最新人教版高中数学必修1第三章《待定系数法》
人教版高中数学新教材必修第一册课件:3.1.2 函数表示法
即:f (x) 3 x 7
讲
22
课
人
:
邢
启 强
23
典型例题
解 : 设f (x) kx b,则f ( f (x)) f (kx b) k(kx b) b
k(kx b) b 4x 1,
k 2 (k
4 1)b
1
k b
2
1 3
或
k b
2 1
f (x) 2x 1 或f (x) 2x 1
因为 AD=x 所以 x2= 2 a 2 A 2
E
B
所以 DC=2-x2
讲
课
人
:
邢
启 强
27
典型例题
例5.已知函数f(x)在[-1,2]上的图象如图 所示,求f(x)的解析式.
【分析】由图象特点先确定函数类型,再求解析式.
【解析】当-1≤x≤0时,设y=ax+b,
∵过点(-1,0)和(0,1),∴
(1)求f{f[f(-2)]} (2) 当f (x)=-7时,求x ;
解: (1) f{f[f(-2)]} = f{f[-1]} = f{1} =0
(2)若x<-1 , 2x+3 <1,与f (x)=-7相符,
由2x+3 =-7得x=-5 易知其他二段均不符合f (x)=-7 。
故 x=-5
讲
课
Hale Waihona Puke 人:(2)换元法:已知复合函数 f(g(x))的解析式, 可用换元法,此时要注意新元的取值范围;
(3)配凑法:由已知条件 f(g(x))=F(x),可将 F(x) 改写成关于 g(x)的表达式,然后以 x 替代 g(x),便 得 f(x)的解析式; (4)消去法:已知关于 f(x)与 f1x或 f(-x)的表达式, 可根据已知条件再构造出另外一个等式组成方程
最新人教版高中数学必修1第三章《待定系数法》预习导航
预习导航请沿以下脉络预习:1.待定系数法:一般地,在求一个函数时,如果知道这个函数的一般形式,可先把函数写为一般形式,其中系数待定,然后根据题设条件求出这些待定系数,这种通过求待定系数来确定变量之间关系式的方法叫待定系数法.2.使用待定系数法解题的基本步骤:(1)确定所求问题是含有待定系数的解析式;(2)根据恒等条件,列出一组含待定系数的方程;(3)解方程(组),确定待定系数的值,从而使问题得到解决.1.过点A(-2,3)的反比例函数的解析式是().A.6yx=B.6yx-=C.32y x=D.32y x=-答案:B解析:设反比例函数为kyx=,代入A点坐标得32k=-,∴k=-6.2.过点(-1,1)的正比例函数是().A.y=x B.y=-xC.y=2x+3 D.y=-2x-1答案:B解析:设正比例函数为y=kx,代入点(-1,1)得-k=1,∴k=-1.3.二次函数y=x2+ax+b,若a+b=0,则它的图象必经过点().A.(-1,-1) B.(1,-1)C.(1,1) D.(-1,1)答案:C解析:对于二次函数y =x 2+ax +b ,当x =1时,y =12+(a +b )=1,故图象必过点(1,1).4.已知一次函数的图象经过(5,-2)和(3,4),则这个函数的解析式为________. 答案:y =-3x +13解析:设一次函数为y =kx +b ,则有5234k b k b +=-⎧⎨+=⎩解得313k b =-⎧⎨=⎩ 5.已知6x 2-x -1=(2x -1)·(ax +b ),求a ,b .解:方法一:∵(2x -1)·(ax +b )=2ax 2+(2b -a )x -b ,∴6x 2-x -1=2ax 2+(2b -a )x -b ,根据多项式恒等,对应项系数相等得:26211a b a b =⎧⎪-=-⎨⎪-=-⎩解得31a b =⎧⎨=⎩ 方法二:∵6x 2-x -1=(2x -1)·(3x +1),∴(2x -1)·(3x +1)=(2x -1)·(ax +b ),∴a =3,b =1.。
高中新课程数学(新课标人教B版)必修一《2.2.3 待定系数法》课件
据 题设条件
,求出这些待定系数.这种通
过求 待定系数 来确定变量之间关系的方法叫做待定系数
法.
课前探究学习
课堂讲练互动
活页规范训练
试一试:怎样用待定系数法求过(0,1),(2,3)两点的一次函 数的解析式?并归纳用待定系数法求解析式的步骤.
