L AT IONSOBJECTIVEWork out the local acceleration due to g ravity with the help of a reversible p en dulumUE1050221UE1050221BASIC PRINCIPL ESA reversible pendulum is a special design of a normal physical pendu-lum. It is able to swing from either of two mounting points and can beset up in such a way that the period of oscillation is the same from both these points. The reduction in the length of the pendulum then matches the distance between the two mounting points. This makes it easier to determine the local acceleration due to gravity from the period of oscil-lation and the reduced pendulum length.If a physical pendulum oscillates freely about its rest position with a small deflection φ then its equation of motion is as follows:(1) .J : Moment of inertia about axis of oscillation,g : Acceleration due to gravity, m : Mass of pendulum,s : Distance between axis of oscillation and centre of gravityThe reduced length of the physical pendulum is (2)A mathematical pendulum of this length oscillates with the same periodof oscillation.Steiner’s law gives us the moment of inertia:(3) .J S : Moment of inertia about centre of gravity axis For a reversible pendulum with two mounting points separated by a d istance d , the reduced lengths to be assigned are therefore(4) andThey match up if the reversible pendulum is configured in such a way that the period of oscillation is the same for both mounting points. In that case, the following is true:(5) and(6) .In this case, the period of oscillation T is given byIn the experiment, matching of the reversible pendulum is accomplished by moving a weight of mass m 2 = 1 kg between the mounting points as appropriate. A second large counterweight of mass m 1 = 1.4 kg is fixed outside the mounts. Measurement of the period of oscillation is handled electronically with the lower end of the pendulum periodically interrupt-ing a photoelectric gate. By this means, the periods of oscillation T 1 and T 2 associated with the reduced pendulum lengths L 1 and L 2 are measured as a function of the position x 2 of weight m 2.E VA LUAT IONThe two curves derived from the measurements T 1(x 2) and T 2(x 2)i ntersect twice at the value T = T 1 = T 2. To determine the inter-sects accurately requires interpolation between the measurement points themselves. Acceleration due to gravity is calculated from the m easurements as follows: , d = 0.8 m with relative precision of 0.3 per thousand.Fig. 1: Schematic diagram of a reversible pendulumFig. 2: Measured periods of oscillation T 1 und T 2 as a function of position of weight 2.REQUIRED A PPA R AT USQuantity DescriptionNumber 1Kater’s Reversible Pendulum 10184661Photo Gate10005631Digital Counter (230 V, 50/60 Hz)1001033 or Digital Counter (115 V, 50/60 Hz)1001032Jm ⋅s⋅!!ϕ+g ⋅ϕ=0L =Jm ⋅sJ =J s +m ⋅s 2s =d 2±d 2⎛⎝⎜⎞⎠⎟2−J Sm L 1=L 2=d T =2g =2πT ⎛⎝⎜⎞⎠⎟2⋅d L 1=JS m ⋅s +s L 2=J S m ⋅d −s ()+d −s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IS THE QUADRATURE OSCILLATOR A MULTIVIBRATOR?Erik LindbergØrsted•DTU Department,348Technical University of DenmarkØrsteds Plads,Kgs.Lyngby,DK2800,Denmarke-mail:el@oersted.dtu.dkWWW:http://www.es.oersted.dtu.dk/∼el/Abstract—The aim of this paper is to give insight in the behaviour of the quadrature oscilla-tor by means of a study of the eigenvalues of the time varying linearized Jacobian of the differential equations describing the oscillator.The mecha-nism behind the oscillations is compared with the behaviour of the multivibrator.I.IntroductionO SCILLATORS are nonlinear circuits.By means of the Barkhausen criteria a sinu-soidal oscillator is normally designed as a linear amplifier with a frequency determining feed-back circuit so that the poles of the whole circuit are on the imaginary axis of the complex frequency plane.In order to startup the oscillations some parameters of the circuit are adjusted so that the poles of the linearized circuit are in the right-half plane,RHP,i.e.in the dc bias point the circuit is unstable and signals will start to increase.Due to the nonlinearities,the physical nature of the circuit,the signals will always be limited in some way.The crucial point is whether there will be oscillations or just a transition to a new stable dc bias point.Very little is reported about how far out in RHP the poles should be placed initially.Also many authors assume that due to the nonlinearities the poles arefixed on the imaginary axis at a certain constant amplitude of the signals.It is an open question if this assumption is true.At a certain instant you may investigate the linearized small signal model of the oscillator.It is obvious that the