高中数学第十四章知识点总结(精华版)__导_数
高中数学各章知识点总结
高中数学各章知识点总结第一章:函数与方程在高中数学中,函数与方程是非常重要的基础知识。
在这一章中,我们将学习到以下几个主要知识点:1. 函数的概念和性质:函数是自变量和因变量之间的一种对应关系。
我们需要掌握函数的定义、函数的图像、函数的性质以及函数的分类等内容。
2. 一次函数与二次函数:一次函数又称为线性函数,是形如 f(x) =ax + b 的函数,其中 a 和 b 是常数。
二次函数则是形如 f(x) = ax^2 + bx + c 的函数,其中a、b 和c 也是常数。
我们需要了解它们的图像特点、性质以及相关概念,如零点、顶点等。
3. 幂函数与指数函数:幂函数是形如 f(x) = x^a 的函数,其中 a 是常数。
指数函数是形如 f(x) = a^x 的函数,其中 a 是常数且 a 大于 0。
我们需要熟悉它们的图像、性质以及指数函数的特殊性质,如底数为 e 的自然指数函数。
4. 对数函数:对数函数是指数函数的逆运算。
形如 f(x) = loga(x) 的函数叫做以 a 为底的对数函数。
我们需要了解对数函数的定义、图像以及常用性质,如对数函数的性质、对数函数的运算等。
5. 不等式与方程:不等式和方程是数学中常用的表示式,可以通过解方程和不等式来求解问题。
我们需要掌握解一元一次方程、一元二次方程以及一元一次不等式、一元二次不等式等的方法和步骤。
6. 组合函数与复合函数:组合函数是将一个函数的输出值作为另一个函数的输入值所得到的函数。
复合函数是将一个函数的输出值代入另一个函数中得到的函数。
我们需要了解组合函数和复合函数的概念、性质以及计算方法。
第二章:三角函数在高中数学中,三角函数是一个非常重要且广泛应用的概念。
在这一章中,我们将学习到以下几个主要知识点:1. 弧度制与角度制:弧度制是一种表示角度的单位,它的定义要比角度制更加精确。
我们需要学会如何在弧度制和角度制之间进行转换以及如何使用弧度制进行三角函数的计算。
高中数学知识点分布及均课时
中学数学学问点及高考考点中学数学要点学问分为十七章节,每个章节都有不同的重点和难点,须要仔细学习,重视定义的运用,深刻理解概念的内涵和外延,这样才能活用公式定理,形成解题实力。
从而构建起学问完整体系,敏捷运用,融会贯穿,在高考中出类拔萃,金榜题名。
第一章:集合(2课时)集合在高考中属于基础、必需得分的学问,通常为一道选择题,约占3%要点学问:1、集合的有关概念及表示方法(1课时)2、集合间的关系及运算(1课时)其次章:函数(12课时)函数在高考属于重点学问,约占10%,所以必需在高一打下坚实的基础。
要点学问:1、函数概念及表示方法(2课时)2、函数的单调性和奇偶性(3课时)3、指数函数与对数函数(3课时)4、函数的图像(1课时)5、二次函数(2课时)6、函数与方程(1课时)第三章:算法(1课时)算法在高考中属于基础、必需得分的学问,通常为一道选择题,约占3%要点学问:程序框图与算法语句(1课时)第四章:统计与概率(4课时)统计与概率在高考属于重点学问,通常为一道大题,约占8%要点学问:1、三种抽样方法(1课时)2、随机事务及概率(1课时)3、古典概率与几何概率(1课时)4、期望与方差(1课时)第五章:空间几何体(2课时)空间几何体在高考中出题敏捷,约占5%,在高二时必需培育较好的空间想象思维。
要点学问:1、空间几何体的三视图和直观图(1课时)2、空间几何体的表面积与体积(1课时)第六章:点、直线、平面之间的位置关系(5课时)点、直线、平面之间的位置关系在高考属于重点学问,约占12%,所以在高二必需打下坚实的基础。
要点学问:1、空间点、线、面之间的位置关系(1课时)2、直线、平面平行的判定及其性质(2课时)3、直线、平面垂直的判定及其性质(2课时)第七章:直线与圆方程(4课时)直线与方程在高考中属于基础学问,约占7%,必需娴熟驾驭为下面的圆锥曲线打好基础。
要点学问:1、直线的斜率与方程(1课时)2、圆的方程(1课时)3、直线、圆的位置关系 (1课时)4、空间直角坐标系 (1课时)第八章:三角函数 (7课时)三角函数在高考中属于重点必得分的学问,约占7%,但是内容比较多且困难,必需娴熟驾驭公式还要敏捷运用。
高中数学第十四章知识点总结(精华版) 导 数
高中数学第十四章知识点总结(精华版) 导数高中数学第十四章知识点总结(精华版) 导数高中数学第十四章导数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.14.导数知识要点导数的概念导数的几何意义、物理意义常见函数的导数导数的运算法则函数的单调性函数的极值函数的最值导数导数的运算导数的应用 1.导数(导函数的简称)的定义:设x0是函数yf(x)定义域的一点,如果自变量x 在x0处有增量x,则函数值y也引起相应的增量yf(x0x)f(x0);比值yf(x0x)f(x0)称为函数yf(x)在点x0到x0x之间的平均变化率;如果极限xxf(x0x)f(x0)y存在,则称函数yf(x)在点x0处可导,并把这个极限叫做limx0xx0xlimyf(x)在x0处的导数,记作f”(x0)或y”|xx0,即f”(x0)=limf(x0x)f(x0)y.limx0xx0x 注:①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②以知函数yf(x)定义域为A,yf”(x)的定义域为B,则A与B关系为AB.2.函数yf(x)在点x0处连续与点x0处可导的关系:⑴函数yf(x)在点x0处连续是yf(x)在点x0处可导的必要不充分条件.可以证明,如果yf(x)在点x0处可导,那么yf(x)点x0处连续.事实上,令xx0x,则xx0相当于x0.于是limf(x)limf(x0x)lim[f(xx0)f(x0)f(x0)]xx0x0x0f(x0x)f(x0)f(x0x)f(x0)xf(x0)]limlimlimf(x0)f”(x0)0f(x0)f(x0). x0x0x0x0xx⑵如果yf(x)点x0处连续,那么yf(x)在点x0处可导,是不成立的.lim[例:f(x)|x|在点x00处连续,但在点x00处不可导,因为yyy不存在.1;当x<0时,1,故limx0xxxy|x|,当x>0时,xx注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数yf(x)在点x0处的导数的几何意义就是曲线yf(x)在点(x0,f(x))处的切线的斜率,也就是说,曲线yf(x)在点P(x0,f(x))处的切线的斜率是f”(x0),切线方程为yy0f”(x)(xx0).4.求导数的四则运算法则:(uv)”u”v”yf1(x)f2(x)...fn(x)y”f1”(x)f2”(x)...fn”(x)(uv)”vu”v”u(cv)”c”vcv”cv”(c为常数)vu”v”uu(v0)v2v”注:①u,v必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.22例如:设f(x)2sinx,g(x)cosx,则f(x),g(x)在x0处均不可导,但它们和xxf(x)g(x)sinxcosx在x0处均可导.5.复合函数的求导法则:fx”((x))f”(u)”(x)或y”xy”uu”x复合函数的求导法则可推广到多个中间变量的情形.6.函数单调性:⑴函数单调性的判定方法:设函数yf(x)在某个区间内可导,如果f”(x)>0,则yf(x)为增函数;如果f”(x)<0,则yf(x)为减函数.⑵常数的判定方法;如果函数yf(x)在区间I内恒有f”(x)=0,则yf(x)为常数.注:①f(x)0是f(x)递增的充分条件,但不是必要条件,如y2x3在(,)上并不是都有f(x)0,有一个点例外即x=0时f(x)=0,同样f(x)0是f(x)递减的充分非必要条件.②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.7.极值的判别方法:(极值是在x0附近所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的极大值,极小值同理)当函数f(x)在点x0处连续时,①如果在x0附近的左侧f”(x)>0,右侧f”(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f”(x)<0,右侧f”(x)>0,那么f(x0)是极小值.也就是说x0是极值点的充分条件是x0点两侧导数异号,而不是f”(x)=0.此外,函数不①可导的点也可能是函数的极值点.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).②注①:若点x0是可导函数f(x)的极值点,则f”(x)=0.但反过来不一定成立.对于可导函数,其一点x0是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数yf(x)x3,x0使f”(x)=0,但x0不是极值点.②例如:函数yf(x)|x|,在点x0处不可导,但点x0是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9.几种常见的函数导数:“I.C”0(C为常数)(sinx)cosx(arcsinx)”11x2(xn)”nxn1(nR)(cosx)”sinx(arccosx)”11x21”11”(arctanx)II.(lnx)(logax)logaexxx21”(ex)”ex(ax)”axlna(arccotx)”III.求导的常见方法:①常用结论:(ln|x|)”1.x1x②形如y(xa1)(xa2)...(xan)或y求代数和形式.(xa1)(xa2)...(xan)两边同取自然对数,可转化(xb1)(xb2)...(xbn)③无理函数或形如yxx这类函数,如yxx取自然对数之后可变形为lnyxlnx,对两边y”1求导可得lnxxy”ylnxyy”xxlnxxx.yx高中数学知识点总结精华版吃得苦中苦方为人上人!高中数学第一章-集合榆林本文库考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:榆林本文库(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为AA;②空集是任何集合的子集,记为A;③空集是任何非空集合的真子集;如果AB,同时BA,那么A=B.如果AB,BC,那么AC.[注]:①Z={整数}(√)Z={全体整数}()②已知集合S中A的补集是一个有限集,则集合A也是有限集.()(例:S=N;A=N,则CsA={0})③空集的补集是全集.第1页共75页吃得苦中苦方为人上人!④若集合A=集合B,则CBA=,CAB=CS(CAB)=D(注:CAB=).3.①{(x,y)|xy=0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R}一、三象限的点集.[注]:①对方程组解的集合应是点集.例:xy3解的集合{(2,1)}.2x3y1②点集与数集的交集是.(例:A={(x,y)|y=x+1}B={y|y=x2+1}则A∩B=)4.①n个元素的子集有2n个.②n个元素的真子集有2n-1个.③n个元素的非空真子集有2n-2个.5.①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若ab5,则a2或b3应是真命题.解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.②x1且y2,xy3.解:逆否:x+y=3x1且y2x=1或y=2.xy3,故xy3是x1且y2的既不是充分,又不是必要条件.小范围推出大范围;大范围推不出小范围.3.例:若x5,x5或x2.4.集合运算:交、并、补.交:AB{x|xA,且xB}并:AB{x|xA或xB}补:CUA{xU,且xA}5.主要性质和运算律(1)包含关系:AA,A,AU,CUAU,AB,BCAC;ABA,ABB;ABA,ABB.(2)等价关系:ABABAABBCUABU (3)集合的运算律:交换律:ABBA;ABBA.结合律:(AB)CA(BC);(AB)CA(BC)分配律:.A(BC)(AB)(AC);A(BC)(AB)(AC)0-1律:A,AA,UAA,UAU第2页共75页吃得苦中苦方为人上人!等幂律:AAA,AAA.求补律:A∩CUA=φA∪CUA=UCUU=φCUφ=U反演律:CU(A∩B)=(CUA)∪(CUB)CU(A∪B)=(CUA)∩(CUB)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card(A)规定card(φ)=0.基本公式:(1)card(AB)card(A)card(B)card(AB)(2)card(ABC)card(A)card(B)card(C) card(AB)card(BC)card(CA)card(ABC)(3)card(UA)=card(U)-card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)(x-xm)>0(0”,则找“线”在x轴上方的区间;若不等式是“b解的讨论;2②一元二次不等式ax+box>0(a>0)解的讨论.00二次函数0yax2bxc(a0)的图象一元二次方程有两相异实根有两相等实根无实根ax2bxc0a0的根x1,x2(x1x2)bx1x22a第3页共75页吃得苦中苦方为人上人!ax2bxc0(a0)的解集ax2bxc0(a0)的解集xxx或xx12bxx2aRxx1xx22.分式不等式的解法(1)标准化:移项通分化为f(x)f(x)f(x)f(x)>0(或吃得苦中苦方为人上人!5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)①、原命题为真,它的逆命题不一定为真。
高中数学复习资料