课前探究学习
课堂讲练互动
活页规范训练
1.待定系数法的理解 待定系数法是解决数学问题时常用的数学方法之一,不仅 可以用来求函数的解析式,而且还常用来求某一数学表达式中 的待定参数的值.其理论依据是多项式恒等,也就是利用了多 项式 f(x)⇔g(x)的等价条件:对于一个任意的 a 值,都有 f(a)⇔ g(a),然后转化为两个多项式各同类项的系数对应相等.
【训练 1】 已知 f(x)是一次函数,且满足 3f(x+1)-2f(x- 1)=2x+17,求 f(x).
解 设 f(x)=ax+b(a≠0),则有 3f(x+1)-2f(x-1)=3ax+ 3a+3b-2ax+2a-2b=ax+5a+b=2x+17,
则ab=+25a=17 , ∴a=2,b=7,即 f(x)=2x+7.
课前探究学习
课堂讲练互动
活页规范训练
【训练 2】 求满足下列条件的二次函数的解析式. (1)已知二次函数的图象经过 A(3,0),B(0,-3),C(-2,5) 三点;
(2)已知顶点坐标为(4,2),点(2,0)在函数图象上; (3)已知 y=x2-4x+h 的顶点 A 在直线 y=-4x-1 上. 解 (1)设所求函数为 y=ax2+bx+c (a≠0),其中 a,b,c
由 f[f(x)]=4x+9,得 a2x+ab+b=4x+9, ∴aa2b=+4b,=9, 解得ab= =23, , 或ab==--29,. ∴f(x)=2x+3 或 f(x)=-2x-9. 规律方法 设出一次函数解析式,由等量关系列式求解.
人教A版(2019)高中数学必修第一册第三章3.1函数的基本概念教案
函数的基本概念教学目标:1.理解函数的概念,掌握函数三要素及求法.2.掌握函数解析式的求法,以及同一函数的判断标准.3.学会转化与化归、数形结合思想.问题导入:1.函数的定义:一般地,设A,B 是非空的实数集,如果对于A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∈.注:判断对应关系是否为函数,主要从以下三个方面去判断:(1)A ,B 必须是非空实数集;(2)A 中任何一个元素在B 中必须有元素与其对应;(3)A 中任何一个元素在B 中的对应元素必须唯一.2.函数三要素:定义域、值域、对应关系 .定义域:x 叫做自变量,x 的取值范围A 叫做函数的定义域.值域:函数值的集合{}f (x )|x ∈A 叫做函数的值域同一函数:如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数是同一个函数. 注:函数定义域及值域的求法总结(1)常见函数求定义域:①分式函数中分母不为0;①偶次根式函数被开方式大于等于0;①对数函数的定义域大于0.(2)抽象函数求定义域:①已知原函数)(x f 的定义域为()b a ,,求复合函数()[]x g f 的定义域:只需解不等式b x g a <<)(,不等式的解集即为所求函数定义域.①已知复合函数()[]x g f 的定义域为()b a ,,求原函数)(x f 的定义域:只需根据b x a <<求出)(x g 的值域,即得原函数)(x f 的定义域.(3)求值域的常规方法ⓐ观察法:一些简单函数,通过观察法求值域.ⓑ配方法:“二次函数类”用配方法求值域.ⓒ换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数也可以用换元法代换求值域.ⓓ分离常数法:形如y =cx +dax +b (a ≠0)的函数可用此法求值域.ⓔ单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.ⓕ数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围. 3. 求函数解析式的方法(1)待定系数法:当函数的类型已知时,可设出函数解析式,根据条件列出方程(组),进而求得函数的解析式.(2)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(3)换元法:已知)]([x g f y =,求)(x f 的解析式:令)(x g t =,并写出t 的取值范围,用t 表示x ,再将用t 表示的x 回代入原式,求出解析式.(4)方程组法:已知关于f (x )与)(xf 1或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).4.分段函数的概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数被称为分段函数. 分段函数虽由几个部分组成,但它表示的是同一个函数.注:(1)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.(2) 分段函数是一个函数而不是几个函数,处理分段函数问题时,首先确定自变量的取值属于哪个区间,再选取相应的对应关系,离开定义域讨论分段函数是毫无意义的.