人教版高中数学-向量思想在解析几何教学中的应用
高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物
2.4 向量的应用2.4.1 向量在几何中的应用 2.4.2 向量在物理中的应用1.向量在平面几何中的应用(1)证明线段相等,转化为证明向量的长度相等,求线段的长,转化为求向量的长度; (2)证明线段、直线平行,转化为证明向量共线;(3)证明线段、直线垂直,转化为证明向量的数量积为零; (4)平面几何中与角相关的问题,转化为向量的夹角问题;(5)对于与长方形、正方形、直角三角形等平面几何图形有关的问题,通常以相互垂直的两边所在的直线分别为x 轴和y 轴,建立平面直角坐标系,通过代数(坐标)运算解决平面几何问题.【自主测试1-1】在四边形ABCD 中,若AB →=13CD →,则四边形ABCD 是( )A .平行四边形B .梯形C .菱形D .矩形解析:由AB →=13CD →⇒AB ∥CD ,且AB ≠CD ,故四边形ABCD 为梯形,故选B .答案:B【自主测试1-2】在△ABC 中,已知|AB →|=|AC →|=4,且AB →·AC →=8,则这个三角形的形状是__________.解析:∵AB →·AC →=|AB →||AC →|cos ∠BAC=8,∴4×4×cos ∠BAC=8,∴∠BAC=60°.又|AB →|=|AC →|,∴△ABC 为等边三角形. 答案:等边三角形2.向量在解析几何中的应用(1)设直线l 的倾斜角为α,斜率为k ,A (x 1,y 1)∈l ,P (x ,y )∈l ,向量a =(m ,n )平行于l ,则k =y -y 1x -x 1=n m =tan α;反之,若直线l 的斜率k =nm,则向量(m ,n )一定与该直线平行.(2)向量(1,k )与直线l :y =kx +b 平行.(3)与a =(m ,n )平行且过点P (x 0,y 0)的直线方程为n (x -x 0)-m (y -y 0)=0. (4)过点P (x 0,y 0),且与向量a =(m ,n )垂直的直线方程为m (x -x 0)+n (y -y 0)=0. 【自主测试2-1】已知直线l :mx +2y +6=0,向量(1-m,1)与l 平行,则实数m 的值为( )A .-1B .1C .2D .-1或2 答案:D【自主测试2-2】过点A (3,-2)且垂直于向量n =(5,-3)的直线方程是__________. 答案:5x -3y -21=0 3.向量在物理中的应用(1)力是具有大小、方向和作用点的向量,它与自由向量有所不同.大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.但是,在不计作用点的情况下,可用向量求和的平行四边形法则求作用于同一点的两个力的合力.(2)速度是具有大小和方向的向量,因而可用三角形法则和平行四边形法则求两个速度的合速度.【自主测试3】已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,则F 1的大小为( )A .5 3 NB .5 NC .10 ND .52N 答案:B1.用向量的方法证明直线平行、直线垂直、线段相等及点共线等问题的基本方法 剖析:(1)要证两线段AB =CD ,可转化为证明|AB →|=|CD →|或AB →2=CD →2; (2)要证两线段AB ∥CD ,只要证明存在一实数λ≠0,使AB →=λCD →成立; (3)要证两线段AB ⊥CD ,可转化为证明AB →·CD →=0;(4)要证A ,B ,C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →,或若O 为平面上任一点,则只需要证明存在实数λ,μ(其中λ+μ=1),使OC →=λOA →+μOB →.2.对直线Ax +By +C =0的方向向量的理解剖析:(1)设P 1(x 1,y 1),P 2(x 2,y 2)为直线上不重合的两点,则P 1P 2→=(x 2-x 1,y 2-y 1)及与其共线的向量λP 1P 2→均为直线的方向向量.显然当x 1≠x 2时,向量⎝ ⎛⎭⎪⎫1,y 2-y 1x 2-x 1与P1P 2→共线,因此向量⎝ ⎛⎭⎪⎫1,-A B =1B(B ,-A )为直线l 的方向向量,由共线向量的特征可知(B ,-A )为直线l 的方向向量.(2)结合法向量的定义可知,向量(A ,B )与(B ,-A )垂直,从而向量(A ,B )为直线l 的法向量.3.教材中的“探索与研究”利用向量与向量平行、垂直的条件,再次研究两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0平行和垂直的条件,以及如何求出两条直线夹角θ的余弦.结论:l 1∥l 2(或重合)⇔A 1B 2-A 2B 1=0. l 1⊥l 2⇔A 1A 2+B 1B 2=0.cos θ=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.剖析:直线l 1:A 1x +B 1y +C 1=0的方向向量为n 1=(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0的方向向量为n 2=(-B 2,A 2).若l 1∥l 2,则n 1∥n 2,从而有-B 1A 2=-A 1B 2,即A 1B 2-A 2B 1=0. 若l 1⊥l 2,则n 1·n 2=0,从而有B 1B 2+A 1A 2=0. 所以直线l 1∥l 2⇔A 1B 2-A 2B 1=0, 直线l 1⊥l 2⇔A 1A 2+B 1B 2=0. 由于n 1·n 2=A 1A 2+B 1B 2, |n 1|=A 21+B 21,|n 2|=A 22+B 22, 所以cos 〈n 1,n 2〉=A 1A 2+B 1B 2A 21+B 21A 22+B 22. 所以直线l 1与l 2夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.题型一 向量在平面几何中的应用【例题1】已知正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 交于点P . 求证:(1)BE ⊥CF ;(2)AP =AB .分析:建系→确定点A ,B ,C ,E ,F ,P 的坐标→证BE →·CF →=0及|AP →|=|AB →|→还原为几何问题证明:建立如图所示平面直角坐标系,设AB =2,则有A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=(-1,2),CF →=(-2,-1). ∵BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF . (2)设点P 的坐标为(x ,y ), 则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2, 同理,由BP →∥BE →得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85.∴点P 坐标为⎝ ⎛⎭⎪⎫65,85.则|AP →|=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=2=|AB →|,即AP =AB . 反思由于向量集数形于一身,用它来研究问题时可以实现形象思维与抽象思维的有机结合,因而向量法是研究几何问题的一个有效的工具,解题时一定注意用数形结合的思想.〖互动探究〗正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,求cos ∠DOE . 解:建立平面直角坐标系如图,则向量OE →=⎝ ⎛⎭⎪⎫12,1,OD →=⎝ ⎛⎭⎪⎫1,12,∴OD →·OE →=12×1+1×12=1.又|OD →|=|OE →|=52,∴cos ∠DOE =OD →·OE →|OD →||OE →|=152×52=45.题型二 向量在解析几何中的应用 【例题2】过点A (-2,1),求: (1)与向量a =(3,1)平行的直线方程; (2)与向量b =(-1,2)垂直的直线方程.分析:在直线上任取一点P (x ,y ),则AP →=(x +2,y -1).根据AP →∥a 和AP →⊥b 解题即可.解:设所求直线上任意一点P 的坐标为(x ,y ). ∵A (-2,1),∴AP →=(x +2,y -1).(1)由题意,知AP →∥a ,则(x +2)×1-3(y -1)=0, 即x -3y +5=0.故所求直线方程为x -3y +5=0.(2)由题意,知AP →⊥b ,则(x +2)×(-1)+(y -1)×2=0, 即x -2y +4=0,故所求直线方程为x-2y+4=0.反思已知直线l的方程Ax+By+C=0(A2+B2≠0),则向量(A,B)与直线l垂直,即向量(A,B)为直线l的法向量;向量(-B,A)与l平行,故过点P(x0,y0)与直线l平行的直线方程为A(x-x0)+B(y-y0)=0.【例题3】已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.分析:(1)利用向量共线的坐标表示求解;(2)利用向量垂直的坐标表示求解.解:(1)由已知,得点D(-1,1),E(-3,-1),F(2,-2).设M(x,y)是直线DE上任意一点,则DM∥DE.又DM=(x+1,y-1),DE=(-2,-2),所以(-2)×(x+1)-(-2)(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.(2)设点N(x,y)是CH所在直线上的任意一点,则CN⊥AB.所以CN·AB=0.又CN=(x+6,y-2),AB=(4,4),所以4(x+6)+4(y-2)=0,即x+y+4=0为所求直线CH的方程.反思(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等,则对应坐标相等.题型三向量在物理中的应用【例题4】一条河的两岸互相平行,河的宽度为d=500 m,一艘船从A处出发航行到河正对岸的B处,船的航行速度为|ν1|=10 km/h,水流速度为|ν2|=4 km/h.(1)试求ν1与ν2的夹角(精确到1°)及船垂直到达对岸所用的时间(精确到0.1 min); (2)要使船到达对岸所用时间最少,ν1与ν2的夹角应为多少?分析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与水流速度的合速度.解:(1)依题意,要使船垂直到达对岸,就要使ν1与ν2的合速度的方向正好垂直于对岸,所以|ν|=ν21-ν22=100-16≈9.2(km/h),ν1与ν的夹角α满足sin α=0.4,α≈24°,故ν1与ν2的夹角θ=114°;船垂直到达对岸所用的时间t =d |ν|=0.59.2≈0.054 3(h)≈3.3 min. (2)设ν1与ν2的夹角为θ(如下图).ν1与ν2在竖直方向上的分速度的和为|ν1|·sin θ,而船到达对岸时,在竖直方向上行驶的路程为d =0.5 km ,从而所用的时间t =0.510sin θ.