signals will increase in amplitude if the poles are in RHP and decrease if the poles are in the left-half plane,LHP,of the complex frequency plane.If you assume that the poles are moving back and forth between RHP and LHP then the mechanism behind the behaviour of an oscillator may be described as an act of balance between the energy you gain from the dc power source when the poles are in RHP and the energy you loose when the poles are in LHP.In the following a study of the eigenvalues of the linearized Jacobian of the common multivibrator and the quadrature oscillator is made.II.OscillatorsAn oscillator is a circuit which for constant input signal(DC battery)produces an oscillat-ing output signal(a steady state time varying signal).An old rule of thumb says that if you want to design an oscillator try to design an amplifier instead and if you want to design an amplifier try to design an oscillator(Murphy’s Law).Figure1shows a perfect linearamplifier Fig.1.An amplifier with positive and negative feed-back.with positive and negative feed-back.The input impedance of the amplifier is assumed infinite and the gain of the amplifier is assumed constant,i.e. V3=A(V1−V2).If we introduce memory ele-ments-capacitors,coils,hysteresis-in the four impedances various types of oscillators may be obtained[7].If we observe time varying signals for zero input signal V in=0we have an oscillator.If the poles of the circuit are in the left half plane(LHP)of the complex frequency plane the signals are damped.If the poles are in RHP the signals are undamped. Only if the poles are on the imaginary axis the signals are steady state signals.This is of course impossible in a real world circuit.The ideal har-monic oscillator may be started with any initial condition and keep its amplitude and frequency constant.If we want to build an oscillator we must intro-duce an amplifier with nonlinear gain so that for small signals the poles of the linearized circuit are in RHP and for large signals the poles are in LHP. In this case we may obtain steady state behavior based on balance between energy we obtain from the battery when the poles are in RHP and energy we loose when the poles are in LHP.In other words an oscillator is a feed-back am-plifier with an unstable DC bias point.Due to the nonlinear components the linearized small signal model corresponding to the instant bias point will vary with time.The dominating behavior of the circuit is based on the instant placement of the poles of the linearized model.If the poles are in RHP the signals will increase in amplitude.If the poles are in LHP the signals will diminish in amplitude.mon multivibratorIf we replace Z D with a capacitor C D=0.5µF and the resistors with R A=1kΩ,R B=1kΩand R C=2kΩwe have a common multi-vibrator with real poles moving back and forth between RHP and LHP.The hysteresis is the second“memory component”needed for oscilla-tions.Figure2shows the voltages as functions of time using a RC4136operational amplifier.Fig-ure3shows the resistance R p=V2/(−I(C D)) as function of time.The time constant becomes τ=RC=−((R A R C)/R B)C D=−1ms for A very large andτ=R C C D=1ms for A=0. This is in agreement with Fig.2.Assuming a perfect op.amp.with gain A the pole of the circuit is+1k for A very large and −1k for A very little.For A=2the pole pass from+infinite to−infinite as shown on Fig.4. Please note that this is not a jump but a smooth transition.IV.Quadrature oscillators Quadrature oscillators are based on a feed-back loop with at least one almost ideal integrator for which input and output are two sinusoids with90degree phase difference.In[4]an active RC in-tegrator and a passive RC integrator is combined with a negative resistance.The mechanism with a complex pole pair moving between RHP and LHP may be observed.If two amplifiers are coupled as shown in Fig. 5you may have a quadrature oscillator if the impedances are chosen as resistors according to [6].In this case you make use of theopera-Fig. mon multvibrator,PSpice analysis, V(1,2)and V(3)as functions oftime.mon multvibrator,PSpice analysis,re-sistance R p=V(2)/(−I(C D),as function of time.tional amplifier poles as frequency determining memory(“integrating real poles”)and the non-linear saturation characteristic of the operational amplifier as the amplitude limiting mechanism. The quadrature oscillator is made from three cir-cuits.For thefirst circuit(Z1,Z2and A1)we have:V3V1=1+R2R11+1A11+R2R1For the second circuit(Z3,Z4,Z5,Z6and A2)we have:V6V3=11+R3R4R5R5+R6−1A2−R3R4Fig.4.Multivibrator pole as function of amplifier gain A.Fig.5.Quadrature Oscillator.The third circuit is