知识点1:函数定义[例1] 下列图象中,可作为函数图象的是________.(填序号)[对点演练1]下列对应关系式中是A 到B 的函数的是( )A .A ⊆R ,B ⊆R ,x 2+y 2=1B .A ={-1,0,1},B ={1,2},f :x →y =|x |+1C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1知识点2:求函数的定义域和值域[例2] 下列选项中能表示同一个函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2[例3] 求下列函数的定义域.(1) y =2x -1-7x ;(2) y =(x +1)0x +2;(3) y =4-x 2+1x.[例4] 求下列函数的定义域:(1)已知函数的定义域为,求函数的定义域.(2)已知函数的定义域为,求函数的定义域. (3)已知函数的定义域为,求函数的定义域.[例5]求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]);(2) y =1-x 21+x 2; (3)3254)(-+-=x x x f[对点演练2]1. 下列各组式子是否表示同一函数?为什么?(1) f (x )=|x |,φ(t )=t 2;(2) y =1+x ·1-x ,y =1-x 2;(3) y =(3-x )2,y =x -3.[2,2]-2(1)y f x =-(24)y f x =+[0,1]f (x)f (x)[1,2]-2(1)(1)y f x f x =+--2. 求下列函数的定义域.(1) y =(x +1)2x +1-1-x ;(2) y =2x 2-3x -2+14-x. 3.已知函数)(x f y =的定义域是]2,0[,那么)1lg(1)()(2++=x x f x g 的定义域是? 4. 求下列函数的值域(1)f(x)=x -3x +1;(2)f(x)=x 2-x x 2-x +1. (3)f(x)=x 2-1x 2+1;(4)f(x)=1x -x 2.知识点3:求函数解析式[例6]待定系数:若)(x f 是一次函数,[()]94f f x x =+,则)(x f = _________________.[例7].配凑:函数2(1)f x x -=,则函数()f x =[例8].换元:已知2(1)2f x x x +=+,求函数)(x f 的解析式为 .[例9] 方程组:已知函数()f x 满足()2()f x f x x --=-,则()f x =________.[对点演练3]1.若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________.2.若,,则( )A .9B .17C .2D .3()43f x x =-()()21g x f x -=()2g =3.已知函数2)1(2-=x x f ,则f (x )=________. 4.已知函数f (x )的定义域为(0,+∞),且f (x )=2)1(xf ·x -1,则f (x )=________.知识点4:分段函数[例10]. 已知函数f (x )=-x 2+2,g (x )=x ,令φ(x )=min{f (x ),g (x )}(即f (x )和g (x )中的较小者). (1)分别用图象法和解析式表示φ(x );(2)求函数φ(x )的定义域,值域.[对点演练4]2. 已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则函数f (x )的图象是()习题演练:1.下列四种说法中,不正确的一个是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素2. 下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )23.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x3. 函数y =6-x|x |-4的定义域用区间表示为________.4. 若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()5.已知函数f (x )=x +3+1x +2.(1)求函数的定义域;(2)求f (-3),)32(f 的值; (3)当a >0时,求f (a ),f (a -1)的值.6.函数y =x +1+12-x 的定义域为________.7.已知函数()2y f x =-定义域是[]0,4,则()11f x y x +=-的定义域是 .8. 求下列函数的值域:(1)y =3x +1x -2; (2)y =52x 2-4x +3; (3)y =x +41-x9.已知)(x f 是一次函数且满足()())(,1721213x f x x f x f 求+=--+.10. 若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x 11. 已知函数()f x 满足()2()f x f x x --=-,则()f x =________.12. 定义在)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,求函数)(x f 的解析式.13.已知f (x )满足2f (x )+)1(xf =3x ,则f (x )的解析式为 .14.已知1)f x =+,求函数)(x f 的解析式.15.已知f (2x +1)=3x -4,f (a )=4,则a =________.。