显然,当θ=90°时,t 最小,即船头始终向着对岸时,所用的时间最少,为t =0.510=0.05(h).反思注意“速度”是一个向量,既有大小又有方向.结合具体问题,在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后通过对这个数学模型的研究解释相关物理现象.题型四 易错辨析【例题5】在直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC →=13OA →+23OB →.(1)求证:A ,B ,C 三点共线;(2)已知A (1,cos x ),B (1+sin x ,cos x ),x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=OA →·OC →-⎝ ⎛⎭⎪⎫2m 2+23|AB→|的最小值为12,求实数m 的值.错解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),从而|AB →|=|sin x |.故f (x )=-(sin x +m 2)2+m 4+2.又sin x ∈[-1,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,解得m =±12.错因分析:错解中忽略了题目中x 的取值范围,造成正弦值的范围扩大. 正解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),故|AB →|=sin x ,从而f (x )=-(sin x +m 2)2+m 4+2.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,化简得m 2=14,解得m =±12.1.若向量n 与直线l 垂直,则称向量n 为直线l 的法向量,则直线x +2y +3=0的一个法向量为( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:可以确定已知直线l 的斜率k =-12,所以直线的方向向量a =⎝ ⎛⎭⎪⎫1,-12.由a ·n =0,可知应选A .答案:A2.已知A (2,1),B (3,2),C (-1,4),则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 答案:C3.过点A (2,3)且垂直于向量a =(2,1)的直线方程是( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0 D .x -2y -4=0 答案:A4.在重600 N 的物体上系两根绳子,与铅垂线的夹角分别为30°,60°,重物平衡时,两根绳子拉力的大小分别为( )A .3003N,3003NB .150 N,150 NC .3003N,300 ND .300 N,3003N解析:如图,作矩形OACB ,使∠AOC =30°,∠BOC =60°. 在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,所以|OA |=|OC |cos 30°=3003N , |AC |=|OC |sin 30°=300 N , |OB |=|AC |=300 N. 答案:C5.通过点A (3,2)且与直线l :4x -3y +9=0平行的直线方程为__________. 答案:4x -3y -6=06.已知两个粒子a ,b 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的正射影为__________.解析:由题知v a 与v b 的夹角θ的余弦值为 cos θ=12+125×5=2425.所以v a 在v b 上的正射影为|v a |cos θ=5×2425=245.答案:2457.平面上不共线的三点A ,B ,C 使得AB +BC 所在的直线和AB -BC 所在的直线恰好互相垂直,则△ABC 必为__________三角形.解析:如图所示,作ABCD ,易知AB +BC =AC ,AB -BC =AB -AD =DB .依题意,知BD 与AC 互相垂直,故ABCD 为菱形,从而△ABC 为等腰三角形,且∠ABC 为顶角.答案:等腰 8.如图所示,已知ABCD 是菱形,AC 和BD 是它的两条对角线,求证:AC ⊥BD .证明:证法一:∵AC =AB +AD ,BD =AD -AB ,∴AC ·BD =(AB +AD )·(AD -AB )=|AD |2-|AB |2=0.∴AC ⊥BD . ∴AC ⊥BD .证法二:以BC所在的直线为x轴,点B为原点建立平面直角坐标系.设B(0,0),A(a,b),C(c,0),则由|AB|=|BC|,得a2+b2=c2.∵AC=BC-BA=(c-a,-b),BD=BA+BC=(a+c,b),∴AC·BD=c2-a2-b2=0.∴AC⊥BD,∴AC⊥BD.。
向量思想在解析几何教学中的应用
A B={ 2 , 0 , 一 5} , A C={ 1 , 4, 一 7 } , A D={ 一1 , 一1 , 一 6} ,
根据 3 向 量 混 合 积 定 义 可 得 3 向 量 共 面 铸 它 们 的 混 合 积 为 0 .而 3 向 量 A 百, A e, A D的 混 合 积 =
示 出两 向量之 间线 性关 系 , 就 可 以同时 得到 两线 段 长度 与 方 向 的关 系 .同样 , 利 用 向量 工 具 , 可 以证 明梯 形
中位 线定 理等 类似 的初 等几何 中的经典 结论 . 证明 设A A B C两 边 A B, A C中点分别 为 , Ⅳ, 则
MN _ + — _ +
在解 析几 何 中 的应 用 , 通 过举 例说 明利 用 向量方 法解题 往往 可 以降低 难度 , 起 到事半 功倍 之效 .
1 利用 向量 方法证 明初 等几 何 中某些 结论
例1 证 明三角形 中位线定 理 : 连 接三 角形 两边 中点 的线 段平行 于第 三边 且 等于第 三边 的一 半. 分析 我 们通 常用 三角 形全 等或相 关知识 点 证 明三角 形 中位 线定 理 , 步骤 比较 繁琐 .引入 向量 工 具 , 表
f I 2 0 — 5 I I 1 4 — 7 f : 一 7 7 ≠ 0 , 可 得 向 量 , , 不 共 面 . 从 而A , B , C , D 4 点 不 共 面 . 1 —1 —6 I
用 海伦公 式 求 出三角形 面积 .接触 向量概 念并 学 习 了 向量 的数 量 积 和矢 量 积 之后 , 可用 矢 量 积 的几 何 意义 求 三角形 面 积.同样 , 利用 三 向量混 合积 的几何 意 义 , 还 可 以求空 间 四面体 的体积 . 解
向量在平面几何、解析几何中的应用
摘要:向量在平面几何与解析几何中多有应用,在历年来的高考试卷中也涉及部分向量知识。
向量知识不但让难题迎刃而解,还可让学生形成通用性规则,利用平面向量视角研究几何问题将取得良好成果与进展。
关键词:平面向量平面几何解析几何高中数学一、引言使用向量方法解题存在对应解题步骤,各步骤间联系紧密,存在逻辑顺序,在审题后需仔细核对题目题干,寻求问题突破口,在将几何问题转化为代数问题后,可实现题目的高精度运算,达到预期目的。
因此类题型具有复杂特点,在学生做题量得到提升后,学生对解答此类题目将拥有独到的个人见解,不但让图形对应特征得以描述,也让问题解决难度有所降低,下面将对相关题型与具体解题思路进行说明论证,在同学们阅读对应题干时,需带着对问题的解决思路求解。
二、向量教学存在的问题向量是高中数学的一大重点内容,在历年的高考试卷中有所涉及,也常与其他学科一同考试,为此提升向量教学效率,让学生灵活掌握向量知识,在拥有基本阅读审题能力的同时,提前了解向量习题的解题策略,不但有效保证做题效率,还让学生在复习前即可拥有一定知识储备,但现阶段教学存在的问题也较明显。
1.课内教学内容与高考试题具有脱轨性。
学生在学习人教版数学教材时,会学到复杂、零碎的知识,教师讲解新知识点时,也会向学生传授以往讲授过的知识点,用温故而知新的教学方法试图让学生快速进入学习状态,并建立对应向量学习思维。
高考试卷题量有限,不但要做到对高中阶段全部知识的灵活考查,还要做到面面俱到、照顾各个学习层次学生,并具有区分性,向量本身具有一定基础性,学生在初中阶段即接触过向量知识,在培养学生独立完成习题能力的同时,即使学生完全掌握教材教学内容,也不一定做对高考对应的向量试题,在与平面几何和立体几何综合出题考查的同时,学生对知识的综合运用能力也将决定做题准确率与效率。
面临新高考的改革,数学教师还需明确自身育人使命,适当给学生传授高考习题解题技巧,改变以往题海战术的陈旧教学模式,让学生热爱学习数学学科知识,并善于发现生活中的数学元素。
高考数学(理)之平面向量 专题04 平面向量在平面几何、三角函数、解析几何中的应用(解析版)
平面向量04 平面向量在平面几何、三角函数、解析几何中的应用一、具本目标: 一)向量的应用1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题. 二)考点解读与备考:1.近几年常以考查向量的共线、数量积、夹角、模为主,基本稳定为选择题或填空题,难度较低;2.常与平面几何、三角函数、解析几何等相结合,以工具的形式进行考查,常用向量的知识入手.力学方面应用的考查较少.3.备考重点:(1) 理解有关概念是基础,掌握线性运算、坐标运算的方法是关键;(2)解答与平面几何、三角函数、解析几何等交汇问题时,应注意运用数形结合的数学思想,将共线、垂直等问题,通过建立平面直角坐标系,利用坐标运算解题.4.难点:向量与函数、三角函数、解析几何的综合问题.以向量形式为条件,综合考查了函数、三角、数列、曲线等问题.要充分应用向量的公式及相关性质,会用向量的几何意义解决问题,有时运用向量的坐标运算更能方便运算. 二、知识概述:常见的向量法解决简单的平面几何问题: 1.垂直问题:(1)对非零向量a r 与b r ,a b ⊥⇔r r.(2)若非零向量1122(,),(,),a x y b x y a b ==⊥⇔r r r r.2.平行问题:(1)向量a r 与非零向量b r共线,当且仅当存在唯一一个实数λ,使得 .(2)设1122(,),(,)a x y b x y ==r r是平面向量,则向量a r 与非零向量b r 共线⇔ .【考点讲解】3.求角问题:(1)设,a b r r是两个非零向量,夹角记为α,则cos α= .(2)若1122(,),(,)a x y b x y ==r r是平面向量,则cos α= .4.距离(长度)问题:(1)设(,)a x y =r,则22a a ==r r ,即a =r .(2)若1122(,),(,)A x y B x y ,且a AB =r u u u r ,则AB AB ==u u u r.【答案】1.1212(1)0,(2)0.a b x x y y ⋅=+=r r2.(1)a b λ=r r,(2)12210x y x y -=3.(1)a b a b ⋅⋅r r r r.4.(1)22x y +【优秀题型展示】 1. 在平面几何中的应用:已知ABC D 中,(2,1),(3,2),(3,1)A B C ---,BC 边上的高为AD ,求点D 和向量AD u u u r的坐标.