弹性力学-答案
弹性力学复习题---有答案-知识归纳整理
知识归纳整理一、挑选题1. 下列材料中,( D )属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
2 对于弹性力学的正确认识是(A )。
A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
3. 弹性力学与材料力学的主要不同之处在于( B )。
A. 任务;B. 研究对象;C. 研究想法;D. 基本假设。
4. 所谓“彻底弹性体”是指( A )。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时光历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
5. 所谓“应力状态”是指( B )。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,所以应力矢量是不可确定的。
6. 变形协调方程说明( B )。
A. 几何方程是根据运动学关系确定的,所以对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。
7. 下列对于弹性力学基本方程描述正确的是( A )。
A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值延续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最终需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。
A .几何方程B .边界条件C .数值想法D .附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系 ( B )。
弹性力学试题及答案
弹性力学试题及答案一、选择题(每题10分,共40分)1. 在弹性力学中,下列哪个物理量表示应变能密度?A. 应力B. 应变C. 位移D. 应力能密度答案:D2. 在平面应力状态下,下列哪个方程是正确的?A. σ_x + σ_y = 0B. σ_x + σ_y = σ_zC. σ_x + σ_y = τ_xyD. σ_x + σ_y = 0答案:D3. 在弹性体中,应力与应变之间的关系可以用下列哪个关系式表示?A. σ = EεB. σ = GγC. τ = μγD. σ = λε答案:A4. 在弹性力学中,下列哪个方程表示平衡方程?A. σ_x + σ_y + σ_z = 0B. ε_x + ε_y +ε_z = 0 C. τ_xy = τ_yx D. σ_x + σ_y + σ_z = F答案:D二、填空题(每题10分,共30分)1. 弹性力学中的基本假设有:连续性假设、线性假设和________假设。
答案:各向同性2. 在三维应力状态下,应力分量可以表示为:σ_x, σ_y, σ_z, τ_xy, τ_xz, τ_yz。
其中,τ_xy表示________面上的切应力。
答案:xOy3. 在弹性力学中,位移与应变之间的关系可以用________方程表示。
答案:几何方程三、计算题(每题30分,共90分)1. 已知一弹性体在平面应力状态下的应力分量为:σ_x = 100 MPa,σ_y = 50 MPa,τ_xy = 25 MPa。
弹性模量E = 200 GPa,泊松比μ = 0.3。
求应变分量ε_x, ε_y, γ_xy。
解:首先,利用胡克定律计算应变分量:ε_x = σ_x / E = 100 MPa / 200 GPa = 0.0005ε_y = σ_y / E = 50 MPa / 200 GPa = 0.00025γ_xy = τ_xy / G = 25 MPa / (E / 2(1 + μ)) = 25 MPa / (200 GPa / 2(1 + 0.3)) = 0.000375答案:ε_x = 0.0005,ε_y = 0.00025,γ_xy = 0.0003752. 一弹性体在三维应力状态下的应力分量为:σ_x = 120 MPa,σ_y = 80 MPa,σ_z = 40 MPa,τ_xy = 30 MPa,τ_xz = 20 MPa,τ_yz = 10 MPa。
(完整版)《弹性力学》试题参考答案
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为: ,。
0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。
ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量。
S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。
由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。
弹性力学习题解答
习题解答 第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
解:(1)pi iq qj jkpq qj jk pj jk pk δδδδδδδδδδ===;(2)()pqi ijk jkpj qk pk qj jk pq qp e e A A A A δδδδ=-=-;(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
证:20ijk jkjk jk ikj kj ijk jk ijk kj ijk jk ijk jk i e a e a e a e a e a e a e a ==-=-=+。
2.3设a 、b 和c 是三个矢量,试证明:证:1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