高中数学待定系数法
高中数学待定系数法(原创版)目录一、高中数学待定系数法概述二、待定系数法的应用实例三、待定系数法的解题步骤四、待定系数法的实际应用价值正文一、高中数学待定系数法概述高中数学待定系数法是一种解决函数问题的有效方法。
它是一种通过假设函数中的某些系数,然后根据题目所给出的条件,将这些系数带入函数中求解的方法。
待定系数法的主要优点是能够简化复杂的函数问题,使得问题变得容易解决。
二、待定系数法的应用实例为了更好地理解待定系数法,我们通过一个具体的实例来说明它的应用。
假设有一个二次函数 f(x) = ax^2 + bx + c,我们需要求解这个函数在 x=1 和 x=-1 处的值。
根据待定系数法,我们可以假设函数的形式为 f(x) = a(x-1)(x+1),然后根据题目所给出的条件,将 x=1 和 x=-1 代入函数,得到以下方程组:a(1-1)(1+1) = f(1)a(-1-1)(-1+1) = f(-1)解这个方程组,我们可以得到 a 的值为 f(1) - f(-1)。
将 a 的值代入原函数,我们就可以求解出 f(x) 的值。
三、待定系数法的解题步骤待定系数法的解题步骤可以总结为以下几个步骤:1.假设函数的形式,例如 f(x) = ax^2 + bx + c。
2.根据题目所给出的条件,列出方程组。
3.解方程组,求解出待定系数的值。
4.将待定系数的值代入原函数,求解出函数的值。
四、待定系数法的实际应用价值待定系数法在高中数学中具有广泛的应用。
它不仅可以用于解决二次函数问题,还可以用于解决其他复杂的函数问题。
新教材人教版高中数学必修1 第三章 3.1.2 函数的表示法(一)
集合B { x, y | x R, y R}
对应关系f : 平面直角坐标系中的点与它的坐标对应; (3)集合A={x|x是三角形},集合B={x|x是圆} 对应关系f : 每一个三角形都对应它的内切圆; (4)集合A {x | x是新华中学的班级}, 集合B {x | x是新华中学的学生}, 对应关系f : 每一个班级都对应班里的学生.
f’:平面直角坐标系内的点跟它的坐标对应
f’ : E F
➢映射概念
非空集合、唯一确定的对应关系、任意x、唯一确定的y
1、下列对应中,能构成映射的有(
)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(1)
A
B
a1
b1 b2
a2
b3 b4
(4)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(2)
A
B
a1
b1
a2
b2
(5)
(3) f ( x) 2x2 3x 5
[0, )
(, 2) U(2, ) [ 31 , )
8
一、复习回顾
实例1:炮弹距地面的高度h(单位:m)随时间t(单位:s)
变化的规律是 : h=130t-5t2
解析法
实例2:南极上空臭氧空洞的面积从1979~2001年的变
化情况:
图象法
实例3:
列表法
二、基础知识讲解
A
B
a1
b1
a2
高中数学解题方法系列:待定系数法
高中数学解题方法系列:待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。
(≡表示恒等于)待定系数法解题的关键是依据已知,正确列出等式或方程。
使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。
例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。
使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。
