人教A版数学必修四3.2.1《二倍角的三角函数》word导学案(2)

合集下载

人教A版高中数学必修4第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式导学案

人教A版高中数学必修4第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式导学案

3.1.3.二倍角的正弦、余弦、正切公式 学习目标.1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一.二倍角公式的推导思考1.二倍角的正弦、余弦、正切公式就是用α的三角函数表示2α的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?答案.sin 2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α;cos 2α=cos(α+α)=cos αcos α-sin αsin α=cos 2α-sin 2α;tan 2α=tan(α+α)=2tan α1-tan 2α. 思考2.根据同角三角函数的基本关系式sin 2α+cos 2α=1,你能否只用sin α或cos α表示cos 2α?答案.cos 2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1;或cos 2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二.二倍角公式的变形1.公式的逆用2sin αcos α=sin 2α,sin αcos α=12sin 2α, cos 2α-sin 2α=cos 2α,2tan α1-tan 2α=tan 2α. 2.二倍角公式的重要变形——升幂公式和降幂公式升幂公式1+cos 2α=2cos 2α,1-cos 2α=2sin 2α,1+cos α=2cos2α2,1-cos α=2sin 2α2. 降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.类型一.给角求值例1.求下列各式的值:(1)cos 72°cos 36°;(2)13-23cos 215°; (3)1-tan 275°tan 75°;(4)1sin 10°-3cos 10°. 解.(1)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36° =2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14. (2)13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36. (3)1-tan 275°tan 75°=2·1-tan 275°2tan 75°=2·1tan 150°=-2 3. (4)1sin 10°-3cos 10°=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10° =4(sin 30°cos 10°-cos 30°sin 10°)2sin 10° cos 10° =4sin 20°sin 20°=4. 反思与感悟.对于给角求值问题,一般有两类:(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.跟踪训练1.求下列各式的值:(1)cos 2π7cos 4π7cos 6π7; (2)1sin 50°+3cos 50°.解.(1)原式=2sin 2π7cos 2π7cos 4π7cos 6π72sin 2π7=sin 4π7cos 4π7cos 6π72sin 2π7=sin 8π7cos 6π74sin 2π7=sin π7cos π74sin 2π7=sin 2π78sin 2π7=18. (2)原式=cos 50°+3sin 50°sin 50°cos 50°=2(12cos 50°+32sin 50°)12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4.类型二.给值求值例2.(1)若sin α-cos α=13,则sin 2α= . 答案.89解析.(sin α-cos α)2=sin 2α+cos 2α-2sin αcos α =1-sin 2α=⎝ ⎛⎭⎪⎫132⇒sin 2α=1-⎝ ⎛⎭⎪⎫132=89. (2)若tan α=34,则cos 2α+2sin 2α等于(..) A.6425B.4825C.1D.1625答案.A解析.cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α. 把tan α=34代入,得 cos 2α+2sin 2α=1+4×341+⎝ ⎛⎭⎪⎫342=42516=6425.故选A.引申探究在本例(1)中,若改为sin α+cos α=13,求sin 2α. 解.由题意,得(sin α+cos α)2=19, ∴1+2sin αcos α=19, 即1+sin 2α=19, ∴sin 2α=-89. 反思与感悟.(1)条件求值问题常有两种解题途径:①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练2.已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解.(1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α =2tan αtan 2α+tan α-2=2×24+2-2=1. 类型三.利用倍角公式化简例3.化简2cos 2α-12tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α.解.方法一.原式=2cos 2α-12·sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α =2cos 2α-12·sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-αcos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2α-1sin ⎝ ⎛⎭⎪⎫π2-2α =cos 2αcos 2α=1. 方法二.原式=cos 2α2·1-tan α1+tan α⎝ ⎛⎭⎪⎫22sin α+22cos α2 =cos 2αcos α-sin αcos α+sin α(sin α+cos α)2 =cos 2α(cos α-sin α)(cos α+sin α)=cos 2αcos 2α-sin 2α=1. 反思与感悟.(1)对于三角函数式的化简有下面的要求:①能求出值的应求出值;②使三角函数种数尽量少;③使三角函数式中的项数尽量少;④尽量使分母不含有三角函数;⑤尽量使被开方数不含三角函数.(2)化简的方法:①弦切互化,异名化同名,异角化同角. ②降幂或升幂.③一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练3.化简下列各式:(1)π4<α<π2,则1-sin 2α= ; (2)α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α= . 答案.(1)sin α-cos α.(2)0解析.(1)∵α∈(π4,π2),∴sin α>cos α, ∴1-sin 2α=1-2sin αcos α=sin 2α-2sin αcos α+cos 2α=(sin α-cos α)2=sin α-cos α.(2)∵α为第三象限角,∴cos α<0,sin α<0, ∴1+cos 2αcos α- 1-cos 2αsin α=2cos 2αcos α-2sin 2αsin α=-2cos αcos α--2sin αsin α=0.1.12sin π12cos π12的值等于(..) A.14B.18C.116D.12 答案.B解析.原式=14sin π6=18. 2.sin 4π12-cos 4π12等于(..) A.-12 B.-32 C.12 D.32答案.B解析.原式=⎝ ⎛⎭⎪⎫sin2π12+cos 2π12·⎝ ⎛⎭⎪⎫sin 2π12-cos 2π12 =-⎝ ⎛⎭⎪⎫cos2π12-sin 2π12=-cos π6=-32. 3.tan 7.5°1-tan 27.5°= . 答案.1-32 解析.tan 7.5°1-tan 27.5°=12·2tan 7.5°1-tan 27.5°=12tan 15°=1-32. 4.设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是 . 答案. 3解析.∵sin 2α=-sin α,∴sin α(2cos α+1)=0,又α∈⎝ ⎛⎭⎪⎫π2,π, ∴sin α≠0,2cos α+1=0即cos α=-12, sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 5.已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值. 解.原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x . ∵sin ⎝ ⎛⎭⎪⎫π4-x =cos ⎝ ⎛⎭⎪⎫π4+x =513,且0<x <π4, ∴π4+x ∈⎝ ⎛⎭⎪⎫π4,π2, ∴sin ⎝ ⎛⎭⎪⎫π4+x = 1-cos 2⎝ ⎛⎭⎪⎫π4+x =1213, ∴原式=2×1213=2413.1.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是32α的二倍;α2是α4的二倍;α3是α6的二倍;α2n =2·α2n +1(n ∈N *). 2.二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.二倍角的常用形式:①1+cos 2α=2cos 2α;②cos 2α=1+cos 2α2;③1-cos 2α=2sin 2α;④sin 2α=1-cos 2α2. 课时作业一、选择题1.已知α是第三象限角,cos α=-513,则sin 2α等于(..) A.-1213B.1213C.-120169D.120169答案.D解析.由α是第三象限角,且cos α=-513, 得sin α=-1213,所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-1213×⎝ ⎛⎭⎪⎫-513=120169,故选D. 2.若tan θ=-13,则cos 2θ等于(..) A.-45 B.-15 C.15 D.45答案.D解析.tan θ=-13,则cos 2θ=cos 2θ-sin 2θ =cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45. 3.已知x ∈(-π2,0),cos x =45,则tan 2x 等于(..) A.724 B.-724 C.247 D.-247答案.D解析.由cos x =45,x ∈(-π2,0),得sin x =-35, 所以tan x =-34, 所以tan 2x =2tan x 1-tan 2x =2×(-34)1-(-34)2=-247,故选D.4.已知sin 2α=23,则cos 2⎝⎛⎭⎪⎫α+π4等于(..) A.16B.13C.12D.23 答案.A解析.因为cos 2⎝⎛⎭⎪⎫α+π4=1+cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π42 =1+cos ⎝ ⎛⎭⎪⎫2α+π22=1-sin 2α2, 所以cos 2⎝⎛⎭⎪⎫α+π4=1-sin 2α2=1-232=16,故选A. 5.如果|cos θ|=15,5π2<θ<3π,则sin θ2的值是(..) A.-105B.105C.-155D.155 答案.C解析.∵5π2<θ<3π,|cos θ|=15, ∴cos θ<0,cos θ=-15. 又∵5π4<θ2<3π2,∴sin θ2<0. ∴sin 2θ2=1-cos θ2=35, sin θ2=-155. 6.已知α为第二象限角,sin α+cos α=33,则cos 2α等于(..) A.-53 B.-59 C.59 D.53答案.A解析.由题意得(sin α+cos α)2=13, ∴1+sin 2α=13,sin 2α=-23. ∵α为第二象限角,∴cos α-sin α<0. 又∵sin α+cos α>0,∴cos α<0,sin α>0,且|cos α|<|sin α|, ∴cos 2α=cos 2α-sin 2α<0,∴cos 2α=- 1-sin 22α=- 1-⎝ ⎛⎭⎪⎫-232=- 1-49=-53,故选A. 7.若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α等于(..) A.725B.15C.-15D.-725 答案.D解析.因为sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α =2cos 2⎝ ⎛⎭⎪⎫π4-α-1, 又因为cos ⎝ ⎛⎭⎪⎫π4-α=35, 所以sin 2α=2×925-1=-725,故选D. 二、填空题8.2sin 222.5°-1= .答案.-22 解析.原式=-cos 45°=-22. 9.sin 6°sin 42°sin 66°sin 78°= .答案.116解析.原式=sin 6°cos 48°cos 24°cos 12°=sin 6°cos 6°cos 12°cos 24°cos 48°cos 6° =sin 96°16cos 6°=cos 6°16cos 6°=116. 10.设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则tan 2α= . 答案.247解析.cos α=x x 2+42=x 5, ∴x 2=9,x =±3.又∵α是第二象限角,∴x =-3,∴cos α=-35,sin α=45, ∴tan α=-43,tan 2α=2×(-43)1-(-43)2=-831-169=-83-79=7221=247. 11.已知tan x =2,则tan 2(x -π4)= . 答案.34 12.若tan α+1tan α=103,α∈⎝ ⎛⎭⎪⎫π4,π2,则sin ⎝⎛⎭⎪⎫2α+π4+2cos π4cos 2α= . 答案.0 解析.由tan α+1tan α=103, 得tan α=13或tan α=3. 又∵α∈⎝ ⎛⎭⎪⎫π4,π2,∴tan α=3. ∴sin α=310,cos α=110. ∴sin ⎝⎛⎭⎪⎫2α+π4+2cos π4cos 2α =sin 2αcos π4+cos 2αsin π4+2cos π4cos 2α=22×2sin αcos α+22(2cos 2α-1)+2cos 2α =2sin αcos α+22cos 2α-22 =2×310×110+22×⎝ ⎛⎭⎪⎫1102-22 =5210-22=0. 三、解答题13.已知角α在第一象限且cos α=35,求1+2cos (2α-π4)sin (α+π2)的值. 解.∵cos α=35且α在第一象限,∴sin α=45. ∴cos 2α=cos 2α-sin 2α=-725, sin 2α=2sin αcos α=2425, ∴原式=1+2(cos 2αcos π4+sin 2αsin π4)cos α=1+cos 2α+sin 2αcos α=145. 四、探究与拓展14.等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为 . 答案.459解析.设A 是等腰△ABC 的顶角,则cos B =23, sin B =1-cos 2B = 1-(23)2=53. 所以sin A =sin(180°-2B )=sin 2B =2sin B cos B =2×53×23=459. 15.已知π<α<32π,化简:1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α. 解.∵π<α<32π,∴π2<α2<34π, ∴1+cos α=2|cos α2|=-2cos α2, 1-cos α=2|sin α2|=2sin α2. ∴1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α =1+sin α-2(cos α2+sin α2)+1-sin α2(sin α2-cos α2) =(cos α2+sin α2)2-2(cos α2+sin α2)+(sin α2-cos α2)22(sin α2-cos α2) =-2cos α2.。