2.4设a 、b 、c 和d 是四个矢量,证明:证:()()i j ijk k l m lmn n i j l m ijk lmk a b e c d e a b c d e e ⨯⋅⨯=⋅=a b c d e e ()()()()=⋅⋅-⋅⋅a c b d a d b c 。
2.5设有矢量i i u =u e 。
原坐标系绕z 轴转动θu 在新坐标系中的分量。
解:11cos βθ'=,12sin βθ'=,130β'=, 21sin βθ'=-,22cos βθ'=,230β'=, 310β'=,320β'=,331β'=。
弹性力学 - 答案
《弹性力学》习题答案一、单选题1、所谓“完全弹性体”是指(B)A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时间、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、关于弹性力学的正确认识是(A )A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D )。
A、杆件B、块体C、板壳D、质点4、弹性力学对杆件分析(C)A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些关于变形的近似假定5、图示弹性构件的应力和位移分析要用什么分析方法?(C)A、材料力学B、结构力学C、弹性力学D、塑性力学6、弹性力学与材料力学的主要不同之处在于( B )A、任务B、研究对象C、研究方法D、基本假设7、下列外力不属于体力的是(D)A、重力B、磁力C、惯性力D、静水压力8、应力不变量说明( D )。
A. 应力状态特征方程的根是不确定的B. 一点的应力分量不变C. 主应力的方向不变D. 应力随着截面方位改变,但是应力状态不变9、关于应力状态分析,(D)是正确的。
A. 应力状态特征方程的根是确定的,因此任意截面的应力分量相同B. 应力不变量表示主应力不变C. 主应力的大小是可以确定的,但是方向不是确定的D. 应力分量随着截面方位改变而变化,但是应力状态是不变的10、应力状态分析是建立在静力学基础上的,这是因为( D )。
A. 没有考虑面力边界条件B. 没有讨论多连域的变形C. 没有涉及材料本构关系D. 没有考虑材料的变形对于应力状态的影响11、下列关于几何方程的叙述,没有错误的是( C )。
A. 由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D. 几何方程是一点位移与应变分量之间的唯一关系12、平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为 z 轴方向)( C )A、 xB、 yC、 zD、 x, y, z13、平面应力问题的外力特征是(A)A 只作用在板边且平行于板中面B 垂直作用在板面C 平行中面作用在板边和板面上D 作用在板面且平行于板中面。
本科弹性力学试题及答案
本科弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中,下列哪一项不是基本假设?A. 连续性假设B. 均匀性假设C. 各向异性假设D. 小变形假设答案:C2. 在弹性力学中,下列哪一项不是应力的类型?A. 正应力B. 剪应力C. 拉应力D. 弯应力答案:D3. 弹性模量E和泊松比μ之间存在以下哪种关系?A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+μ)D. E = 2G(1-μ)答案:C4. 弹性力学中的圣维南原理适用于以下哪种情况?A. 仅适用于平面应力问题B. 仅适用于平面应变问题C. 适用于平面应力和平面应变问题D. 不适用于任何情况答案:C5. 弹性力学中,下列哪一项不是位移场的基本方程?A. 几何方程B. 物理方程C. 运动方程D. 边界条件答案:D6. 弹性力学中,下列哪一项不是平面应力问题的特点?A. 应力分量σz=0B. 应变分量εz≠0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:B7. 弹性力学中,下列哪一项不是平面应变问题的特点?A. 应力分量σz≠0B. 应变分量εz=0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:A8. 弹性力学中,下列哪一项不是应力集中的类型?A. 几何不连续引起的应力集中B. 材料不连续引起的应力集中C. 载荷不连续引起的应力集中D. 温度不连续引起的应力集中答案:D9. 弹性力学中,下列哪一项不是弹性常数?A. 杨氏模量EB. 泊松比μC. 剪切模量GD. 体积模量K答案:D10. 弹性力学中,下列哪一项不是弹性体的基本性质?A. 均匀性B. 连续性C. 各向同性D. 各向异性答案:D二、填空题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程包括______、______和______。
答案:几何方程、物理方程、平衡方程2. 弹性力学中,应变能密度W与应力分量和应变分量的关系为W=______。
弹性力学试题及答案
弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。
A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。
A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。
答案:内2. 弹性力学的基本假设之一是______连续性假设。
答案:材料3. 弹性力学中,应变的量纲是______。
答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。
答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。
答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。
2. 解释弹性力学中的杨氏模量和剪切模量。
