华东交通大学机械工程测试技术第二章信号描述及分析
机械工程测试技术-信号与其描述
n 1
常值分量
1 a0 T
2 an T
T 2 T 2
x(t )dt
余弦分量的幅值
T 2 T 2
x(t ) cos n0tdt
x(t ) sin n0tdt
返回章目录
2 正弦分量的幅值 bn T
返回章目录
第三节 瞬变非周期信号与连续频谱
机械工程测试技术基础
若把非周期信号可以看成是周期T0 趋于无穷大的周期信号
0
2 T0 d T0
jn0t
x(t )
n
Cn e
1 cn T0
1 d T0 2 2
T0 / 2
幅值
信号的频谱X(f)代 表了信号在不同频 率分量处信号成分 的大小,它能够提 供比时域信号波形 更直观,丰富的信 息。
时域分析
频域分析
返回章目录
第一节 信号的分类与描述
机械工程测试技术基础
x (t) A
例:右图一个周期方波的一种时域描述形式表示为:
x(t)=x(t+nT0)
A x(t ) A 0t T - 0 t0 2 T0 2
返回章目录
第一节 信号的分类与描述
机械工程测试技术基础
(2)
连续信号是其数学表示式中的独立变量取值
是连续的信号。若独立变量和幅值取连续的称 为模拟信号。
离散信号是其数学表示式中的独立变量取值
是离散的信号。若离散信号的幅值也是离散的 称为数字信号。
x(t) 连续信号 x(t) 离散信号
工程测试技术总复习资料
概率密度函数的作用: 1.随机信号幅值分布的信息; 2.识别信号的性质
4
第二章 测试装置的基本特性
测试装置的静态特性 静态测量:测量期间被测值认为是恒定的。 线性度:测量装置输入、输出之间的关系与理想比例关系(即理想 直线关系)的偏离程度。
电阻式传感器
直线位移型传感器 变阻器式 角位移型传感器
非线性型
电阻传感器
电阻应变式
金属电阻应变片
丝式 箔式
半导体应变片
一、变阻器式传感器 位移———电阻变化
R l
A
s
dR dx
kl
常
适合大位移测量!
18
第三章常用传感器
电阻式传感器
测试装置动态特性的数学描述
环节的串、并联 H (s) Y(s) X (s) Y (s) Y1(s) Y2 (s) H (s) Y1(s) Y2 (s) X (s) X (s) H1(s) H2(s)
n
H(s) Hi (s)
i 1
n
H ( jw) Hi ( jw) i 1
12
第二章 测试装置的基本特性
测试装置动态特性的数学描述
频率响应函数: x(w),y(w),h(w)
傅里叶变换 脉冲响应函数: x(t),y(t),h(t)
拉普拉斯变换 传递函数: x(s),y(s),h(s)
频率域 传递函数:
时域
复数域
H(s)
bmsm bm1sm1 b1s b0 an sn an1sn1 a1s a0
测试装置动态特性的数学描述
一阶系统: Rc dy(t) y(t) x(t)
dt
机械工程测试技术基础讲稿第二部分优秀课件
积分
t xtdt
j2fnXf
dnX f
df n 1 Xf
j 2f
3.几种典型信号的频谱
3.1 单位脉冲函数((t)函数) 的频谱
①δ函数定义 (t)l i0m (t) 0 tt 00
其面积(强度):
( t ) d t l 0 i( m t ) d l t 0 i m ( t ) d 1 t
1/ s(t)
(t)
/20 t
0
t
② 函数的采样性质
(t)x(t)dt (t)x(0)dt
x(0) (t)dt
x(0)
(t
t0)x(t)dt
(t
t0)x(
t0)dt
x( t0) (t t0)dt
x( t0)
③卷积性
函数与其它信号的卷积是卷积中最为简单的一 类形式。把函数的卷积性质描述为:
tx(t)d t j21fX(f)
积分性质
傅里叶变换的主要性质
•性 质 •时 域 •频 域 •性 质
•实偶函数 •实偶函数 频 移
•函数的 •实奇函数 •虚奇函数 奇偶虚实
性 •虚偶函数 •虚偶函数
翻转 共轭
•虚奇函数 •实奇函数 时域卷积
•时 域
x(t)e j2 f0
x(t) x*(t)
x1(t)x2(t)
x(t) Cnejn0t
n
1 2Cnejn0t
2 n 0
(n0)
取
n
n0
(n0)d
那么,得到傅里叶反变换为
x(t)21
X()ejtd
因此,傅里叶变换对为
X() x(t)ejtdt
x(t)1 X()ejtd
机械工程测试技术(刘培基)第二章信号描述及其分析2—1描述周期...