高中数学章节复习资料第十四章立体几何第三节平行关系A组1.已知m、n是两条不同直线,α,β是两个不同平面,下列命题中的真命题是_.①如果m⊂α,n⊂β,m∥n,那么α∥β②如果m⊂α,n⊂β,α∥β,那么m∥n③如果m⊂α,n⊂β,α∥β且m,n共面,那么m∥n④如果m∥n,m⊥α,n⊥β,那么α⊥β解析:m⊂α,n⊂β,α∥β⇒m,n没有公共点.又m,n共面,所以m∥n.答案:③2.已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:①若m∥α,则m平行于平面α内的无数条直线;②若α∥β,m⊂α,n⊂β,则m∥n;③若m⊥α,n⊥β,m∥n,则α∥β;④若α∥β,m⊂α,则m∥β.其中,真命题的序号是________.(写出所有真命题的序号)解析:②中α∥β,m⊂α,n⊂β⇒m∥n或m,n异面,所以②错误.而其它命题都正确.答案:①③④3.(2010年苏北四市调研)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m, 则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β.其中为真命题的是________.解析:③中若l⊂β,m⊂α,α∥β⇒l∥m或l,m异面,所以②错误.而其它命题都正确.答案:①②④4.(2009年高考福建卷改编)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是________.①m∥β且l1∥α②m∥l1且n∥l2 ③m∥β且n∥β④m∥β且n∥l2解析:∵m∥l1,且n∥l2,又l1与l2是平面β内的两条相交直线,∴α∥β,而当α∥β时不一定推出m∥l1且n∥l2,可能异面.答案:②5.(原创题)直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有________条.答案:1或06.如图,ABCD为直角梯形,∠C=∠CDA=90°,AD=2BC =2CD,P为平面ABCD外一点,且PB⊥BD.(1)求证:P A⊥BD;(2)若PC与CD不垂直,求证:P A≠PD;(3)若直线l过点P,且直线l∥直线BC,试在直线l上找一点E,使得直线PC∥平面EBD.解:(1)证明:∵ABCD为直角梯形,AD=2AB=2BD,∴AB⊥BD,PB⊥BD,AB∩PB=B,AB,PB⊂平面P AB,BD⊥平面P AB,P A⊂平面P AB,∴P A⊥BD.(2)证明:假设P A=PD,取AD中点N,连结PN,BN,则PN⊥AD,BN⊥AD,AD⊥平面PNB,得PB⊥AD,又PB⊥BD,得PB⊥平面ABCD,∴PB⊥CD.又∵BC⊥CD,∴CD⊥平面PBC,∴CD⊥PC,与已知条件PC与CD不垂直矛盾.∴P A≠PD.(3)在l上取一点E,使PE=BC,连结BE,DE,∵PE∥BC,∴四边形BCPE是平行四边形,∴PC∥BE,PC⊄平面EBD,BE⊂平面EBD,∴PC∥平面EBD.B组1.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是________.①若α⊥γ,α⊥β,则γ∥β②若m∥n,m⊂α,n⊂β,则α∥β③若m∥n,m∥α,则n∥α④若n⊥α,n⊥β,则α∥β解析:①错,两平面也可相交;②错,不符合面面平行的判定定理条件,需两平面内有两条相交直线互相平行;③错,直线n不一定在平面内;④由空间想象知垂直于同一直线的两平面平行,命题正确.答案:④2.已知m,n是两条不同的直线,α,β是两个不同的平面,有下列4个命题:①若m∥n,n⊂α,则m∥α;②若m⊥n,m⊥α,n⊄α,则n∥α;③若α⊥β,m⊥α,n⊥β,则m⊥n;④若m,n是异面直线,m⊂α,n⊂β,m∥β,则n∥α.其中正确的命题有_.解析:对于①,m有可能也在α上,因此命题不成立;对于②,过直线n作垂直于m 的平面β,由m⊥α,n⊄α可知β与α平行,于是必有n与α平行,因此命题成立;对于③,由条件易知m平行于β或在β上,n平行于α或在α上,因此必有m⊥n;对于④,取正方体中两异面的棱及分别经过此两棱的不平行的正方体的两个面即可判断命题不成立.综上可知②③正确.答案:②③3.已知m,n是平面α外的两条直线,且m∥n,则“m∥α”是“n∥α”的________条件.解析:由于直线m,n在平面外,且m∥n,故若m∥α,则必有n∥α,反之也成立.答案:充要4.设l1,l2是两条直线,α,β是两个平面,A为一点,下列命题中正确的命题是________.①若l1⊂α,l2∩α=A,则l1与l2必为异面直线②若α⊥β,l1⊂α,则l1⊥β③l1⊂α,l2⊂β,l1∥β,l2∥α,则α∥β④若l1∥α,l2∥l1,则l2∥α或l2⊂α解析:①错,两直线可相交于点A;②错,不符合面面垂直的性质定理的条件;③错,不符合面面平行的判定定理条件;④正确,空间想象即可.答案:④5.(2010年广东深圳模拟)若a不平行于平面α,且a⊄α,则下列结论成立的是________.①α内的所有直线与a异面②α内与a平行的直线不存在③α内存在唯一的直线与a平行④α内的直线与a都相交解析:由题设知,a和α相交,设a∩α=P,如图,在α内过点P的直线与a共面,①错;在α内不过点P的直线与a异面,④错;(反证)假设α内直线b∥a,∵a⊄α,∴a∥α,与已知矛盾,③错.答案:②6.设m、n是异面直线,则(1)一定存在平面α,使m⊂α且n∥α;(2)一定存在平面α,使m⊂α且n⊥α;(3)一定存在平面γ,使m、n到γ的距离相等;(4)一定存在无数对平面α与β,使m ⊂α,n ⊂β,且α∥β.上述4个命题中正确命题的序号为________.解析:(1)成立;(2)不成立,m 、n 不一定垂直;(3)过m 、n 公垂线段中点分别作m 、n 的平行线所确定平面到m 、n 距离就相等,(3)正确;满足条件的平面只有一对,(4)错.答案:(1)(3)7.如图,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下AP =a 3,底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =______. 答案:223a8.下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________(写出所有符合要求的图形序号).解析:①∵面AB ∥面MNP ,∴AB ∥面MNP .②若下底面中心为O ,易知NO ∥AB ,NO ⊄面MNP ,∴AB 与面MNP 不平行. ③易知AB ∥MP ,∴AB ∥面MNP .④易知存在一直线MC ∥AB ,且MC ⊄平面MNP ,∴AB 与面MNP 不平行. 答案:①③9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、CD 的中点,N 是BC 中点.点M 在四边形EFGH 上及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.答案:M ∈FHAA 1=2,10.如图,长方体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,E 为BC 的中点,点M 为棱AA 1的中点.(1)证明:DE ⊥平面A 1AE ; (2)证明:BM ∥平面A 1ED .证明:(1)在△AED 中,AE =DE =2,AD =2, ∴AE ⊥DE . ∵A1A ⊥平面ABCD , ∴A 1A ⊥DE ,∴DE ⊥平面A 1AE .(2) 设AD 的中点为N ,连结MN 、BN .在△A 1AD 中,AM =MA 1,AN =ND ,∴MN ∥A 1D ,∵BE ∥ND 且BE =ND ,∴四边形BEDN 是平行四边形, ∴BN ∥ED ,∴平面BMN ∥平面A 1ED ,∴BM ∥平面A 1ED . 11.(2010年扬州调研)在正方体ABCD -A 1B 1C 1D 1中,M ,N分别是AB ,BC 的中点.(1)求证:平面B 1MN ⊥平面BB 1D 1D ;(2)若在棱DD 1上有一点P ,使BD 1∥平面PMN ,求线段DP 与PD 1的比 解:(1)证明:连结AC ,则AC ⊥BD , 又M ,N 分别是AB ,BC 的中点, ∴MN ∥AC ,∴MN ⊥BD .∵ABCD -A 1B 1C 1D 1是正方体,∴BB 1⊥平面ABCD , ∵MN ⊂平面ABCD , ∴BB 1⊥MN , ∵BD ∩BB 1=B ,∴MN ⊥平面BB 1D 1D , ∵MN ⊂平面B 1MN ,∴平面B 1MN ⊥平面BB 1D 1D .(2)设MN 与BD 的交点是Q ,连结PQ ,PM ,PN ∵BD 1∥平面PMN ,BD 1⊂平面BB 1D 1D ,平面BB 1D 1D ∩平面PMN =PQ , ∴BD 1∥PQ ,∴DP ∶PD 1=DQ ∶QB =3∶1.12.如图,四边形ABCD 为矩形,BC ⊥平面ABE ,F为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设点M 为线段AB 的中点,点N 为线段CE 的中点.求证:MN ∥平面DAE .证明:(1)因为BC ⊥平面ABE ,AE ⊂平面ABE , 所以AE ⊥BC ,又BF ⊥平面ACE ,AE ⊂平面ACE , 所以AE ⊥BF ,又BF ∩BC =B ,所以AE ⊥平面BCE , 又BE ⊂平面BCE ,所以AE ⊥BE .(2)取DE 的中点P ,连结P A ,PN ,因为点N 为线段CE 的中点.所以PN ∥DC ,且PN =12DC ,又四边形ABCD 是矩形,点M 为线段AB 的中点,所以AM ∥DC ,且AM =12DC ,所以PN ∥AM ,且PN =AM ,故四边形AMNP 是平行四边形,所以MN ∥AP , 而AP ⊂平面DAE ,MN ⊄平面DAE ,所以MN ∥平面DAE .第四节 垂直关系A 组1.(2010年宁波十校联考)设b 、c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是________.①若b ⊂α,c ∥α,则b ∥c ②若b ⊂α,b ∥c ,则c ∥α ③若c ∥α,α⊥β,则c ⊥β ④若c ∥α,c ⊥β,则α⊥β解析:①中,b ,c 亦可能异面;②中,也可能是c ⊂α;③中,c 与β的关系还可能是斜交、平行或c ⊂β;④中,由面面垂直的判定定理可知正确.答案:④2.(2010年青岛质检)已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β.则真命题的个数为________.解析:对于①,由直线l ⊥平面α,α∥β,得l ⊥β,又直线m ⊂平面β,故l ⊥m ,故①正确;对于②,由条件不一定得到l ∥m ,还有l 与m 垂直和异面的情况,故②错误;对于③,显然正确.故正确命题的个数为2.答案:2个3.(2009年高考山东卷改编)已知α、β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β ”是“m ⊥β ”的________条件.解析:由平面与平面垂直的判定定理知如果m 为平面α内的一条直线,m ⊥β,则α⊥β,反过来则不一定.所以“α⊥β”是“m ⊥β”的必要不充分条件.答案:必要不充分4.(2009年高考浙江卷)如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.解析:如图,过D 作DG ⊥AF ,垂足为G ,连结GK ,∵平面ABD ⊥平面ABC ,又DK ⊥AB , ∴DK ⊥平面ABC ,∴DK ⊥AF .∴AF ⊥平面DKG ,∴AF ⊥GK . 容易得到,当F 接近E 点时,K 接近AB 的中点,当F 接围是(12,近C 点时,K 接近AB 的四等分点.∴t 的取值范1).答案:(12,1)5.(原创题)已知a 、b 为两条不同的直线,α、β为两个不同的平面,且a ⊥α,b ⊥β,则下列命题中假命题的有________.①若a ∥b ,则α∥β;②若α⊥β,则a ⊥b ;③若a 、b 相交,则α、β相交;④若α、β相交,则a ,b 相交.解析:若α、β相交,则a 、b 既可以是相交直线,也可以是异面直线. 答案:④6.(2009年高考山东卷)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点.(1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1;(2)证明:平面D 1AC ⊥平面BB 1C 1C .证明:(1)法一:取A 1B 1的中点为F 1,连结FF 1,C 1F 1. 由于FF 1∥BB 1∥CC 1,所以F 1∈平面FCC 1.因此平面FCC 1即为平面C 1CFF 1. 连结A 1D ,F 1C ,由于A 1F 1綊D 1C 1綊CD ,所以四边形A 1DCF 1为平行四边形, 因此A 1D ∥F 1C .又EE 1∥A 1D , 得EE 1∥F 1C .而EE 1⊄平面FCC 1,F 1C ⊂平面FCC 1, 故EE 1∥平面FCC 1.法二:因为F为AB的中点,CD=2,AB=4,AB∥CD,所以CD綊AF,因此四边形AFCD为平行四边形,所以AD∥FC.又CC1∥DD1,FC∩CC1=C,FC⊂平面FCC1,CC1⊂平面FCC1,AD∩DD1=D,AD ⊂平面ADD1A1,DD1⊂平面ADD1A1.A1∥平面FCC1.所以平面ADD又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.(2)连结AC,在△FBC中,FC=BC=FB,又F为AB的中点,所以AF=FC=FB.因此∠ACB=90°,即AC⊥BC.又AC⊥CC1,且CC1∩BC=C,所以AC⊥平面BB1C1C.