答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。
3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。
四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。
弹性力学教材习题及解答(供参考)
1-1. 选择题a. 下列材料中,D属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
b. 关于弹性力学的正确认识是A。
A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
c. 弹性力学与材料力学的主要不同之处在于B。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
d. 所谓“完全弹性体”是指B。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
2-1. 选择题a. 所谓“应力状态”是指B。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。
2-2. 梯形横截面墙体完全置于水中,如图所示。
已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。
2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。
根据材料力学分析结果,该梁横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。
2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。
试写出楔形体的边界条件。
2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。
试写出球体的面力边界条件。
2-6. 矩形横截面悬臂梁作用线性分布载荷,如图所示。
试根据材料力学应力解答推导挤压应力σy的表达式。
3-1. 选择题a. 切应力互等定理根据条件B 成立。
A. 纯剪切;B. 任意应力状态;C. 三向应力状态;D. 平面应力状态;b. 应力不变量说明D.。
弹性力学教材习题及解答讲解
1-1. 选择题a. 下列材料中,D属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
b. 关于弹性力学的正确认识是A。
A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
c. 弹性力学与材料力学的主要不同之处在于B。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
d. 所谓“完全弹性体”是指B。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
2-1. 选择题a. 所谓“应力状态”是指B。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。
2-2. 梯形横截面墙体完全置于水中,如图所示。
已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。
2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。
根据材料力学分析结果,该梁横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。
2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。
试写出楔形体的边界条件。
2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。
试写出球体的面力边界条件。
2-6. 矩形横截面悬臂梁作用线性分布载荷,如图所示。
试根据材料力学应力解答推导挤压应力σy的表达式。
3-1. 选择题a. 切应力互等定理根据条件B 成立。
A. 纯剪切;B. 任意应力状态;C. 三向应力状态;D. 平面应力状态;b. 应力不变量说明D.。
弹性力学简答题答案
1、简述弹性力学的基本假设,并说说建立弹性力学基本方程时分别用到哪些假设?a、连续性2、完全弹性3、均匀性4、各向同性5、小变形假设即形变和位移均是微小的平衡微分方程和几何方程:物体的连续性、均匀性、小变形物理方程:全部用到2、简述弹性力学应力、应变、体力和面力的符号规定(可用文字说明)。
正的切应力对应正的切应变吗?应力:截面的外法线沿坐标轴正向,则此截面为正面,正面上的应力沿坐标轴正向为正、负向为负.相反,负面上的应力沿坐标轴负向为正、正向为负。
应变:线应变以伸长时为正、缩短时为负;切应变以直角变小时为正、变大时为负。
体力:沿坐标轴正方向为正、沿坐标轴负方向为负。
面力:沿坐标轴正方向为正、沿坐标轴负方向为负。
正的切应力对应正的切应变。
(图)τxy与τyx均为正的切应力,它们的作用是使DA与DB 间的夹角有减小的趋势,而根据切应变定义,此时应变为正。
3、简述平面问题的几何方程是如何得到的?a、先求出一点沿坐标轴x、y的线应变ξx、ξy。
b、求出两线段PA、PB之间直角的改变(γxy)ξx=&U\&X ξy=&V\&Y γxy=&U\&Y +&V\&X4、如果某一应力边界问题中有m个主要边界和n个次要边界,试问在主要、次要边界上各应满足什么类型的应力边界条件,各有几个条件?答:在m个主要的边界上,每个边界应有两个精确的应力边界条件,在n个次要边界上,每边的应力条件若不能满足,可以用三个等效的积分应力边界条件来确定。
5、如果某一应力边界问题中,除了一个次要边界外,所有的方程和边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,因而可以不必核实。