机械工程测试技术(刘培基)第二章 信号描述及其分析2—1 描述周期信号的频率结构可采用什么数学工具?如何进行描述?周期信号是否可 以进行傅里叶变换?为什么?2—2 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
2—3 求周期三角波(图2—5a)的傅里叶级数(复指数函数形式)。
2—4 求图2-15所示有限长余弦信号)(t x 的频谱。
设⎩⎨⎧≥<=T t T t tw t x 0cos )(02—5 当模拟信号转换为数字信号时遇到哪些问题? 应怎样解决?第三章 测试系统的基本特性 3—1 测试装置的静态特性指标主要有哪些?它们对装置的性能有何影响?3—2 什么叫一阶系统和二阶系统?它们的传递函数、频率响应函数及幅频和相频特性 表达式是什么?3—3求周期信号工)45100cos(2.010cos 5.0)( -+=t t t x 通过传递函数为1005.01)(+=s s H 的装置后所得到的稳态响应。
3—4 一气象气球携带一种时间常数为s 15的一阶温度计,并以s m /15的上升速度通过大气层。
设温度随所处的高度按每升高m 30下降 c 15.0的规律变化,气球将温度和高度的数据用无线电送回地面。
在m 3000处所记录的温度为c 2-。
试问实际出现c 2-的真实高度是多少?3—5 某传感器为一阶系统,当阶跃信号作用在该传感器时,在0=t 时,输出mV 10; ∞→t 时,输出mV 100;在s t 5=时,输出mV 50,试求该传感器的时间常数。
3—6 求信号)604cos(10)452sin(4)30sin(12)(+++++=t t t t x 通过—阶系统后的输出)(t y 。
设该系统时间常数s 1=τ,系统的静态灵敏度为25=S 。
3—7 某测试系统频率响应函数为)176********)(01.01(3155072)(2w jw jw w H -++=;试求该系统对正弦输入)8.62sin(10)(t t x =的稳态响应。
测试技术(第二章 信号描述)
余弦、 正弦 信号 的频 谱
(三)周期信号的强度表示
1、峰值与峰-峰值
2、均值与绝对均值
3、有效值,即均方根值
4、平均功率
三、非周期信号的各离散频率不成整倍数关系。
通常所说的非周期信号指的是瞬态信号。
(一)傅立叶变换 非周期信号的傅立叶变换可以从周期信号的傅立叶级数分 析引申开来。 周期信号可认为是非周期信号的周期延拓;而非周期信号为周 lim xT (t ) x(t ) 期信号的周期 T ,则 T
n 1
频谱是构成信号的各频率分量的集合,它完整地表示了 信号的频率结构,即信号由哪些谐波组成,各谐波分量的幅 值大小及初始相位,从而揭示了信号的频率信息。
对周期信号来说,信号的谱线只会出现在0,f1,f2,…fn等 离散频率点上,这种频谱称为离散谱。 (1)周期信号频谱特点:离散性、谐波性、收敛性 (2)频谱分析的工程意义 (3)付氏分析的局限性
幅值
时域分析
频域分析
式中|X(f)|——信号在频率f处的幅值谱密度; ——信号在频率f处的相位。 工程上习惯将计算结果用图形方式表示:
以f为横坐标,Re[X(f)]、Im[X(f)]为纵坐标画图,绘出的曲线 图称为实频、虚频密度谱图(实频图,虚频图);
以f为横坐标,|X(f)|、 为纵坐标画图,绘出的曲线图称为 幅值、相位密度谱(幅频图,相频图); 以f为横坐标,|X(f)|2为纵坐标画图,绘出的曲线图称为功率密 度谱。
思考:
( 1) 求 sin 0t , sin t sin 2t 的频谱特征
(2)例,求以下周期信号的频谱图(按约定形式展开)
x(t ) 10 5sin(2 10t ) 3cos(2 20t 4 / 3) 0.3cos(2 40t ) 0.1s in(2 50t / 4)
《机械工程测试技术》第二章
§5 实现不失真测试的条件 §6 测试装置动态特性的测试
一、频率响应法;二、阶跃响应法
§7 负载效应
一.负载效应 ;二.减轻负载效应的措施
§8 测量装置的抗干扰
一.测量装置的干扰源;二.供电系统干扰及其抗干扰; 三.信道的干扰及其抗干扰;四.接地设计
第二章
测试装置的基本特性
第一节 概述
常把“装置”作为系统看待,有简单、复杂之分。
2019/1/31
A
x
B
i
24
二.灵敏度、鉴别力阈 、分辨力
▪ 灵敏度、鉴别力—用来描述装置对测量系统变化的反映能 力的,用 S 表示。
b0 y y S 理想定常系统 常数 x x a0
▪ 灵敏度的量纲取决于输入、输出量的单位,如果二者一样, 把 S 称之为“放大比”或“放大倍数”。
即存在关系
2019/1/31
x(t ) X (s) 拉普拉斯变换
2
拉氏变换性质: (1)线性性质
x1 (t ) X 1 (s) x2 (t ) X 2 (s)
(2)时域微分性质
ax1 (t ) bx2 (t ) aX1 (s) bX 2 (s)
dx (t ) x(t ) X (s) dt
(3)测量装置引用误差 = 装置示值绝对误差 x100% 引用值 例子
2019/1/31 9
(四)信噪比
信号功率 信噪比 = 干扰(噪声)功率
记为SNR,并用分贝(dB)表示 Ns SNR 10 lg Nn 式中 Ns, Nn 分别是信号和噪声的功率
(2-7)
Vs 也可表示为 SNR 20lg Vn 式中 Vs, Vn 分别是信号和噪声的电压
机械工程测试技术课后答案第二章
2-1 一个测试系统与其输入和输出间的关系各有哪几种情形?试分别用工程实例加以说明。
答:测试系统与输入、输出的关系大致可以归纳为以下三类问题:(1)当输入和输出是可观察的或已知量时,就可以通过他们推断系统的传输特性,也就是求出系统的结构与参数、建立系统的数学模型。
此即 系统辨识 问题。
(2)当系统特性已知,输出可测时,可以通过他们推断导致该输出的输入量,此即滤波与预测问题,有时也称为载荷识别问题。
(3)当输入和系统特性已知时,则可以推断和估计系统的输出量,并通过输出来研究系统本身的有关结构参数,此即系统分析问题。
2-2什么是测试系统的静特性和动特性?两者有哪些区别?如何来描述一个系统的动特性?答:当被测量是恒定的或是缓慢变化的物理量时,便不需要对系统做动态描述,此时涉及的就是系统的静态特性。
测试系统的静态特性,就是用来描述在静态测试的情况下,实际的测试系统与理想的线性定常系统之间的接近程度。
静态特性一般包括灵敏度、线性度、回程误差等。
测试系统的动态特性是当被测量(输入量)随时间快速变化时,输入与输出(响应)之间动态关系的数学描述。
静特性与动态性都是用来反映系统特性的,是测量恒定的量和变化的量时系统所分别表现出的性质。
系统的动态特性经常使用系统的传递函数和频率响应函数来描述。
2-3传递函数和频率响应函数均可用于描述一个系统的传递特性,两者有何区别?试用工程实例加以说明。
答:传递函数是在复数域中描述系统特性的数学模型。
频率响应函数是在频域中描述系统特性的数学模型。
2-4 不失真测试的条件时什么?怎样在工程中实现不失真测试?答:理想情况下在频域描述不失真测量的输入、输出关系:输出与输入的比值为常数,即测试系统的放大倍数为常数;相位滞后为零。
在实际的测试系统中,如果一个测试系统在一定工作频带内,系统幅频特性为常数,相频特性与频率呈线性关系,就认为该测试系统实现的测试时不失真测试。
在工程中,要实现不失真测试,通常采用滤波方法对输入信号做必要的预处理,再者要根据测试任务的不同选择不同特性的测试系统,如测试时仅要求幅频或相频的一方满足线性关系,我们就没有必要同时要求系统二者都满足线性关系。