【解析】设点D 坐标(x ,y ),由AD 是BC 边上的高可得⊥,且B 、D 、C 共线,∴⎪⎩⎪⎨⎧=⋅//0∴⎩⎨⎧=+---+=--⋅+-0)1)(3()2)(3(0)3,6()1,2(y x y x y x ∴⎩⎨⎧=+---+=+---0)1)(3()2)(3(0)1(3)2(6y x y x y x ∴⎩⎨⎧=+-=-+012032y x y x解得⎩⎨⎧==11y x ∴点D 坐标为(1,1),AD =(-1,2). 【答案】AD =(-1,2)【变式】已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r,则顶点D 的坐标为 ( ) A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),【解析】设22(,),(3,1)(1,2)(4,3),(,2),,37222x x D x y BC AD x y y y 祆==镲镲镲=---==-\\眄镲-==镲镲铑u u u r u u u rQ , 【答案】A【变式】已知正方形OABC 的边长为1,点D E 、分别为AB BC 、的中点,求cos DOE ∠的值.【解析】以OA OC 、为坐标轴建立直角坐标系,如图所示.由已知条件,可得114.225⋅==∴∠=⋅u u u r u u u ru u u r u u u r u u u r u u u r (1,),(,1),cos =OD OE OD OE DOE OD OE2.在三角函数中的应用:已知向量3(sin ,)4a x =r ,(cos ,1)b x =-r .设函数()2()f x a b b =+⋅r r r ,已知在ABC ∆中,内角A B C 、、的对边分别为a bc 、、,若a =2b =,sin B =()4cos(2)6f x A π++([0,]3x π∈)的取值范围.【解析】 由正弦定理得或 . 因为,所以4A π=.因为+.所以, ,, 所以. 【答案】()⎥⎦⎤⎢⎣⎡--∈⎪⎭⎫ ⎝⎛++212,12362cos 4πA x f sin ,sin sin 24a b A A A B π===可得所以43π=A a b >()2())4f x a b b x π=+⋅=+r r r 32()⎪⎭⎫⎝⎛++62cos 4πA x f =)4x π+12-0,3x π⎡⎤∈⎢⎥⎣⎦Q 112,4412x πππ⎡⎤∴+∈⎢⎥⎣⎦()21262cos 4123-≤⎪⎭⎫ ⎝⎛++≤-πA x f3.在解析几何中的应用:(1)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.【解析】如图所示,以OA 、OB 为边作平行四边形OACB , 则由|OA →+OB →|=|OA →-OB →|得, 平行四边形OACB 是矩形,OA →⊥OB →.由图象得,直线y =-x +a 在y 轴上的截距为±2.【答案】±2(2)椭圆的焦点为F F ,点P 为其上的动点,当∠F P F 为钝角时,点P 横坐标的取值范围是 .【解析】法一:F 1(-,0)F 2(,0),设P (3cos ,2sin ).为钝角,.∴=9cos 2-5+4sin 2=5 cos 2-1<0.解得: ∴点P 横坐标的取值范围是(). 14922=+y x ,121255θθ21PF F ∠Θ123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-u u u r u u u u r(θθθ55cos 55<<-θ553,553-ODC BA【答案】() 法二:F 1(-,0)F 2(,0),设P (x,y ).为钝角,∴ ()()125,5,PF PF x y x y •=--⋅-u u u r u u u u r225x y =+-=25109x -<. 解得:353555x -<<.∴点P 横坐标的取值范围是(). 【答案】() 2. 在物理学中的应用:如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N ,则每根绳子的拉力是 .]【解析】 ∵绳子的拉力是一样的(对称) ,∴OA =OB ,∴四边形OADB 为菱形 .∵∠AOB =120º ,∴∠AOD =60º .又OA =OB =AD , ∴三角形OAD 为等边三角形 ,∴OD =OA . 又根据力的平衡得OD =OC =10 , ∴OA =10 ,∴OA =OB =10 . ∴每根绳子的拉力大小是10N. 【答案】10N553,553-5521PF F ∠Θ553,553-553,553-【真题分析】1.【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .2-B .32-C .43- D .1-【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-u u u r ,(1,)PB x y =---u u u r,(1,)PC x y =--u u u r ,所以(2,2)PB PC x y +=--u u u r u u u r ,22()22)22(PA PB PC x y y x y ⋅+=-=+-u u u r u u u r u u u r233)222-≥-,当(0,2P 时,所求的最小值为32-,故选B . 【答案】B2.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,;∴2AE BF ab ⋅=-+u u u r u u u r; 当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【答案】-33.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【答案】34.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【答案】5.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC uuu r 的模分别为1,1,2,OA u u u r 与OCuuu r的夹角为α,且tan α=7,OB uuu r 与OC uuu r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0210n m +=-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【答案】36.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【解析】设向量,a b 的夹角为θ,则-==a b+==a b ++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是【答案】4,7. 【2016·江苏卷】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4, BF →·CF →=-1,则BE →·CE →的值是________.【解析】 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b ,AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝⎛⎭⎫-23a +13b ·⎝⎛⎭⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝⎛⎭⎫-56a +16b ·⎝⎛⎭⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.【答案】 788.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a,(3,=b ,a ∥b,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-.又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x取到最小值-【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x取到最小值-.1.已知数列{}n a 为等差数列,且满足32015BA a OB a OC =+u u u r u u u r u u u r ,若()AB AC R λλ=∈u u u r u u u r,点O 为直线BC 外一点,则12017a a +=( )A. 0B. 1C. 2D. 4【解析】∵32015BA a OB a OC =+u u u r u u u r u u u r , ∴32015OA OB a OB a OC -=+u u u r u u u r u u u r u u u r, 即()320151OA a OB a OC =++u u u r u u u r u u u r , 又∵()AB AC R λλ=∈u u u r u u u r,∴3201511a a ++=, ∴12017320150a a a a +=+=. 【答案】A2.直角ABC V 中, AD 为斜边BC 边的高,若1AC =u u u r , 3AB =u u u r,则CD AB ⋅=u u u r u u u r ( )【模拟考场】A .910 B . 310 C . 310- D . 910-【解析】依题意BC =22,AC AC CD CB CD CB =⋅==103cos ==BC AB B,所以有9cos 310CD AB CD AB B ⋅=⋅⋅==u u u r u u u r u u u r u u u r . 【答案】A3.已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r 的最大值是( ) A.B. C. D.【解析】本题考点是向量与平面图形的综合应用.由题意可设D 为三角形的内心,以D 为原点,直线DA 为x 轴建立平面直角坐标系,由已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒u u u r u u u r u u u r. 则()((2,0,1,,1,.A B C --设(),,P x y 由已知1AP =u u u r ,得()2221x y -+=,又11,,,,,22x x PM MC M BM ⎛⎛-+=∴∴= ⎝⎭⎝⎭u u u u r u u u u r u u u u r()(22214x y BM -++∴=u u u u r ,它表示圆()2221x y -+=上点().x y 与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭u u u u r ,故选B.【答案】B4.已知曲线C :x =直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r,则m 的取值范围为 .【解析】本题考点是向量线性运算与解析几何中点与直线的位置关系的应用.