答:区域内的每一个微小单元体均已满足平衡条件,其余边界上的应力边界条件也已满足,那么在最后的次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。
6、试分析简支梁受均布载荷时,平面界面假设是否成立?答:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
弹性力学答案完整版
x
u , x
y
v v u , xy y x y
a.应力中只有平面应力 b.且仅为 f x, y 第二种:平面应变问题 。
σ x从几方面考虑?各方面反映的是那些变量间的关 系?
答: 在弹性力学利分析问题, 要从 3 方面来考虑: 静力学方面、 几何学方面、 物理学方面。 平 面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问题的平衡 微分方程.平面问题的几何学方面主要考虑的是形变分量与位移分量之间的关系,也就是平 面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之间的关 系,也就是平面问题中的物理方程. 2.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说 明。 答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。(2) 假定物体是完全弹性的。(3)假定物体是均匀的。(4)假定物体是各向同性的。(5)假 定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近 似视为“理想弹性体” 3.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明. 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问
几何方程
物理方程
例1
试列出图中的边界条件。
在小边界 x = l, 当平衡微分方程和其它各边界条件都已满足的条件下, 三个积分的边界条件 必然满足,可以不必校核。
注意在列力矩的条件时两边均是对原点 o 对于 y = h 的小边界可以不必校核。 2 证明:
的力矩来计算的。
简述材料力学和弹性力学在研究对象,研究方法方面的异同点。 答:在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的 构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如 板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。 在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进 行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学 推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假 定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。
《弹性力学》试题参考答案
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
弹性力学练习答案
一、填空题1. 等截面直杆扭转问题中,2Ddxdy M φ=⎰⎰的物理意义是: 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M。
5.弹性力学的基本假定为:连续性、完全弹性、均匀性、各向同性、小变形性。
6.一组可能的应力分量应满足:平衡微分方程、相容方程(变形协调条件)。
7.最小势能原理等价于弹性力学基本方程中:平衡微分方程、应力边界条件。
13.弹性力学平衡微分方程、几何方程的张量表示为:,0ij j i X σ+=,,,1()2ij i j j i u u ε=+3、表示位移分量与应力分量之间关系的方程为物理方程。
(×)4、当物体的位移分量完全确定时,形变分量即完全确定。
(√)5、连续性假定是指整个物体是由同一材料组成的。
(×)6、平面应力问题与平面应变问题的物理方程是完全相同的。
(×)7、按应力求解平面问题,最后可以归纳为求解一个应力函数。
(×)8、在有限单元法中,结点力是指单元对结点的作用力。
(×)9、在有限单元法中,结点力是指结点对单元的作用力。
(√)10、当物体的形变分量完全确定时,位移分量却不能完全确定。
(√)11、在平面三结点三角形单元的公共边界上应变和应力均有突变。
(√ )12、按应力求解平面问题时常采用位移法和应力法。
(×)13、表示应力分量与面力分量之间关系的方程为平衡微分方程。
(×)三、问答题1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
答:圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.简述弹性力学的研究方法。
答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
弹性力学试题及答案
弹性力学试题及答案题目一:弹性力学基础知识试题:1. 弹性力学是研究什么样的物体的变形与应力关系?答案:弹性力学是研究具有弹性的物体(即能够恢复原状的物体)的变形与应力关系的学科。
2. 弹性力学中的“应力”是指什么?答案:应力是物体内部相邻两部分之间的相互作用力与其接触面积之比。
3. 弹性力学中的“应变”是指什么?答案:应变是物体在受力作用下发生形变的程度。
正应变表示物体在拉伸力作用下的伸长程度与原始长度之比,负应变表示物体在压缩力作用下的压缩程度与原始长度之比。
4. 弹性力学中的“胡克定律”是什么?答案:胡克定律描述了弹簧的弹性特性。
根据胡克定律,当弹簧的变形量(即伸长或缩短的长度)与施加在弹簧上的力成正比时,弹簧的弹性变形是符合弹性恢复原状的规律的。