机械工程测试技术基础(专科)
机械工程测试技术基础复习考试分值分布:选择(7X2分)、填空(10X2分)、名词解释(4X4分)、分析叙述(2X8分)、计算(2X12分)、论述(1X10分)绪论 什么是测试?测试系统的构成及各组成部分?(见试卷)第一章:信号及其描述1. 信号的分类:确定性信号与随机信号(能用确切数学式表达的信号称为确定性信号,不能用确切数学式表达的称为随机信号)、连续信号和离散信号、能量信号和功率信号。
2. 周期信号的频谱特点:①周期信号的频谱是离散的(离散性)②每条谱线只出现在基波频率的整倍数上,基波频率是诸分量频率的公约数(谐波性)③各频率分量的谱线高度表示该谐波的幅值或相位角。
工程中常见的周期信号,其基波幅值总的趋势是随谐波次数的增高而减小的(收敛性)3. 矩形窗函数频谱4. 傅里叶变换的主要性质第二章:测试装置的基本特性(1、2、3、4、5、6为测量装置的静态特性 名词解释题来源)1. 线性度:指测量装置输入、输出之间的关系与理想比例关系(即理想直线关系)的偏离程度2. 灵敏度:单位输入变化所引起的输出的变化,通常使用理想直线的斜率做测量装置的灵敏度3. 回程落差也称为迟滞,是描述测试装置同输入变化方向有关的输出特性4. 分辨力:引起测试装置的输出值产生一个可察觉变化的最小输出量(被测量)变化值5. 零点漂移是测试装置的输出零点偏移原始零点的距离,是随时间缓慢变化的量6. 灵敏度漂移是由于材料的变化所引起的输入与输出关系(斜率)的变化7. 动态特性的数学描述的三种函数:传递函数、频率响应函数、脉冲响应函数传递函数H (S):测试装置动态特性的复数域描述,它包含了装置对输入的瞬态和稳态响应的全部信息 频率响应函数H (w):测试装置动态特性的频率域描述,它包含了系统对输入的稳态响应信息脉冲响应函数h (t): 测试装置动态特性的时域描述,它包含了系统对输入的瞬态响应信息 h (t)与H (S)是一对拉普拉斯变换对;h (t)与H (w)是一对傅里叶变换对。
机械工程测试技术第2章
• 由图2-1 可见,周期信号的谱线只出现在频率为0、1Ω、2Ω、 …… 等离散频率上,即周期信号的频谱是离散谱。 下面以周期性矩 形脉冲为例,说明周期信号频谱的特点。
上一页 下一页 返回
上一页 下一页 返回
2.1 信号的分类与描述
• 2. 连续信号与离散信号 • 在信号的时间函数表达式中,按信号的取值时间是否连续,将信号分
为连续信号和离散信号。 • (1) 连续信号。 在一定时间间隔内,对任意时间值,除若干个不连
续点(第一类间断点)外,都可给出确定的函数值,即时间变量t 是连 续的,此类信号称为连续信号。 例如,正弦信号、直流信号、阶跃 信号、锯齿波、矩形脉冲信号等都属于连续信号。 连续信号的幅值 可以是连续的,也可以是离散的,若时间变量和幅值均为连续的信号 ,则称为模拟信号。
标,以各谐波的振幅An 或虚指数函数的幅度
为纵坐标,可画
出如图2-1(a)和(b)所示的曲线图,称为幅度(振幅)频谱,简称为
幅度谱。 图中每条竖线代表该频率分量的幅度,称为谱线。
上一页 下一页 返回
2.2 周期信号与离散频谱
• 图中每条竖线代表该频率分量的幅度,称为谱线。 连接各谱线顶点 的曲线(如图中虚线所示)称为包络线,它反映了各分量幅度随频率变 化的情况。
第2 章 信号分析基础
• 2.1 信号的分类与描述 • 2.2 周期信号与离散频谱 • 2.3 非周期信号与连续频谱 • 2.4 随机信号
返回
2.1 信号的分类与描述
• 2.1.1 信号的分类
• 信号是反映被测对象状态或特性的某种物理量。 根据信号所具有的 时间函数特性分类,信号主要分为确定性信号与随机信号、连续信号 与离散信号等。
机械工程测试第二章信号分析基础
幅值不连续
采样信号
2.1 信号的分类及其基本参数
判断下列波形是连续时间还是离散时间信号,若是离散时间信号是否为数字信号?
f (t) sint (t)
值域连续 t
0
f(t)
0
值域不连续 t
连续时间信号
连续时间信号(可包含不连续点)
t<0时,ff((tn))=0的信号称为有始信号
f(n)
(2)
在测量过程中,除了待测量信号外,各种不可见的、随 机的信号可能出现在测量系统中。这些信号与有用信号叠 加在一起,严重扭曲测量结果。
问题
• 如何保证各信号变换与处理单元不失真传输信息 ?
• 对不同信号可否采用相同中间变换单元?(如同频 的方波和三角波其处理电路特性可否相同 ? )
测量系统模型由三个环节组成:
电子技术中的周期信号大都满足狄氏条件,当f(t)满足
狄氏条件时,an, bn, cn才存在。
2.2 周期信号及其频谱
周期信号 x(t) x(t nT )的频域模型为有多种形式
1)付氏级数的三角函数展开式:
x(t)
a0 2
(an cosn0t
n 1
bn sin n0t)
频谱:对于一个复杂信号,可用傅立叶分析将它分解为许多不同频 率的正弦分量,而每一正弦分量则以它的振幅和相位来表征。将各 正弦分量的振幅与相位分别按频率高低次序排列成频谱。
频带:复杂信号频谱中各分量的频率理论上可扩展至无限,但因原 始信号的能量一般集中在频率较低范围内,在工程应用上一般忽略 高于某一频率的分量。频谱中该有效频率范围称为该信号的频带。
2.1 信号的分类及其基本参数
二、信号分析中的常用函数
机械工程测试技术与信号分析
图4.11 电阻交流电桥
图4.12 具有电阻电容平衡的交流电阻电桥
高等学校教材——机械工程测试技术与信号分析
图4.13 电感式交流电桥
• 4.2.3 滤波器 • (1)滤波器的分类
图4.14 四类理想滤波器的幅频特性
高等学校教材——机械工程测试技术与信号分析
• (2)实际滤波器的技术指标
图4.13 电感式交流电桥
高等学校教材——机械工程测试技术与信号分析
图2.11 矩形窗函数的频谱
高等学校教材——机械工程测试技术与信号分析
• 2.3.2 傅里叶变换的性质 • (1)线性叠加性
• (2)对称性质 • (3)时移与频移性质
高等学校教材——机械工程测试技术与信号分析
• (4)卷积定理
图2.12 对称性质
高等学校教材——机械工程测试技术与信号分析
图2.18 周期单位脉冲序列
• 2.4 离散傅里叶变换 • 2.4.1 离散傅里叶变换的图解推演 • (1)时域采样
高等学校教材——机械工程测试技术与信号分析
图2.19 时域信号及其频谱
图2.20 时域采样
高等学校教材——机械工程测试技术与信号分析
• (2)时域截断
图2.21 频域截断
高等学校教材——机械工程测试技术与信号分析
图1.2 机床主轴径向跳动测试框图
高等学校教材——机械工程测试技术与信号分析
图1.3 动态测试系统框图
• 1.3 信号分析和处理在测试中的重要意义 • 测试技术是人们借以认识客观对象的本质, 并掌握其内在联系和变化规律的一种科学方 法。在测试过程中,需要选用专门的仪器设 备,设计合理的试验系统和进行必要的数据 处理,从而获得被测对象的有关信息。
机械工程测试技术信号和其描述
xt et x0 sin
k m
t
0
o
x(t) m
k
0
测试技术基础
F (t)
第一章信号及其描述措施
V (t)
0
t
(a)锤击物体旳力信号
x(t)
0 T'
t
(b)T’段为汽车加速过程信号
W (t)
▲
0
t
(c)半个正弦信号
0
t
(d)矩形窗信号
测试技术基础
第一章信号及其描述措施
c)非拟定性信号:不能用数学式描述,其幅值、相位变化
+
+
x2(t)=A2Sin(2t+q2)
=A2Sin(2pƒ 2t+q2)
=5Sin(2p·2·t+p/3)
测试技术基础
x(t) A
...