人教版数学必修四:3.2二倍角的三角函数(二)学案(教师版)

人教版数学必修四:3.2二倍角的三角函数(二)学案(教师版)
课题:§3.1.2二倍角的三角函数(二)总第____课时
班级_______________姓名_______________
【学习目标】
1.继续加强二倍角的正弦、余弦、正切公式的理解和掌握,并能灵活应用公式。
2.引导学生发现数学规律,让学生体会生的创新意识.
【重点难点】
学习重点:二倍角公式应用。
学习难点:公式的灵活应用和变式训练
【学习过程】
一、自主学习与交流反馈:
默写倍角公式:
1.二倍角公式
2.降幂公式:
二、知识建构与应用:
例1化简
例2求证:
例3化简:
(1) ;
(2) .
例4在半圆形钢板上截取一块矩形材料,怎样截取使这个矩形的面积最大?
四、巩固练习
1.化简:
(1) =;
(2) =;
(3) =;
(4) =;
(5) =;
(6)= __________.
2.证明:
(1)
(2)
3.已知 , ,且 都是锐角,求 的值。
五、回顾反思
六、作业批改情况记录及分析

高中数学 3.2 二倍角的三角函数(第2课时)教案 新人教版必修4

高中数学 3.2 二倍角的三角函数(第2课时)教案 新人教版必修4

江苏省常州市西夏墅中学高中数学 3.2 二倍角的三角函数(第2课时)教案 新人教版必修4教学目标:1.运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力;2.能运用公式解决一些简单的实际问题;3.培养学生观察、推理的思维能力.教学过程:一、复习引入二倍角公式:sin 22sin cos ααα=; 22cos 2cos sin ααα=-; 22tan tan 21tan ααα=-; 2cos 22cos 1αα=-;2cos 212sin αα=-.(1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数, 它适用于二倍角与单角的三角函数之间的互化问题.(2)二倍角公式为仅限于2α是α的二倍的形式,尤其是“倍角”的意义是相对的(3)熟悉“倍角”与“二次”的关系(括角—降次,缩角—升次).(4)特别注意公式的三角表达形式,且要善于变形: 221cos21cos2cos ,sin 22αααα+-== 这两个形式今后常用. 二、 数学运用1. 例题.例1 化简222sin ()sin ()sin 66ππααα-++-。

法一:由倍角公式2cos 212sin αα=-,得21cos 2sin 2αα-=, 对原式进行降幂化简,角由单角变为倍角. 这里用到了21cos 2sin 2αα-=,它和21cos2cos 2αα+=,21cos2tan 1cos2ααα-=+统称为降幂公式.法二: 两角和差的正弦展开.例2 求证: sin50(13tan10)1+=例 3 求函数44sin cos cos y x x x x =+-的最小正周期和最小值,并写出该函数在[]0,π上的单调递增区间.注: 解决三角函数问题,首先用公式进行化简,再按要求进行求解.例4 已知11tan(),tan ,,(0,),2.27αββαβπαβ-==-∈-求的值 这是一个由函数值求角的问题,这就需要求出这个角的某个三角函数值,并需要判断这个角所在的范围.例5 在半圆形钢板上截取一块矩形材料,怎样截取能使这个矩形的面积最大?2. 练习.(1)证明:①B A B A A 2cos 2cos )(sin B (cos 22=--+)②θθθ2cos )tan 1(cos 22=-(2)求函数y=的最小值x x x x cos sin 2sin cos 22+-(3)11tan ,tan ,273αβαβαβ==+已知且,都是锐角,求的值. (4)扇形AOB 的半径为1,中心角为 60,PQRS 是扇形内接矩形,问P 在怎样的位置时,矩形PQRS 的面积最大,并求这个最大值.三、小结1.在解决三角函数式的化简问题时,经常从以下三个方面来考虑:一看函数式中所涉及的角之间的关系;二看函数式中所涉及的三角函数的名称之间的关系;三看所涉及的函数的幂.遵循的原则是:不同角化同角,不同名化同名,高次降低次.2.若所要化简或证明的三角函数式中含有多个名称的三角函数,我们常用的方法是将正切化为正弦、余弦,若是有常数和分式相加,我们采取的措施是通分,而后再化简.。