而AC⊂平面D1AC,故平面D1AC⊥平面BB1C1C.B组1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是____.①a⊥α,b∥β,α⊥β②a⊥α,b⊥β,α∥β③a⊂α,b⊥β,α∥β④a⊂α,b∥β,α⊥β解析:由α∥β,b⊥β⇒b⊥α,又a⊂α,故a⊥b.答案:③2.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是________.①若m⊂α,n⊂β,m∥n,则α∥β②若n⊥α,n⊥β,m⊥β,则m⊥α③若m∥α,n∥β,m⊥n,则α⊥β④若α⊥β,α∩β=n,m⊥n,则m⊥α解析:由n⊥α,n⊥β可得α∥β,又因m⊥β,所以m⊥α.答案:②3.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是.①m⊥α,n⊂β,m⊥n⇒α⊥β②α∥β,m⊥α,n∥β⇒m⊥n③α⊥β,m⊥α,n∥β⇒m⊥n④α⊥β,α∩β=m,n⊥m⇒n⊥β解析:①错,不符合面面垂直的判断定理的条件;②由空间想象易知命题正确;③错,两直线可平行;④错,由面面垂直的性质定理可知只有当直线n在平面α内时命题才成立.答案:②4.已知两条不同的直线m,n,两个不同的平面α,β,则下列命题中正确的是_.①若m⊥α,n⊥β,α⊥β,则m⊥n②若m⊥α,n∥β,α⊥β,则m⊥n③若m∥α,n∥β,α∥β,则m∥n④若m∥α,n⊥β,α⊥β,则m∥n解析:易知①正确.而②中α⊥β且m⊥α⇒m∥β或m∈β,又n∥β,容易知道m,n 的位置关系不定,因此②错误.而③中分别平行于两平行平面的直线的位置关系不定,因此③错误.而④中因为②不对,此项也不对.综上可知①正确.答案:①5.设a,b,c表示三条直线,α,β表示两个平面,则下列命题的逆命题不成立的是________.①c⊥α,若c⊥β,则α∥β②b⊂β,c是a在β内的射影,若b⊥c,则a⊥b③b⊂β,若b⊥α,则β⊥α④b⊂α,c⊄α,若c∥α,则b∥c解析:当b⊂β,若β⊥α,则未必有b⊥α.答案:③6.已知二面角α-l-β的大小为30°,m、n为异面直线,m⊥平面α,n⊥平面β,则m、n 所成的角为________.解析:∵m⊥α,n⊥β,∴m 、n 所成的夹角与二面角α-l -β所成的角相等或互补. ∵二面角α-l -β为30°,∴异面直线m 、n 所成的角为30°.答案:30°7.如图所示,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在直线______上.解析:由AC ⊥AB ,AC ⊥BC 1,AC ⊥平面ABC 1,AC ⊂平面ABC ,∴平面ABC 1⊥平面ABC ,C 1在平面ABC 上的射影H 必在两平面的交线AB 上.答案:AB 8.(2010年江苏昆山模拟)在矩形ABCD 中,AB =3,AD =4,P 在AD 上运动,设∠ABP =θ,将△ABP 沿BP 折起,使得平面ABP 垂直于平面BPDC ,AC 长最小时θ的值为________.解析:过A 作AH ⊥BP 于H ,连CH ,∴AH ⊥平面BCDP . ∴在Rt △ABH 中,AH =3sin θ,BH =3cos θ.在△BHC 中,CH 2=(3cos θ)2+42-2×4×3cos θ×cos(90°-θ),∴在Rt △ACH 中, AC 2=25-12sin2θ, ∴θ=45°时,AC 长最小.答案:45°9.在正四棱锥P -ABCD 中,P A =32AB ,M 是BC 的中点,G 是△P AD 的重心,则在平面P AD 中经过G 点且与直线PM 垂直的直线有________条.为32a . 解析:设正四棱锥的底面边长为a ,则侧棱长由PM ⊥BC ,∴PM =⎝⎛⎭⎫32a 2-⎝⎛⎭⎫a 22=22a ,连结PG 并延长与AD 相交于N 点,则PN =22a ,MN =AB =a ,∴PM 2+PN 2=MN 2, ∴PM ⊥PN ,又PM ⊥AD ,∴PM ⊥面P AD ,∴在平面P AD 中经过G 点的任意一条直线都与PM 垂直.答案:无数10.如图,在三棱锥S -ABC 中,OA =OB ,O 为BC 中点,SO ⊥平面ABC ,E 为SC 中点,F 为AB 中点.(1)求证:OE ∥平面SAB ; (2)求证:平面SOF ⊥平面SAB .证明:(1)取AC 的中点G ,连结OG ,EG ,∵OG ∥AB ,EG ∥AS ,EG ∩OG =G ,SA ∩AB =A , ∴平面EGO ∥平面SAB ,OE ⊂平面OEG∴OE ∥平面SAB(2)∵SO ⊥平面ABC , ∴SO ⊥OB ,SO ⊥OA ,又∵OA =OB ,SA 2=SO 2+OA 2,SB 2=SO 2+OB 2,∴SA =SB ,又F 为AB 中点, ∴SF ⊥AB ,∵SO ⊥AB ,∵SF ∩SO =S ,∴AB ⊥平面SOF ,∵AB ⊂平面SAB ,∴平面SOF ⊥平面SAB .11.在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.(1)求证:CE ∥平面C 1E 1F ;(2)求证:平面C 1E 1F ⊥平面CEF . 证明:(1)取CC 1的中点G ,连结B 1G 交C 1F 于点F 1,连结E 1F 1,A 1G ,FG ,∵F 是BB 1的中点,BCC 1B 1是矩形, ∵四边形FGC 1B 1也是矩形,∴FC 1与B 1G 相互平分,即F 1是B 1G 的中点. 又E 1是A 1B 1的中点,∴A 1G ∥E 1F 1.又在长方体中,AA 1綊CC 1,E ,G 分别为AA 1,CC 1的中点,∴A 1E 綊CG ,∴四边形A 1ECG 是平行四边形, ∴A 1G ∥CE ,∴E 1F 1∥CE .∵CE ⊄平面C 1E 1F ,E 1F 1⊂平面C 1E 1F , ∴CE ∥平面C1E 1F .(2)∵长方形BCC 1B 1中,BB 1=2BC ,F 是BB 1的中点, ∴△BCF 、△B 1C 1F 都是等腰直角三角形, ∴∠BFC =∠B 1FC 1=45°, ∴∠CFC 1=180°-45°-45°=90°, ∴C 1F ⊥CF .∵E ,F 分别是矩形ABB 1A 1的边AA 1,BB 1的中点, ∴EF ∥AB .又AB ⊥平面BCC 1B 1,又C 1F ⊂平面BCC 1B 1, ∴AB ⊥C 1F ,∴EF ⊥C 1F .又CF ∩EF =F ,∴C 1F ⊥平面CEF .∵C 1F ⊂平面C 1E 1F ,∴平面C 1E 1F ⊥平面CEF .12.(2010年江苏淮安模拟)如图,已知空间四边形ABCD 中,BC =AC ,AD =BD ,E 是AB 的中点.求证:(1)AB ⊥平面CDE ; (2)平面CDE ⊥平面ABC ;(3)若G 为△ADC 的重心,试在线段AE 上确定一点F ,使得GF ∥平面CDE .证明:(1)⎭⎪⎬⎪⎫BC =AC AE =BE ⇒CE ⊥AB ,同理,⎭⎪⎬⎪⎫AD =BD AE =BE ⇒DE ⊥AB ,又∵CE ∩DE =E ,∴AB ⊥平面CDE . (2)由(1)知AB ⊥平面CDE , 又∵AB ⊂平面ABC , ∴平面CDE ⊥平面ABC .AG GH =21, (3)连结AG 并延长交CD 于H ,连结EH ,则在AE 上取点F 使得AF FE =21,则GF∥EH,。
新教材苏教版高中数学必修第二册第14章统计 知识点考点重点难点解题规律归纳总结
第14章统计14.1获取数据的基本途径及相关概念....................................................................... - 1 -14.2抽样 ...................................................................................................................... - 3 -14.2.1简单随机抽样............................................................................................ - 3 -14.2.2分层抽样 ................................................................................................... - 7 -14.3统计图表 ............................................................................................................ - 11 -14.3.1扇形统计图、折线统计图、频数直方图.............................................. - 11 -14.3.2频率直方图 ............................................................................................. - 15 -14.4用样本估计总体................................................................................................. - 19 -14.4.1用样本估计总体的集中趋势参数.......................................................... - 19 -14.4.2用样本估计总体的离散程度参数.......................................................... - 22 -14.4.3用频率直方图估计总体分布.................................................................. - 22 -14.4.4百分位数 ................................................................................................. - 28 -14.1获取数据的基本途径及相关概念知识点1获取数据的基本途径获取数据的基本途径适用类型注意问题通过调查获取数据对于有限总体问题,我们一般通过抽样调查或普查的方法获取数据要充分有效地利用背景信息选择或创建更好的抽样方法,并有效地避免抽样过程中的人为错误通过试验获取数据没有现存的数据可以查询严格控制试验环境,通过精心的设计安排试验,以提高数据质量通过观察获取数据自然现象要通过长久的持续观察获取数据通过查询获取数据众多专家研究过,其收集的数据有所存储必须根据问题背景知识“清洗”数据,去伪存真(1)利用统计报表和年鉴属于哪种获取数据的途径?(2)要了解一种新型灯管的寿命,能通过观察获取数据吗?[提示](1)属于通过查询获取数据的途径.(2)不能,应该通过试验获取数据.知识点2总体、个体、样本、样本容量的概念一般地,在获取数据时,我们把所考察对象(某一项指标的数据)的全体叫作总体,把组成总体的每一个考察对象叫作个体,从总体中所抽取的一部分个体叫作总体的一个样本,样本中个体的数目叫作样本容量.知识点3统计分析的基本步骤和基本思想(1)统计分析的基本步骤获取数据↓分析数据↓作出估计(2)统计分析的基本思想:抽取具有较好代表性的样本,由样本数据的特征、规律估计总体的状况.重点题型类型1获取数据途径的选择【例1】(1)下列数据一般是通过试验获取的是()A.2019年南京市的降雨量B.2019年新生儿人口数量C.某学校高一年级同学的数学测试成绩D.某种特效中成药的配方(2)“中国天眼”为500米口径球面射电望远镜(Five hundred meters Aperture Spherical Telescope,简称FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是()A.通过调查获取数据B.通过试验获取数据C.通过观察获取数据D.通过查询获得数据(1)D(2)C[(1)某种特效中成药的配方的数据只能通过试验获得.(2)“中国天眼”主要是通过观察获取数据.]选择获取数据途径的依据选择获取数据的途径主要是根据所要研究问题的类型,以及获取数据的难易程度.有的数据可以有多种途径获取,有的数据只能通过一种途径获取,选择合适的方法和途径能够更好地提高数据的可靠性.类型2获取数据途径的方法的设计【例2】为了缓解城市的交通拥堵情况,某市准备出台限制私家车的政策,为此要进行民意调查.某个调查小组调查了一些拥有私家车的市民,你认为这样的调查结果能很好地反映该市市民的意愿吗?[解](1)一个城市的交通状况的好坏将直接影响着生活在这个城市中的每个人,关系到每个人的利益.为了调查这个问题,在抽样时应当关注到各种人群,既要抽到拥有私家车的市民,也要抽到没有私家车的市民.(2)调查时,如果只对拥有私家车的市民进行调查,结果一定是片面的,不能代表所有市民的意愿.因此,在调查时,要对生活在该城市的所有市民进行随机地抽样调查,不要只关注到拥有私家车的市民.在统计活动中,尤其是大型的统计活动,为避免一些外界因素的干扰,通常需要确定调查的对象、调查的方法与策略,需要精心设计前期的准备工作和收集数据的方法,然后对数据进行分析,得出统计推断.14.2抽样14.2.1简单随机抽样知识点1简单随机抽样(1)简单随机抽样的概念一般地,从个体数为N的总体中逐步不放回地取出n个个体作为样本(n<N),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.(2)常用的简单随机抽样方法有抽签法和随机数表法.知识点2抽签法抽取样本的步骤(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.