题目二:弹性系数计算试题:1. 弹性模量是用来衡量什么的物理量?答案:弹性模量是衡量物体在受力作用下发生弹性形变的硬度和刚度的物理量。
2. 如何计算刚体材料的弹性模量?答案:刚体材料的弹性模量可以通过应力与应变之间的关系来计算。
弹性模量E等于应力σ与应变ε之比。
3. 如何计算各向同性材料的体积弹性模量(Poisson比)?答案:各向同性材料的体积弹性模量(Poisson比)可以通过材料的横向应变与纵向应变之比来计算。
Poisson比v等于横向应变ε横与纵向应变ε纵之比。
4. 如何计算材料的剪切弹性模量?答案:材料的剪切弹性模量G(也称剪切模量或切变模量)可以通过材料的剪应力与剪应变之比来计算。
题目三:弹性体的应力分析试题:1. 弹性体的应力状态可以用什么来表示?答案:弹性体的应力状态可以用应力张量来表示。
2. 什么是平面应力状态和轴对称应力状态?答案:平面应力状态是指在某一平面上的应力分量仅存在拉伸(或压缩)和剪切,而垂直于该平面的应力分量为零的应力状态。
轴对称应力状态是指应力分量只与径向位置有关,而与角度无关的应力状态。
3. 弹性体的应力因子有哪些?答案:弹性体的应力因子包括主应力、主应力差、偏应力、平均应力、最大剪应力、最大剪应力平面等。
弹性力学练习-答案-知识归纳整理
一、填空题1. 等截面直杆扭转问题中, 2Ddxdy M φ=⎰⎰的物理意义是 : 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
2. 在弹性力学里分析问题,要思量静力学、几何学和物理学三方面条件,分别建立三套方程。
3. 弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
4. 在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相习惯。
5.弹性力学的基本假定为:延续性、彻底弹性、均匀性、各向同性、小变形性。
6. 一组可能的应力分量应满足: 平衡微分方程 、相容方程(变形协调条件) 。
7. 最小势能原理等价于弹性力学基本方程中:平衡微分方程、应力边界条件 。
8. 在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相习惯。
9. 物体受外力将来,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也算是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
10. 表示应力分量与体力分量之间关系的方程为平衡微分方程。
11. 边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
12.按应力求解平面问题时常采用逆解法和半逆解法。
13.弹性力学平衡微分方程、几何方程的张量表示为: ,0ij j iX σ+=,,,1()2ij i jj i u u ε=+14. 平面问题分为平面应力问题和平面应变问题。
15. 每个单元的应变普通总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。
16. 为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移延续性。
知识归纳整理求知若饥,虚心若愚。
弹性力学简答题答案
1、简述弹性力学的基本假设,并说说建立弹性力学基本方程时分别用到哪些假设?a、连续性2、完全弹性3、均匀性4、各向同性 5、小变形假设即形变和位移均是微小的平衡微分方程和几何方程:物体的连续性、均匀性、小变形物理方程:全部用到2、简述弹性力学应力、应变、体力和面力的符号规定(可用文字说明)。
正的切应力对应正的切应变吗?应力:截面的外法线沿坐标轴正向,则此截面为正面,正面上的应力沿坐标轴正向为正、负向为负。
相反,负面上的应力沿坐标轴负向为正、正向为负。
应变:线应变以伸长时为正、缩短时为负;切应变以直角变小时为正、变大时为负。
体力:沿坐标轴正方向为正、沿坐标轴负方向为负。
面力:沿坐标轴正方向为正、沿坐标轴负方向为负。
正的切应力对应正的切应变。
(图)τxy与τyx均为正的切应力,它们的作用是使DA与DB 间的夹角有减小的趋势,而根据切应变定义,此时应变为正。
3、简述平面问题的几何方程是如何得到的?a、先求出一点沿坐标轴x、y的线应变ξx、ξy。
b、求出两线段PA、PB之间直角的改变(γxy)ξx=&U\&X ξy=&V\&Y γxy=&U\&Y +&V\&X4、如果某一应力边界问题中有m个主要边界和n个次要边界,试问在主要、次要边界上各应满足什么类型的应力边界条件,各有几个条件?答:在m个主要的边界上,每个边界应有两个精确的应力边界条件,在n个次要边界上,每边的应力条件若不能满足,可以用三个等效的积分应力边界条件来确定。
5、如果某一应力边界问题中,除了一个次要边界外,所有的方程和边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,因而可以不必核实。
答:区域内的每一个微小单元体均已满足平衡条件,其余边界上的应力边界条件也已满足,那么在最后的次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。
6、试分析简支梁受均布载荷时,平面界面假设是否成立?答:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
弹性力学答案
1. 说明下列应变状态是否可能.222()00000ijc x y cxy cxy cy =⎛⎫⎪ ⎪ ⎪⎝⎭+ε 解:若应变状态可能,则应变分量应满足协调方程。
二维情况下,协调方程为:22222xy yxx y∂∂∂+=∂∂∂∂εεγx y22222222222[()]()2c x y cy c yxyx∂∂∂∂+=++=∂∂∂∂εεx y22(2)2xy cxy c x yx y∂∂==∂∂∂∂γ显然满足方程,故该应变状态可能。