人教A版高中数学必修四 3.2 《简单的三角恒等变换》示范教案

人教A版高中数学必修四 3.2 《简单的三角恒等变换》示范教案

3.2 简单的三角恒等变换整体设计教学分析本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.三角恒等变换不同于代数变换,后者往往着眼于式子结构形式的变换,变换内容比较单一.而对于三角变换,不仅要考虑三角函数是结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换.从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点.三维目标1.通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2.理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.3.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.课时安排2课时教学过程第1课时导入新课思路 1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换.思路2.三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点. 推进新课 新知探究 提出问题 ①α与2a有什么关系? ②如何建立cos α与sin22a之间的关系? ③sin 22a =2cos 1a -,cos 22a =2cos 1a +,tan 22a =aa cos 1cos 1+-这三个式子有什么共同特点?④通过上面的三个问题,你能感觉到代数变换与三角变换有哪些不同吗?⑤证明(1)sin αcos β=21[sin(α+β)+sin(α-β)]; (2)sin θ+sin φ=2sin 2cos 2ϕθϕθ-+. 并观察这两个式子的左右两边在结构形式上有何不同?活动:教师引导学生联想关于余弦的二倍角公式cos α=1-2sin22a ,将公式中的α用2a代替,解出sin 22a 即可.教师对学生的讨论进行提问,学生可以发现:α是2a 的二倍角.在倍角公式cos2α=1-2sin 2α中,以α代替2α,以2a 代替α,即得cos α=1-2sin 22a , 所以sin 22a =2cos 1a -. ① 在倍角公式cos2α=2cos 2α-1中,以α代替2α,以2a 代替α,即得cos α=2cos 22a -1, 所以cos 22a =2cos 1a +. ② 将①②两个等式的左右两边分别相除,即得 tan22a =aa cos 1cos 1+-. ③ 教师引导学生观察上面的①②③式,可让学生总结出下列特点: (1)用单角的三角函数表示它们的一半即是半角的三角函数;(2)由左式的“二次式”转化为右式的“一次式”(即用此式可达到“降次”的目的).教师与学生一起总结出这样的特点,并告诉学生这些特点在三角恒等变形中将经常用到.提醒学生在以后的学习中引起注意.同时还要强调,本例的结果还可表示为:sin2a =±2cos 1a -,cos 2a =±2cos 1a +,tan 2a =±aa cos 1cos 1+-,并称之为半角公式(不要求记忆),符号由2a所在象限决定. 教师引导学生通过这两种变换共同讨论归纳得出:对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还有所包含的角,以及这些角的三角函数种类方面的差异.因此,三角恒等变换常常先寻找式子所包含的各个角间的联系,并以此为依据,选择可以联系它们的适当公式,这是三角恒等变换的重要特点.代数式变换往往着眼于式子结构形式的变换.对于问题⑤:(1)如果从右边出发,仅利用和(差)的正弦公式作展开合并,就会得出左式.但为了更好地发挥本例的训练功能,把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含sin αcos β呢?想到sin(α+β)=sin αcos β+cos αsin β.从方程角度看这个等式,sin αcos β,cos αsin β分别看成两个未知数.二元方程要求得确定解,必须有2个方程,这就促使学生考虑还有没有其他包含sin αcos β的公式,列出sin(α-β)=sin αcos β-cos αsin β后,解相应的以sin αcos β,cos αsin β为未知数的二元一次方程组,就容易得到所需要的结果.(2)由(1)得到以和的形式表示的积的形式后,解决它的反问题,即用积的形式表示和的形式,在思路和方法上都与(1)没有什么区别.只需做个变换,令α+β=θ,α-β=φ,则α=2ϕθ+,β=2ϕθ-,代入(1)式即得(2)式.证明:(1)因为sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 即sin αcos β=21[sin(α+β)+sin(α-β)]. (2)由(1),可得sin(α+β)+sin(α-β)=2sin αcos β.① 设α+β=θ,α-β=φ,那么α=2ϕθ+,β=2ϕθ-.把α,β的值代入①, 即得sin θ+sin φ=2sin2ϕθ+cos2ϕθ-.教师给学生适时引导,指出这两个方程所用到的数学思想,可以总结出在本例的证明过程中用到了换元的思想,如把α+β看作θ,α-β看作φ,从而把包含α,β的三角函数式变换成θ,φ的三角函数式.另外,把sin αcos β看作x,cos αsin β看作y,把等式看作x,y 的方程,通过解方程求得x,这就是方程思想的体现.讨论结果:①α是2a的二倍角. ②sin 22a =1-cos 2cos 1a -.③④⑤略(见活动).应用示例思路1例1 化简:.cos sin 1cos sin 1xx xx ++-+.活动:此题考查公式的应用,利用倍角公式进行化简解题.教师提醒学生注意半角公式和倍角公式的区别,它们的功能各异,本质相同,具有对立统一的关系.解:原式=)2sin 2(cos 2cos 2)2cos 2(sin 2sin 22cos 2sin 22cos 22cos 2sin 22sin 222x x x x x x x x x x x x ++=++=tan 2x . 点评:本题是对基本知识的考查,重在让学生理解倍角公式与半角公式的内在联系.变式训练化简:sin50°(1+3解:原式=sin50°10cos )10sin 2310cos 21(250sin 10cos 10sin 31+∙=+ =2sin50°·10cos 10sin 30cos 10cos 30sin + =2cos40°·10cos 10cos 10cos 80sin 10cos 40sin ===1.例2 已知sinx-cosx=21,求sin 3x-cos 3x 的值. 活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a-b)3=a 3-3a 2b+3ab2-b 3=a 3-b 3-3ab(a-b),∴a 3-b 3=(a-b)3+3ab(a-b).解完此题后,教师引导学生深挖本例的思想方法,由于sinx·cosx 与sinx±cosx 之间的转化.提升学生的运算.化简能力及整体代换思想.本题也可直接应用上述公式求之,即sin 3x-cos 3x=(sinx-cosx)3+3sinxcosx(sinx-cosx)=1611.此方法往往适用于sin 3x±cos 3x 的化简问题之中.解:由sinx-cosx=21,得(sinx-cosx)2=41,即1-2sinxcosx=41,∴sinxcosx=83.∴sin 3x-cos 3x=(sinx-cosx)(sin 2x+sinxcosx+cos 2x) =21(1+83)=1611.点评:本题考查的是公式的变形、化简、求值,注意公式的灵活运用和化简的方法.变式训练(2007年高考浙江卷,12) 已知sin θ+cos θ=51,且2π≤θ≤43π,则cos2θ的值是______________. 答案:257-例1 已知1sin sin cos cos :1sin sin cos cos 24242424=+=+ABA B B A B A 求证.活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A,B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A,B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a 2+b 2=1的形式,可利用三角代换.证明一:∵1sin sin cos cos 2424=+BAB A , ∴c os 4A·sin 2B+sin 4A·cos 2B=sin 2B·cos +B.∴cos 4A(1-cos 2B)+sin 4A·cos 2B=(1-cos 2B)cos 2B,即cos 4A-cos 2B(cos 4A-sin 4A)=cos 2B-cos 4B.∴cos 4A-2cos 2Acos 2B+cos 4B=0.∴(cos 2A-cos 2B)2=0.∴cos 2A=cos 2B.∴sin 2A=sin 2B.∴=+A B A B 2424sin sin cos cos cos 2B+sin 2B=1. 证明二:令BAa B A sin sin ,cos cos cos 22==sin α,则cos 2A=cosBcos α,sin 2A=sinBsin α.两式相加,得1=cosBcos α+sinBsin α,即cos(B-α)=1. ∴B -α=2k π(k∈Z ),即B=2k π+α(k∈Z ). ∴cos α=cosB,sin α=sinB.∴cos 2A=cosBcos α=cos 2B,sin 2A=sinBsin α=sin 2B.∴BB B B A B A B 24242424sin sin cos cos sin sin cos cos +=+=cos 2B+sin 2B=1.点评:要善于从不同的角度来观察问题,本例从角与函数的种类两方面观察,利用平方关系进行了合理消元. 变式训练在锐角三角形ABC 中,ABC 是它的三个内角,记S=BA tan 11tan 11+++,求证:S<1.证明:∵S=BA B A BA B A B A tan tan tan tan 1tan tan 1)tan 1)(tan 1(tan 1tan 1+++++=+++++又A+B>90°,∴90°>A>90°-B>0°. ∴tanA>tan(90°-B)=cotB>0, ∴tanA·tanB>1.∴S<1.思路2例1 证明x x cos sin 1+=tan(4π+2x).活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x,三角函数的种类为正弦,余弦,右边是半角2x,三角函数的种类为正切.解:方法一:从右边入手,切化弦,得tan(4π+2x )=2sin2cos 2sin2cos 2sin 2sin 2cos 2cos 2sin 4cos 2cos 4sin )24cos()22sin(x x x x x x x x x x -+=-+=++ππππππ,由左右两边的角之间的关系,想到分子分母同乘以cos 2x +sin 2x,得x x x x x x x x cos sin 1)2sin 2)(cos 2sin 2(cos )2sin 2(cos 2+=-++ 方法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得2sin2cos 2sin2cos )2sin 2)(cos 2sin 2(cos )2sin 2(cos cos sin 12x x xx x x x x x x xx -+=-++=+ 由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos2x,得 2tan4tan 12tan 4tan 2tan 12tan1x xx x ππ-+=-+=tan(4π+2x ). 点评:本题考查的是半角公式的灵活运用,以及恒等式的证明所要注意的步骤与方法.变式训练已知α,β∈(0,2π)且满足:3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求α+2β的值. 解法一:3sin 2α+2sin 2β=1⇒3sin 2α=1-2sin 2β,即3sin 2α=cos2β,①3sin2α-2sin2β=0⇒3sin αcos α=sin2β,② ①2+②2:9sin 4α+9sin 2αcos 2α=1,即9sin 2α(sin 2α+cos 2α)=1, ∴sin 2α=91.∵α∈(0,2π),∴sin α=31. ∴sin(α+2β)=sin αcos2β+cos αsin2β=sin α·3sin 2α+cos α·3sin αcos α=3sin α(sin 2α+cos 2α)=3×31=1. ∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π.解法二:3sin 2α+2sin 2β=1⇒cos2β=1-2sin 2β=3sin 2α,3sin2α-2sin2β=0⇒sin2β=23sin2α=3sin αcos α, ∴cos(α+2β)=cos αcos2β-sin αsin2β=cos α·3sin 2α-sin α·3sin αcos α=0.∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π.解法三:由已知3sin 2α=cos2β,23sin2α=sin2β, 两式相除,得tan α=cot2β,∴tan α=tan(2π-2β). ∵α∈(0,2π),∴tan α>0.∴tan(2π-2β)>0. 又∵β∈(0,2π),∴2π-<2π-2β<2π.结合tan(2π-2β)>0,得0<2π-2β<2π.∴由tan α=tan(2π-2β),得α=2π-2β,即α+2β=2π.例2 求证:αββαβαβ2222tan tan 1cos sin )sin()sin(-=-+a 活动:证明三角恒等式,一般要遵循“由繁到简”的原则,另外“化弦为切”与“化切为弦”也是在三角式的变换中经常使用的方法. 证明:证法一:左边=βαβαβαβαβ22cos sin )sin cos cos )(sin sin cos cos (sin -+ ==-=-=-a a a a 222222222222tan tan 1cos sin sin cos 1cos sin sin cos cos sin ββββββ=右边.∴原式成立. 证法二:右边=1-βββββ2222222222cos sin sin cos cos sin cos sin sin cos a a -==βββββ22cos sin )sin cos cos )(sin sin cos cos (sin a a a a -+=βββ22cos sin )sin()sin(++a a =左边.∴原式成立. 点评:此题进一步训练学生三角恒等式的变形,灵活运用三角函数公式的能力以及逻辑推理能力. 变式训练1.求证:θθθθθθ2tan 14cos 4sin 1sin 24cos 4sin 1-++=-+. 分析:运用比例的基本性质,可以发现原式等价于θθθθθθ2tan 1tan 24cos 4sin 14cos 4sin 1-=++-+,此式右边就是tan2θ. 证明:原等式等价于θθθθθ2tan 4cos 4sin 14cos 4sin 1=++-+.而上式左边θθθθθθθθθθ2cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22++=++-+=)2cos 2(sin 2cos 2)2sin 2(cos 2sin 2θθθθθθ++==tan2θ右边.∴上式成立,即原等式得证.2.已知sin β=m·sin(2α+β),求证:tan(α+β)=mm-+11tan α. 