由0AP AQ +=u u u r u u u r r知A 是PQ的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.3244344943637+433237+【答案】[2,3]5.在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD u u u r=1,则OA OB OD ++u u u r u u u r u u u r 的最大值是_________.【解析】本题的考点是参数方程中的坐标表示, 圆的定义与 三角函数的值域.由题意可知C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos sin D D x y θθ=+⎧⎨=⎩(θ为参数且[)0,2θπ∈),所以设D 的坐标为()[)()3cos ,sin 0,2θθθπ+∈, 则OA OB OD ++=u u u r u u u r u uu r=因为2cos θθ+=所以OA OB OD ++的最大值为1==+故填1【答案】1+6.在△ABC 中,∠ABC =120°,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD →·BE →的值为________. 【解析】 由题意得BD →·BE →=(BA →+AD →)·(BC →+CE →)=⎝⎛⎭⎫BA →+13AC →·⎝⎛⎭⎫BC →+13CA → =⎣⎡⎦⎤BA →+13(BC →-BA →)·⎣⎡⎦⎤BC →+13(BA →-BC →)=⎝⎛⎭⎫13BC →+23BA →·⎝⎛⎭⎫23BC →+13BA → =29BC →2+59BC →·BA →+29BA →2=29×9+59×2×3×cos 120°+29×4=119. 【答案】1197.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF . 若AE →·AF →=1,则λ的值为________. 【解析】法一、 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫BC →+1λAB →=⎝⎛⎭⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝⎛⎭⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二、 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0),D (3,0).由BC =3BE ,DC =λDF .可求点E ,F 的坐标分别为E ⎝⎛⎭⎫-233,-13,F ⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ, ∴AE →·AF →=⎝⎛⎭⎫-233,-43·⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ-1=-2⎝⎛⎭⎫1-1λ+43⎝⎛⎭⎫1+1λ=1,解得λ=2. 【答案】28.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.【解析】AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.【答案】3119.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________.【解析】MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.【答案】 12 -1610.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.【解析】法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝⎛⎭⎫32,32,D ⎝⎛⎭⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝⎛⎭⎫2-12λ,32λ,F ⎝⎛⎭⎫12+19λ,32,λ>0,所以AE →·AF →=⎝⎛⎭⎫2-12λ⎝⎛⎭⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0, 当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.【答案】291811.已知矩形ABCD 的边AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠P AQ =π4,则AP →·AQ →的最小值为________.【解析】法一(坐标法) 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则A (0,0),B (2,0),D (0,1).设∠P AB =θ,则AP →=(2,2tan θ),AQ →=⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1,0≤tan θ≤12. 因为AP →·AQ →=(2,2tan θ)·⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1=2tan ⎝⎛⎭⎫π4-θ+2tan θ=2(1-tan θ)1+tan θ+2tan θ=41+tan θ+2tan θ-2=41+tan θ+2(tan θ+1)-4≥42-4,当且仅当tan θ=2-1时,“=”成立,所以AP →·AQ →的最小值为42-4.法二(基底法) 设BP =x ,DQ =y ,由已知得,tan ∠P AB =x2,tan ∠QAD =y ,由已知得∠P AB +∠QAD =π4,所以tan ∠P AB +tan ∠QAD 1-tan ∠P AB tan ∠QAD =1,所以x +2y 2=1-xy2,x +2y =2-xy ≥2x ·2y ,解得0<xy ≤6-42,当且仅当x =2y 时,“=”成立.AP →·AQ →=22·(4+x 2)(1+y 2)=22·(xy )2+(x +2y )2-4xy +4=22·(xy )2+(2-xy )2-4xy +4=(xy )2-4xy +4=2-xy ≥42-4. 【答案】 42-412.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =________.【解析】 ∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.【答案】 ±313.在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.【解析】 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =90°.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1.【答案】 -14或114.证明:同一平面内,互成120°的三个大小相等的共点力的合力为零.【证明】如图,用r a ,r b ,r c 表示这3个共点力,且r a ,r b ,rc 互成120°,模相等,按照向量的加法运算法则,有:r a +r b +r c = r a +(r b +r c )=r a +u u u rOD .又由三角形的知识知:三角形OBD 为等边三角形, 故r a 与u u u r OD 共线且模相等,所以:u u u r OD = -r a ,即有:r a +r b +r c =0r .15.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈u u u r u u u r u u u r.(1)若23m n ==,求||OP u u u r ;(2)用,x y 表示m n -,并求m n -的最大值.【解析】(1)(1,1),(2,3),(3,2)A B C Q (1,2)AB ∴=u u u r ,(2,1)AC =u u u r.Q OP mAB nAC =+u u u r u u u r u u u r ,又23m n ==.22(2,2)33OP AB AC ∴=+=u u u r u u u r u u u r,|OP ∴u u u r(2)OP mAB nAC =+u u u r u u u r u u u rQ (,)(2,2)x y m n m n ∴=++即22x m ny m n=+⎧⎨=+⎩,两式相减得:m n y x -=-.令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.【答案】(1)(2)m n y x -=-,1.16.如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),求1m +1n的最小值.【解析】 如图,建立平面直角坐标系,得A (0,0),B (4,0),D (0,4),C (1,4),则AB →=(4,0),AD →=(0,4).设AP →=(x ,y ),则BC 所在直线为4x +3y =16. 由AP →=mAB →+nAD →,即(x ,y )=m (4,0)+n (0,4),得x =4m ,y =4n (m ,n >0), 所以16m +12n =16,即m +34n =1,那么1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +34n =74+3n 4m +m n ≥74+23n 4m ·m n =74+3=7+434(当且仅当3n 2=4m 2时取等号). 17.已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎫0,π2,且m ⊥n . (1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎫0,π2,求角β的值. 【解析】 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1, 又α∈⎝⎛⎭⎫0,π2,则cos α=55,cos 2α=2cos 2α-1=-35. (2)由α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,得α-β∈⎝⎛⎭⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010,而sin α=1-cos 2α=255, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22.因为β∈⎝⎛⎭⎫0,π2,所以β=π4.。
浅谈向量在中学几何中的应用
浅谈向量在中学几何中的应用摘要:向量是新教材中的新增内容,以向量为载体的解中学几何问题是新课程高考中出现的新趋势,本文就有关向量在中学几何中的应用谈谈自己的看法。