采用抽签法抽取样本时,为什么将编号写在外观、质地等无差别的小纸片(也可以使用卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌?[提示]为了使每个号签被抽取的可能性相等,保证抽样的公平性.知识点3随机数表法抽取样本的步骤(1)对总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.重点题型类型1简单随机抽样的判断【例1】下列5个抽样中,简单随机抽样的个数是()①一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某班从50名同学中,选出5名数学成绩最优秀的同学代表本班参加数学竞赛;④一彩民选号,从装有33个大小、形状都相同的号签的盒子中无放回地抽出6个号签.A.0 B.1 C.2 D.3B[根据简单随机抽样的特点逐个判断.①不是简单随机抽样.因为一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件它不是“逐个”抽取.②不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③不是简单随机抽样.因为5名同学是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.④是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,等可能的抽样.综上,只有④是简单随机抽样.]简单随机抽样必须具备的特点(1)被抽取样本的总体中的个体数N是有限的;(2)抽取的样本是从总体中逐个抽取的;(3)简单随机抽样是一种等可能的抽样.如果三个特征有一个不满足,就不是简单随机抽样.类型2抽签法的应用【例2】从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.[解]第一步,将20架钢琴编号,号码是01,02, (20)第二步,将号码分别写在外观、质地等无差别的小纸片上作为号签.第三步,将小纸片放入一个不透明的盒里,充分搅匀.第四步,从盒中不放回地逐个抽取5个号签,使与号签上编号相同的钢琴进入样本.1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.2.应用抽签法时应注意的问题:(1)编号时,如果已有编号可不必重新编号;(2)号签要求大小、形状完全相同;(3)号签要均匀搅拌;(4)根据实际需要采用有放回或无放回抽取.类型3随机数表法及其综合应用【例3】某市质监局要检查某公司某个时间段生产的500克袋装牛奶的质量是否达标,现从500袋牛奶中抽取10袋进行检验.(1)利用随机数表法抽取样本时,应如何操作?(2)如果用随机试验生成部分随机数如下所示,据此写出应抽取的袋装牛奶的编号.162,277,943,949,545,354,821,737,932,354,873,520,964,384,263,491,648,642,175, 331,572,455,068,877,047,447,672,172,065,025,834,216,337,663,013,785,916,955,567, 199,810,507,175,128,673,580,667.(3)质监局对该公司生产的袋装牛奶检验的质量指标有两个:一是每袋牛奶的质量满足500±5g,二是10袋质量的平均数≥500g,同时满足这两个指标,才认为公司生产的牛奶为合格,否则为不合格.经过检测得到10袋袋装牛奶的质量(单位:g)为:502,500,499,497,503,499,501,500,498,499.计算这个样本的平均数,并按照以上标准判断牛奶质量是否合格.[解](1)第一步,将500袋牛奶编号为001,002, (500)第二步,用随机数工具产生001~500范围内的随机数.第三步,把产生的随机数作为抽中的编号,使编号对应的袋装牛奶进入样本.第四步,重复上述过程,直到产生不同的编号等于样本所需要的数量.(2)应抽取的袋装牛奶的编号为:162,277,354,384,263, 491,175,331,455,068.(3)y=502+500+499+497+503+499+501+500+498+49910=499.8<500,所以该公司的牛奶质量不合格.1.该公司对质监局的这种检验方法并不认可,公司自己质检部门抽取了100袋牛奶按照本例(3)检验标准,统计得到这100袋袋装牛奶的质量都满足500±5g,平均数为500.4g,你认为质监局和公司的检验结果哪一个更可靠?为什么?[解]该公司的质检部门的检验结果更可靠.因为质监局抽取的样本较少,不能很好地反映总体,该公司的质检部门抽取的样本量较大,一般来说,样本量大的会好于样本量小的.尤其是样本量不大时,增加样本量可以较好地提高估计的效果.2.为进一步加强公司生产牛奶的质量,规定袋装牛奶的质量变量值为Y i =⎩⎨⎧1,质量不低于500 g 0,质量低于500 g,质监局又抽取了一个容量为50的样本,其质量变量值如下:1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1据此估计该公司生产的袋装牛奶质量不低于500 g 的比例.[解] 由样本观测数据,计算可得样本平均数为y =0.56,据此估计该公司生产的袋装牛奶质量不低于500 g 的比例约为0.56.随机数表法的注意点(1)当总体容量较大,样本容量不大时,可用随机数表法抽取样本.(2)用随机数表法抽取样本,为了方便,在编号时需统一编号的位数.(3)掌握利用信息技术产生随机数的方法和规则.14.2.2 分层抽样知识点 分层抽样(1)分层抽样的概念当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各部分在总体中所占的比实施抽样,这样的抽样方法叫作分层抽样,所分成的各个部分称为层.分层抽样的总体具有什么特性?[提示] 分层抽样的总体按一个或多个变量划分成若干个子总体,并且每一个个体属于且仅属于一个子总体.(2)分层抽样的步骤①将总体按一定标准分层;②计算各层的个体数与总体的个体数的比;③按各层的个体数占总体的个体数的比确定各层应抽取的样本容量;④在每一层进行抽样(可用简单随机抽样).重点题型类型1对分层抽样概念的理解【例1】(1)某政府机关在编人员共100人,其中副处级以上干部10人,一般工作人员70人,后勤人员20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列方法最合适的是()A.抽签法B.随机数法C.简单随机抽样D.分层抽样(2)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能抽样,必须进行() A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽取的个体数量相同(1)D(2)C[(1)总体由差异明显的三部分构成,应选用分层抽样.(2)保证每个个体等可能的被抽取是三种基本抽样方式的共同特征,为了保证这一点,分层抽样时必须在所有层都按同一抽样比等可能抽取.]1.使用分层抽样的前提分层抽样的总体按一个或多个变量划分成若干个子总体,并且每一个个体属于且仅属于一个子总体,而层内个体间差异较小.2.使用分层抽样应遵循的原则(1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.类型2分层抽样的应用【例2】某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层抽样的方法抽取,写出抽样过程.分层抽样中各层的样本容量如何确定?[解]第一步,确定抽样比,样本容量与总体容量的比为20160=18.第二步,确定分别从三类人员中抽取的人数,从行政人员中抽取16×18=2(人);从教师中抽取112×18=14(人);从后勤人员中抽取32×18=4(人).第三步,采用简单随机抽样的方法,抽取行政人员2人,教师人员14人,后勤人员4人.第四步,把抽取的个体组合在一起构成所需样本.分层抽样的步骤类型3分层抽样中的计算问题【例3】(1)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查,假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为() A.101 B.808 C.1 212 D.2 012(2)将一个总体分为A,B,C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.(3)分层抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为____________.(1)B (2)20 (3)6 [(1)因为甲社区有驾驶员96人,并且在甲社区抽取的驾驶员的人数为12人, 所以四个社区抽取驾驶员的比例为1296=18,所以驾驶员的总人数为(12+21+25+43)÷18=808(人).(2)∵A ,B ,C 三层个体数之比为5∶3∶2,又有总体中每个个体被抽到的概率相等,∴分层抽样应从C 中抽取100×210=20(个)个体.(3)ω=2020+30×3+3020+30×8=6.]在例3(2)中,A ,B ,C 三层的样本的平均数分别为15,30,20,则样本的平均数为________.20.5 [由题意可知样本的平均数为ω=55+3+2×15+35+3+2×30+25+3+2×20=20.5.]进行分层抽样的相关计算时,常用到的2个关系(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.14.3统计图表14.3.1扇形统计图、折线统计图、频数直方图知识点统计图表统计图表主要应用扇形统计图能够直观描述各类数据占总体的比例频数直方图既直观反映分布状况,又可以表现变化趋势折线统计图描述数据随时间的变化趋势重点题型类型1频率分布表和频数直方图的画法【例1】一个农技站为了考察某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65.8 5.56.0 6.5 5.1 6.5 5.3 5.9 5.5 5.86.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.07.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.77.46.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.65.36.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.05.66.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.75.8 5.37.06.0 6.0 5.9 5.4 6.0 5.2 6.06.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表,绘制出频数直方图,并估计在这块试验田里长度在5.75~6.35 cm之间的麦穗所占的百分比.[解](1)计算最大值与最小值的差:7.4-4.0=3.4.(2)决定组距与组数:若取组距为0.3,因为3.40.3≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12.(3)决定分点:使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55.(4)列频率分布表:分组频数频率[3.95,4.25)10.01[4.25,4.55)10.01[4.55,4.85)20.02[4.85,5.15)50.05[5.15,5.45)110.11[5.45,5.75)150.15[5.75,6.05)280.28[6.05,6.35)130.13[6.35,6.65)110.11[6.65,6.95)100.10[6.95,7.25)20.02[7.25,7.55]10.01合计100 1.00(5)绘制频数直方图如图.从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35 cm之间的麦穗约占41%.频率分布表绘制频数直方图应注意的问题(1)在绘制出频率分布表后,绘制频数直方图的关键就是确定小矩形的高.一般地,频数直方图中两坐标轴上的单位长度是不一致的,合理的定高方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“频数”所占的比例来定高.如我们预先设定以“”为1个单位长度,代表“1”,则若一个组的频数为2,则该小矩形的高就是“”(占两个单位长度),如此类推.(2)数据要合理分组,组距要选取恰当,一般尽量取整,数据为30~100个左右时,应分成5~12组,在频数直方图中,小长方形的高就是频数,各组频数之和等于样本容量.类型2 频数直方图的应用【例2】 为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频数直方图(如图所示).(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?[解] (1)由频数直方图得,各组的频数分别为6,12,54,42,24,12,所以样本容量为150,因此第二小组的频率为126+12+54+42+24+12=0.08.(2)由频数直方图得达标的各组频数分别为54,42,24,12,可估计该校高一年级学生的达标率为54+42+24+12150×100%=88%.频数直方图的性质:因为小矩形的高表示频数,各组频数的和为样本容量,各组的频率=频数/样本容量,即样本容量=频数/相应的频率.