分析:仔细观察已知式与所证式中的角,不要盲目展开,要有的放矢,看到已知式中的2α+β可化为结论式中的α+β与α的和,不妨将α+β作为一整体来处理. 证明:由sin β=msin(2α+β)⇒sin[(α+β)-α]=msin[(α+β)+α]⇒sin(α+β)cos α-cos(α+β)sin α=m0[sin(α+β)cos α+cos(α+β)sin α]⇒(1-m)·sin(α+β)cos α=(1+m)·cos(α+β)sin α⇒tan(α+β)=mm-+11tan α. 知能训练1.若sin α=135,α在第二象限,则tan 2a 的值为( )A.5B.-5C.51D.51-2.设5π<θ<6π,cos 2θ=α,则sin 4θ等于( )A.21a + B.21a - C.21a +- D.21a-- 3.已知sin θ=53-,3π<θ<27π,则tan 2θ_________________.解答:1.A2.D3.-3 课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛总结:本节学习了公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段. 作业课本习题3.2 B 组2.设计感想1.本节主要学习了怎样推导半角公式、积化和差、和差化积公式以及如何利用已有的公式进行简单的恒等变换.在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等.2.在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查.特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用,应用诱导公式时符号问题也是常出错的地方.考试大纲对本部分的具体要求是:用向量的数量积推导出两角差的余弦公式,体会向量方法的作用.从两角差的余弦公式进而推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系,能运用上述公式进行简单的恒等变换第2课时导入新课思路1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:α=(α+β)-β,2α=(α+β)+(α-β)=(4π+α)-(4π-α),4π+α=2π-(4π-α)等,你能总结出三角变换的哪些策略?由此探讨展开. 思路2.(复习导入)前面已经学过如何把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,本节主要研究函数y=asinx+bcosx 的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能. 推进新课 新知探究 提出问题①三角函数y=sinx ,y=cosx 的周期,最大值和最小值是多少? ②函数y=asinx+bcosx 的变形与应用是怎样的? ③三角变换在几何问题中有什么应用? 活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2k π(k∈Z 且k≠0),最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx 的周期是2k π(k∈Z 且k≠0),且最小正周期是2π,函数y=sin2x 的周期是k π(k∈Z 且k≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1]. 函数y=asinx+bcosx=22b a +(2222sin ba b x ba a +++cosx ),∵(sin ,cos 1)()(2222222222=+=+=+++ba b ba aba b ba a ϕ从而可令φ,则有asinx+bcosx=22b a +(sinxcos φ+cosxsin φ) =22b a +sin (x+φ).因此,我们有如下结论:asinx+bcosx=22b a +sin (x+φ),其中tan φ=ab.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题. 我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y=sinx,y=cosx 的周期是2k π(k∈Z 且k≠0),最小正周期都是2π;最大值都是1,最小值都是-1. ②—③(略)见活动. 应用示例思路1 例1 如图1,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠C OP=α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积. 活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到: S=AB ·BC=(cos α33-sin α)sin α=sin αcos α-33-sin 2α. 求这种y=asin 2x+bsinxcosx+ccos 2x 函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:图1(1)找出S 与α之间的函数关系; (2)由得出的函数关系,求S 的最大值. 解:在Rt△OBC 中,BC=cos α,BC=sin α, 在Rt△OAD 中,OADA=tan60°=3, 所以OA=33DA=33BC=33sin α. 所以AB=OB-OA=cos α33-sin α. 设矩形ABCD 的面积为S,则 S=AB ·BC=(cos α33-sin α)sin α=sin αcos α33-sin 2α =21sin2α+63cos2α-63=31(23sin2α+21cos2α)-63=31sin(2α+6π)-63.由于0<α<3π,所以当2α+6π=2π,即α=6π时,S 最大=31-63=63.因此,当α=6π时,矩形ABCD 的面积最大,最大面积为63. 点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠C OP=α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(x x 3312--),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点. 变式训练 (2007年高考辽宁卷,19) 已知函数f(x)=sin(ωx+6π)+sin(ωx-6π)-2cos 22x ω,x∈R (其中ω(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为2π,求函数y=f(x)的单调增区间. 解:(1)f(x)=23sin ωx+21cos ωx+23sin ωx-21cos ωx-(cos ωx+1)=2(23sin ωx-21cos ωx)-1=2sin(ωx-6π)-1.由-1≤sin(ωx-6π)≤1,得-3≤2sin(ωx-6π)-1≤1, 可知函数f(x)的值域为[-3,1].(2)由题设条件及三角函数图象和性质,可知y=f(x)的周期为π,又由ω>0,得ωπ2=π,即得ω=2.于是有f(x)=2sin(2x-6π)-1,再由2k π-2π≤2x -6π≤2k π+2π(k∈Z ),解得 k π-6π≤x≤k π+3π(k∈Z ). 所以y=f(x)的单调增区间为[k π-6π,k π+3π](k∈Z ). 点评:本题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.例1 求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间. 活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题. 解:y=sin 4x+23sinxcosx-cos 4x=(sin 2x+cos 2x)(sin 2x-cos 2x)+3sin2x=3sin2x-cos2x=2sin(2x-6π). 故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0,3π],[65π,π].点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识变式训练已知函数f(x)=cos 4x-2sinxcosx-sin 4x,(1)求f(x)的最小正周期; (2)若x∈[0,2π],求f(x)的最大、最小值. 解:f(x)=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=2cos(2x+4π), 所以,f(x)的最小正周期T=22π=π. (2)因为x∈[0,2π],所以2x+4π∈[4π,45π].当2x+4π=4π时,cos(2x+4π)取得最大值22, 当2x+4π=π时,cos(2x+4π)取得最小值-1. 所以,在[0,2π]上的最大值为1,最小值为-2.思路2例1 已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M(43π,0)对称,且在区间[0,2π]上是单调函数,求φ和ω的值. 活动:提醒学生在解此题时,对f(x)是偶函数这一条件的运用不在问题上,而在对“f(x)的图象关于M(43π,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地:定义在R 上的函数y=f(x)对定义域内任意x 满足条件:f(x+a)=2b-f(a-x),则y=f(x)的图象关于点(a,b)对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练.解:由f(x)是偶函数,得f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ),所以-cos φsin ωx=cos φsin ωx 对任意x 都成立. 又ω>0,所以,得cos φ=0.依题设0≤φ≤π,所以,解得φ=2π. 由f(x)的图象关于点M 对称,得f(43π-x)=-f(43π+x). 取x=0,得f(43π)=-f(43π),所以f(43π)=0.∵f(43π)=sin(43ωπ+2π)=cos 43ωπ,∴cos 43ωπ=0.又ω>0,得43ωπ=2π+k π,k=0,1,2,….∴ω=32(2k+1),k=0,1,2,….当k=0时,ω=32,f(x)=sin(32x+2π)在[0,2π]上是减函数;当k=1时,ω=2,f(x)=sin(2x+2π)在[0,2π]上是减函数; 当k≥2时,ω≥310,f(x)=sin(ωx+2π)在[0,2π]上不是单调函数.所以,综合得ω=32或ω=2. 点评:本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题. 变式训练已知如图2的Rt△ABC 中,∠A=90°,a 为斜边,∠B、∠C 的内角平分线BD 、CE 的长分别为m 、n,且a 2=2mn.问:是否能在区间(π,2π]中找到角θ,恰使等式cos θ-sin θ=4(cos2C B +-cos 2CB -)成立?若能,找出这样的角θ;若不能,请说明理由. 解:在Rt△BAD 中,m AB =cos 2B,在Rt△B AC 中,a AB =sinC,∴mcos 2B=asinC.图2同理,ncos 2C=asinB. ∴mncos 2B cos 2C =a 2sinBsinC.而a 2=2mn, ∴cos2B cos 2C =2sinBsinC=8sin 2B ·cos 2B cos 2C sin 2C .∴sin 2B sin 2C =81.积化和差,得4(cos 2C B +-cos 2CB -)=-1, 若存在θ使等式cos θ-sin θ=4(cos 2C B +-cos 2C B -)成立,则2cos(θ+4π)=-1,∴cos(θ+4π)=22.而π<θ≤2π, ∴45π<θ+4π≤29π.∴这样的θ不存在. 点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.例2 已知tan(α-β)=21,tan β=71-,且α,β∈(0,π),求2α-β的值. 解:∵2α-β=2(α-β)+β,tan(α-β)=21,∴tan2(α-β)=)(tan 1)tan(22βαβα---=34.从而tan(2α-β)=tan [2(α-β)+β]=713417134tan )(2tan 1tan )(2tan ⨯+-=--+-ββαββα=121252125=.又∵tan α=tan [(α-β)+β]=ββαββαtan )tan(1tan )tan(--+-=31<1.且0<α<π,∴0<α<4π.∴0<2α<2π. 又tan β=71-<0,且β∈(0,π), ∴2π<β<π,-π<-β<2π-.∴-π<2α-β<0.∴2α-β=43π-.点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cos α;若α∈(2π-,2π),则求sin α等.变式训练若α,β为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:α+2β=2π. 证明:已知两个等式可化为3sin 2α=cos2β, ① 3sin αcos α=sin2β, ②①÷②,得a a cos sin =ββ2sin 2cos ,即cos αcos2β-sin αsin2β=0, ∴cos(α+2β)=0.∵0<α<2π,0<β<2π,∴0<α+2β<23π.∴α+2β=2π.知能训练课本本节练习4. 解答:4.(1)y=21sin4x.最小正周期为2π,递增区间为[28,28ππππk k ++-](k∈Z ),最大值为21; (2)y=cosx+2.最小正周期为2π,递增区间为[π+2k π,2π+2k π](k∈Z ),最大值为3; (3)y=2sin(4x+3π).最小正周期为2π,递增区间为[224,2245ππππk k ++-](k∈Z ),最大值为2.课堂小结本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学. 作业课本复习参考题A 组10、11、12.设计感想1.本节课主要是三角恒等变换的应用,通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的.在教学中教师要强调:分析、研究三角函数的性质,是三角函数的重要内容.如果给出的三角函数的表达式较为复杂,我们必须先通过三角恒等变换,将三角函数的解析式变形化简,然后再根据化简后的三角函数,讨论其图象和性质.因此,三角恒等变换是求解三角函数问题的一个基本步骤.但需注意的是,在三角恒等变换过程中,由于消项、约分、合并等原因,函数的定义域往往会发生一些变化,从而导致变形化简后的三角函数与原三角函数不等价.因此,在对三角函数式进行三角恒等变换后,还要确定原三角函数的定义域,并在这个定义域内分析其性质.2.在三角恒等变化中,首先是掌握利用向量的数量积推导出两角差的余弦公式,并由此导出角和与差的正弦、余弦、正切公式,二倍角公式和积化差、和差化积及半角公式,以此作为基本训练.其次要搞清楚各公式之间的内在联系,自己画出知识结构图.第三就是在三角恒等变换中,要结合第一章的三角函数关系、诱导公式等基础知识,对三角知识有整体的把握.3.今后高考对三角变换的考查估计仍以考查求值为主.和、差、倍、半角的三角函数公式、同角关系的运用仍然是重点考查的地方,应该引起足够重视,特别是对角的范围的讨论,从而确定符号.另外,在三角形中的三角变换问题,以及平面向量为模型的三角变换问题将是高考的热点.对三角函数综合应用的考查,估计仍然以三角与数列、不等式、平面向量、解析几何、三角与解三角形的实际应用为主,题型主要是选择题、填空题,也可能以解答题形式出现,难度不会太大.应注意新情景立意下的三角综合应用也是考试的热点.。