关键词:向量;向量的模;向量的加法和减法;向量与解析几何;向量与立体几何一.平面向量在解析几何中的应用1.向量坐标与点的坐标向量坐标与点的坐标是不同的,设()()1122,,,A x y B x y ,则()2121,AB x x y y =--,但当向量是以坐标原点为起点时,向量坐标就是点的坐标,即()1,1OA x y =.例1(01天津)设坐标原点为O ,抛物线22y x =与过焦点的直线交于A 、B 两点,则=⋅OB OA解:设()11,A x y 、()22,B x y ,则()11,OA x y =,()22,OB x y =22121212124y y OA OB x x y y y y ∴⋅=+=+,又抛物线22y x =的焦点为1,02F ⎛⎫ ⎪⎝⎭,可设直线AB 方程为12x my =+代入22y x =得2210y my --=,121y y ∴=-,故13144OA OB ⋅=-=-。
2.利用向量的数量积求夹角由cos ,a b a b a b ⋅=可知,向量的数量积在解决与长度、角度有关的问题时非常有效. 例2.(04全国)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于AB 两点,设l 的斜率为1,求OA 与OB 的夹角的大小;解:抛物线的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为1y x =- 将1y x =-,代入方程24y x =,并整理得 2610x x -+= 设()()1122,,,A x y B x y ,则有126x x +=,121x x =()()()112,212121212,213OA OB x y x y x x y y x x x x ⋅=⋅=+=-++=-222112||||OA OB x y x =+⋅+==∴()cos ,41OA OB OA OB OA OB⋅==-⋅∴OA OB 与夹角的大小为arc cos41π-3.利用0a b a b ⋅=⇔⊥处理解析几何中有关垂直的问题例3.(04重庆)设0p >是一常数,过点()2,0Q 的直线与抛物线22y x = 交于相异两点A 、B ,以线段AB 为直经作圆H (H 为圆心).试证抛物线顶点在圆H 的圆周上;并求圆H 的面积最小时直线AB 的方程.分析: 证抛物线顶点在圆H 的圆周上,即证OA OB ⊥,即证0OA OB ⋅= 解:由题意,直线AB 不能是水平线,故可设直线方程为:2ay x =-.设()(),,,A A B B A x y B x y },则其坐标满足222ay x y x =-⎧⎨=⎩消去x 可得 2240y ay --=,则24A B A By y a y y +=⎧⎨=-⎩⎪⎩⎪⎨⎧==+=++=+44)(,24)(422B A B A B A B A y y x x a y y a x x因此0,A B A B OA OB x x y y ⋅=+=⊥即OA OB ,故O 必在圆H 的圆周上.又由题意圆心H (),H H x y 是AB 的中点,故⎪⎪⎩⎪⎪⎨⎧=+=+=+=.2,222a y y y a x x x B A H B A H由前已证,OH 应是圆H 的半径,且45||2422++=+=a a y x OH H H . 从而当a=0时,圆H 的半径最小,亦使圆H 的面积最小.例4.(04安徽 春季)如图(1),A 、B 、C 是长轴为4的椭圆上的三点,点A 是长轴的一个端点,BC 过椭圆的中心,,||2||AC BC BC AC ⊥=,求椭圆的方程.解:建立如图(1)的直角坐标系,则()2,0A ,设椭圆方程为22214x y b+=,点C 的坐标为(),m n ,则点B 的坐标为(),m n --.AC BC ⊥,∴0AC BC ⋅=,即()()2,2,20m n m n -⋅=, 图 (1) ∴ 2220m m n -+= ①2BC AC =,∴CO AC =,=∴ 1m =将m=1代入①,得n=1,∴()1,1C 代入椭圆方程得21114b +=,∴ 243b =,x故所求的椭圆方程为223144x y += 4.利用平行向量的等量关系式得到点坐标之间的关系例5.(04全国)设双曲线C :()22210:1x y a l x y a-=>+=与直线,相交于两个不同的点A 、B ,设直线l 与y 轴的交点为P ,且5,12PA PB =求a 的值.分析:设A 、B 两点的坐标,由512PA PB =就得到了A 、B 两点坐标的等量关系,再利用韦达定理,通过解方程组得a 的值。
向量在解决高中数学问题中的应用
向量在解决高中数学问题中的应用【摘要】向量在高中数学中的应用是非常重要的。
本文首先介绍了向量的基本概念及性质,然后着重讨论了向量在几何和代数中的应用。
通过向量几何解决几何问题和向量代数解决代数问题的实例,展示了向量在解决数学问题中的强大作用。
还探讨了向量在物理问题中的应用,以及向量在实际生活中的应用。
本文强调了向量在高中数学教学中的重要性,并展望了未来向量在高中数学教育中的发展。
通过深入理解和应用向量的知识,可以更好地解决各种复杂问题,提升数学学习成绩,同时也为未来的学习和工作奠定基础。
【关键词】关键词:向量、高中数学、基本概念、性质、几何问题、代数问题、物理问题、实际应用、重要性、应用拓展、教学发展。
1. 引言1.1 向量在解决高中数学问题中的应用向量在解决高中数学问题中的应用是一种非常重要且广泛应用的数学工具。
在高中数学学习过程中,向量不仅仅是一个概念,更是一个具有实际意义的数学工具。
通过向量的运用,我们可以更好地理解和解决各种数学问题。
在高中数学课程中,向量被广泛运用于几何、代数和物理等领域。
在几何中,向量可以帮助我们解决平面几何、立体几何以及空间几何中的各种问题,如求距离、角度、面积等。
在代数中,向量可以用来表示方程组、矩阵运算,从而解决各种代数问题。
在物理中,向量可以帮助我们描述物体的运动、力的作用等实际问题,解决物理学中的各种问题。
2. 正文2.1 向量的基本概念及性质向量是高中数学中一个非常重要的概念,它不仅在几何中有着广泛的应用,还可以帮助我们解决各种代数和物理问题。
在学习向量之前,我们首先需要了解向量的基本概念和性质。
向量是一个具有大小和方向的量。
在坐标系中,一个向量通常用一个有序对表示,如(3,4),其中3代表向量在x轴上的分量,4代表向量在y轴上的分量。
向量的大小通常用模表示,记作||a||,其中a是向量,模的计算公式为sqrt(x^2 + y^2),即向量的长度。
向量还有一些重要的性质,比如向量的加法和数乘。
论向量在立体几何和平面解析几何中的应用
论向量在立体几何和平面解析几何中的应用平面向量的运用作为中学数学的重要教学内容之一,具有几何与代数的双重性质,向量工具为数学问题的解决提供了新的有效方法与思路。
同时向量也是中学数学课堂改革过程中的重要举措。
在解决立体几何与平面解析几何问题时运用平面向量法能够帮助学生更加明晰代数与几何之间的联系,培养学生的数学思维。
因此,教师应积极转变传统几何法的解题模式,贯彻“数形结合”的数学教学理念,为学生学习论证与度量问题扫清障碍。
向量立体几何平面解析几何在数学中,向量即具有方向、大小且遵循平行四边形法则的量,根据向量方向与大小的不同,可以将其分为固定向量与自由向量。
将向量法应用在立体几何与平面解析几何的问题中是一种很好的思路与方法,学生通过利用向量代数的方法能够有效避免思维障碍,将逻辑推理的难度降低,利用坐标运算法及“数形结合”的数学思维提高解题效率。
1 向量概述1.1 概念求向量差:通过将两个向量的始点重合,将减向量的终点作为始点,将被减向量的终点作为终点,两点之间的差即两向量之间的差。
1.3 向量与实数的积向量与实数的乘积仍表示向量,零向量与任何向量及实数的积均为零向量。
1.4 向量的坐标运算向量表示的有向线段的终点坐标与始点坐标的差即向量的坐标,两个向量的坐标之和则为向量和的坐标,同样的,两个向量的坐标之差就为向量差的坐标2 平面向量法在立体几何和平面解析几何中的应用2.1运用图形,建立数形结合思维在解决立体几何问题的过程中,利用传统的解题方法,即综合推理法,由于立体几何中的角度、距离等问题具有较强的技巧性,需要学生具有极强的逻辑推理思维能力以及抽象的空间想象力,并且此类题目没有一成不变的规律,从而使得学生智力受到了很大考验,在思考问题时面临很大挑战。
这个时候就需要运用数形结合的思维来处理这些问题。
在数学教学和实际应用中,我们都要培养学生的空间想象能力,并将这种能力应用于立体几何问题解决中去。
学生建立好空间概念,画好正确的立体图形是解决立体几何问题的第一步。
向量法在高中数学解题中的应用
高中数学中的向量法可以用来解决一些复杂的问题,比如空间几何、动力学和物理等。
1. 空间几何:在三角形、四边形、正多边形和立方体等平面或立体几何图形中,可以使
用向量法来求得其周长、表面积或者体积。
例如:已知两个向量a=(2,3)和b=(4,5),则
它们的夹角θ=arctan(5/4)=53.13°。
2. 动力学:在运动学中也可以使用向量法来求得物体运动的速度、加速度和作用力大小。
例如:已知一个物体有一个分速度v1=(3,4)m/s和v2=(-6,-8)m/s (即x方向上有3m/s
的速度而y方向上有4m/s的速度),则它们之间的相对速度Vr=v1-v2=(9,12) m/s 。
3. 物理: 在物理学中也可以使用向量法来求得不同物理量之间关系。
例如: 已给定重力
g=-10N/(kg·m^2), 气流F_w = (0,-20N), 飞行时间t=30min ,飞行总距离S = (20000, -10000). 这时就可以根据 S = F_w t + 1 / 2 g t^2 条件推导出飞行者所施加地心引力
F_g = (-100000,-50000).。
向量在解决高中数学问题中的应用
向量在解决高中数学问题中的应用高中数学问题相对于其他阶段的数学问题而言具有一定的复杂性,并且高中数学知识也有着相应的连贯性特点,所以针对一个题目会存在着多种解答方法。
“向量”也可以用来解决数学中的许多问题,因此教师在进行教学、学生在进行题目解答时要发挥“向量”的作用价值,应用到各类数学问题中去。
一、教学策略中体现“向量”的价值意义向量在许多数学问题上能够作为有效的手段进行问题解决,因此向量在数学教学中是一个非常重要的环节,教师进行向量基础知识的教学中就应该重视对向量的价值意义进行解释,使得学生对向量的学习保持着一定的热情,从而能够重视向量知识的应用。
例如在学习“向量的加法”时,设a=(x,y),b=(x1,y1),向量满足着平行四边形法则和三角形法则,所以便可以得出AB+BC=AC,由此满足向量公式:a+b=(x+x1,y+y1),并且a+0=0+a=a。
这个知识点就是一个关于向量在平面图形中的应用问题,所以教师便可以让学生进行猜想:平面问题的解决是否可以用向量知识来解答呢。
这个问题就是“向量”价值意义的体现,促进学生在学习向量这个知识时能够结合其他知识来进行思考,推动知识的结合应用,充分把向量的价值意义能够从其他类型的知识体系中体现出来。
这也是教师教学策略的体现,让学生巩固数学知识,寻找解决途径。
又比如“数乘向量”的学习,实数λ和向量a的乘积是一个向量,记作λa,且?Oλa=λ?a?O。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
需要追的是:按定义知,如果λa=0,那么λ=0或a=0。