the feed-back circuit(Z7and Z8)for which:V1 V6=R7R7+R8With reference to[6]we may now design the os-cillator.With R1=R4=R7=10kΩwe get R2=33.5kΩ,R3=R8=3kΩ,R5=0and R6=infinite i.e.V(4)=V(0).Fig.6shows the result of a PSpice analysis with two uA741 OA’s.The frequency is530kHz and the output amplitude of any of the two OA’s is155mV.Fig. 7shows a simple macro model for the OA with two negative real poles.Thefigures8and9show the result of the optimization of the simple model with only one nonlinear element:the piece wise linear voltage controlled current source GI1.Fig. 8shows the close agreement between the output voltage V(5)of the PSpice library macromodel and the output voltage V(15)of the macromodel infig.7in the fraquency range1mHz to1THz. Fig.9shows that the hysteresis of the PSpice library macromodel is not modelled infig.7. There are only two nonlinear components GI1A1 and GI1A2in the quadrature oscillator modelfig. 5when the simple op amp model offig.7isused.Fig.6.Quadrature Oscillator.V(3)as function ofV(6).Fig.7.Op Amp macromodel.Eout=A(s)Vac These nonlinearities are piece wise linear.There are four combinations of large gain and zero gain so we may calculate the poles as follows:For small signals i.e.when V(1,2)and V(0,5)both are in the range from−47µV to+47µV,there are two complex pole pairs,one in RHP and one in LHP: real±jimag real±j imag+401k4.50M−11.3M4.50M When V(1,2)is outside the range from−47µV to +47µV and V(0,5)is in the range from−47µV to+47µV,there are four negative real poles: real real real real−31.5−1.71M−9.17M−10.9MWith V(1,2)in the range from−47µV to parison of the open loop ac-transfer char-acteristics of the Op Amp macro model of Fig.7 and the PSpice library macro model.Logarithmic frequency scale.parison of the dc-transfer characteristicsof the Op Amp macro model of Fig.7and the PSpice library macro model.+47µV and V(0,5)outside the range from −47µV to +47µV,there are four negative real poles:real real real real −31.5−1.71M −9.17M −10.9MWhen V(1,2)and V(0,5)both are outside the range from −47µVto +47µV,there are two real double poles in LHP:real real real real −10.9M −10.9M −31.5M −31.5MWe see that only in the case where the input volt-ages of A1and A2both are small signals,a com-plex pole pair in RHP is present corresponding to the unstable DC bias point.In the other cases the poles are real and negative and the circuit is damped.This is in agreement with fig.10and fig.11.It is seen how the two op amps synchronize so that only one op amp is active at a time.A certain amount of energy is moving between the memory elements corresponding to the input level of 47µV above which the gain is zero.Fig.10.Input voltages of op amps (V(1,2),V(4,5))and nonlinear currents of op amps (GI1,GI2)as functions of time (initial transient).Op Amp macro model of Fig.7used.Fig.11.Input voltages of op amps (V(1,2),V(4,5))and nonlinear currents of op amps (GI1,GI2)as functions of time (steady state).Op Amp macro model of Fig.7used.V.ConclusionsWe must rewrite our text books and replace statements concerning ”nonlinearities pulling the poles back to the imaginary axis”with proper statements concerning the mechanisms behind the steady state oscillations as e.g.sinusoidal oscillation where a complex pole pair is moving between RHP and LHP or relaxation oscillation where real poles are moving between RHP and LHP.A mechanism where only in the unstable DC bias point a complex pole pair occur in RHP is reported in this paper.In the steady state all poles are real and negative and relaxation oscil-lations similar to the multvibrator performance occur.References[1] E.Lindberg,“Oscillators and eigenvalues”,in Proceed-ings ECCTD’97-The 1997European Conference on Cir-cuit Theory and Design ,pp.171-176,Budapest,Septem-ber 1997.[2] E.Lindberg,“Colpitts,eigenvalues and chaos”,in Pro-ceedings NDES’97-the 5’th International Specialist Workshop on Nonlinear Dynamics of Electronic Sys-tems ,pp.262-267,Moscow,June 1997.[3] E.Lindberg,K.Murali and A.Tamasevicius,“De-sign of chaotic oscillators”,ECCTD’01-the 15th Eu-ropean Conference on Circuit Theory and Design ,Tu-torial nr.T5,http://www.it.dtu.dk/ecs/tutor-01.htm,Helsinki,August 2001.[4] A.S.Sedra and K.C.Smith,Microelectronic Circuits 4th Ed ,Oxford University Press,1998.[5]L.Strauss,Wave Generation and Shaping ,pp.1-520,McGraw-Hill,1960.[6] E.Vidal,A.Poveda and M.Ismail,“Describing Func-tions and Oscillators”,IEEE Circuits and Devices ,Vol.17,No.6,pp.7-11,November 2001.[7]J.R.Westra,C.J.M.Verhoeven and A.H.M.van Roermund,Oscillators and Oscillator Systems -Classi-fication,Analysis and Synthesis ,pp.1-282,Kluwer 1999.。