3.2二倍角的三角函数(2)(2015年人教A版数学必修四导学案)

3.2二倍角的三角函数(2)(2015年人教A版数学必修四导学案)
课题:
班级: 【学习目标】 【课前预习】 sin 2 1、
3.2 二倍角的三角函数(2) 学号: 第 学习小组
姓名:
; cos 2
= ; sin 2
=

tan 2 _______________ ;cos2

2、化简: (sin
5 5 5 5 cos )(sin cos )= 12 12 12 12
6、求值 tan70 cos10( 3 tan20 1)
8、如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,那么 l 的长度 取决于角 的大小,探求 l , 之间的关系,并导出用 表示 l 的函数关系式。
C

D
l
A
E
6cm
B
1 1 , tan , 且 , 都是锐角,求 2 的值。 7 3
4、试说明 y sin 2 x与y sin 2 x 图象之间有什么关系?
【课后巩固】
1、已知 sin x =
5 1 2 x ,则 sin ( ) 的值等于______________. 2 4 2
6、求值 tan70 cos10( 3 tan20 1)
8、如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,那么 l 的长 度取决于角 的大小,探求 l , 之间的关系,并导出用 表示 l 的函数关系式。
C

D
l
A
E
6cm
B
课题:
班级:
3.2 二倍角的三角函数(2) 学号: 第 学习小组

12
cos 2
(3) 2 cos20 sin 2 10
(4)

(完整版)《二倍角的三角函数》教案完美版

(完整版)《二倍角的三角函数》教案完美版

《二倍角的三角函数》教案教学目标:掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识。

教学重点:二倍角公式的推导及简单应用。

教学难点:理解倍角公式,用单角的三角函数表示二倍角的三角函数。

教学过程:Ⅰ.课题导入前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的。

当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.先回忆和角公式sin(α+β)=sinαcosβ+cosαsinβ当α=β时,sin(α+β)=sin2α=2sinαcosα即:sin2α=2sinαcosα(S2α)cos(α+β)=cosαcosβ-sinαsinβ当α=β时cos(α+β)=cos2α=cos2α-sin2α即:cos2α=cos2α-sin2α(C2α)tan(α+β)=错误!当α=β时,tan2α=错误!Ⅱ.讲授新课同学们推证所得结果是否与此结果相同呢?其中由于sin 2α+cos 2α=1,公式C 2α还可以变形为:cos2α=2cos 2α-1或:cos2α=1-2sin 2α同学们是否也考虑到了呢?另外运用这些公式要注意如下几点:(1)公式S 2α、C 2α中,角α可以是任意角;但公式T 2α只有当α≠错误!+kπ及α≠错误!+错误! (k ∈Z )时才成立,否则不成立(因为当α=错误!+kπ,k ∈Z 时,tan α的值不存在;当α=错误!+错误!,k ∈Z 时tan2α的值不存在).当α=错误!+kπ(k ∈Z )时,虽然tan α的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:即:tan2α=tan2(错误!+kπ)=tan(π+2kπ)=tan π=0 (2)在一般情况下,sin2α≠2sin α例如:sin 错误!=错误!≠2sin 错误!=1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k ∈Z )时,sin2α=2sin α=0成立]。