这种数乘向量的知识也有着其重要的价值意义,规律中对λ的讨论就是一种严谨性的数学意识,这在高中数学学习中非常重要,因此向量知识也将此体现出来。
而向量特殊的方向性,对整个数学问题的讨论有着指导性作用,引导着学生更加注意到数学问题中的正负问题,这在其他类别的数学问题上也有着体现,所以向量的价值意义还在于对其他知识体系的映射,学生能够通过向量的学习类比其他数学问题,这便是非常重要的数学经验。
向量法在高中数学立体几何中的应用分析
技法点拨摘要:近年来,大多数高中数学的立体几何问题都可以用几何方法和向量法来解答。
使用几何方法解答问题时,应试者需要具有较强的空间思维能力和逻辑推理能力,并且必须具有较完整的“一项工作,两个证明和计算”的步骤;在使用向量法求解时,只需将空间问题转化为向量即可。
与向量有关的计算问题,即将几何问题转化为代数问题,直接计算而不用作图形,既简单又方便。
关键词:向量法;几何法;距离高中教科书中立体几何是经常会考查的,是高考的必考内容,向量教学是高中数学的一项重要内容,但是向量方法的运用,一直都是在习题应用中体现出来的,缺少完整的应用体系,如果能够通过研究,让向量法的应用具体化、系统化、感性化,将会提高学生的解题效率。
一、用向量法处理空间角问题在高考的三维几何考试题中寻找角度和距离是一个经常被审查的问题。
传统解决方案是“绘制、证明和求解三角形”,需要许多辅助线和强大的技能。
在高中教科书中输入向量的困难为实体几何增加了活力。
随着时代的发展,新思想和新方法也在不断发展,本文以举例的方式说明向量方法可以简单快速地解决这些问题。
1.用向量求直线与平面所成的角如图1,求直线L 和平面α所成的角,只需在L 上取定 CP , n是平面α的法向量,再求cos θ=| CP · n || CP |·| n |,则β=|π2-θ|为所求的角。
图1PCD AB 图2如图2所示,下部ABCD 是直角梯形,∠ABC =90°,PB ⊥面ABCD ,BA=BC=BP =2CD =2,E 是PD 的中点,求出CP 线与面ADP 之间的夹角的正弦值。
解:建立空间直角坐标系B-xyz ,则有A (0,2,0),C (2,0,0,),D (2,1,0),P (0,0,2),故 CP =(-2,0,2), AP =(0,-2,1),DP =(-2,-1,2)。
设面ADP 的一个法向量为n 1=(x ,y ,z ),则有ìíî n ⊥AP n ⊥ DP ⇒ìíî n · AP =0n · DP =0⇒ìíî-2y +2z =0-2x -y +2z =0令y =1,得z =1,x =12,即 n 1=(12,1,1),假定直线CP 与面ADP 之间的角度的正弦值:sin θ=|cos< CP , n 1>|=| CP · n 1|| CP |· n 1=18×32=2.用向量求二面角的大小cos θ=|cos< n 1,n 2>|=| n 1· n 2|| n 1|·| n 2|,求得θ值,再观察二面角,若是锐二面角,则二面角大小α=θ;若二面角为钝二面角,则二面角大小α=π-θ。
用向量方法解决数学问题
用向量方法解决数学问题将向量引入高中数学教材,并做为一种基础理论和基本方法要求学生掌握。
这是由于向量知识具有以下几大特点和需要。
首先,利用向量解决一些数学问题,将大大简化原本利用其他数学工具解题的步骤,使学生多掌握一种行之有效的数学工具。
其次,向量的引入将使高中数学中“数形结合”理论得到新的解析,为在高中数学贯彻“数形结合”的教学理念提供一种崭新的方法。
向量具有很好的“数形结合”特性。
一是“数”的形式,即利用一对实数对既可表示向量大小,又可以表示向量的方向;二是“形”的形式,即利用一条有向线段来表示一个向量。
而且这两种形式又是密切联系的,它们之间可以利用简单的运算进行相互转化。
可以说向量是联系代数关系与几何图形的最佳纽带。
它可以使图形量化,使图形间关系代数化,使我们从复杂的图形分析中解脱出来,只需要研究这些图形间存在的向量关系,就可以得出精确的最终结论。
使分析思路和解题步骤变得简洁流畅,又不失严密。
第三,向量概念本身来源于对物理系中既有方向、又有大小的物理量,即物理学中所称的“矢量”的研究。
其实,“向量”和“矢量”是在数学和物理两门学科对同一量的两种不同称呼而已。
在物理学中,矢量是相对于有大小而没有方向的“标量”的另一类重要物理量。
几乎全部的高中物理学理论都是通过这两类量来阐释的。
矢量广泛地应用于力学(如力,速度,加速度等)和电学(如电流方向,电场强度等)理论之中,在高中新教材中引入向量章节,对向量进行系统深入的学习和研究。
对学生在物理课上学习和理解矢量知识无疑将提供一个数学根据和许多运算便利。
同样,学生在物理课上碰到的与矢量有关的物理实际又会使他们对向量也有更深入了解,并激发他们学习向量知识的兴趣和热情。
如在力学中,对力、速度等的分解和合成,使用的就是向量的加减理论,数学和物理的完美结合,起到异曲同工之作用。
第四,把向量理论引入高中教材,也是当今世界中等教育的一种普遍趋势,是教育顺应时代发展的必然结果。
数学思想在高中解析几何中的应用研究
01/2020数学思想在高中解析几何中的应用研究◆库热西 艾力尤夫(新疆伽师县第一中学)【摘要】解析几何是高中数学的重要组成部分,高考数学必考内容之一。
而如何培养学生的解析几何解题能力,是数学课程中的重点。
数学思想在解析几何中的运用,有助于学生对数学知识的理解和解题能力的提高。
从实际出发,结合多年的教学经验和课堂实践,探讨数学思想在高中解析几何中的应用。
【关键词】数学思想解析几何高中数学解析几何是高中重要的教学内容,是指利用解析式来研究几何图形的过程。
由于其高度的抽象性和逻辑性,学生在进行解析几何问题的解决时,经常会遇到很大的困难,也是高考中很大的失分点。
因此,我们可以在教学过程中,引入数学思想,来帮助学生进行解析几何问题的分析和研究,让学生找到问题的解决思路,从而提高学生对解析几何问题的解题质量和效率,进而为学生以后的高考做好充足的准备。
一、数形结合思想的应用数形结合思想就是将抽象的数学语言符号和直观的图像和图形进行有机结合,使复杂的问题简单化,抽象的问题形象化,简化过程,优化计算。
数形结合分为“以形助数”和“以数解形”两个方面,以形助数,是指利用几何图形解决代数的问题,运用图形的直观感发现解题的途径,以数助形是指在解题过程中,将一些几何问题通过一些手段,比如构建坐标系、构建方程等方式转化为代数问题,然后运用代数的思想来进行问题的解决并将最后的结果回归几何问题的一种解题形式。
利用数形结合思想来进行解析几何问题的分析,有助于学生对题目进行分析。
二、化归思想的应用化归思想,是指利用数学之间的相互转化,将一些陌生的问题熟悉化、复杂的问题简单化,化未知为已知,化困难为容易,以此来帮助学生解决数学问题的一种方法。
在解析几何的问题解答过程中,将一些问题进行转化归结,变为学生熟悉的直线、圆、圆锥曲线的形式,然后进行解决是一种非常有效的办法。
三、类比思想的应用类比思想是指通过新旧知识,问题形式的对比,找9401/2020到两个相似事物的共性和不同点,然后根据这些条件来解决未知问题的一种方法,在高中的数学中,无论是教学还是解题都随处可见类比思想的影子。
高考数学复习点拨:向量在解析几何中的应用
向量在解析几何中的应用向量为“数”的运算处理“形”的问题搭起了桥梁,形成了代数与几何的新纽带.它也是解决解析几何问题的有力工具,向量法简洁、明快、颇具特色.本文例谈用向量法解决解析几何问题.1.研究直线所成的角例1 已知定点(42)A ,,O 为原点,P 是线段OA 垂直平分线上的一点,若OPA ∠为锐 角,求点P 的横坐标的取值范围.分析:①用解析法,利用到角公式需对P 点的位置讨论,求出直线斜率再带入到角公式,然后解不等式,运算较繁;②把OPA ∠看成是两向量POPA u u u r u u u r ,的夹角,只要0PO PA >u u u r u u u r ·即可.下面给出后一种思路的解法.解:OPA ∠为向量PO PA u u u r u u u r ,的夹角,cos PO PA OPA PA PO∠=u u u r u u u r u u u r u u u r ·. OPA ∠∵为锐角,0PO PA >u u u r u u u r ∴·,且A P O ,,三点不共线.OA 的垂直平分线方程为12(2)y x -=--,即250x y +-=.设(52)P a a -,,则(25)PO a a =--u u u r ,,(423)PA a a =--u u u r ,, 由2520150POPA a a =-+>u u u r u u u r ·,解得1a <或3a >. P ∴点横坐标的取值范围为(1)(3)-+U ,,∞∞.评析:利用数量积的定义处理有关长度、角度等问题时可以减少计算量.当然本题还可以以OA 为直径做圆,来求点P 横坐标的取值范围.2.证明三点共线例2 设抛物线22(0)y px p =>的焦点为F ,经过点F 的直线交抛物线于A B ,两点.点C 在抛物线的准线上,且BC 平行于x 轴,证明:直线AC 过原点O .分析:证AC 过点O ,即证A C O ,,三点共线,转化为证向量OC u u u r 与OA u u u r 共线,即OC OA u u u r u u u r ∥.解:设221212122()222y y p A y B y y y C y p p ⎛⎫⎛⎫⎛⎫≠- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,, 则2212122222y y p p AF y BF y p p ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,,,.A FB ,,∵三点共线,AF BF u u u r u u u r ∴∥.22122102222y y p p y y p p ⎛⎫⎛⎫--+-= ⎪ ⎪⎝⎭⎝⎭,即212y y p =-. 又21211102222y p p p y y y y p +=-+=∵. OA OC u u u r u u u r ∴∥,即A C O ,,三点共线.∴直线AC 经过原点.3.解决动点轨变问题例3 已知点(30)H -,,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM ⊥,32PM =-u u u u r MQ uuu u r .当点P 在y 轴上移动时,求动点M 的轨迹方程. 分析:此题为解析几何中求动点的轨迹方程的问题,动点M 的运动随点P 的运动而运动.分别设出P 、M 与Q 点的坐标,将已知向量坐标化,然后利用向量数量积及向量相关知识找到等量关系.解:设()(0)(0)M x y P b Q a ,,,,,,其中0a >,则()()PM x y b MQ a x y =-=--u u u u r u u u u r ,,,. 32PM MQ =-u u u u r u u u u r ∵,即3()()2x y b a x y -=---,,. 3()22y y b y b -=--=-,∴. 3322y PH PM x y ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭u u u r u u u u r ,,,∴. PH PM ⊥∵,0PH PM =u u u r u u u u r ∴·,即33022y y x -+-=,24y x =. ∴动点M 的轨迹方程为24(0)y x x =>.评析:使用向量共线与垂直的充要条件,处理直线的平行和垂直关系,与利用直线的斜率关系解题实质是相同的.但向量的坐标运算避开了斜率是否存在的讨论,从而简化了解题过程.平面向量用于解析几何中能够把较复杂的几何关系转化为简单的代数运算,能够充分体现数学中的数形结合思想,达到避繁就简,化难为易的效果,也为解决平面解析几何问题开辟了一条新途径.。