待定系数法是中学数学中的一种重要方法,它在平面解析几何中有广泛的应用.(一)求直线和曲线的方程例1过直线x-2y-3=0与直线2x-3y-2=0的交点,使它与两坐标轴相交所成的三角形的面积为5,求此直线的方程.【解】设所求的直线方程为(x-2y-3)+λ(2x-3y-2)=0,整理,得依题意,列方程得于是所求的直线方程为8x-5y+20=0或2x-5y-10=0.【解说】(1)本解法用到过两直线交点的直线系方程,λ是待定系数.(2)待定系数法是求直线、圆和圆锥曲线方程的一种基本方法.例2如图2-9,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线C上的任一点到l2的距离与到点N的距离相等.若系,求曲线C的方程.【解】如图2-9,以l1为x轴,MN的垂直平分线为y轴,建立直角坐标系.由已知,得曲线C是以点N为焦点、l2为准线的抛物线的一段,其中点A、B为曲线C的端点.设曲线C的方程为y2=2px,p>0(x1≤x≤x2,y>0).其中,x1、x2分别是A、B的横坐标,p=|MN|.从而M、N解之,得p=4,x1=1.故曲线C的方程为y2=8x(1≤x≤4,y>0).(二)探讨二元二次方程(或高次方程)表示的直线的性质例3已知方程ax2+bxy+cy2=0表示两条不重合的直线L1、L2.求:(1)直线L1与L2交角的两条角平分线方程;(2)直线L1与L2的夹角的大小.【解】设L1、L2的方程分别为mx+ny=0、qx+py=0,则ax2+bxy+cy2=(mx+ny)(qx+py).从而由待定系数法,得a=mq,b=mp+nq,c=np.(1)由点到直线的距离公式,得所求的角平分线方程为即(m2+n2)(qx+py)2=(q2+p2)(mx+ny)2,化简、整理,得(nq-mp)[(nq+mp)x2+2(np-mq)xy-(nq+mp)y2]=0.∵L1、L2是两条不重合的直线∴b2-4ac=(mp+nq)2-4mnpq=(mp-nq)2>0.即mp-nq≠0.从而(nq+mp)x2+2(np-mq)xy-(nq+mp)y2=0.把mq=a,mp+nq=b,np=c代入上式,得bx2+2(c-a)xy-by2=0.即为所求的两条角平分线方程.(2)显然当mq+np=0,即a+c=0时,直线L1与L2垂直,即夹角为90°.当mq+np≠0即a+c≠0时,设L1与L2的夹角为α,则【解说】一般地说,研究二元二次(或高次)方程表示的直线的性质,用待定系数法较为简便.(三)探讨二次曲线的性质1.证明曲线系过定点例4求证:不论参数t取什么实数值,曲线系(4t2+t+1)x2+(t+1)y2+4t(t+1)y-(109t2+21t+31)=0都过两个定点,并求这两个定点的坐标.【证明】把原方程整理成参数t的方程,得(4x2+4y-109)t2+(x2+y2+4y-21)t+x2+y2-31=0.∵t是任意实数上式都成立,【解说】由本例可总结出,证明含有一个参数t的曲线系F(x,y,t)=0过定点的步骤是:(1)把F(x,y,t)=0整理成t的方程;(2)因t是任意实数,所以t的各项系数(包括常数项)都等于零,得x、y的方程组;(3)解这个方程组,即得定点坐标.2.求圆系的公切线或公切圆例5求圆系x2+y2-2(2m+1)x-2my+4m2+4m+1=0(m≠0)的公切线方程.【解】将圆系方程整理为[x-(2m+1)]2+(y-m)2=m2(m≠0)显然,平行于y轴的直线都不是圆系的公切线.设它的公切线方程为y=kx+b,则由圆心(2m+1,m)到切线的距离等于半径|m|,得从而[(1-2k)m-(k+b)]2=m2(1+k2),整理成m的方程,得(3k2-4k)m2-2(1-2k)(k+b)m+(k+b)2=0.∵m取零以外的任意实数上式都成立,【解说】由本例可总结出求圆系F(x,y,m)=0的公切线方程的步骤是:(1)把圆系方程化为标准方程,求出圆心和半径;(2)当公切线的斜率存在时,设其方程为y=kx+b,利用圆心到切线的距离等于半径,求出k、b、m 的关系式f(k,b,m)=0;(3)把f(k,b,m)=0整理成参数m的方程G(m)=0.由于m∈R,从而可得m的各项系数(包括常数项)都等于零,得k、b的方程组;(4)解这个方程组,求出k、b的值;(5)用同样的方法,可求出x=a型的公切线方程.3.化简二元二次方程例6求曲线9x2+4y2+18x-16y-11=0的焦点和准线.【分析】把平移公式x=x′+h,y=y′+k,代入原方程化简.【解】(略).例7.已知函数y =mx x n x 22431+++的最大值为7,最小值为-1,求此函数式。
高中数学 2-2-3待定系数法课件 新人教版必修1
解:(1)设所求函数解析式为y=ax2+bx+c(a≠0),其 中a、b、c待定,根据已知条件得:
9c=a+-33b,+c=0, 4a-2b+c=5,
解得ba==-1 2 c=-3
因此所求函数解析式为y=x2-2x-3.
(2)设所求函数为 y=a(x-4)2+2(a≠0),其中 a 待定. 根据已知条件得:a(2-4)2+2=0,解得 a=-12. 因此所求函数为 y=-12(x-4)2+2=-12x2+4x-6. (3)y=x2-4x+h=(x-2)2+h-4,∴顶点 A(2,h-4). 由已知得:-4×2-1=h-4,即 h=-5,因此所求函 数为 y=x2-4x-5.
B(x2,0),且x1,x2的倒数和为
2 3
,求这个二次函数的解析
式.
(1)证明:和这个二次函数对应的一元二次方 程是x2-2(m-1)x+m2-2m-3=0.