人教版高中数学必修四《-2任意角的三角函数》导学案

人教版高中数学必修四《-2任意角的三角函数》导学案

§1.2.1 任意角三角函数(2)1.利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来,并能作出三角函数线。

2.培养分析、探究问题的能力。

促进对数形结合思想的理解和感悟。

一、课前准备(预习教材P15~ P17,找出疑惑之处)我们已学过任意角的三角函数,给出了任意角的正弦,余弦,正切的定义。

想一想能不能用几何元素表示三角函数值?(例如,能不能用线段表示三角函数值?)二、新课导学※探索新知问题1:在初中,我们知道锐角三角函数可以看成线段的比,那么,任意角的三角函数是否也可以看成是线段的比呢?问题2:在三角函数定义中,是否可以在角 的终边上取一个特殊点使得三角函数值的表达式更为简单?问题3.有向线段,有向线段的数量,有向线段长度的概念如何。

问题4.如何作正弦线、余弦线、正切线。

※典型例题例1:作出下列各角的三角函数线(1)611π (2)32π-例2:比较下列各组数的大小(1)sin1和sin 3π (2)cos 74π和cos 75π (3)tan89π和tan 79π (4)sin 5π和tan 5π变式训练①:若α是锐角(单位为弧度),试利用单位圆及三角函数线,比较αααtan ,sin ,之间的大小关系。

变式训练②:根据单位圆中的正弦线,你能发现正弦函数值有怎样的变化规律。

例3:利用单位圆分别写出符合下列条件的角α的集合(1)21sin -=α, (2)21sin ->α ,(3) 3tan ≤α 。

变式训练①:已知角α的正弦线和余弦线分别是方向一正一反,长度相等的有向线段,则α的终边在 ( )A 第一象限角平分线上B 第二象限角平分线上C 第三象限角平分线上D 第四象限角平分线上变式训练②:当角α,β满足什么条件时有βαsin sin =.变式训练③:sin α>cos α,则α的取值范围是_________。

变式训练④:已知集合E={θ|cos θ<sin θ,0πθ2≤≤},F={θtan θ<sin θ}。

3.1.3 二倍角的三角函数(2)学案

3.1.3   二倍角的三角函数(2)学案

二倍角的三角函数(2)1.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次)2.特别注意公式的三角表达形式,且要善于变形:, 这两个形式今后常用要求学生能较熟练地运用公式进行化简、求值、证明,增强灵活运用数学知识和逻辑推理能力理解倍角公式,用单角的三角函数表示二倍欠的三角函数(一)预习指导1.有关公式:(1) = ;(2) = ; (3) = ; (二)典型例题选讲:例1化简:8cos 228sin 12+++例2求证:[sin θ(1+sin θ)+cos θ(1+cos θ)]×[sin θ(1-sin θ)+cos θ(1-cos θ)]=sin2θ22cos 1cos 2αα+=22cos 1sin 2αα-=2sin 2α2cos 2α2tan 2α例3求函数χχχγsin cos cos 2+=的值域。

例4求证:ααcos sin 2+ 的值是与α无关的定值。

例5化简:例6求证: )6(sin )3cos(2απαπ--+θθθθθθθθsin cos 1sin cos 1sin cos 1sin cos 1-+--+---+i i θθθθθθ2tan 14cos 4sin 1tan 24cos 4sin 1-++=-+例7利用三角公式化简:sin50°(1+︒10tan 3)【课堂练习】1.若 ≤α≤ ,则ααsin 1sin 1-++等于 .2.4cos 2sin 22+-的值等于 .3.sin6°cos24°sin78°cos48°的值为 .4. 的值等于 .5.已知 ,则 的值等于 .6.已知 (0<α< )的值等于 .7.求值tan70°cos10°(3tan20°-1).25π27π94cos 93cos 92cos 9cos ππππ215sin -=χ)4(2sin πχ-135)4sin(=-απ4π8.求 的值。

高中数学必修四教案:3.2.1+二倍角的三角函数(2)

高中数学必修四教案:3.2.1+二倍角的三角函数(2)

格一课堂教学方案章节:课时: 2 备课人:二次备课人:精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

2016秋人教A版数学必修四3.2.1《二倍角的三角函数》word导学案(1)

2016秋人教A版数学必修四3.2.1《二倍角的三角函数》word导学案(1)

3.2.1 二倍角的三角函数(1)【学习目标】1.掌握二倍角的正弦、余弦、正切公式;2.能用上述公式进行简单的求值、化简、恒等证明。

【学习重点难点】重点:1.二倍角公式的推导;2.二倍角公式的简单应用。

难点:理解倍角公式,用单角的三角函数表示二倍角的三角函数。

【学习过程】(一)预习指导:1.复习两角和与差的正弦、余弦、正切方式:sin(α+β)= (S βα+)cos(α+β)= (C βα+)tan(α+β)= (T βα+)(α,β, α+β≠κπ+ ,Z ∈κ)(二)基本概念2.二倍角公式的推导在公式(S βα+),(C βα+),(T βα+)中,当α=β时,得到相应的一组公式: sin2α= (S α2)cos2α= (C α2)tan2α= (T α2) 注意:1°在(T α2)中2α≠ +κπ,α≠ +κπ(Z ∈κ) 2°在因为sin 2α+cos 2α=1,所以公式(C α2)可以变形为cos2α=或cos2α= (C ′α2)公式(S α2),(C α2),(C ′α2),(T α2)统称为二倍角的三角函数公式,简称二倍角公式。

(二)典型例题选讲:一、倍角公式的简单运用 2π2π2π例1不查表,求下列各式的值(1)( ) (2) (3) (4)1+2θθ2cos cos 2-例2求tan θ=3,求sin2θ-cos2θ的值例3已知sin (0<θ< ),求cos2θ,cos( +θ)的值。

二、sin α,cos α,sin α±cos α,sin α·cos α之间的关系例4已知sin θ+cos θ= , θ ,求cos θ,cos ·cos θ,sin2θ,cos2θ,sin θ, cos θ的值。

125cos 125sin ππ+)125cos 125(sin ππ-2sin 2cos 44αα-ααtan 11tan 11+--135)4(=-θπ4π4π51 ⎝⎛⎪⎭⎫∈43,2ππ三、倍角公式的进一步运用例5求证:例6求 的值。