2、设,τττ==yzxy 其余应力分量为零,求该点的主应力及对应于最大主应力的主方向。
解:20020233222221=-==-=---++==στσττττττττσσσσσσI I I zx yzxy xz zy yx解得τσστσ2,0,2321-===设对应于1σ的主方向为n m l ,,,有 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛---00020202n m l τττττττ又有1222=++n m l求得21,22,21===n m l3、一方板,z 向厚度h=10mm,边长 a=800mm ,且平行于x,y 轴,0,0,360=====yxyxzzxMPa εττσσ,若E=72Gpa,33.0=υ,求y σ和此板变形后的尺寸。
解:(1)求y σMPaEz xyz xyy 8.118)(0)]([1=+=∴=+-=σσυσσσυσε(2)求x εmma a Ex z yxx 56.380000446.000446.0)]([1=⨯=⨯=∆∴=+-=εσσυσε伸长(3)厚度变化 mmh E y xz z 022.0101019.21019.2)]([133-=⨯⨯-=∆∴⨯-=+-=--σσυσε4、平面应变问题中某点的三个应力分量为100,50,50,x y xy M pa M pa M pa σστ===求该点的三个主应力及x ε。
弹性力学答案
【1-4】应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力和正的面力的方向。
【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负。
当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负。
面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。
由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。
正的应力正的面力【2-1】试分析说明,在不受任何面力作用的空间体表面附近的薄层中(图2-14)其应力状态接近于平面应力的情况。
【解答】在不受任何面力作用的空间表面附近的薄层中,可以认为在该薄层的上下表面都无面力,且在薄层内所有各点都有0===z xz yzσττ,只存在平面应力分量,,x y xyσστ,且它们不沿z方向变化,仅为x,y的函数。
可以认为此问题是平面应力问题。
【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当板边上只受x,y向的面力或约束,且不沿厚度变化时,其应变状态接近于平面应变的情况。
【解答】板上处处受法向约束时0zε=,且不受切向面力作用,则xz yzγγ==(相应0zx zyττ==)板边上只受x,y向的面力或约束,所以仅存在,,x y xyεεγ,且不沿厚度变化,仅为x,y的函数,故其应变状态接近于平面应变的情况。
O zy【2-3】在图2-3的微分体中,若将对形心的力矩平很条件CM0=∑改为对角点的力矩平衡条件,试问将导出什么形式的方程?【解答】将对形心的力矩平衡条件CM0=∑,改为分别对四个角点A 、B 、D 、E 的平衡条件,为计算方便,在z 方向的尺寸取为单位1。
0AM=∑1()1()11222()1()1110222xy x y x xy y y yx y yx x x dx dy dydx dx dy dx dy dx dy x x dx dy dx dy dx dy dx dy f dxdy f dxdy y y τσσστσστστ∂∂⋅⋅++⋅⋅-+⋅⋅-⋅⋅∂∂∂∂-+⋅⋅++⋅⋅+⋅⋅-⋅⋅=∂∂ (a)0BM=∑ ()1()1()1221111102222yx y x x yx y xy x y x y dy dxdx dy dy dx dy dy dx x y y dy dx dy dxdy dx dy dx f dxdy f dxdy τσσστστσσ∂∂∂+⋅⋅++⋅⋅++⋅⋅∂∂∂-⋅⋅-⋅⋅-⋅⋅+⋅⋅+⋅⋅= (b)0D M =∑()1111221()11102222yy xy x yx x x x x y dx dydy dx dy dx dy dx dyy dx dy dy dxdx dx dy f dxdy f dxdy x σστστσσσ∂+⋅⋅-⋅⋅+⋅⋅+⋅⋅∂∂-⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂ (c)0EM=∑()1111222()1()1110222yy x yx y xyx x xy x y dx dy dxdy dx dy dx dy dx y dy dy dx dx dy dx dy dx f dxdy f dxdy x x σσστστσστ∂-+⋅⋅+⋅⋅+⋅⋅+⋅⋅-∂∂∂+⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂∂ (d)略去(a)、(b)、(c)、(d)中的三阶小量(亦即令22,d xdy dxd y 都趋于0),并将各式都除以dxdy 后合并同类项,分别得到xy yx ττ=。
弹性力学智慧树知到答案2024年北京工业大学