∵Δ=4(m-1)2-4(m2-2m-3)
=4m2-8m+4-4m2+8m+12=16>0,
∴方程x2-2(m-1)x+m2-2m-3=0必有两 个不相等的实数根.
∴对称轴为x=-1.
∴可设计:已知二次函数y=x2+bx+c的图象经过点
(1,0),对称轴为x=-1,求它的解析式等等.
评析:(1)本题属于开放性问题,答案不唯一,能够较 好地考查学生的思维能力.
(2)用待定系数法求函数解析式的一般步骤: ①设出含有待定系数的函数解析式; ②把已知条件(自变量与函数的对应值)代入解析式, 得到关于待定系数的方程组; ③解方程(组),求出待定系数; ④将求得的待定系数的值代回所设的解析式.
由已知顶点为(1,-3),可得h=1,k=-3.
即所求的二次函数为y=a(x-1)2-3.
数学基本方法之三 待定系数法 新课标 人教版
数学基本方法之三待定系数法陕西洋县中学刘大鸣要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等;待定系数法解题的关键是依据已知,正确列出等式或方程.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。
例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解.使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决.如何列出一组含待定系数的方程,主要从以下几方面着手分析:(1) 利用对应系数相等列方程;(2)由恒等的概念用数值代入法列方程;(3) 利用定义本身的属性列方程;(4)利用几何条件列方程;比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程.【方法再现性题组】1设f(x)=x2+m,f(x)的反函数f-1(x)=nx-5,那么m、n的值依次为____A. 52, -2 B. -52, 2 C.52, 2 D. -52,-22二次不等式ax2+bx+2>0的解集是(-12,13),则a+b的值是_____A. 10B. -10C. 14D. -143在(1-x3)(1+x)10的展开式中,x5的系数是_____A. -297B.-252C. 297D. 2074函数y=a-bcos3x (b<0)的最大值为32,最小值为-12,则y=-4asin3bx的最小正周期是_____5与直线L:2x+3y+5=0平行且过点A(1,-4)的直线L’的方程是_______________6与双曲线x2-y24=1有共同的渐近线,且过点(2,2)的双曲线的方程是____________【方法探究过程】1小题:利用互为反函数的对应关系,求出反函数认识恒等意义求解,由f(x)=x2+m求出f-1(x)=2x-2m,比较系数易求,选C;2小题:认识方程,函数,不等式之间的一一对应关系,根与系数关系简化求解,由不等式解集(-12,13),可知-12、13是方程ax 2+bx +2=0的两根,代入两根,列出关于系数a 、b 的方程组,易求得a +b ,选D ; 3小题:注意多项式组成和二项式定理求解,分析x 5的系数由C 105与(-1)C 102两项组成,相加后得x 5的系数,选D ;4小题:注意正余函数的有界性,由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求得答案23π; 5小题:平行直线系的认识切入,设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0;6小题:共同渐近线的双曲线系方程的使用,设双曲线方程x 2-y 24=λ,点(2,2)代入求得λ=3,即得方程x 23-y 212=1。
人教版高中数学必修一优秀课件:待定系数法PPT22
利用待定系数法求函数解析式
•
求下列函数的解析式.
• (1)已知f(x)是一次函数,且满足3f(x+1)-2f(x -1)=2x+17,求f(x).
• (2)已知二次函数y=f(x)的图象过A(0,-5)、 B(5,0)两点,它的对称轴为直线x=2,求这个 二次函数的解析式.
【思路探究】 (1) 设fx=ax+b ―→ 列方程 ―→ 求a,b (2) 设二次函数顶点式或一般式 ―→ 列方程组 ―→ 求系数 【自主解答】 (1)设 f(x)=ax+b(a≠0),则有 3f(x+1) -2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+5a+b=2x+ 17,则ab= +25a=17 ,∴a=2,b=7, 即 f(x)=2x+7.
书少成天才功就山壮是百=有艰分仰不之苦一路望的努的灵星勤感劳加空力上为动百,分,径+之脚正九老,十踏确九学的实大的汗水海地方!徒!无法伤+崖少悲苦谈作空话舟
课 标 1.了解待定系数法的概念; 解 2.会用待定系数法求函数的解析式. 读
待定系数法的定义
• 【问题导思】 • 已知一个正比例函数的图象过点(-3,4),如何求这
人教版高中数学必修一优秀课件:待 定系数 法PPT22
2.已知一个反比例函数的图象过(2,8)点,则这个函数的
解析式为( )
A.y=4x
B.y=-4x
C.y=1x6
D.y=-1x6
【解析】 设 y=kx,∵过(2,8)点,∴8=2k,∴k=16,
即 y=1x6.故选 C.