...
T0
0
T0
t
2
2
周期性三角波
第一章信号及其描述措施
x(t)
A
...
...
T0
0
T0
t
2
2
-A
周期性方波
▲
测试技术基础
第一章信号及其描述措施
b) 非周期信号:再不会反复出现旳信号。
不可预知,所描述物理现象是一种随机过程。平稳与非平稳
噪声信号(平稳)
▲
噪声信号(非平稳)
统计特征变异
测试技术基础
第一章信号及其描述措施
2.连续信号与离散信号
信号离连散续信信号号一数一模般字般拟离信连信散号续号(信信(信信号号号号((独独的的立立幅幅变值变值量和量与离连独独散续立立)变)变量量均均离连散续))
机械工程测试技术课本习题及参考答案
第二章 信号描述及其分析 2-1 描述周期信号的频率结构可采用什么数学工具 如何进行描述 周期信号是否可以进行傅里叶变换 为什么参考答案:一般采用傅里叶级数展开式;根据具体情况可选择采用傅里叶级数三角函数展开式和傅里叶级数复指数函数展开式两种形式;不考虑周期信号的奇偶性,周期信号通过傅里叶级数三角函数展开可表示为:n A =022()cos T n T a x t n tdt T ω-=⎰ 2022()sin T n T b x t n tdt T ω-=⎰ 式中,T 为信号周期, 0ω为信号角频率, 02ωπ=;n A ω-图为信号的幅频图, n ϕω-图为信号的相频图; 周期信号通过傅里叶级数复指数函数展开式可表示为:n C 是一个复数,可表示为:n C ω-图为信号的幅频图, n ϕω-图称为信号的相频图;▲ 不可直接进行傅里叶变换,因为周期信号不具备绝对可积条件;但可间接进行傅里叶变换;参见书中第25页“正弦和余弦信号的频谱”;2-2 求指数函数()(0,0)at x t Ae a t -=>≥的频谱;参考答案:由非周期信号的傅里叶变换,()()j t X x t e dt ωω∞--∞=⎰,得 由此得到,幅频谱为:()X ω=相频谱为: ()arctan()a ϕωω=-2-3 求周期三角波图2-5a 的傅里叶级数复指数函数形式 参考答案:周期三角波为: (2)20()(2)02A A T t T t x t A A tt T +-≤<⎧=⎨-≤≤⎩ 则 0221()T jn t n T C x t e dt T ω--=⎰ 积分得 02222204(1cos )(1cos )2n A T A C n n n T n ωπωπ=-=- 即 22()1,3,5,00,2,4,n A n n C n π⎧=±±±=⎨=±±⎩又因为周期三角波为偶函数,则0n b =,所以arctan 0n nI nR C C ϕ==所以,周期三角波傅里叶级数复指数形式展开式为: 2-4 求图2-15所示有限长余弦信号()x t 的频谱; 设 0cos ()0tt Tx t t T ω⎧<⎪=⎨≥⎪⎩ 参考答案:方法一方法二:对于上面所给的有限长余弦信号()x t ,其实也就是用一个窗宽为2T 的窗函数把无限长的余弦信号截断所得到的,即把无限长余弦信号()x t 与窗函数相乘,此时所需的窗函数为:1()0t T w t t T <⎧=⎨>⎩;由傅里叶变换的性质可知,时域内相乘,对应在频域内相卷积,即()()()()x t w t X f W f ⇔*;已知,余弦信号的傅里叶变换是δ函数,由δ函数的性质,()()X f W f *意味着把()W f 的图像搬移到()X f 图像的位置;2-5当模拟信号转化为数字信号时遇到那些问题应该怎样解决参考答案:遇到的问题:1采样间隔与频率混叠;2采样长度与频率分辨率;3量化与量化误差;4频谱泄漏与窗函数;参见课本第26~29页;第三章 测试系统的基本特性3-1 测试装置的静态特性指标主要有哪那些它们对装置性能有何影响参考答案:主要有:线性度,灵敏度,和回程误差;线性度主要影响系统的测试精度,灵敏度主要影响系统的分辨力,而回程误差主要引起系统的滞后误差;3-2 什么叫一阶系统和二阶系统它们的传递函数,频率响应函数以及幅频和相频表达式是什么参考答案:1能够用一阶微分方程描述的系统为一阶系统;其传递函数为:()()()1Y s H s X s s S τ==+ S 为系统灵敏度 频率响应函数为:()1S H j j ωωτ=+幅频特性:()()A H j ωω== 相频特性:()arctan()ϕωωτ=-2能够用用二阶微分方程描述的系统为二阶系统; 其传递函数为:频率响应函数为:222()()2()n n n H j j j ωωωζωωω=++幅频特性:()()A H j ωω==相频特性为:22()()arctan 1()n n ζωωϕωω⎛⎫=- ⎪-⎝⎭3-3 求周期信号()0.5cos(10)0.2cos(10045)x t t t =+-通过传递函数为1()0.0051H s s =+的装置后得到的稳态响应 参考答案: 信号()x t 可分解为两个信号1()0.5cos(10)x t t =和2()0.2cos(10045)x t t =-;分别求出这两个信号通过装置的响应,再相加,就是信号()x t 的响应;1()x t 的角频率110ω=,而0.005τ=,则 2()x t 的角频率2100ω=,同理得所以信号()x t 经过一阶装置的稳态响应为:3-4 一气象气球携带一种时间常数为15s 的一阶温度计,并以5m/s 的上升速度通过大气层;设温度随所处的高度按每升高30m 下降00.15C 的规律变化,气球温度和高度的数据用无线电传回地面;在3000m 处所记录的温度为02C -;试问实际出现02C -的真实高度是多少参考答案:设实际出现02C -的真实高度为h ,则温度计的输入为已知一阶温度计的传递函数 1()1H s s τ=+,故有 取拉氏逆变换 