弹性力学北京工业大学智慧树知到答案2024年第一章测试1.弹性力学的任务是:()A:研究变形体在外界因素作用下的变形和内力 B:研究杆件系统在外界因素作用下的内力和位移 C:研究构件在外界因素作用下的变形和内力 D:研究弹性体在外界因素作用下产生的变形和内力答案:D2.连续性假设的作用是:()A:认为物体是弹性的 B:认为物体是均匀的 C:认为物体中的位移是连续的 D:认为物体中的应力、应变和位移都是连续的答案:D3.材料力学、结构力学、弹性力学研究对象的共同点是:()A:研究块体结构 B:研究板、壳 C:均质材料 D:各向同性材料 E:研究刚体 F:研究弹性体答案:CDF4.建立弹性力学分析模型需要遵循的原则是:()A:要精确考虑全部的因素 B:不能对实际问题的结构、材料、支座和荷载等要素进行简化 C:根据问题的复杂性选择建立何种模型,即建立理论分析力学模型或数值分析力学模型 D:抓住影响计算和分析结果的主要因素,忽略其中的次要因素 E:满足弹性力学的基本假设答案:CDE5.弹性力学问题的基本求解方法可分为:()A:损伤分析方法 B:实验分析方法 C:数值分析方法 D:解析解法 E:非线性分析方法答案:BCD第二章测试1.若一点的应力张量为(单位:MPa)则过该点且方向余弦为的斜截面上正应力为:()A:7.81MPa B:9.43MPa C:10.65MPa D:8.37MPa答案:A2.若一点的应力张量为(单位:MPa)该斜截面上切应力为:()A:31.85MPa B:32.61MPa C:29.32MPa D:28.98MPa答案:B3.已知某平面应力问题中一点处的应力分量则该点的主应力为:()A:512.31MPa, -312.31MPa B:547.28MPa, -347.28MPa C:508.56MPa, -308.56MPa D:532.48MPa, -332.48MPa答案:A4.计算条件如下,该点的主方向为:()A:-38.12º, 128.12º B:-37.98º, 127.98º C:-39.56º, 129.56º D:-35.78º, 125.78º答案:B5.体力的量纲可表示为:()A:ML-1T-2 B:ML-2T-2 C:N/m-3 D:N/m-2答案:B第三章测试1.在不考虑体力的情况下,试研究应力函数(式中a为常数)所代表的应力状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《弹性力学》习题答案一、单选题1、所谓“完全弹性体”是指(B)A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时间、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、关于弹性力学的正确认识是(A )A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D )。
A、杆件B、块体C、板壳D、质点4、弹性力学对杆件分析(C)A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些关于变形的近似假定5、图示弹性构件的应力和位移分析要用什么分析方法?(C)A、材料力学B、结构力学C、弹性力学D、塑性力学6、弹性力学与材料力学的主要不同之处在于( B )A、任务B、研究对象C、研究方法D、基本假设7、下列外力不属于体力的是(D)A、重力B、磁力C、惯性力D、静水压力8、应力不变量说明( D )。
A. 应力状态特征方程的根是不确定的B. 一点的应力分量不变C. 主应力的方向不变D. 应力随着截面方位改变,但是应力状态不变9、关于应力状态分析,(D)是正确的。
A. 应力状态特征方程的根是确定的,因此任意截面的应力分量相同B. 应力不变量表示主应力不变C. 主应力的大小是可以确定的,但是方向不是确定的D. 应力分量随着截面方位改变而变化,但是应力状态是不变的10、应力状态分析是建立在静力学基础上的,这是因为( D )。
A. 没有考虑面力边界条件B. 没有讨论多连域的变形C. 没有涉及材料本构关系D. 没有考虑材料的变形对于应力状态的影响11、下列关于几何方程的叙述,没有错误的是( C )。
A. 由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D. 几何方程是一点位移与应变分量之间的唯一关系12、平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为 z 轴方向)( C )A、 xB、 yC、 zD、 x, y, z13、平面应力问题的外力特征是(A)A 只作用在板边且平行于板中面B 垂直作用在板面C 平行中面作用在板边和板面上D 作用在板面且平行于板中面。
14、在平面应力问题中(取中面作 xy 平面)则(C)A、σ z = 0 , w = 0B、σ z ≠ 0 , w ≠ 0C、σ z = 0 , w ≠ 0 D 、σ z ≠ 0 , w = 015、在平面应变问题中(取纵向作 z 轴)(D)A、σ z = 0 , w = 0 ,ε z = 0B、σ z ≠ 0 , w ≠ 0 ,ε z ≠C、σ z = 0 , w ≠ 0 ,ε z = 0D、σ z ≠ 0 , w = 0 ,ε z =16、下列问题可简化为平面应变问题的是(B)。
A、墙梁B、高压管道C、楼板D、高速旋转的薄圆盘17、下列关于平面问题所受外力特点的描述错误的是(D)。
A、体力分量与 z 坐标无关B、面力分量与 z 坐标无关C、 f z , f z 都是零D、 f z , f z 都是非零常数19、将两块不同材料的金属板焊在一起,便成为一块( D )A 连续均匀的板B 不连续也不均匀的板C 不连续但均匀的板D 连续但不均匀的板20、下列材料中,(D )属于各向同性材料。
A 竹材B 纤维增强复合材料C 玻璃钢D 沥青21、平面问题的平衡微分方程表述的是( A )之间的关系。
A、应力与体力 C、应力与应变B、应力与面力 D、应力与位移22、设有平面应力状态,σ x = ax + by ,σ y = cx + dy ,τ xy = − dx − ay −γx ,其中 a, b, c, d 均为常数,γ为容重。
该应力状态满足平衡微分方程,其体力是( D)A、 f x = 0 , f y = 0B、 f x ≠ 0 , f y = 0C、 f x ≠ 0 , f y ≠ 0D、 f x = 0 , f y ≠ 023、平面应变问题的微元体处于(C)。
A、单向应力状态B、双向应力状态C、三向应力状态,且σ z 是一主应力D、纯剪切应力状态24、下列关于“刚体转动”的描述,认识正确的是( A )。