人教版数学高一B版必修4示范教案 向量在几何中的应用
示范教案整体设计教学分析1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.教学中,主要是通过例子说明向量在几何中的应用.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:则向量方法的流程图可以简单地表述为:这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.2.研究几何可以采取不同的方法,这些方法包括:综合方法——不使用其他工具,对几何元素及其关系直接进行讨论;解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论;向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论;分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等.前三种方法都是中学数学中出现的内容.有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.三维目标1.通过书中例子,了解向量在平面几何中的应用,理解向量与直线平行、垂直的概念,直线斜率与直线方向向量间的关系.2.明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示,会求经过一点且与已知向量平行的直线方程.3.通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.重点难点教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”.教学难点:如何将几何等实际问题化归为向量问题.课时安排1课时教学过程导入新课思路1.(直接导入)向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.思路2.(情境导入)由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.下面通过几个具体实例,说明向量方法在平面几何中的运用.推进新课新知探究提出问题(1)平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?图1(2)你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法?(3)你能总结一下利用平面向量解决平面几何问题的基本思路吗?活动:(1)教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系.利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和.(2)教师引导学生探究证明方法,并点拨学生对各种方法分析比较,平行四边形是学生熟悉的重要的几何图形,在平面几何的学习中,学生得到了它的许多性质,有些性质的得出比较麻烦,有些性质的得出比较简单.让学生体会研究几何可以采取不同的方法,这些方法包括综合方法、解析方法、向量方法.(3)由于平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用向量方法解决部分几何问题.解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系.最后再把运算结果“翻译”成几何关系,得到几何问题的结论.这就是用向量方法解决平面几何问题的“三步曲”,即①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;③把运算结果“翻译”成几何关系.讨论结果:略应用示例例 1如图2,已知平行四边形ABCD 中,E ,F 在对角线BD 上,并且BE =FD ,求证:四边形AECF 是平行四边形.图2证明:由已知可设AB →=DC →=a ,BE →=FD →=b ,则AE →=AB →+BE →=a +b ,FC →=FD →+DC →=b +a .因为a +b =b +a ,所以AE →=FC →,即边AE ,FC 平行且相等.因此,四边形AECF 是平行四边形.点评:解完此例后,教师应引导学生总结选择基底,用向量证明几何问题的思路.变式训练如图3,AD 、BE 、CF 是△ABC 的三条高.求证:AD 、BE 、CF 相交于一点.图3证明:设BE 、CF 相交于H ,并设AB →=b ,AC →=c ,AH →=h ,则BH →=h -b ,CH →=h -c ,BC →=c -b .因为BH →⊥AC →,CH →⊥AB →,所以(h -b )·c =0,(h -c )·b =0,即(h -b )·c =(h -c )·b .化简得h·(c -b )=0.所以AH →⊥BC →.所以AH 与AD 共线,即AD 、BE 、CF 相交于一点H.例 2求证:平行四边形对角线互相平分.活动:在初中时,这个定理用三角形全等判定定理和平行线的性质证明过.这里,我们用向量运算的方法再证一次.虽然证明过程看上去并不简单,但证明过程给我们提供了用向量证明几何问题的一般方法.本例教师可直接讲解.证明:如图4,已知ABCD 的两条对角线相交于点M ,图4设AM →=xAC →,BM →=yBD →,则AM →=xAC →=xAB →+xAD →,AM →=AB →+BM →=AB →+yBD →=AB →+y(AD →-AB →)=(1-y)AB →+yAD →.于是,我们得到AM →关于基底{AB →,AD →}的两个分解式.所以⎩⎪⎨⎪⎧x =1-y ,x =y ,解此方程组,得x =12,y =12. 所以点M 是AC 和BD 的中点,即对角线AC 和BD 在交点M 处互相平分.点评:从例2的证明可以看出,证明方法与代数学中的解应用题方法(设未知数,列方程)基本一致.这里,也是先设未知数,由题中给出的条件,列出向量表达式,再选基底向量,列出同一向量的两个分解式,由向量分解的唯一性转化为方程组求解.例 3已知正方形ABCD(图5),P 为对角线AC 上任意一点,PE ⊥AB 于点E ,PF ⊥BC 于点F ,连接DP ,EF.求证:DP ⊥EF.图5证明:选择正交基底{AB →,AD →},在这个基底下,有AB →=(1,0),AD →=(0,1),由已知,可设AP →=(a ,a),得EB →=(1-a,0),BF →=(0,a),EF →=(1-a ,a),DP →=AP →-AD →=(a ,a -1).因为DP →·EF →=(1-a ,a)·(a ,a -1)=(1-a)a +a(a -1)=0,所以DP →⊥EF →.因此DP ⊥EF.图6图7为坐标原点,两直角边所在的直线为坐标轴,建立如图所示的平面直角坐标,B(c,0),C(0,b),且,-y).例 4求通过点A(-1,2),且平行于向量a =(3,2)的直线方程(图8).图8活动:教师引导学生分析本例条件,可由向量确定直线斜率.教师可借此讲解:在解析几何初步中,我们用一条直线的倾斜角或斜率确定直线的方向.现在看一看直线的倾斜角、斜率与平行于这条直线的向量之间的关系.设直线l 的倾斜角为α(图8),斜率为k ,A(x 1,y 1)∈l ,P(x ,y)∈l ,向量a =(a 1,a 2)平行于l ,由直线斜率和正切函数的定义,可得k =y -y 1x -x 1=a 2a 1=tanα. 如果知道直线的斜率k =a 2a 1,则向量(a 1,a 2)一定与该直线平行. 解:由题意知直线的斜率k =a 2a 1=23. ∴所求直线的方程为y -2=23(x +1). 整理,得2x -3y +8=0.5已知直线l :Ax +By +C =0,n =(A ,B).求证:向量n ⊥l(图9).图9证明:设(x 0,y 0)为直线l 的方程的一个解,则Ax 0+By 0+C =0.①对l 的方程和①式两边作差,整理,得A(x -x 0)+B(y -y 0)=0.由向量垂直的条件,得向量n =(A ,B)与向量(x -x 0,y -y 0)垂直.由于动点(x ,y)的集合就是直线l ,所以n ⊥l.点评:本例所证结论,使我们得到直线一般方程Ax +By +C =0中,变量x ,y 的系数构成向量(A ,B)的几何解释.即向量(A ,B)与直线l 垂直,向量(-B ,A)与l 平行.这样,直线间的位置关系,即平行、垂直、夹角,就可转化为向量问题来处理.6求通过A(2,1),且与直线l :4x -3y +9=0平行的直线方程(图10).图10解:因为向量(4,-3)与直线l 垂直,所以向量n =(4,-3)与所求的直线垂直.设P(x ,y)为一动点,则AP →=(x -2,y -1).点P 在所求直线上,当且仅当n ·AP →=0.转化为坐标表示,即4(x -2)+(-3)(y -1)=0.整理,得4x -3y -5=0.这就是所求的直线方程.课堂小结1.由学生归纳总结本节学习的数学知识有:平行四边形向量加、减法的几何模型,用向量方法解决平面几何问题的步骤.要提醒学生理解领悟它的实质,达到熟练掌握的程度.2.本节都学习了数学方法:向量法,向量法与几何法、解析法的比较,将平面几何问题转化为向量问题的化归的思想方法,深切体会向量的工具性这一特点.作业课本本节习题2—4 A 组1,2,3,B 组1,2.设计感想1.本节是对研究平面几何方法的探究与归纳,设计的指导思想是:充分使用多媒体这个现代化手段,引导学生展开观察、归纳、猜想、论证等一系列思维活动.本节知识方法容量较大,思维含量较高,教师要把握好火候,恰时恰点地激发学生的智慧火花.2.由于本节知识方法在高考大题中得以直接的体现,特别是与其他知识的综合更是高考的热点问题.因此在实际授课时注意引导学生关注向量知识、向量方法与本书的三角、后续内容的解析几何等知识的交汇,提高学生综合解决问题的能力.3.平面向量的运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等,它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.备课资料一、利用向量解决几何问题的进一步探讨用平面向量的几何运算处理平面几何问题有其独到之处,特别是处理线段相等,线线平行,垂直,点共线,线共点等问题,往往简单明了,少走弯路,同时避免了复杂,烦琐的运算和推理,可以收到事半功倍的效果.现举几例以供教师、学生进一步探究使用.1.简化向量运算例 1如图11所示,O 为△ABC 的外心,H 为垂心,求证:OH →=OA →+OB →+OC →.