类型3 统计图表的综合应用【例3】 如图是根据某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折线统计图,试根据折线统计图反映的信息,绘制该市3月1日到10日最低气温(单位:℃)的扇形统计图.[解]该城市3月1日至10日的最低气温(单位:℃)情况如下表:日期12345678910最低气温(℃)-3-20-1120-122其中最低气温为-3 ℃的有1天,占10%,最低气温为-2 ℃的有1天,占10%,最低气温为-1℃的有2天,占20%,最低气温为0℃的有2天,占20%,最低气温为1℃的有1天,占10%,最低气温为2℃的有3天,占30%,扇形统计图如图所示.若本例中条件不变,绘制该市3月1日到3月10日最低气温(单位:℃)的频数直方图.[解]该城市3月1日到3月10日的最低气温(单位:℃)情况如下表:日期12345678910最低气温-3-20-1120-122 (℃)其中最低气温为-3 ℃的有1天,最低气温为-2 ℃的有1天,最低气温为-1 ℃的有2天,最低气温为0 ℃的有2天,最低气温为1 ℃的有1天,最低气温为2 ℃的有3天.频数直方图如图所示.折线统计图的读图方法(1)读折线统计图时,首先要看清楚直角坐标系中横、纵坐标表示的意义,其次要明确图中的数量及其单位.(2)在折线统计图中,从折线的上升、下降可分析统计数量的增减变化情况,从陡峭程度上,可分析数据间相对增长、下降的幅度.14.3.2频率直方图知识点1频率直方图把横轴均分成若干段,每一段对应的长度称为组距,然后以此线段为底作矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组的频率,这些矩形就构成了频率直方图.(1)对数据分组时,组距、组数的确定有没有固定的标准?(2)当样本容量不超过100时,分多少组合适?[提示](1)组距与组数的确定没有固定的标准,将数据分组时,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.在确定分组区间的端点,即分点时,应对分点进行适当调整,使分点比数据多一位小数,并确保每个数据均能落在一个区间内,而不是处于区间的端点.(2)组数与样本容量有关,一般地,样本容量越大,分的组数也越多.当样本容量不超过100时,按照数据的多少,常分成5至12组.知识点2频率折线图如果将频率直方图中各个矩形的上底边的中点顺次连接起来,并将两边端点向外延伸半个组距,就得到频率折线图,简称折线图.重点题型类型1频率分布表的制作及应用【例1】(1)容量为20的样本数据,分组的频数如下表:分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数234542数据落在区间[10,40)的频率为________.(2)已知一个样本数据:2723252729312730323128262729282426272830以2为组距,列出频率分布表.(1)0.45[数据落在区间[10,40)内的频数为9,样本容量为20,所求频率为9 20=0.45.故填0.45.](2)[解]①计算最大值与最小值的差:最大值为32,最小值为23,它们的差为32-23=9.②已知组距为2,决定组数:因为92=4.5,所以组数为5.③决定分点:[22.5,24.5),[24.5,26.5),[26.5,28.5),[28.5,30.5),[30.5,32.5].④列频率分布表如下:分组频数频率[22.5,24.5)20.1[24.5,26.5)30.15[26.5,28.5)80.4[28.5,30.5)40.2[30.5,32.5]30.15合计2011.频率、频数和样本容量的关系为频率=频数样本容量,利用此式可知二求一.2.制作频率分布表的步骤(1)求全距,决定组数与组距,组距=全距组数;(2)分组,通常对组内数值所在区间取左闭右开区间(或左开右闭区间),最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表.提醒:(1)在制作频率分布表时,分组过多或过少都不好.分组过多会给制作频率分布表带来困难,分组过少虽减少了操作,但不能很好地反映总体情况.一般样本容量越大,所分组数应越多.(2)所分的组数应力求“取整”.组数k=全距组距,若k∈Z,则组数为k;否则,组数为大于k的最小整数,这时需适当增大全距,在两端同时增加适当的范围.(3)在决定分点时,应避免将样本中的数据作为分点,常将分点的数值取比样本中的数据多一位小数.类型2频率直方图、折线图的制作与应用【例2】有同一型号的汽车100辆,为了解这种汽车每耗油1 L所行路程的情况,现从中随机抽出10辆在同一条件下进行耗油1 L所行路程试验,得到如下样本数据(单位:km):13.7,12.7,14.4, 13.8,13.3,12.5,13.5,13.6,13.1,13.4,其分组如下:分组频数频率[12.45,12.95)[12.95,13.45)[13.45,13.95)[13.95,14.45]合计10 1.0(1)(2)根据上表,在给定坐标系中画出频率直方图及频率折线图;(3)根据上述图表,估计总体数据落在[12.95,13.95)中的可能性.[解](1)频率分布表如下.分组频数频率[12.45,12.95) 2 0.2 [12.95,13.45) 3 0.3 [13.45,13.95) 4 0.4 [13.95,14.45]1 0.1 合计101.0(2)频率直方图及频率折线图如图.(3)根据上述图表,可知数据落在[12.95,13.95)中的频率为0.3+0.4=0.7,故总体数据落在[12.95,13.95)中的可能性为0.7.1.制作频率直方图的方法步骤 (1)制作频率分布表.(2)建立直角坐标系:把横轴分成若干段,每一段对应一个组的组距,纵轴表示频率组距. (3)画矩形:在横轴上标明各组端点值,以相邻两点间的线段为底,作高等于该组的频率组距的矩形,这样得到一系列矩形,就构成了频率直方图.2.频率折线图的制作步骤 (1)取每个矩形上底边中点. (2)顺次连接各个中点.(3)取值区间两端点需分别向外延伸半个组距,并取此组距上在x 轴上的点与折线的首、尾分别相连.3.解决频率直方图的相关计算 (1)频率组距×组距=频率,即小长方形的高乘以宽即为落在相应区间数据的频率. (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量.提醒:频率直方图中,每个矩形的高为频率组距,面积为对应组的频率.14.4用样本估计总体14.4.1用样本估计总体的集中趋势参数知识点平均数、众数与中位数的定义(1)平均数:一组数据的和除以数据个数所得到的数.把总体中所有数据的算术平均数称为总体的均值.(2)众数:一组数据中出现次数最多的数.(3)中位数:一组数据按照从小到大的顺序排列后,如果数据的个数为奇数,处于正中间位置的数.如果数据的个数是偶数,则取正中间两个数据的平均数.(1)中位数一定是样本数据中的一个数吗?(2)一组数据可以有几个众数?中位数是否也具有相同的结论?[提示](1)不一定.一组数据按大小顺序排列后,如果有奇数个数据,处于中间位置的数是中位数;如果有偶数个数据,则取中间两个数据的平均数是中位数.(2)一组数据中可能有一个众数,也可能有多个众数,中位数只有唯一一个.重点题型类型1平均数、中位数和众数的计算【例1】已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有() A.a>b>c B.a>c>bC.c>a>b D.c>b>aD[由题意得a=110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,则b=16,c=18,∴c>b>a.](1)求样本数据的中位数和众数时,把数据按照从小到大的顺序排列后,按照。
数学14章知识树
数学14章知识树全文共四篇示例,供读者参考第一篇示例:数学作为一门重要的学科,被广泛地运用于各个领域。
而在数学的学习过程中,很多时候我们往往会感觉有些知识点相互关联,但却无法构建出一个系统性的框架,难以将其融会贯通。
为了帮助大家更好地理解数学的知识体系,我们可以通过绘制“知识树”的形式,将各个知识点串联起来,形成一个有机的整体。
在本文中,我将为大家介绍一份关于数学的14章知识树,希望可以帮助大家更好地理解数学知识的结构和内在联系。
第一章:基本概念在这一章中,我们将学习到数学的起源和基本概念,包括数的分类、数的性质、集合的概念等。
这是数学学习的基础,建立在这些基本概念之上,我们才能更深入地探索数学的世界。
第二章:初等代数在这一章中,我们将学习关于代数的基本概念和技巧,包括多项式的运算、方程的解法、因式分解等。
初等代数是数学学习的重要阶段,它为我们打下了解决各种数学问题的基础。
第三章:几何学几何学是研究空间和形状的科学,它包括点、线、面、体等基本概念,以及几何图形的性质和相互关系。
通过学习几何学,我们可以更好地理解空间结构,解决与形状和大小相关的问题。
第四章:三角学三角学是研究三角形和三角函数的学科,它包括三角函数的定义、图像、性质和应用等内容。
三角学是数学中一个重要的分支,它在解决各种实际问题中扮演着至关重要的角色。
第五章:微积分微积分是研究变化的数学,它包括导数、微分、积分等概念和技巧。
微积分被广泛地应用于科学、工程、经济等领域,它为我们提供了解决变化和尺度问题的数学工具。
第六章:概率论概率论是研究随机事件的概率和规律的学科,它包括概率的定义、性质、分布等内容。
概率论在各种实际问题中都有着广泛的应用,它帮助我们了解随机现象的规律性和规律。
第七章:数论数论是研究整数的性质和规律的学科,它包括素数、同余、数论函数等内容。
数论在密码学、编码理论等领域有着重要的应用,它帮助我们理解整数之间的关系和规律。
数学十四章知识点总结
数学十四章知识点总结一、基本概念1.1 数论基本概念数论是研究整数的性质及其间的关系的一个分支学科。
在数论中,我们关心的对象是整数,主要讨论整数的性质、整数的因数分解、整数的互质关系、同余关系等。
1.2 方程与不等式方程与不等式是数学中非常基础的概念,方程是指含有未知数的等式,不等式是指不同变量之间的大小关系。
解方程和不等式是求解未知数的值,是数学中常见的重要问题。
1.3 几何基本概念在数学中,几何是研究空间和形体的性质及其间的关系的一个分支学科。
在几何的研究中,我们关心的对象是空间中的点、线、面等基本几何对象。
1.4 函数基本概念函数是数学中一个重要的概念,它描述了一个变量如何依赖于另一个(或一组)变量。
函数的基本概念包括定义域、值域、单调性、奇偶性等。
1.5 概率基本概念概率是研究随机事件发生的可能性的一个分支学科。
概率的基本概念包括随机试验、事件空间、样本空间、事件及其概率等。
1.6 统计基本概念统计是研究数据的收集、整理、分析和解释的一个分支学科。
统计的基本概念包括总体、样本、频率分布、描述统计和推断统计等。
二、整式与分式2.1 整式的基本概念整式是由一系列加法和乘法运算组合而成的代数式,包括整数、常数、变量和它们的乘积与和。
整式的基本概念包括单项式、多项式、同类项、合并同类项等。
2.2 整式的四则运算整式的四则运算包括加法、减法、乘法和除法,主要是通过合并同类项和分配律来实现。
整式的四则运算是代数中的重要内容,对于解决各种代数问题都非常有用。
2.3 分式的基本概念分式是由一个整式分子和一个整式分母组成的代数式,其中分母不能为0。
分式的基本概念包括真分式、假分式、带分数、分式的化简等。
2.4 分式的四则运算分式的四则运算包括分数的加减、分数的乘除、分式的化简等。
通过分数的四则运算,可以解决涉及分数的各种数学问题。
2.5 整式与分式方程整式与分式方程是含有未知数的代数式,通过对其进行运算,可以得到未知数的解。
高中数学知识点全解及总结
高中数学知识点全解及总结高中数学是学生在中学阶段学习的一门重要学科,它不仅是培养学生逻辑思维和解决问题能力的基础,也是大学及未来职业生涯中不可或缺的一部分。
本文将对高中数学的主要知识点进行全解及总结,以帮助学生更好地理解和掌握这些概念。
一、代数代数部分是高中数学的核心内容之一,涉及到未知数的运算和方程的求解。
1. 集合与函数集合的概念、运算及其性质是代数的基础。
函数是集合之间的映射关系,包括定义域、值域、单调性、奇偶性等基本概念。
函数的表示方法有解析式、图像和表格等。
2. 指数与对数指数函数是形如y=a^x的函数,其中a为正实数且a≠1。
对数函数是指数函数的逆运算,以a为底的对数记作log_a_b。
3. 多项式多项式是由若干个单项式相加而成的代数表达式。
多项式的运算包括加、减、乘、除以及因式分解。
多项式方程的求解是高中代数的重要内容。
4. 二次函数二次函数是形如y=ax^2+bx+c的函数,其中a≠0。
二次函数的图像是抛物线,其顶点、对称轴和开口方向等性质在解决实际问题中有广泛应用。
5. 不等式不等式是表示大小关系的数学表达式。
解不等式包括找到使不等式成立的变量取值范围。
一元一次不等式、一元二次不等式和绝对值不等式是常见的类型。
二、几何几何部分主要研究形状、大小、相对位置等空间属性。
1. 平面几何平面几何研究二维平面中的图形,包括点、线、面的基本性质,以及三角形、四边形、圆等特殊图形的性质和计算。
2. 立体几何立体几何关注三维空间中的图形,如棱柱、棱锥、圆柱、圆锥和球等。
这些图形的体积和表面积的计算是学习的重点。
3. 解析几何解析几何通过坐标系统将几何图形与代数方程联系起来。
直线、圆和椭圆等曲线的方程及其性质在解析几何中有着详细的讨论。
三、三角学三角学是研究三角形的边角关系以及与圆周率π有关的数学分支。
1. 三角比三角比是三角形中边长或角度的比值,包括正弦、余弦、正切等。
这些三角比在解决与角度和长度相关的几何问题中非常有用。
高中数学苏教版必修第二册第十四章《百分位数》示范公开课教学课件
这组数据中第30和31位数分别为125和126,所以,这组数据的上四分位数为.