2111120.02520.0250.0252[()]{[][][]}1{0.025(20.025)(0.0252)}1.625(1)0.025t t L Y s L L L s s s t e e t ττττττττ--------=-+++=-+-+-=---当2t τ=,0() 2.155y t C ≈-,01.9() 2.0944t y t C τ==-,01.8() 2.0313t y t C τ=≈-; 设实际出现02C -的真实高度为h ,从输入到稳态输出需要一定的过渡时间,一般响应已达到稳态值的98%以上,调整时间4s T τ=,此题温度计调整时间60s T s =,则在02C-时,气球的真实高度H=3000-605=2700米;3-5某传感器为一阶系统,当阶跃信号作用在该传感器时,在0t =时,输出10mV ;t →∞时,输出100mV ;在5t s =时,输出50mV ,试求该传感器的时间常数;参考答案:阶跃信号可表示为阶跃信号通过一阶系统,其输出的拉氏变换为取拉氏逆变换,1()[()](1)t y t L Y s A e τ--==-,由题意代入数据得到 时间常数8.5065s τ=3-6求信号 ()12sin(30)4sin(245)10cos(460)x t t t t =+++++,通过一阶系统后的输出()y t ;设该系统时间常数1s τ=,系统的灵敏度为25S =; 参考答案:信号()x t 可分解为三个信号,1()12sin(30)x t t =+,2()4sin(245)x t t =+,3()10cos(460)x t t =+分别求出三个周期信号的幅频和相频响应,即1()()A H j ωω==,11()arctan()ϕωωτ=-=45-,2()()A H j ωω===,22()arctan()ϕωωτ=-63.4=-,3()()A H j ωω===,33()arctan()ϕωωτ=-76=- 所以稳态输出为:3-7某测试系统频率响应函数为23155072()(10.01)(157********)H j j ωωωω=++-,试求该系统对正弦输入()10sin(62.8)x t t =的稳态响应;参考答案:该测试系统可看成一个一阶系统和一个二阶系统串联而成;一阶系统传递函数3155072()(10.01)H j ωω=+,其中10.01τ=,12S =; 二阶系统传递函数21()(157********)H j ωωω=+-,其中21S =,1256n ω=,0.7ζ=;对一阶系统:() 1.6937A ω===,0()arctan()32.13ϕωωτ=-=-对于二阶系统:()0.9988A ω==≈ 所以稳态输出为:3-8单位阶跃信号作用于一个二阶装置之后,测得其响应中产生了数值为的第一个超调量峰值;同时测得其衰减振荡周期为;已知该装置的静态增益为5,试求该装置的传递函数和该装置在无阻尼固有频率处的频率响应;参考答案:已知 超调量 2.25M =,由ζ=,得阻尼比0.25ζ=,又因为衰减振荡周期 3.14T s =,则由公式2d T πω=,得2d ω=由公式n dωω=,得系统的固有频率 2.06n ω= 已知静态增益为5,即5S=,所以该装置的传递函数为: 当无阻尼,即0ζ=时,由n dωω=,得2n d ωω==,代入频响公式即可; 3-9设某力传感器可作为二阶振荡系统处理;已知传感器的固有频率为1000Hz ,阻尼比0.14ζ=,问使用该传感器作频率为500Hz 的正弦力测试时,其幅值比()A ω和相角差()ϕω各为多少若该装置的阻尼比可改为0.7ζ=,问()A ω和()ϕω又将作何种变化参考答案:由题意知:1000n ω=,0.14ζ=,信号500ω= 由()A ω= ,得 () 1.32A ω≈由 22()()arctan()1()d d ζωωϕωωω=--, 得 ()10.57ϕω≈- 同理,当0.7ζ=得 ()0.98A ω≈,()43.02ϕω≈-3-10如何理解信号不失真测试的条件若要求输入信号通过系统后反相位,则系统有何要求参考答案:系统实现不失真测试可用其幅频特性和相频特性简单表示为:这表明:1系统的幅频特性,即灵敏度,在量程范围内要求为常数;任何非线性度、回程误差、漂移的存在,都会引起测试波形的失真;2相频特性为输入信号频率的线性函数,即不失真测试有一定的频率范围;3当对测试系统有实时要求即00t =时,上式变为要求信号通过系统后反相位,则幅频特性和相频特性应为0(),()A A ωϕωπ==-第四章 常用传感器原理及应用4-1 金属电阻应变片与半导体应变片在工作原理上有何区别各有何优缺点应如何根据具体情况选用参考答案:金属电阻应变片的工作原理是基于金属的电阻应变效应,即当金属丝在外力作用下产生机械变形时,其电阻值发生变化;电阻丝的灵敏度较低~,但是稳定性较好,一般用于测量精度要求较高的场合;半导体应变片的工作原理是基于压阻效应,即半导体单晶材料在沿某一方向受到外力作用时,电阻率会发生相应变化;半导体应变片的最大优点是灵敏度高金属电阻应变片的50~70倍,另外,还有横向效应和机械滞后小、体积小等特点;但是温度稳定性差,在较大应变下,灵敏度非线形误差大,在具体使用时,一般需要采用温度补偿和非线性补偿; 4-2 有一电阻应变片,其120R =Ω,灵敏度K=2,设工作时的应变为1000με,问?R ∆=若将此应变片连接成图4-26所示电路,试求1无应变时电流表示值;2有应变时电流表示值;3电流表指示值的相对变化量;4试分析这个变化量能否从电流表中读出参考答案:由公式R R K ε∆=, 得 0.24R ∆=Ω1当无应变时,由公式1 1.512012.5I U R mA ===2有应变时由公式2()12.475I U R R mA =+∆= 3电流表指示值相对变化量120.025II I mA ∆=-= 4 