2022年《2 二倍角的三角函数导学案教师版》优秀教案

2022年《2 二倍角的三角函数导学案教师版》优秀教案

二倍角的三角函数目标要求1、理解并掌握二倍角的正弦、余弦和正切公式以及倍角公式的变换.2、理解并掌握给角求值、条件求值问题.3、理解并掌握化简、证明问题.4、理解并掌握倍角公式与三角函数性质的综合问题学科素养目标三角恒等变换公式是联系三角函数与平面向量,物理应用知识的桥梁三角恒等变换公式中的“拆与添〞、方程组思想等技巧都是数学常用思想方法突出计算能力,逻辑推理能力,分析问题和解决实际应用问题的能力.重点难点重点:化简、证明问题;难点:倍角公式与三角函数性质的综合问题.教学过程根底知识点1二倍角的正弦、余弦、正切公式1公式:2本质:两角和的正弦、余弦、正切公式,当两角相等时的特殊形式3应用:①化简;②求值;③证明【思考】1所谓的“二倍角〞公式,一定是角与之间的转化关系吗为什么提示:不一定对于“二倍角〞应该广义的理解,如:是的二倍角,是的二倍角,是的二倍角, 是的二倍角,…,这里蕴含着换元思想这就是说“倍〞是相对而言的,是描述两个数量之间关系的2公式中的角是任意角吗提示:对于公式中的角是任意角,但是中的角要保证有意义且分母2倍角公式的变换1因式分解变换2配方变换3升幂缩角变换4降幂扩角变换【课前根底演练】题1〔多项选择..........〕以下命题正确的选项是A倍角的正切公式的适用范围不是任意角B对于任意的角,都有成立C存在角,使成立D对任意的角都成立【答案】选ACD提示:A√倍角的正切公式,要求且,故此说法正确B×当时,,而C√由,得时, 成立D√由倍角的正弦公式可得题2 in 15°in 75°的值为A B C D【解析】选B原式题3,那么in 2α=________,co 2α=________,tan 2α=________【解析】因为,所以,所以答案:关键能力·合作学习类型一给角求值问题数学运算【题组训练】题4A B D【解析】选A原式题5C D【解析】选B题6【解析】原式答案:【解题策略】利用二倍角公式解决给角求值问题的策略1注意观察式子的结构特点及角之间是否存在特殊的倍数关系,灵活正用或逆用二倍角公式2结合诱导公式恰当变化函数名称,灵活处理系数,构造二倍角公式的形式【补偿训练】题7列各式的值:1;2;3【解析】1原式2原式3原式类型二条件求值问题数学运算【典例】题8,求的值【解题策略】解决条件求值问题的方法1将式或未知式化简,使关系明朗化;2寻找角之间的关系,特别是角与要求的角之间的二倍关系,如果二倍关系中含有角和某些特殊角,那么利用诱导公式转化后整体代入【跟踪训练】题9,求和的值【解析】由,得,那么,即因为,所以,所以,【补偿训练】题10,且,求【解析】因为,,所以原式可化为,解得或因为,所以,故或,即或类型三化简、证明问题数学运算、逻辑推理角度1 化简问题【典例】题11化简:〔1〕;〔2〕【思路导引】结合题目特点,利用二倍角的正弦、余弦公式化简【解析】1原式2原式【变式探究】题12化简【解析】原式角度2 证明问题【典例】题13证明【思路导引】利用二倍角公式化简左边式子求解【解析】【解题策略】1化简三角函数式的常用方法1切化弦;2异名化同名;3异角化同角;4高次降低次2化简三角函数式的常用技巧1特殊角的三角函数与特殊值的互化;2对于分式形式,应分别对分子、分母进行变形处理,有公因式的提取公因式后进行约分;3对于二次根式,注意倍角公式的逆用;4利用角与角之间的隐含关系,如互余、互补等3证明问题的原那么及一般步骤1观察式子两端的结构形式,一般是从复杂到简单,如果两端都比拟复杂,就将两端都化简,即采用“两头凑〞的思想2证明的一般步骤是:先观察,找出角、函数名称、式子结构等方面的差异,然后本着“复角化单角〞“异名化同名〞“变量集中〞等原那么,设法消除差异,到达证明的目的【题组训练】题14的化简结果为A B C D【解析】选B题15求证:【证明】方法一:左边右边,得证方法二:右边左边,得证题16化简:,其中【解析】原式①当时,,此时原式②当时,,此时原式类型四倍角公式与三角函数性质的综合逻辑推理、数学运算【典例】题17求函数的最小值,并求其单调减区间【思路导引】化简f的解析式→f=A inωφB→ωφ的范围→求最小值,单调减区间【解析】,因为,所以,所以,所以当,即时,f取最小值为因为在上单调递增,所以f在上单调递减【解题策略】倍角公式与三角函数性质的综合问题的解题策略运用三角函数的和、差、倍角公式将函数关系式化成=a in ωb co ω的形式,借助辅助角公式化为=A inωφ或=A co ωφ的形式,将ωφ看作一个整体研究函数的性质【跟踪训练】题18求函数的最小正周期和最小值,并写出该函数在上的单调递减区间【解析】,所以由,得,又,所以令=0,得函数的单调递减区间为课堂检测·素养达标题19,那么的值为A B C D【解析】选A因为,所以题2021的结果为A B C D【解析】选B【补偿训练】题21的值为A B C D【解析】选B题22,那么等于________【解析】由得答案:【解析】,故最小正周期为答案:题24求证:【证明】左边=右边,所以等式成立。

人教A版高中数学必修四二倍角的正弦、余弦、正切公式导学案

人教A版高中数学必修四二倍角的正弦、余弦、正切公式导学案

§3.1.3 二倍角的正弦、余弦和正切公式1、以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;2、二倍角的理解及其灵活运用.一、课前准备(预习教材P132—P134)复习引入:请大家首先回顾一下两角和的正弦、余弦和正切公式:。

二、新课导学※探索新知ααα的公式呢?问题:由两角和的正弦、余弦和正切公式能否得到sin2,cos2,tan2探究1:推导sin2a,cos2asin2a=cos2a=思考:把上述关于cos 2α的式子能否变成只含有sin α或cos α形式的式子呢?; cos2a=cos2a=探究2:推导tan2a注意:2,22k k ππαπαπ≠+≠+ ()k z ∈※ 典型例题例1、已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值.例2、已知1tan 2,3α=求tan α的值.变式:已知的值求)2tan(,31tan ,71tan βαβα+==例3、在△ABC 中,54cos =A ,。

B A B 的值求)22tan(,2tan +=三、小结反思熟记二倍角的正弦、余弦和正切公式,在解题过程中要善于发现规律,学会灵活运用.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1、已知180°<2α<270°,化简αα2sin2cos 2-+=( ) A 、-3cos α B 、3cos αC 、-3cos αD 、3sin α-3cos α2、已知)3,25(ππα∈,化简αsin 1-+αsin 1+= ( ) A 、-2cos 2α B 、2cos 2αC 、-2sin 2αD 、2sin 2α3、已知sin 2α=53,cos 2α=-54,则角α是 () A 、第一象限角 B 、第二象限角C 、第三象限角D 、第四象限角4、若tan θ = 3,求sin2θ - cos2θ 的值。

人教A版高中数学必修四二倍角的正弦、余弦和正切公式教案

人教A版高中数学必修四二倍角的正弦、余弦和正切公式教案

3.1.3 二倍角的正弦、余弦和正切公式一、教学目标以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.二、教学重、难点教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用.三、教学设想:(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,βαβαβαsin cos cos sin )sin(-=- βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- βαβαβαtan tan 1tan tan )tan(⋅-+=+练习:(1)在△ABC 中,B A B A cos cos sin sin <,则△ABC 为( )A .直角三角形B .钝角三角形C .锐角三角形D .等腰三角形(2) 的值为12sin 12cos3ππ-( )A . 0B .2C .2D .2- 思考:已知432πβπ<<,1312)cos(=-βα,53)sin(-=+βα,求α2sin我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可),(二)公式推导:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos 2α的式子能否变成只含有sin α或cos α形式的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈(三)例题讲解例1、已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值. 解:由,42ππα<<得22παπ<<. 又因为5sin 2,13α=12cos 213α===-. 于是512120sin 42sin 2cos 221313169ααα⎛⎫==⨯⨯-=- ⎪⎝⎭;225119cos 412sin 21213169αα⎛⎫=-=-⨯= ⎪⎝⎭;120sin 4120169tan 4119cos 4119169ααα-===-. 例2.在△ABC 中,54cos =A ,。

高一数学(人教版)必修4导学案设计:3.1.3二倍角的正弦、余弦、正切公式(二课时)

高一数学(人教版)必修4导学案设计:3.1.3二倍角的正弦、余弦、正切公式(二课时)

3.1.3 二倍角的正弦、余弦、正切公式(2个课时)学习目标:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式,记忆公式并能灵活应用公式. 学习重点:1、推导二倍角的正弦、余弦和正切公式; 2、二倍角公式的灵活应用。

学习难点:二倍角的理解及其公式的灵活运用.第一课时 一、知识链接:1、sin()=αβ+2、cos()=αβ+3、tan()=αβ+ 思考1:上述公式中当αβ=时,你能得到什么结论? 二、新课导学 (一)新知探究二倍角的正弦、余弦、正切公式sin 2cos 2tan 2ααα===思考2:观察二倍角的余弦公式,里面有22sin cos αα和,而我们知道22sin cos 1αα+=,由此,你还能得到余弦的其他二倍角公式吗?cos2α= cos2α=注意:对于“二倍角”要有广义的理解,如4α是2α的二倍角,α是2α的二倍角,3α是32α的二倍角等等。

(二)新知运用1、在括号里填上适当的角,使等式成立。

()()()()()()()()222(1)sin 42sin cos ;(2)sin 2sin cos ;2tan (3)cos cos sin ;(4)tan 3.21tan αααα===-=-2、求下列各式的值:3、自学课本135P 例522(1)2sincos1212(2)2cos18(3)2sin 151πππ=-=-=o (重在求解思路的探求上)三、练习:135P 5、 1、2、四、小结:1、二倍角公式及记忆; 2、“倍半关系”的相对性;公式的灵活应用。

五、作业: 课本138P 14、15第二课时一、复习:二倍角的正弦、余弦、正切公式 二、新课:1、二倍角公式的变形: (1)由二倍角的正弦公式可得sin cos αα=g ;(2)由二倍角的余弦公式可得2sin α= ;2cos α= ;2tan α= 。