计算百分位数时,一是注意是多少百分位数;二是注意是否按从小到大的顺序排序;三是注意是否有相同的数据.
某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:千瓦时)的函数解析式.(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率直方图.若这100户居民中,今年1月份用电费用不超过260元的占80%,求a,b的值.(3)根据(2)中求得的数据计算用电量的75百分位数.
B
已知100个数据的75百分位数是9.3,则下列说法正确的是 ( )A.这100个数据中一定有75个数小于或等于9.3B.把这100个数据从小到大排列后,9.3是第75个数据C.把这100个数据从小到大排列后,9.3是第75个数据和第76个数据的平均数D.把这100个数据从小到大排列后,9.3是第75个数据和第74个数据的平均数
(1)依据题设条件,分段写出函数解析式;(2)依据题设条件结合频率直方图,利用方程思想解决;(3)利用百分位数的定义结合频率直方图直接求解.
解:(1)当0≤x≤200时,y=0.5x;当200<x≤400时y=0.5×200+0.8×(x-200)=0.8x-60;当x>400时y=0.5×200+0.8×200+1.0×(x-400)=x-140.所以y与x之间的函数解析式为
(整理)高三数学第十四章
第十四章 极限与导数一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞→+∞→,另外)(lim 0x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。
类似地)(lim 0x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。
2.极限的四则运算:如果0lim x x →f(x)=a, 0lim x x →g(x)=b ,那么0lim x x →[f(x)±g(x)]=a ±b,lim x x →[f(x)•g(x)]=ab, 0limx x →).0()()(≠=b bax g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0lim x x →f(x)存在,并且0lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。
4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。
5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若xyx ∆∆→∆0lim存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或x dxdy ,即000)()(lim)('0x x x f x f x f x x --=→。
由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。
若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。
高中数学各章知识点总结
高中数学各章知识点总结必修1各章知识点总结第一章:集合与函数的概念1.集合的概念、三个元素特征及两种表示方法2.子集、集合相等、真子集的概念、符号表示及性质3.交集、并集、补集的概念、符号表示及性质4.函数的概念及正比例、反比例、一次、二次函数的图像、定义域及值域5.区间的概念及知识:(1).求定义域(2)求值域(3)已知解析式求函数值(分段函数)(4).判断函数相等6.映射、象、原象的概念7.单调性的概念及判断函数单调性的方法(1)图像法(2)定义证明:设、作变、判、下8.函数的最值:(1)二次函数闭区间上的最值问题(2)单调性求函数的最值或值域问题9.函数的奇偶性:奇偶性的定义及证明过程第二章:基本初等函数1.指数及指数幂的运算及有理数指数幂的运算性质2.指数函数的图像和性质及应用(1)判断指数函数(2)比较两个值的大小3.对数的定义、指数式与对数式的转化、三个运算性质及换底公式4.指数函数的图像和性质及应用(指数、对数函数的对比)5.幂函数的图像、性质及公式第三章函数和方程1.函数的零点与方程的根的关系及零点存在性定理2.二分法的基本思想及求方程的零点及及近似值的步骤3.函数的应用:函数的拟合问题模块2知识点汇总1.柱、锥、台、球的结构特征,空间几何体的三视图及直观图2.空间几何体的表面积及体积公式的掌握和应用3.点、线、面的位置关系,直线、平面平行和垂直的判定及性质,平面、平面平行和垂直的判定及性质,并应用判定及性质解几何题4.直线的斜率公式和倾斜角,直线方程的五种表达式,直线间的位置关系及距离公式5.圆的方程的三种表达式及求法,直线和圆,圆和圆的位置关系及距离公式并利用有关知识解解析几何问题一.三种逻辑结构的程序框图及程序语句1.顺序结构P9 P232.条件结构P10 P253.循环结构P13 P29题型:1.赋值语句的判断及注意事项2.分段函数的程序框图及程序3.循环语句书写二. 三个算法案例1.辗转相除法及更相减损术求最大公约数P342.秦九韶算法求多项式的值P363.进位制:十进制与非十进制间的转化P41-43三.三种随机抽样的特点、实施步骤及优缺点(注意系统抽样的取整问题及分层抽样的比例计算)四.学会列频率分布表、画频率分布直方图、频率分布折线图、茎叶图及各自的特点(注意频数与频率的求法,直方图小长方形的面积表示频率P66五.理解样本数据的众数、中位数、平均数的定义及由直方图估计三个数,掌握方差、标准差的公式及应用P72六.变量间的相关关系的判断及掌握回归方程的公式求回归方程P89 七.概率的基本性质及互斥事件与对立事件的区别与联系,并应用公式求概率P120八.古典概型及几何概型的特点及概率的计算公式P127\P1361.象限角、轴线角及终边相同的角的概念(P4-5)2.角度与弧度间的互化、弧长公式及扇形的面积公式3.三角函数的定义、三角函数值的符号4.同角三角函数的基本关系式(1)平方关系:(2)商数关系:基本关系式题型:求值;化简;证明5.三角函数的诱导公式的概括求任意角的三角函数的步骤;1.负角化成正角;2.大角化成小角3.非锐角化成锐角6.三角函数的图像和性质汇总:(1)五点法作函数的图像(五个关键点)(2)求函数的最大值、最小值并求X的取值集合(P38例题3)(3)利用三角函数的单调性比较大小并求单调区间(P38例题4/例5)(4)求三角函数的周期(5)求函数的对称轴、对称中心7.函数的图像变换及振幅、周期、频率、相位、初相的概念,已知函数的图像求解析式8.两角和与差的正弦、余弦、正切公式;二倍角的正弦、余弦、正切公式平面向量知识点复习1.向量加法的三角形法则(首尾相接)及平行四边形法则(同起点)2.向量减法的三角形法则及作图法3.向量数乘的定义及运算律4.平面向量的基本定理及坐标运算(1)已知平行四边形三点求第四点的坐标(P97)(2)证明三点共线问题(三点共线的充要条件)(P98)(3)定比分点坐标公式及中点坐标公式(P100)5.平面向量的数量积的定义、性质及运算律(P104)6.平面向量的数量积坐标表示、模及夹角公式(P97)模块5知识点汇总1.正弦、余弦定理的内容及解决的三角形题型(正、余弦各两类问题)2.利用正弦、余弦定理等知识与方法解决测量距离、高度、角度三大类实际问题,另外注意三角形面积公式的应用3.数列相关概念、通项公式及表示法4.等差、、等比数列的定义、通项公式及前项公式的对比及应用(注意累加法、累积法、倒序相加法、错位相减法的应用)5.数列的求和公式:分组求和法、裂项相消法、错位相减法、倒序相加法等方法的应用.6.不等式的八个性质及一元二次不等式的解法(P77表格及步骤)7.二元一次不等式组与简单的线性规划问题(注意步骤)8.基本不等式的证明过程及条件注意事项。
高中数学必修14知识点总汇
数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 AB 交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为AB补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数2、复合函数的单调性: 同增异减三、二次函数y = ax 2 +bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a bx 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数1、幂的运算法则:(1)a m • a n = a m + n ,(2)nm nma a a -=÷,(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n n b a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n na a 1=- (8)m n m n a a =(9)m n m naa 1=-2、根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>.五、对数与对数函数1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N= N(6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = loge A(其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a例如:y = x 2==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减八. 平均增长率的问题 如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
高中数学知识点第十四章 导 数
高中数学第十四章 导 数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c 为常数)、y=xn(n ∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇.2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件.可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续.事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 0000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→ ).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆x y ,故x y x ∆∆→∆0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫ ⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅=复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin x x -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos x x --= II. x x 1)(ln '= e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:x x 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.。
高中数学章节内容知识点总结
高中数学章节内容知识点总结高中数学是我们所学的一门基础学科,既有理论又有实践应用。
它是我们接下来学习计算机科学、物理等理工科学科的必要前置课程。
在高中数学中,有很多重要的章节内容和知识点,这些知识点不仅对我们的考试和升学有影响,而且对我们的日常生活也有重大的作用。
在本篇文章中,我们将总结高中数学章节内容中的一些重要知识点。
1.函数函数是数学中最重要的概念之一。
在高中数学中,函数被认为是代数学研究方法的中心,因为它在所有代数部分的应用中起着至关重要的作用。
函数的本质在于它反映了一个变量的行为和它的变化。
在学习函数的过程中,我们首先需要了解定义域和值域的概念,知道如何绘制函数的图像和掌握求导和积分技能。
2.三角函数三角函数是另一个在高中数学中非常重要的章节内容。
它们是数学中最基本的类型之一,可以用于描述许多天文、物理、化学和计算机科学等领域的现象。
在学习三角函数时,我们需要掌握三角函数的基本定义,如正弦、余弦和正切等,学习他们的性质和关系,掌握单位圆和三角函数图形之间的关系,以及了解应用三角函数的实际问题。
3.概率概率是另一个在高中数学中非常重要的章节内容。
它被应用于许多实际问题中,如赌博、统计学、金融等。
在学习概率时,我们需要理解基本概念,如随机试验、样本空间、事件等,掌握条件概率、贝叶斯定理、独立事件等概率理论,以及了解如何应用概率来解决实际问题,如排列组合、二项式分布等。
4.向量向量是数学中一类重要的几何对象,在高中数学中有着特殊的位置。
向量不仅可以描述三维空间中的物理量,如速度、加速度等,也可以用于描述计算机科学中的图像和声音等信息。
在学习向量时,我们需要了解向量的定义和性质,掌握向量的加法和减法,了解向量积和标量积的概念,以及应用向量来解决实际的几何问题。
5.解析几何解析几何是数学最基本且最基础的学科之一。
在高中数学中,我们需要学习如何用解析几何的方法研究图像的基本属性和形状。
在学习解析几何时,我们需要了解如何表示平面上的曲线和圆,掌握在坐标平面上的平移、旋转和缩放平面图形的技能,了解坐标系在空间中的应用,以及学会以向量分析的方式研究空间中各种几何图形的性质和变化。
函数的导数