因为电流的相对变化很小,所以不能直接从电流表中读出电流的相对变化,可以运用电桥电路将电阻变化转变为电流的变化再测量;4-3 许多传感器采用差动形式,差动传感器有何优点参考答案:参见书中第60页采用差动式结构,除了可以改善非线性,提高灵敏度,对电源电压及温度变化等外界影响也有补偿作用;4-4一电容式传感器,其圆形极板半径4r mm =,初工作间隙00.3mm δ=,若工作时极板间隙的变化量1m δμ∆=±,电容变化量是多少128.8510ε-=⨯参考答案:由公式2C A δε∆∆=-, 得 2C A εδ∆=-∆ 代入数据,得1539.88109.8810C F pF --∆=⨯=⨯ 4-5何为压电效应和逆压电效应常用的压电材料有那些参考答案:参见书中第65页某些材料当沿着一定的方向受力时,不但产生机械变形,而且内部极化,表面有电荷出现;当外力去掉后,又重新恢复到不带电状态,这种现象称为压电效应;相反,在某些材料的方向的施加电场,材料会产生机械变形,当去掉电场后,变形随之消失,这种现象称为逆压电效应;常用的压电材料有三类:压电单晶、压电陶瓷和新型压电材料;4-6压电式传感器的测量电路为什么常用电荷放大器参考答案:参见书中第67-68页由于压电式传感器输出的电荷量很小,而且由于压电元件本身的内阻很大,这样就造成了输出信号电压或电流很微弱,所以要先把输出信号输入到高输入阻抗的前置放大器,经过阻抗变换后,再进行其他处理;……但输出受到连接电缆对地电容的影响,故常采用电荷放大器;4-7何为霍尔效应其物理本质是什么参考答案:参见书中第68页如下图所示,将导体薄片置于磁场B 中,如果在a 、b 端通以电流I,则在断就会出现电位差,这一现象称为霍尔效应;霍尔效应的产生是由于运动的电荷在磁场中受到洛仑兹力作用的结果;如下图,假设导体为N 型半导体薄片,那么半导体中的载流子电子将沿着与电流方向相反的方向运动,由于洛仑兹力的作用,电子将偏向d 一侧,形成电子积累,与它对立的侧面由于减少了电子的浓度而出现正电荷,在两侧就形成了一个电场;当电场力E F 与洛仑兹力L F 的作用相等时,电子偏移达到动态平衡,形成霍尔电势;4-8分别用光电元件和霍尔元件设计测量转速的装置,并说明其原理; 参考答案:1用霍尔元件测转速示意图2用光电元件测转速示意图 将一个打有均匀空的铝盘孔越多测量精度越高固定在电动机的同速轴上,两边固定发光二极管和光电晶体管;当铝盘的实体部分挡在红外光发光二极管和高灵敏度的光电晶体管之间时,传感器将会输出一个低电平,而当铝盘孔在发光二极管和光敏晶体管之间时则输出为高电平,从而形成一个脉冲;当铝盘随着轴旋转的时候,传感器将向外输出若干个脉冲,把这些脉冲通过一系列的测量电路即可算出电动机即时的转速;第五章 信号的变换与处理5-1在材料为钢的实心圆柱形试件上,沿轴线和圆周方向各贴一片金属电阻应变片1R 和2R ,接入电桥;若应变片的阻值R=120Ω,灵敏度K=2,钢的泊松比μ=,桥压03U V =,当应变片受到的应变为1000με时,求电桥的输出电压;参考答案:由题意可知,电阻应变片1R 的阻值变化为: 611112021000100.24R R K ε-∆==⨯⨯⨯=Ω注意:应变ε是无量纲的量,由于其值很小,在应变测量中常用微应变με表示,6110με-=;电阻应变片2R 的阻值变化为:应变片形成的电桥为半桥双臂电桥,所以5-2什么是滤波器的分辨力与那些因素有关参考答案:上下两截止频率之间的频率范围称为滤波器带宽,或-3dB 带宽;带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力;通常用品质因数Q 描述带通滤波器的品质,0Q f B =,0f 为中心频率,B 为滤波器带宽;例如一个中心频率为500Hz 的滤波器,若其中-3dB 带宽为10Hz,则称其Q 值为50;Q 值越大,表明滤波器频率分辨力越高;5-3 分别设计一个截止频率为1kHz 二阶有源低通滤波器和一个截止频率为100Hz 的二阶有源高通滤波器;参考答案:略5-4 调幅波是否可以看成是调制信号与载波的叠加为什么参考答案:不可以;调幅是将载波与调制信号相乘,使载波信号的幅值随调制信号的变化而变化;调幅过程相当于频谱平移过程;时域相乘对应频域卷积;5-5 说明相敏检波器的作用和基本原理;参考答案:参见课本第92页作用:1若偏置电压未能使信号电压都在零线一侧,则可用相敏检波恢复原信号;2判别信号的极性;原理:交变信号在其过零线时符号+、-发生突变,调幅波的相位与载波比较也相应地发生1800的跳变;利用载波信号与之相比,便既能反映出原信号的幅值又能反映其极性;详见书中的图释;第六章 随机信号分析6-1 概率密度函数的物理意义是什么它和均值、均方值有何联系参考答案:概率密度函数表示随机信号的幅值落在指定区间内的概率;不同的随机信号的概率密度函数图形不同,可借此来辨别信号的性质;均值描述信号的常值分量;均方值反映信号的强度,即平均功率;概率密度函数以()x x t μ=为对称轴对称,并在()x x t μ=处取得最大值;6-2 自相关函数和互相关函数在工程上有何应用举例说明;参考答案:自相关函数可判断信号的随机程度、区别信号类型、判断噪声是宽带还是窄带;互相关函数可识别、提取含有噪声成分的信号从而消除噪声干扰;在测试技术中,互相关技术得到广泛的应用;如:测量运动物体的速度、测定深埋地下的输液管道裂损位置、查找振动源.6-3已知一个随机信号()x t 的自功率谱密度函数为()x S f ,将其输入到频率响应函数为()1(12)H f j f πτ=+的系统中,试求该系统的输出信号()y t 的自功率谱密度函数()y S f ,以及输入、输出函数的互功率谱密度函数()xy S f ;参考答案:第七章 机械位移测量7-1哪些类型的传感器适合于100㎜以上的大量程位移测量参考答案:电位器式位移传感器适合100mm 以上位移的测量,此外,光栅、磁栅、感应同步器也可测量大位移;7-2变极距电容传感器的线性范围如何、它适合高精度微小位移测量否还有哪些类型的传感器适合高精度微小位移测量参考答案:线性范围较小,适合高精度微小测量,测量范围31010mm -;还有光栅、磁栅、感应同步器、霍尔式微量位移传感器和激光位移传感器适合高精度微小测量;7-3数字式位移传感器有哪些种类阐述其各自的工作原理参考答案:光栅、磁栅、感应同步器、轴角编码器是常见的数字位移传感器;光栅位移传感器是利用莫尔条纹的移动来测量光栅移动的大小和方向;磁栅是一种有磁化信息的标尺.