【答案】 C
人教版高中数学必修一优秀课件:待 定系数 法PPT22
人教版高中数学必修一优秀课件:待 定系数 法PPT22
• 3.已知二次函数f(x)满足f(x+1)-f(x)=2x且 f(0)=1,则f(x)的解析式为________.
最新人教版高中数学必修1第三章《待定系数法》教案
示范教案整体设计教学分析在初中阶段,学生已经对待定系数法有了认知基础.由于待定系数法是解决数学问题的重要方法,所以本节进一步学习.教材利用实例引入了待定系数法,并且通过两个例题介绍了其应用.值得注意的是本节重点应放在运用待定系数法求函数的解析式上,对于其他方面的应用不必过多延伸.三维目标1.了解待定系数法,通过新旧知识的认识冲突,激发学生的求知欲,培养学生由特殊事例发现一般规律的归纳能力.2.掌握用待定系数法求函数解析式的方法及其应用,提高学生解决问题的能力. 重点难点教学重点:待定系数法及其应用.教学难点:待定系数法的应用.课时安排1课时教学过程导入新课思路1.已知一次函数y =f(x)的图象经过点(1,2)和(2,-1),求一次函数y =f(x)的解析式,我们用什么方法?(待定系数法)教师指出本节课题.思路2.这节课我们学习求一次函数和二次函数解析式的方法——待定系数法,教师指出本节课题.推进新课新知探究提出问题①两个关于x 的一元多项式ax 2-x +4与2x 2+bx +c 相等,即任意x ∈R ,总有ax 2-x +4=2x 2+bx +c ,求a ,b ,c 的值.②两个一元多项式相等的条件是什么?③已知一次函数y =f x 的图象经过点 1,2 和 2,-1 ,求一次函数y =f x 的解析式 即前面导入中的问题 .④这种求函数解析式的方法称为什么?⑤待定系数法有什么优点?讨论结果:①a =2,b =-1,c =4.②两个一元多项式分别整理成标准式(按降幂排列)之后,当且仅当它们对应同类项的系数相等,则称这两个多项式相等.③设f(x)=kx +b(k≠0),则有⎩⎪⎨⎪⎧k +b =2,2k +b =-1,解得k =-3,b =5. 即f(x)=-3x +5.④待定系数法.⑤待定系数法的特点是先根据数量之间的关系所具有的形式,假定一个含有待定的系数的恒等式,然后根据恒等式的性质列出几个方程,解这个方程组,求出各待定系数的值或从方程组中消去这些待定系数,找出原来那些已知系数之间的关系,从而使问题得到解决.应用示例思路1例1已知一个二次函数f(x),f(0)=-5,f(-1)=-4,f(2)=-5,求这个函数.解:设所求函数为f(x)=ax 2+bx +c ,其中a 、b 、c 待定.根据已知条件,得方程组⎩⎪⎨⎪⎧ 0+0+c =-5,a -b +c =-4,4a +2b +c =5,解此方程组,得a =2,b =1,c =-5.因此所求函数为f(x)=2x 2+x -5.点评:求二次函数解析式可用待定系数法,已知图象上任意三点的坐标时,二次函数解析式设为一般式:y =ax 2+bx +c(a≠0);已知顶点坐标时,二次函数解析式设为顶点式y =a(x -m)2+n(a≠0)比较简便;已知抛物线与x 轴的两个交点的坐标,或一个交点的坐标及对称轴方程或顶点的横坐标时,二次函数解析式设为零点式y =a(x -x例2已知y =f(x)是一次函数,且有2f(2)-3f(1)=5,2f(0)-f(-1)=1,求这个函数的解析式.解:设f(x)=kx +b(k≠0),其中k ,b 待定.由题意得⎩⎪⎨⎪⎧2(2k +b)-3(k +b)=5,2b -(-k +b)=1, 解得k =3,b =-2,即这个函数的解析式f(x)=3x -2.点评:用待定系数法求函数解析式的一般步骤是:(1)设出函数解析式,其中包括待定的系数;(2)把自变量与函数的对应值代入函数解析式中,得到关于待定系数的方程或方程组.思路2例1已知f(x)=ax +7,g(x)=x 2+2x +b ,且f(x)+g(x)=x 2+22x +9,试求a 、b 的值.