图11证明:如图11,作直径BD ,连接DA ,DC ,有OB →=-OD →,且DA ⊥AB ,DC ⊥BC ,AH ⊥BC ,CH ⊥AB ,故CH ∥DA ,AH ∥DC ,得四边形AHCD 是平行四边形.从而AH →=DC →.又DC →=OC →-OD →=OC →+OB →,得OH →=OA →+AH →=OA →+DC →,即OH →=OA →+OB →+OC →.2.证明线线平行例 2如图12,在梯形ABCD 中,E ,F 分别为腰AB ,CD 的中点.求证:EF ∥BC ,且|EF →|=12(|AD →|+|BC →|).图12证明:连接ED ,EC ,∵AD ∥BC ,可设AD →=λBC →(λ>0),又E ,F 是中点,∴EA →+EB →=0,且EF →=12(ED →+EC →). 而ED →+EC →=EA →+AD →+EB →+BC →=AD →+BC →=(1+λ)BC →,∴EF →=1+λ2BC →.EF 与BC 无公共点, ∴EF ∥BC.又λ>0,∴|EF →|=12(|BC →|+|λBC →|)=12(|AD →|+|BC →|). 3.证明线线垂直例 3如图13,在△ABC 中,由A 与B 分别向对边BC 与CA 作垂线AD 与BE ,且AD 与BE 交于H ,连接CH ,求证:CH ⊥AB.图13证明:由已知AH ⊥BC ,BH ⊥AC ,有AH →·BC →=0,BH →·AC →=0.又AH →=AC →+CH →,BH →=BC →+CH →,故有(AC →+CH →)·BC →=0,且(BC →+CH →)·AC →=0,两式相减,得CH →·(CB →-CA →)=0,即CH →·AB →=0, ∴CH →⊥AB →.4.证明线共点或点共线 例 4求证:三角形三中线共点,且该点到顶点的距离等于各该中线长的23. 已知:△ABC 的三边中点分别为D ,E ,F(如图14).图14求证:AE ,BF ,CD 共点,且AG AE =BG BF =CG CD =23. 证明:设AE ,BF 相交于点G ,AG →=λ1GE →,由定比分点的向量式有BG →=BA →+λ1BE →1+λ1=11+λ1BA →+λ12(1+λ1)BC →, 又F 是AC 的中点,BF →=12(BA →+BC →), 设BG →=λ2BF →,则11+λ1BA →+λ12(1+λ1)BC →=λ22BA →+λ22BC →, ∴⎩⎨⎧ 11+λ1=λ22,λ12(1+λ1)=λ22.∴11+λ1=λ12(1+λ1)λ1=2,λ2=23, 即AG AF =BG BF =23. 又CG →=CA →+λ1CE →1+λ1=13(CA →+2CE →)=23·12(CA →+CB →)=23CD →, ∴C ,G ,D 共线,且AG AE =BG BF =CG CD =23. 二、备用习题1.如图15,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P为半径OC 上的动点,则(PA →+PB →)·PC →的最小值为( )图15A.92B .9C .-92D .-9 2.有一边长为1的正方形ABCD ,设AB →=a ,BC →=b ,AC →=c ,则|a -b +c |=________.3.已知|a |=2,|b |=2,a 与b 的夹角为45°,则使λb -a 与a 垂直的λ=________.4.在等边△ABC 中,AB →=a ,BC →=b ,CA →=c ,且|a |=1,则a·b +b·c +c·a =________.5.已知三个向量OA →=(k,12),OB →=(4,5),OC →=(10,k),且A ,B ,C 三点共线,则k=________.6.如图16所示,已知矩形ABCD ,AC 是对角线,E 是AC 的中点,过点E 作MN 交AD 于点M ,交BC 于点N ,试运用向量知识证明AM =CN.图167.已知四边形ABCD 满足|AB →|2+|BC →|2=|AD →|2+|DC →|2,M 为对角线AC 的中点.求证:|MB →|=|MD →|.8.求证:如果一个角的两边平行于另一个角的两边,那么这两个角相等或互补. 参考答案:1.D 2.2 3.2 4.-325.-2或11 6.证明:建立如图17所示的直角坐标系,设BC =a ,BA =b ,则C(a,0),A(0,b),E(a 2,b 2).图17又设M(x 2,b),N(x 1,0),则AM →=(x 2,0),CN →=(x 1-a,0).∵ME →∥EN →,ME →=(a 2-x 2,-b 2),EN →=(x 1-a 2,-b 2), ∴(a 2-x 2)×(-b 2)-(x 1-a 2)×(-b 2)=0. ∴x 2=a -x 1.∴|AM →|=x 22=|x 2|=|a -x 1|=|x 1-a|.而|CN →|=(x 1-a )2=|x 1-a|,∴|AM →|=|CN →|,即AM =CN.7.证明:设AB →=a ,BC →=b ,CD →=c ,DA →=d ,∵a +b +c +d =0,∴a +b =-(c +d ).∴a 2+b 2+2a·b =c 2+d 2+2c·d .①∵|AB →|2+|BC →|2=|AD →|2+|DC →|2,∴a 2+b 2=(-d )2+(-c )2=c 2+d 2.②由①②得a·b =c·d .∵M 是AC 的中点,如图18所示,图18则DM →=12(d -c ),BM →=12(b -a ). ∴|MB →|2=BM →2=14(b 2+a 2-2a·b ), |MD →|2=DM →2=14(d 2+c 2-2c·d ). ∴|MB →|2=|MD →|2.∴|MB →|=|MD →|.8.解:已知OA ∥O′A′,OB ∥O′B′.求证:∠AOB =∠A′O′B′或∠AOB +∠A′O′B′=π. 证明:∵OA ∥O′A′,OB ∥O′B′,∴O′A′→=λOA →(λ∈R ,λ≠0),O′B′→=μOB →(μ∈R ,μ≠0).∴cos ∠AOB =OA →·OB →|OA →||OB →|. cos ∠A′O′B′=O′A′→·O′B′→|O′A′→||O′B′→|=λOA →·μOB →|λOA →||μOB →|=λμOA →·OB →|λμ||OA →||OB →|=±OA →·OB →|OA →||OB →|, 当OA →与O′A′→,OB →与O′B′→均同向或反向时,取正号, 即cos ∠AOB =cos ∠A′O′B′.∵∠AOB ,∠A′O′B′∈(0,π),∴∠AOB =∠A′O′B′.当OA →与O′A′→,OB →与O′B′→只有一个反向时,取负号, 即cos ∠AOB =-cos ∠A′O′B′=cos(π-∠A′O′B′). ∵∠AOB ,π-∠A′O′B′∈(0,π),∴∠AOB =π-∠A′O′B′.∴∠AOB +∠A′O′B′=π.∴命题成立.。
高中数学人教B版必修4导学案:2.4向量在几何中的应用
3.用向量证明平面几何、解析几何问题的步骤。
4.体会向量在解决问题中的应用,培养运算及解决问题的能力。
~122页,找出疑惑之处)
二、新课导学
1.向量在平面几何中的应用
例1.如右图,已知平行四边形ABCD 、E 、E 在对角线BD 上,并且=BE FD . 求证:AECF 是平行四边形。
例2.求证平行四边形对角线互相平分。
例3.已知正方形ABCD,P 为对角线AC 上任一点,,E AB PE 与点⊥,F BC PF 与点⊥ 连DP,EF,求证:DP ⊥EF.
2.向量在解析几何中的应用
例4 求通过A(-1,-2),且平行于向量32a =(,)的直线方程。
变式:求通过A(2,1),且与直线:4390l x y -+=平行的直线方程。
1. 向量加法的三角形法则、平行四边形法则。
2. 向量平行、垂直的判断方法。
D
B
例5:已知直线:0l Ax By C ++=,(,)n A B =。
求证向量n l ⊥。
3.向量在物理中的应用(自学)
三、课堂检测:
1、求经过点P 且平行于向量a 的直线方程
(1)P(3,-5) 12a =(,)
(2) P(-2,0) 03a =(,)
2、求过点P(1,-1)且与向量43a =(,-)垂直的直线方程
3、由下列条件写出直线的一般式方程:
(1)过点A(2, -3),平行于向量34a =(-,);
(2)过点P(3,2),垂直与向量32a =(,-)。
四、教后反思:。
高中数学 2.5.1《向量在几何中的应用》教案人教版必修4
向量在几何中的应用
(一)教学目标
1.知识与技能:
运用向量的有关知识,解决平面几何中线段的平行、垂直、相等等问题。
2.过程与方法:
通过应用举例,让学生体会用平面向量解决平面几何问题的两种方法——向量法和坐标法。
3.情感、态度与价值观:
通过本节的学习,让学生体验向量在解决平面几何问题中的工具作用,增强学生的探究意识,培养创新精神。
(二)教学重点、难点
重点:用向量知识解决平面几何问题。
难点:选择适当的方法,将几何问题转化为向量问题解决。
(三)教学方法
本小节主要是例题教学,要让学生体会思路的形成过程,体会数学思想方法的运用。
教学中,教师创设问题
情景,引导学生发现解题方法,展示思路的形成过程,总结解题规律。
指导学生搞好解题后的反思,从而提高学生综合运用知识分析和解决问题的能力。
(四)教学过程。
浅谈向量在几何中的应用
浅谈向量在几何中的应用第一篇:浅谈向量在几何中的应用浅谈向量在几何中的应用宁阳四中 271400 吕厚杰解决立体几何问题“平移是手段,垂直是关键”,空间向量的方法是使用向量的代数方法去解决立体几何问题。
两向量共线易解决平行,两向量的数量积则易解决垂直、两向量所成的角、线段的长度问题。
合理地运用向量解决立体几何问题,在很大程度上避开了思维的高强度转换,避开了添加辅助线,代之以向量计算,使立体几何问题变得思路顺畅、运算简单。
1.证平行、证垂直具体方法利用共线向量基本定理证明向量平行,再证线线、线面平行是证明平行问题的常用手段,由共面向量基本定理先证直线的方向向量与平面内不共线的两向量共面,再证方向向量上存在一点不属于平面,从而得到线面平行。
证明线线、线面垂直则可通过向量垂直来实现。
例1 如图1,E、F分别为空间四边形ABCD中AB、CD的中点,证明AD、EF、BC平行于同一平面。
图1 证明:又所以,且即可知,与共面,所以EF与AD、BC平行于同一平面。
例2.已知A(1,-2,11),B(4,2,3),C(6,-1,4),则ΔABC是___________。
分析:显见:(3,4,-8),(5,1,-7),(2,-3,1),故ΔABC为直角三角形。
2.求角、求距离如果要想解决线面角、二面角以及距离问题就要增加平面法向量的知识。
定义:如果n⊥α,那么向量n就叫平面α的法向量。
求解方法:(1)异面直线所成的角α,利用它们所对应的向量转化为向量的夹角θ问题,但,所以(2)直线与平面所成的角,利用直线的方向向量与平面的法向量夹角的余角(或补角的余角)。
如图2:。
图2(3)求二面角,转化为两平面法向量的夹角或夹角的补角,显见上述求法都避开了找角的繁琐,直接计算就可以了。
求点面距离,转化为此点与面内一点连线对应向量在法向量上投影的绝对值。
例 3.(2005年高考题)如图3,已知长方体ABCDA1B1C1D1中,AB=2,AA1=1,直线BD与平面AA1B1B所成的角为30°,AE垂直BD于E,F为A1B1的中点。