第十四章 导数及其应用京翰提示:以下内容主要列举了高三数学导数部分的相关知识点及典型例题解析,以课本内容为基础,分课时的对导数部分进行复习和总结,从而对导数有了更加透彻的认识和了解导数导数的概念导数的求法和、差、积、商、复合函数的导数导数的应用函数的单调性函数的极值函数的最值第1课时 变化率与导数、导数的计算1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy∆∆的 ,即)(x f '= = .2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ', 函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法 (1) 八个基本求导公式)('C = ; )('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a = )(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u = ])(['x Cf = )('uv = , )('vu = )0(≠v(3) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u x u y y '⋅'='.12+x 在x 0到x 0+Δx 之间的平均变化率.解 ∵Δy=11)(11)(11)(202020202020+++∆+--+∆+=+-+∆+x x x x x x x x x .11)(2,11)()(220200202020+++∆+∆+=∆∆∴+++∆+∆+∆=x x x xx x y x x x x x x变式训练1. 求y=x 在x=x 0处的导数.解 )())((lim lim lim00000000000x x x x x x x x x x x x x x x y x x x +∆+∆+∆+-∆+=∆-∆+=∆∆→∆→∆→∆.211lim 0000x x x x x =+∆+=→∆例2. 求下列各函数的导数: (1);sin 25x xx x y ++=(2));3)(2)(1(+++=x x x y(3);4cos 212sin 2⎪⎭⎫⎝⎛--=x x y (4).1111xxy ++-=解 (1)∵,sin sin 23232521x x x xxx x x y ++=++=-∴y′.cos sin 2323)sin()()(232252323x x x x x x x x x x-----+-+-='+'+'=(2)y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6,∴y′=3x 2+12x+11.(3)∵y=,sin 212cos 2sin x x x =⎪⎭⎫ ⎝⎛--∴.cos 21)(sin 21sin 21x x x y ='='⎪⎭⎫ ⎝⎛='(4)xx x xx x x y -=+--++=++-=12)1)(1(111111, ∴.)1(2)1()1(21222x x x x y -=-'--='⎪⎭⎫ ⎝⎛-=' 变式训练2:求y=tanx的导数. 解 y′.cos 1cos sin cos cos )(cos sin cos )(sin cos sin 22222x x xx x x x x x x x =+='-'='⎪⎭⎫ ⎝⎛= 例3. 已知曲线y=.34313+x (1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.解 (1)∵y′=x 2,∴在点P (2,4)处的切线的斜率k='y |x=2=4.∴曲线在点P (2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=34313+x 与过点P (2,4)的切线相切于点⎪⎭⎫⎝⎛+3431,300x x A ,则切线的斜率k='y |0x x ==20x .∴切线方程为),(343102030x x x x y -=⎪⎭⎫ ⎝⎛+-即.34323020+-⋅=x x x y∵点P (2,4)在切线上,∴4=,343223020+-x x 即,044,0432020302030=+-+∴=+-x x x x x ∴,0)1)(1(4)1(00020=-+-+x x x x∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x-y-4=0或x-y+2=0.变式训练3:若直线y=kx 与曲线y=x 3-3x 2+2x 相切,则k= . 答案 2或41-例4. 设函数bx ax x f ++=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3.(1)求)(x f 的解析式; (2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.(1)解2)(1)(b x a x f +-=', 于是⎪⎪⎩⎪⎪⎨⎧=+-=++,0)2(1,32122b a b a 解得⎩⎨⎧-==,1,1b a 或⎪⎪⎩⎪⎪⎨⎧-==.38,49b a 因为a,b ∈Z ,故.11)(-+=x x x f (2)证明 在曲线上任取一点⎪⎪⎭⎫ ⎝⎛-+11,00x xx . 由200)1(11)(--='x x f 知,过此点的切线方程为)()1(11110200020x x x x x x y -⎥⎦⎤⎢⎣⎡--=-+--. 令x=1,得1100-+=x xy ,切线与直线x=1交点为⎪⎪⎭⎫⎝⎛-+11,100x x .令y=x ,得120-=x y ,切线与直线y=x 的交点为)12,12(00--x x .直线x=1与直线y=x 的交点为(1,1). 从而所围三角形的面积为22212211121112100000=--=----+x x x x x .所以,所围三角形的面积为定值2.变式训练4:偶函数f (x )=ax 4+bx 3+cx 2+dx+e 的图象过点P (0,1),且在x=1处的切线方程为y=x-2,求y=f (x )的解析式.解 ∵f(x )的图象过点P (0,1),∴e=1. ① 又∵f(x )为偶函数,∴f(-x )=f (x ). 故ax 4+bx 3+cx 2+dx+e=ax 4-bx 3+cx 2-dx+e. ∴b=0,d=0. ② ∴f(x )=ax 4+cx 2+1.∵函数f (x )在x=1处的切线方程为y=x-2,∴可得切点为(1,-1).∴a+c+1=-1. ③∵)1('f =(4ax 3+2cx)|x=1=4a+2c ,∴4a+2c=1. ④由③④得a=25,c=29-. ∴函数y=f (x )的解析式为.12925)(24+-=x x x f第2课时 导数的概念及性质1. 函数的单调性⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 . (逆命题不成立)(2) 如果在某个区间内恒有0)(='x f ,则)(x f .注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ;② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根;③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来, 然后用这些点把函数)(x f 的定义区间分成若干个小区间;④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性.2.可导函数的极值⑴ 极值的概念: 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点.⑵ 求可导函数极值的步骤: ① 求导数)(x f ';② 求方程)(x f '=0的 ;③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得 ; 如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得 .3.函数的最大值与最小值:⑴ 设y =)(x f 是定义在区间[a ,b ]上的函数,y =)(x f 在(a ,b )内有导数,则函数y=)f在[a ,b ]上有最大值与最小值;但在开区间内有最大值与最小值.(x(2) 求最值可分两步进行:① 求y=)f在(a ,b )内的值;(x② 将y=)f比较,其中最大的一个为最大值,最小的一个为最小值.(xf、)(bf的各值与)(a(3) 若函数y=)f为函数的,)(bf为函数的;(a(xf在[a ,b ]上单调递增,则)若函数y=)(bf为函数的,)f为函数的 .(a(xf在[a ,b ]上单调递减,则)例1. 已知f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.解:)f'=e x-a.(x(1)若a≤0,)(xf'=e x-a≥0恒成立,即f(x)在R上递增.若a>0,e x-a≥0,∴e x≥a,x≥lna.∴f(x)的单调递增区间为(lna,+∞).(2)∵f(x)在R内单调递增,∴)(xf'≥0在R上恒成立. ∴e x-a≥0,即a≤e x在R上恒成立.∴a≤(e x)min,又∵e x>0,∴a≤0.(3)方法一由题意知e x-a≤0在(-∞,0]上恒成立.∴a≥e x在(-∞,0]上恒成立.∵e x在(-∞,0]上为增函数.∴x=0时,e x最大为1.∴a≥1.同理可知e x-a≥0在[0,+∞)上恒成立.∴a≤e x在[0,+∞)上恒成立.∴a≤1,∴a=1.方法二由题意知,x=0为f(x)的极小值点.∴)0('f=0,即e0-a=0,∴a=1.变式训练1.已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由; (3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.(1)解由已知)f'=3x2-a,∵f(x)在(-∞,+∞)上是单调增函数,(x∴)f'=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立.(x∵3x2≥0,∴只需a≤0,又a=0时,)(xf'=3x2≥0, 故f(x)=x3-1在R上是增函数,则a≤0.(2)解由)f'=3x2-a≤0在(-1,1)上恒成立,得a≥3x2,x∈(-1,1)恒成立.(x∵-1<x<1,∴3x2<3,∴只需a≥3.当a=3时,)f'=3(x2-1),(x在x∈(-1,1)上,)(xf'<0,即f(x)在(-1,1)上为减函数,∴a≥3.故存在实数a≥3,使f(x)在(-1,1)上单调递减.(3)证明 ∵f(-1)=a-2<a,∴f(x)的图象不可能总在直线y=a 的上方.例2. 已知函数f(x)=x 3+ax 2+bx+c,曲线y=f(x )在点x=1处的切线为l:3x-y+1=0,若x=32时,y=f(x )有极值. (1)求a,b,c 的值;(2)求y=f(x )在[-3,1]上的最大值和最小值.解 (1)由f(x)=x 3+ax 2+bx+c,得)(x f '=3x 2+2ax+b, 当x=1时,切线l 的斜率为3,可得2a+b=0 ①当x=32时,y=f(x)有极值,则⎪⎭⎫ ⎝⎛'32f =0,可得4a+3b+4=0 ②由①②解得a=2,b=-4.由于切点的横坐标为x=1,∴f(1)=4. ∴1+a+b+c=4.∴c=5.(2)由(1)可得f(x)=x 3+2x 2-4x+5,∴)(x f '=3x 2+4x-4, 令)(x f '=0,得x=-2,x=32.当x 变化时,y,y′的取值及变化如下表:x-3 (-3,-2)-2 ⎪⎭⎫ ⎝⎛-32,232 ⎪⎭⎫ ⎝⎛1,32 1y′ + 0 - 0 + y8单调递增 ↗ 13 单调递减 ↘ 2795 单调递增↗4 ∴y=f(x )在[-3,1]上的最大值为13,最小值为.2795变式训练2. 函数y=x 4-2x 2+5在区间[-2,2]上的最大值与最小值.解 先求导数,得y′=4x 3-4x,令y′=0,即4x 3-4x=0.解得x 1=-1,x 2=0,x 3=1.导数y′的正负以及f(-2),f(2)如下 x -2 (-2,-1) -1 (-1,0) 0 (0,1) 1 (1,2) 2 y′ - 0 + 0 - 0 + y 13 ↘ 4 ↗ 5 ↘ 4 ↗13从上表知,当x=±2时,函数有最大值13,当x=±1时,函数有最小值4.例3. 已知函数f(x)=x 2e -ax (a >0),求函数在[1,2]上的最大值.解 ∵f(x )=x 2e -ax (a >0),∴)(x f '=2xe -ax +x 2·(-a)e -ax =e -ax (-ax 2+2x).令)(x f '>0,即e -ax (-ax 2+2x)>0,得0<x<a 2. ∴f(x)在(-∞,0),⎪⎭⎫ ⎝⎛+∞,2a 上是减函数,在⎪⎭⎫ ⎝⎛a 2,0上是增函数. ①当0<a2<1,即a>2时,f(x )在(1,2)上是减函数, ∴f(x )max =f (1)=e -a. ②当1≤a 2≤2,即1≤a≤2时, f(x)在⎪⎭⎫ ⎝⎛a 2,1上是增函数,在⎪⎭⎫ ⎝⎛2,2a 上是减函数, ∴f(x)max =f ⎪⎭⎫ ⎝⎛a 2=4a -2e -2. ③当a2>2时,即0<a<1时,f(x)在(1,2)上是增函数, ∴f(x )max =f (2)=4e -2a. 综上所述,当0<a<1时,f(x)的最大值为4e -2a, 当1≤a≤2时,f(x)的最大值为4a -2e -2,当a>2时,f(x)的最大值为e -a.变式训练3. 设函数f(x)=-x(x-a)2(x∈R),其中a∈R.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)当a≠0时,求函数f(x)的极大值和极小值.解:(1)当a=1时,f(x)=-x(x-1)2=-x 3+2x 2-x, f(2)=-2,)(x f '=-3x 2+4x-1, =')2(f -12+8-1=-5,∴当a=1时,曲线y=f(x)在点(2,f(2))处的切线方程为 5x+y-8=0.(2)f(x)=-x(x-a)2=-x 3+2ax 2-a 2x, )(x f '=-3x 2+4ax-a 2=-(3x-a)(x-a), 令)(x f '=0,解得x=3a或x=a. 由于a≠0,以下分两种情况讨论.①若a>0,当x 变化时,)(x f '的正负如下表: x(-∞,3a ) 3a (3a,a) a (a,+∞) )(x f '- 0+ 0 - f(x)↘3274a - ↗↘因此,函数f(x)在x=3a 处取得极小值f (3a ), 且f (3a )=-;2743a函数f(x)在x=a 处取得极大值f(a),且f(a)=0.②若a<0,当x 变化时,)(x f '的正负如下表: x(-∞,a) a (a,3a ) 3a (3a,+∞) )(x f '-0 + 0 - f(x) ↘↗-3274a ↘因此,函数f(x)在x=a 处取得极小值f(a),且f(a)=0;函数f(x)在x=3a 处取得极大值f (3a ), 且f (3a )=-3274a .例4. 