它是在非磁性体的平整表面上镀一层磁性薄膜,并用录制磁头沿长度方向按一定的节距λ录上磁性刻度线而构成的,因此又把磁栅称为磁尺;磁栅的种类可分为单面型直线磁栅、同轴型直线磁栅和旋转型磁栅等;感应同步器是利用电磁感应原理把位移量转化为数字量的传感器;轴角编码器是测量轴角位置和位移的一种数字式传感器;有两种类型:绝对式编码器、增量式编码器;7-4采用四细分技术的增量式轴角编码器,参数为2048p/r,与螺距为2mm 的丝杠相连接;实测轴角编码器在1s 的时间内输出了411648个脉冲,请计算丝杠转过的圈数、与之配合的螺母移动的直线位移及螺母移动的平均速度;7-5有一差动电容传感器,动极板处于中间位置时两个电容器的电容均为20pF,正弦激励源的电压峰-峰值为12V 、频率为15kHz,请完成:1设计一个电桥电路,具有电压输出的最大灵敏度;2计算传感器以外两个桥臂的匹配阻抗值;3传感器电容变化量为1pF 时,桥路的输出电压为多少第八章 振动的测量8-1何谓相对式测振传感器何谓惯性式测振传感器它们之间有什么不同参考答案:相对式测振传感器是选定相对不动点为参考点,测量被测物体相对于该参考点的相对运动;即将传感器壳体固定在相对静止的物体上,作为参考点,传感器活动部分与被测物体连接或通过弹簧压紧在被测物体上;测振时,把两者之间的相对运动直接记录在记录纸上或转换成电量输给测振仪;惯性式测振传感器由质量块、弹簧和阻尼器组成;测振时整个传感器固定安装在被测物体上,由于惯性力、弹簧力及阻尼力的综合作用,使质量块对传感器壳体的相对运动来反映被测物体振动参数的变化;相对式传感器用于测量结构上两部件间的相对振动;惯性式位移传感器用于测量被测物体相对于地球惯性坐标系的绝对振动;8-2要使惯性式位移传感器、惯性式速度传感器和惯性式加速度传感器的输出量能够准确的反映被测物体的振动参数,它们各应该满足什么条件参考答案:惯性式位移传感器的响应条件:1幅值不失真的条件是ω/n ω>>1,即传感器惯性系统的固有频率远低于被测物体振动的下限频率;2选择适当的阻尼,抑制ω/n ω=1处的共振峰,使幅频特性平坦部分扩展,从而扩大传感器可测的下限频率;3降低传感器惯性系统的固有频率,扩展传感器可测量振动的下限频率;惯性式速度传感器的响应条件与惯性式位移传感器的响应条件相同;惯性式加速度传感器的响应条件:1幅值不失真的条件是ω/n ω<<1,即传感器惯性系统的固有频率远高于被测物体振动的上限频率;2选择适当的阻尼,可以改善ω=n ω的共振峰处的幅频特性,从而扩大传感器可测的上限频率;3提高传感器惯性系统的固有频率,扩展传感器可测量振动的上限频率;8-3已知某应变式加速度传感器的阻尼比ζ=,当 ω<ωn 时,传感器的相频特性可近似的表示为:ϕω≈πω/ωn ;设输入信号是一个由多个谐波组成的周期信号:xt=0x cos()n n t ω∑,当该信号经过应变式加速度传感器时,其响应为yt=0x cos()n n n t ωϕ+∑,式中n 为整数,试证明输出波形有没有相位失真8-4用某惯性式位移传感器测量振动时,若要求其测量误差不超过2﹪,问其可测频率范围有多大取 ζ=8-5根据磁电式惯性速度传感器的结构,说明为了扩展可测下限频率,在结构设计上采取了哪些措施参考答案:为了扩展被测频率的下限,应尽量降低惯性式速度传感器的固有频率,即加大惯性质量、减小弹簧的轴向刚度;8-6压电式加速度传感器是否能够测量常值加速度为什么参考答案:不能;因为压电式加速度传感器是基于某种晶体材料的压电效应而制成的惯性传感器;传感器受振时,质量块加在压电元件上的力随之变化,当被测振动频率远低于传感器的固有频率时,这个力的变化与被测振动的加速度成正比;由于压电效应,在压电元件中便产生了与被测加速度成正比的电荷量;常值加速度下力不变化,不会产生压电效应;第九章 应变、力和扭矩的测量9-1一简单拉伸试件上贴有两片电阻应变片,一片沿轴向,一片与之垂直,分别接入电桥相邻两臂;已知试件弹性模量112.010a E p =⨯,泊松比0.3μ=,应变片灵敏系数K=2,供桥电压5o U V =,若测得电桥输出电压8.26BD U mV =,求试件上的轴向应力为多少a P参考答案:(1)4O BD U U K =+με,又轴向应力 σ=E ε,所以将已知量代入得:a P 8σ=5.08⨯109-2以单臂工作为例,说明电桥实现温度补偿必须符合哪些条件参考答案:电桥实现温度补偿的条件是:两只参数完全相同的应变片,贴在相同材料的试件上,放在相同的温度场中,接在相邻桥臂,则电桥输出可以补偿这两只应变片由于温度变化产生的电阻变化;9-3为了测量某轴所承受的扭矩,在其某截面的圆周上沿轴向45±︒方向贴了两个电阻应变片,组成半桥;已知轴径40d mm =,弹性模量112.010a E p =⨯,泊松比0.3μ=;若由静态应变仪测得读数为1000με,求该轴所受的扭矩大小参考答案:设扭矩为N M ,则 1N N E M W ε=+μ,其中 N W =3d ,2ε=ε仪,将已知量代入得 11332.010100.20.04(10.3)2N M -⨯⨯=⨯⨯+⨯,即 985N M N m =⋅ 