这三个公式从左边到右边,次数有什么变化,角又有什么变化?(我们把它们称为降幂扩角公式)另外,我们经常用到的公式还有:21sin 2(sin cos )ααα+=+, 同理,1sin 2α-=( 2)2、自学课本133P 例6(重在解题思路的探求上),你能求出tan 2C 的值吗? 三、练习:课本135P3、4 课本138P 18、19四、小结:1、二倍角公式的灵活应用;2、综合应用公式求值、化简。

[教案精品]新课标高中数学人教a版必修四全册教案313二倍角的正弦、余弦、正切公式(2).doc

[教案精品]新课标高中数学人教a版必修四全册教案313二倍角的正弦、余弦、正切公式(2).doc

3. 1. 3 二倍角的正弦、余弦和正切公式•一、教学目标•以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用..二、教学重、难点教学重点:以两角和的正眩、余眩和正切公式为基础,推导二倍角正眩、余弦和正切公式;教学难点:二倍角的理解及其灵活运用.•三、教学设想:(-)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,. sin(a - 0) = sin a cos 0 - cos a sin 0sin(a + 0) = sin a cos 0 + cos a sin 0cos(a - 0) = cos a cos 0 + sin a sin 0cos(a + 0) = cos a cos 0 - sin a sin 0/ c、 tan a — tan 0 / 门、tan a + tan 0 tan(6r -/?) = ---------------- -- tan(<7 + #)= ----------------------------------- —•I + tan• tan p 1 - tan 6if • tan 0.练习:(1)在AABC 中,sin A sin B < cos A cos B ,则AABC 为( )A. 直角三角形B.钝角三角形C.锐角三角形D.等腰三角形(2) V3cos—-sin兰的值为()12 12A. 0B. 2 C- V2 D. -V2jr19 3思考:已知3<0<°<百,cos(o-0)=乜,sin(6r + /3)=,求sin2a我们由此能否得到sin2%cos26Man2o的公式呢?(学生自己动手,把上述公式中0看成a即可),(二)公式推导:sin 2a = sin (a + a) = sin a cos a + cos a sin a = 2 sin acosa;cos 2a = cos (a + a) = cosa cos a-sina sin a - cos2 cif-sin2a;思考:把上述关于cos2a 的式子能否变成只含有sina 或cos©形式的式子呢?cos 2a = cos 2 <7-sin 2 cr = 1-sin 2 6r-sin 2(7 = l-2sin 2 a ; cos 2a = cos 2 a-sin 2 a = cos 2(7-(1-cos 2 a) =2cos 2 a-l.tan 2cr = tan (6Z + 6Z )= 9 1 一 tan a tan a 1-tan" a2Q 丰—F k 兀3a H —F k 兀(kw z) 2 2 、丿tan cr + tan or 2 tan a 注意: (三) 例题讲解己知<a< —,求sin4a,cos4o,tan4G 的值.13 4 27T 兀 兀解:由「X 亍得空<205.于是 sin46r = 2sin 2a cos 2cr = 2x —x134例 2.在厶ABC 中,cosA =— , tan B = 2,求tan(2A + 2B)的值。

高中数学必修四《二倍角的正弦余弦和正切公式》导学案

高中数学必修四《二倍角的正弦余弦和正切公式》导学案

- 1 - §3.1.3 《二倍角的正弦、余弦和正切公式》导学案学习目标:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程, 掌握其应用.学习重点:二倍角的正弦、余弦、正切公式的推导及灵活运用.学习难点:灵活应用二倍角公式.学习过程一、复习回顾1、 写出两角和的正弦、余弦和正切公式:2、在两角和的正弦、余弦、正切公式中,若令β=α可得什么结论 ?二、合作探究1、二倍角的正弦、余弦、正切公式:=α2sin=α2cos=α2tan 注意:2,22k k ππαπαπ≠+≠+ ()k z ∈2、思考:对cos2α的式子能否变成只含有sin α或cos α形式的式子呢?3、(公式巩固性练习)求下列各式的值:跟踪练习:课本135页 5=,。

,。

、3022cos 3022sin 1=-18cos 222π、- 2 - 三.例题讲解例1 已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值. 解:例2 已知1tan 2,3α=求tan α的值. 解:例3 证明:四、当堂达标1.计算=2.若53)2(sin =+θπ,则θ2cos = 3.已知55sin =α,则=-αα22cos sin 4.若tan θ = 3,求sin2θ - cos2θ 的值.五、小结反思 熟记二倍角的正弦、余弦和正切公式,在解题过程中要善于发现规律,学会灵活运用.学习评价 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差2012sin 22.5-。

人教A版高中数学必修4 精选优课学案 3.1.3 二倍角的正弦、余弦、正切公式.doc

人教A版高中数学必修4 精选优课学案 3.1.3 二倍角的正弦、余弦、正切公式.doc

二倍角的正弦、余弦、正切公式导学案【学习目标】1.学会利用两角和的正弦、余弦、正切公式推导出二倍角的正弦余弦正切公式,知道各公式之间的内在联系,认识整个公式体系的生成过程2.能记住二倍角公式及相关变形3.能用二倍角公式进行化简求值【重难点】二倍角公式的推导及应用【学法指导】自主探究公式的内在联系预习案预习课本132至134页,完成以下内容1.知识链接:两角和的正弦、余弦、正切公式()sin αβ+=()cos αβ+=()tan αβ+=2、探索内容1〈〉当上述公式中角、具有特殊化关系时,公式变为什么形式? sin 2α=cos2α=tan 2α= (其中 tan α有意义α≠tan 2α有意义2α≠ )以上公式的推导是利用 的数学思想2〈〉根据22sin cos 1αα+= 上述公式cos2α有无其他变式?cos2α= =以上公式都为倍角公式 。

“倍”是描述两个数量之间关系的,比如2α是α二倍,4α是2α二倍,α是2α二倍。

3.检测预习效果(1)22cos sin 88ππ-= (2),,sin 6730cos6730=(3)22tan 22.51tan 22.5=- (4)=-625sin 212π 探究案(25分钟)例1已知5sin 2,,sin 4,cos 4,tan 41342ππααααα=<<求的值变式1:04πα若的范围改为(,),结果相同吗?变式2若条件5sin 2sin cos 13ααα=+=改为如何做?例2.在3,tan 2,tan(22)4ABC A B A B ==+中,tan 求的值总结预习感想以及需解决的问题1. 2. 3. 4.当堂检测案(5分钟)1. 默写今天所学公式sin 2α=cos2α= = =tan 2α= (α≠ ) 2求值sin15cos15= 252t a n 651t a n 6ππ=- 3.已知sin 2sin ,(,),tan 2παααπα=-∈求的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.1 二倍角的三角函数(2)
【学习目标】
1.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次)
2.特别注意公式的三角表达形式,且要善于变形:
, 这两个形式今后常用
要求学生能较熟练地运用公式进行化简、求值、证明,增强灵活运用数学知识和逻辑推理能力
【学习重点难点】
重点:理解倍角公式,用单角的三角函数表示二倍欠的三角函数
难点:灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式
【学习过程】
(一)预习指导
1.有关公式:
(1) = ; (2) = ;
(3) = ; (二)典型例题选讲:
例1化简:8cos 228sin 12+++
例2求证:[sin θ(1+sin θ)+cos θ(1+cos θ)]×[sin θ(1-sin θ)+cos θ(1-cos θ)]=sin2θ
2
2cos 1cos 2αα+=2
2cos 1sin 2αα-=2sin 2α
2cos 2α
2tan 2
α
例3求函数χχχγsin cos cos 2
+=的值域。

例4求证:ααcos sin 2+ 的值是与α无关的定值。

例5化简:
例6求证: )6
(sin )3cos(2απ
απ--+θθθθθθθθsin cos 1sin cos 1sin cos 1sin cos 1-+--+
---+i i θ
θθθθθ2tan 14cos 4sin 1tan 24cos 4sin 1-++=-+
例7利用三角公式化简:sin50°(1+︒10tan 3)
【课堂练习】
1.若 ≤α≤ ,则ααsin 1sin 1-++等于 .
2.4cos 2sin 22+-的值等于 .
3.sin6°cos24°sin78°cos48°的值为 .
4. 的值等于 .
5.已知 ,则 的值等于 .
6.已知 (0<α< )的值等于 .
7.求值tan70°cos10°(3tan20°-1).
25π2
7π9
4cos 93cos 92cos 9cos ππππ2
15sin -=χ)4(2sin πχ-135)4sin(=-απ4
π
8.求 的值。

9.已知 , ,求sin4α的值。

【课堂小结】
︒-
︒10cos 310sin 161)4sin()4sin(=-+απ
απ),2
(ππα∈。

相关文档
最新文档