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a 元(3≤a≤5)的管理费,预计当每件产品的售价为x 元(9≤x≤11)时,一年的销售量为(12-x)2万件. (1)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q (a ).解 (1)分公司一年的利润L (万元)与售价x 的函数关系式为:L=(x-3-a)(12-x)2,x∈[9,11].(2))(x L ' =(12-x)2-2(x-3-a)(12-x)=(12-x)(18+2a-3x). 令'L =0得x=6+32a 或x=12(不合题意,舍去). ∵3≤a≤5,∴8≤6+32a≤328. 在x=6+32a 两侧L′的值由正变负.所以①当8≤6+32a <9即3≤a<29时,L max =L(9)=(9-3-a)(12-9)2=9(6-a).②当9≤6+32a≤328,即29≤a≤5时, L max =L(6+32a)=(6+32a-3-a)[12-(6+32a)]2=4(3-31a)3.所以⎪⎪⎩⎪⎪⎨⎧≤≤⎪⎭⎫ ⎝⎛-<≤-=.529,3134,293),6(9)(3a a a a a Q答 若3≤a<29,则当每件售价为9元时,分公司一年的利润L 最大,最大值Q (a )=9(6-a)(万元);若29≤a≤5,则当每件售价为(6+32a)元时,分公司一年的利润L 最大,最大值Q(a)=33134⎪⎭⎫ ⎝⎛-a (万元).导数及其应用单元检测题一、选择题1.曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A.49e 2B.2e 2C.e 2D.2e 22.如果函数y=f(x)的图象如图所示,那么导函数y=)(x f '的图象可能是 ( )3.设f(x)=x 2(2-x),则f(x)的单调增区间是( )A.(0,)34B.(,34+∞)C.(-∞,0)D.(-∞,0)∪(34,+∞) 4.设a∈R ,若函数y=e x+ax,x∈R 有大于零的极值点,则 ( ) A.a<-1 B.a>-1C.a<-e 1D.a>-e15.已知函数y=f(x)=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p 、q 的值分别为( ) A.6,9 B.9,6 C.4,2D.8,66.已知x≥0,y≥0,x+3y=9,则x 2y 的最大值为( )A.36B.18C.25D.42 7.下列关于函数f(x)=(2x-x 2)e x的判断正确的是( )①f(x)>0的解集是{x|0<x<2}; ②f(-2)是极小值,f(2)是极大值; ③f(x)没有最小值,也没有最大值. A.①③ B.①②③ C.② D.①② 8.函数f(x)的图象如图所示,下列数值排序正确的是 ( ) A.0<)2('f <)3('f <f(3)-f(2) B.0<)3('f <f(3)-f(2) <)2('f C.0<f(3)<)2('f <f(3)-f(2) D.0<f(3)-f(2)<)2('f <)3('f9.若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,则实数a 的取值范围为( )A.a≥3B.a=3C.a≤3D.0<a<310.函数f(x)=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为( )A.a=3,b=-3,或a=-4,b=11B.a=-4,b=11C.a=3,b=-3D.以上都不正确 11.使函数f(x)=x+2cosx 在[0,2π]上取最大值的x 为( ) A.0 B.6π C.3π D.2π 12.若函数f(x)=x 3-3bx+3b 在(0,1)内有极小值,则( ) A.0<b<1 B.b<1 C.b>0 D.b<21 二、填空题13.若f(x)=x 3+3ax 2+3(a+2)x+1没有极值,则a 的取值范围为 . 14.如图是y=f(x)导数的图象,对于下列四个判断: ①f(x)在[-2,-1]上是增函数; ②x=-1是f(x)的极小值点;③f(x)在[-1,2]上是增函数,在[2,4]上是减函数;④x=3是f(x)的极小值点. 其中判断正确的是 .15.函数f(x)的导函数y=)(x f '的图象如右图,则函数f(x)的单调递增区间为 .16.已知函数f(x)的导函数为)(x f ',且满足f(x)=3x 2+2x )2('f ,则)5('f = .三、解答题17.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c 2恒成立,求c 的取值范围.18.设p:f(x)=(x 2-4)(x-a)在(-∞,-2)和(2,+∞)上是单调增函数;q:不等式x 2-2x >a 的解集为R . 如果p 与q 有且只有一个正确,求a 的取值范围.19.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.20.已知定义在R 上的函数f(x)=-2x 3+bx 2+cx(b,c∈R ),函数F(x)=f(x)-3x 2是奇函数,函数f(x)在x=-1处取极值. (1)求f(x)的解析式;(2)讨论f(x)在区间[-3,3]上的单调性.导数及其应用单元检测题答案 一、选择题 1.D 2.A 3. A 4.A 5.A 6.A 7. D 8.B 9.A 10.B 11.B 12.A 二、填空题 13. [-1,2] 14. ②③ 15. [-1,0]和[2,+∞) 16. 6 三、解答题17.解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2. 当x=61时,g(x)max =121,∴b≥121. (2)由题意知)1('f =0,即3-1+b=0,∴b=-2.x∈[-1,2]时,f(x)<c 2恒成立,只需f(x)在[-1,2]上的最大值小于c 2即可.因)(x f '=3x 2-x-2,令)(x f '=0,得x=1或x=-32.∵f(1)=-23+c, f(-,21)1(,2722)32c f c +=-+=f(2)=2+c. ∴f(x)max =f(2)=2+c,∴2+c<c 2.解得c>2或c<-1,所以c 的取值范围为(-∞,-1)∪(2,+∞). 18.解 命题p:由原式得f(x)=x 3-ax 2-4x+4a,∴)(x f '=3x 2-2ax-4,y′的图象为开口向上且过点(0,-4)的抛物线.由条件得)2(-'f ≥0且)2('f ≥0, 即⎩⎨⎧≥-≥+.048084a a ∴-2≤a≤2.命题q:a x x x >--=-1)1(222 ∵该不等式的解集为R ,∴a<-1.当p 正确q 不正确时,-1≤a≤2; 当p 不正确q 正确时,a<-2. ∴a 的取值范围是(-∞,-2)∪[-1,2].19.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴)(x f '=3x 2-2(a+1)x+a要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可. ∵)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a , ∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a解得:a≤38.∴a 的取值范围是a≤38.20.解 (1)∵函数F(x)=f(x)-3x 2是奇函数, ∴F(-x)=-F(x),化简计算得b=3.高中数学辅导网 京翰教育1对1家教 / ∵函数f(x)在x=-1处取极值,∴)1(-'f =0. f(x)=-2x 3+3x 2+cx, )(x f '=-6x 2+6x+c∴)1(-'f =-6-6+c=0,c=12. ∴f(x)=-2x 3+3x 2+12x,(2))(x f '=-6x 2+6x+12=-6(x 2-x-2). 令)(x f '=0,得x 1=-1,x 2=2, x-3 (-3,-1) -1 (-1,2) 2 (2,3) 3 )(x f '- 0 + 0 - f(x)45 ↘ -7 ↗ 20 ↘ 9 ∴函数f(x)在[-3,-1]和[2,3]上是减函数, 函数f(x)在[-1,2]上是增函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导 数 知识要点
1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变
量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x
x f x x f x y ∆-∆+=
∆∆)
()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x
x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.
②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇.
2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:
⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件.
可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .
于是)]()()([lim )(lim )(lim 0000
00
x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→
).
()(0)()(lim lim )
()(lim )]()()([
lim 000'0000000000x f x f x f x f x x f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x
x x y ∆∆=
∆∆|
|,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆x
y ,故x y
x ∆∆→∆0lim
不存在. 导 数
导数的概念
导数的运算
导数的应用
导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值
常见函数的导数 导数的运算法则
注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数.
3. 导数的几何意义:
函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-
4. 求导数的四则运算法则:
''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒
''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数)
)0(2'''
≠-=⎪⎭
⎫
⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.
②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、
积、商不一定不可导.
例如:设x x x f 2sin 2)(+=,x
x x g 2
cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和
=+)()(x g x f
x x cos sin +在0=x 处均可导.
5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.
6. 函数单调性:
⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;
如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.
注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件. ②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.
7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是
函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,
①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.
也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①
. 此外,函数不
可导的点也可能是函数的极值点②
. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).
注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.
②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.
8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.
注:函数的极值点一定有意义. 9. 几种常见的函数导数:
I.0'=C (C 为常数) x x cos )(sin '
= 2
'
11)(arcsin x
x -=
1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2
'11)(arccos x
x --
=
II. x x 1)(ln '=
e x x a a log 1
)(log '= 1
1)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 1
1)cot (2
'+-
=x x arc
III. 求导的常见方法: ①常用结论:x
x 1
|)|(ln '=
. ②形如))...()((21n a x a x a x y ---=或)
)...()(()
)...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化
求代数和形式.
③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边
求导可得x x x x x y y x y y x
x x y y +=⇒+=⇒⋅+=ln ln 1
ln '''.。