A. 刚性转动描述了微分单元体的方位变化,与变形位移一起构成弹性体的变形B. 刚性转动分量描述的是一点的刚体转动位移,因此与弹性体的变形无关C. 刚性转动位移也是位移的导数,因此它描述了一点的变形D. 刚性转动分量可以确定弹性体的刚体位移。
25、平面应变问题的微元体处于( C)A、单向应力状态B、双向应力状态C、三向应力状态D、纯剪切应力状态26、在常体力情况下,用应力函数表示的相容方程等价于( D )。
A、平衡微分方程B、几何方程C、物理关系D、平衡微分方程、几何方程和物理关系27、用应力分量表示的相容方程等价于( B )。
A、平衡微分方程B、几何方程和物理方程C、用应变分量表示的相容方程D、平衡微分方程、几何方程和物理方程28、用应变分量表示的相容方程等价于( B )。
A、平衡微分方程B、几何方程C、物理方程D、几何方程和物理方程29. 圆弧曲梁纯弯时,(C)A、横截面上有正应力和剪应力B、横截面上只有正应力且纵向纤维互不挤压C、横截面上只有正应力且纵向纤维互相挤压D、横截面上有正应力和剪应力,且纵向纤维互相挤压30. 如果必须在弹性体上挖空,那么孔的形状应尽可能采用(C)A 、正方形 B、菱形 C、圆形 D、椭圆形31、弹性力学研究( A )由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移A、弹性体B、刚体C、粘性体D、塑性体32、在弹性力学中规定,线应变( C ),与正应力的正负号规定相适应。
A、伸长时为负,缩短时为负B、伸长时为正,缩短时为正C、伸长时为正,缩短时为负D、伸长时为负,缩短时为正33、在弹性力学中规定,切应变以直角( D ),与切应力的正负号规定相适应。
A、变小时为正,变大时为正B、变小时为负,变大时为负C、变小时为负,变大时为正D、变小时为正,变大时为负34、物体受外力以后,其内部将发生内力,它的集度称为( B )A、应变B、应力C、变形D、切变力35、弹性力学的基本假定为连续性、( D )、均匀性、各向同性和小变形A、不完全变形B、塑性变形C、不完全弹性D、完全弹性36、平面问题分为平面()问题和平面( A )问题。
A、应力,应变B、切变、应力C、内力、应变D、外力,内力37、在弹性力学里分析问题,要建立( C )套方程。
A、一B、二C、三D、四38、表示应力分量与体力分量之间关系的方程为( A )。
A、平衡微分方程B、平衡应力方程C、物理方程D、平衡应变方程39、下面不属于边界条件的是( B )。
A、位移边界条件B、流量边界条件C、应力边界条件D、混合边界条件40、按应力求解( D )时常采用逆解法和半逆解法。
A、应变问题B、边界问题C、空间问题D、平面问题41、具体步骤分为单元分析和整体分析两部分的方法是( C )。
A、有限差分法B、边界元法C、有限单元法的D、数值法42、每个单元的位移一般总是包含着( B )部分A、一B、二C、三D、四43、每个单元的应变包括( A )部分应变。
A、二B、三C、四D、五44、在平面应力问题中(取中面作 xy 平面)则( C )A、σz=0 , w=0B、σz≠0 , w≠0C、σz=0 , w≠0 D 、σz≠0 , w=045、在平面应变问题中(取纵向作 z 轴)( D )A、σz =0 , w = 0 ,εz = 0B、σz ≠ 0 , w ≠ 0 ,εz ≠ 0C、σz =0 , w ≠ 0 ,εz = 0D、σz ≠ 0 , w = 0 ,εz = 046、下列问题可简化为平面应变问题的是( B )。
A、墙梁B、高压管道C、楼板D、高速旋转的薄圆盘47、下列关于平面问题所受外力特点的描述错误的是( D )。
A、体力分量与 z 坐标无关B、面力分量与z坐标无关C、 fz , fz 都是零D、 fz , fz 都是非零常数48、利用有限单元法求解弹性力学问题时,不包括哪个步骤( D )A、结构离散化B、单元分析C、整体分析D、应力分析49、函数能作为应力函数,a与b的关系是( A )A、a与b可取任意值B、a=bC、a==bD、a==b/250、函数如作为应力函数,各系数之间的关系是( B )A 、各系数可取任意值B 、b=-3(a+c)C 、b=a+cD 、 a+c+b=051、所谓“应力状态”是指( B )A 、斜截面应力矢量与横截面应力矢量不同;B 、一点不同截面的应力随着截面方位变化而改变;C 、3个主应力作用平面相互垂直;D 、不同截面的应力不同,因此应力矢量是不可确定的。
52、用应变分量表示的相容方程等价于( B )A 、平衡微分方程B 、几何方程C 、物理方程D 、几何方程和物理方程53、对于承受均布荷载的简支梁来说,弹性力学解答与材料力学解答的关系是( B )A 、的表达式相同B 、的表达式相同C 、的表达式相同D 、都满足平截面假定54.设有平面应力状态,,dy cx by ax y x +=+=σσ,其中a ,b ,c ,d 均为常数,r 为容重。
该应力状态满足平衡微分方程,其体力是( D )A 、0,0==Y XB 、0,0=≠Y XC 、0,0≠≠Y XD 、0,0≠=Y X55.某一平面应力状态,已知 ,则与xy 面垂直的任意斜截面上的正应力和剪应力为( A )στσσστσσστσστσσαααα========,,22,20,D C B A56.密度为p 的矩形截面柱,应力分量为 ,对(a)、(b)两种情况由边界条件确定的常数A 及B 的关系是( C )A 、A 相同,B 也相同 B 、A 不相同,B 也不相同C 、A 相同,B 不相同D 、A 不相同,B 相同57.图示密度为p 的矩形截面柱,应力分量为 ,对(a)、(b)两种情况由边界条件确定的常数A 及B 的关系是( B )A 、A 相同,B 也相同 B 、A 不相同,B 也不相同C 、A 相同,B 不相同D 、A 不相同,B 相同58.在平面应变问题中(取纵向作z 轴)( D )59.在平面应变问题中, 如何计算( C )60、函数()y bx axy y x 33,+=ϕ能作为应力函数,a 与b 的关系是( A )A a 与b 可取任意值B a=bC a==bD a==b/261、下列材料中,( D )属于各向同性材料。