9-4一构件受拉弯综合作用,试设计如何贴片组桥才能进行下述测试:1只测弯矩,并进行温度补偿,消除拉力的影响;2只测拉力,并进行温度补偿,消除弯矩的影响;9-5试述转轴扭矩测量的原理和方法;参考答案转轴扭矩测量方法基本分为两大类,一是通过测量由剪应力引起的应变进而达到测量扭矩的目的;二是通过测量沿轴向相邻两截面间的相对转角而达到测量扭矩的目的; 9-6有一扭矩标定小轴,其轴径d=30mm,弹性模量112.010a E p =⨯,泊松比0.3μ=,加载力臂L=1000mm;若用静态应变仪全桥测其应力,,若加载50N 时,静态应变仪读数为多少με用同种材料直径D=300mm 的轴进行实测,测试条件与标定完全相同,问当应变仪读数与上面标定相同时,实测轴所受的扭矩是多少参考答案设扭矩为N M ,则 1N N E M W ε=+μ,其中50N M L =⨯,N W =3d ,全桥 4ε=ε仪,所以静变仪的读数为 1132.010500.20.03(10.3)⨯⨯ε=⨯⨯+⨯4仪,解得 ε仪=240με若D=300mm,则1162.01024010(10.3)4-3N ⨯⨯⨯M =⨯0.2⨯0.3+⨯,所以 N M =45⨯10 第十章 温度测量10-1当热电偶的参考端温度不为0︒C 时,应怎样测量温度举例说明;参考答案:若参考端温度不为0︒C 时,可按中间温度定律公式计算:式中,n T 为中间温度;10-2分别说明热电偶、金属热电阻和半导体热敏电阻的特点和用途;参考答案:热电偶——具有结构简单、精确度高、热惯性小、测量范围宽等特点,是应用最广泛的一种测温元件;半导体热敏电阻——主要优点是电阻温度系数大、灵敏度高、分辨率高,而且体积小、热惯性小、响应速度快,主要缺点是非线性严重,因而精确度较低,在使用时一般需经过线性化处理;金属热电阻——金属热电阻具有精确度高、稳定性好、性能可靠等特点;第十一章 压力和流量的测量11-1说明力平衡式压力变送器的工作原理;11-2利用弹簧管作为压力敏感元件,试设计一个霍尔式压力变送器;11-3流量主要有哪些测量方法11-4电磁流量计有哪些特点参考答案11-1 力平衡式压力变送器采用力矩平衡原理,将弹性元件测压产生的集中力与输出电流经反馈装置产生的反馈力通过杠杆形成力矩平衡,这时的输出电流值反映了被测压力值; 11-3 流量的测量方法主要有:1 容积法 用容积法制成的流量计相当于一个具有标准容积的容器,连续不断的对 流体进行度量;容积式流量计有椭圆齿轮流量计、腰轮流量计、刮板流量计等;2 速度法 属于这一类的有差压式流量计、转子流量计、电磁流量计、涡轮流量计、超声波流量计;3 质量流量法 这种方法是测量与流体质量有关的物理量,从而直接得到质量流量,具有被测流量不受流体的温度、压力、密度、粘度等变化影响的优点;11-4 电磁流量计的主要特有:1 精度高,可达0.5%;2 不受被测流体的压力、温度、密度、粘度等变化的影响;3 不仅可以测量单相的导电性液体的流量,而且可以测量液固两相介质,还可以测量高温、腐蚀性流体;4 测量管内没有突出物,内壁光滑,因此被测流体流过时,几乎没有压力损失;5 结构简单可靠,没有可动部件,寿命长;第十二章计算机控制测试系统12-1计算机数据采集系统的设计原则、设计内容及设计步骤有哪些12-2计算机数据采集系统主要有哪些功能部分组成12-3什么是虚拟仪器虚拟仪器是怎样组成的12-4计算机数据采集系统一般有哪几种地线有几种主要的接地方式12-5对计算机数据采集系统产生干扰的因素有哪些如何进行干扰抑制12-6计算机数据采集系统中通常采用哪些可靠技术参考答案12-1计算机数据采集系统的设计:一确定信号的特征在设计测量系统之前,对于位移、速度、振动、加速度、温度、湿度及压力等机械参量的信号特征应有一个基本的设计,作为设计的基础;二选择传感器选择传感器时应遵循这样的原则:1根据测量目的确定传感器类型2可靠性及稳定性 3频率响应特性 4线性范围 5精度 6灵敏度三信号调理与处理信号调理与处理电路的设计原则是对有用信号起增益作用,对噪声干扰起抑制作用;四计算机系统硬件和软件设计根据任务的具体要求、应用环境、系统需要完成的功能,确定计算机系统应有的采集速度、精度、存储容量、所需外部设备的种类和数量、规定工作时序关系等;五信号的分析与处理 1抑制噪声,提取信号 2信号特征提取与分析 3系统误差修正六数字滤波和数据处理12-2计算机数据采集系统的主要功能是:1程控自动测量2程控自动校正3结果判断及故障报警4数据处理5联网通信 6多路巡回或同时测量12-3虚拟仪器是通过软件将通用计算机与有关仪器硬件结合起来,用户通过图形界面通常称为虚拟前面板进行操作的一种仪器;虚拟仪器的基本部件包括计算机、软件、仪器硬件以及将计算机与仪器硬件相连接的总线结构;除此之外虚拟仪器还必须配备其他硬件设备,如各种计算机内置插卡或外置测试设备以及相应的传感器;12-4测试系统中的地线可分为以下四类:1保护地又称为安全地这个地一般是指大地,将仪器的外壳屏蔽层接地,要求接地电阻小于4 ;2信号地它是电路中输入与输出的零信号电位公共地,它本身可能与大地是隔离地;3信号源地是传感器本身的零信号电位基准公共线4交流电源地为了设备安全而采取的保护接地措施;12-5干扰的因素有:1外部干扰它又可分为来自自然界的干扰和来自电设备的干扰;例如,大气层发生的雷电、电离层的变化、太阳黑子的电磁辐射及来自宇宙的电磁辐射等;来自电器设备的干扰主要有大电流及电压变化率引起的噪声;2内部干扰主要是由于设备内部和系统的公共地线引起的噪声;设备内部干扰主要是设计不良或者是内部器件在工作时产生的热噪声、散粒噪声和闪烁噪声等 ;抑制干扰的措施有:1电源噪声的抑制2共模噪声的抑制3利用前置放大器,提高信噪比4多路数据系统的共模干扰及抑制5模拟信号的滤波6信号传输线的选择与铺设方法7接地;。