解:f(x)+g(x)=ax +7+x 2+2x +b =x 2+(2+a)x +(7+b),则⎩⎨⎧ 2+a =22,7+b =9,解得a =2,b =2.点评:对任意x ∈R ,f(x)=ax 2+bx +c =a′x 2+b′x +c′⇔⎩⎪⎨⎪⎧ a =a′,b =b′,c =c′.例2一根弹簧原长是12厘米,它能挂的重量不超过15 kg ,并且每挂重量1 kg 就伸长0.5厘米,挂后的弹簧长度y(cm)与挂重x(kg)是一次函数的关系.(1)求y 与x 的函数解析式;(2)写出函数的定义域;(3)画出这个函数的图象.解:(1)设y =kx +b(k≠0).由于弹簧原长是12厘米,则f(0)=12,所以b =12,每挂重量1kg 就伸长0.5厘米,则k =0.5,所以y 与x 的函数解析式是y =0.5x +12.(2)[0,15].(3)图象如下图所示.点评:解决本题的关键是审清题意,读懂题.弹簧原长是12厘米是指当x =0时,y =12;每挂重量1 kg 就伸长0.5厘米,是指斜率k =0.5.知能训练1.已知在x 克a%的盐水中,加入y 克b%的盐水,浓度变为c%,将y 表示成x 的函数关系式( )A .y =c -a c -b x B .y =c -a b -c x C .y =c -b c -a x D .y =b -c c -ax 解析:由题意得xa%+yb%x +y =c%,解得y =c -a b -cx. 答案:B2.二次函数的图象过点A(0,-5),B(5,0)两点,它的对称轴为直线x =3,求这个二次函数的解析式.解:∵二次函数的图象过点B(5,0),对称轴为直线x =3,∴设抛物线与x 轴的另一个交点C 的坐标为(x 1,0),则对称轴:x = x 1+x 2 2, 即 5+x 1 2=3,∴x 1=1.∴C 点的坐标为(1,0). 设二次函数解析式为y =a(x -1)(x -5),又∵图象过A(0,-5),∴-5=a(0-1)(0-5),即-5=5a.∴a =-1.∴y =-(x -1)(x -5)=-x 2+6x -5.拓展提升二次函数图象经过点(1,4),(-1,0)和(3,0)三点,求二次函数的解析式.解法一:设二次函数解析式为y =ax 2+bx +c(a≠0),∵二次函数图象过点(1,4),(-1,0)和(3,0),∴a +b +c =4,①a -b +c =0,②9a +3b +c =0,③解得a =-1,b =2,c =3,∴函数的解析式为y =-x 2+2x +3.解法二:∵抛物线与x 轴相交两点(-1,0)和(3,0),∴1= -1+3 2.∴点(1,4)为抛物线的顶点. 设二次函数解析式为y =a(x +h)2+k ,∴y =a(x -1)2+4.∵抛物线过点(-1,0),∴0=a(-1-1)2+4,得a =-1.∴函数的解析式为y =-1(x -1)2+4=-x 2+2x +3.解法三:由题意可知两根为x 1=-1、x 2=3,设二次函数解析式为y =a(x +1)(x -3),∵函数图象过点(1,4),∴4=a(1+1)(1-3),得a =-1.∴函数的解析式为y =-1(x +1)(x -3)=-x 2+2x +3.课堂小结本节课学习了待定系数法及其应用.作业课本本节练习B 1、2.设计感想本节教学设计中,注重了待定系数法的应用,其理论基础只是简单地作了介绍,这符合课程标准.教师在实际教学中可以对教材适当拓展以适应高考的要求.备课资料待定系数法1.要确定变量间的函数关系,根据所给条件设出某些未定系数,并确定这一关系式的基本表达形式,从而进一步求出表达式中含有的未定系数的方法,叫做待定系数法.其理论依据是多项式恒等原理.也就是依据了多项式f(x)≡g(x)的充要条件是:对于一个任意的a 值,都有f(a)≡g(a).或者两个标准多项式中各同类项的系数对应相等.待定系数法解题的关键是依据已知条件,正确列出含有未定系数的等式.运用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.要判断一个问题是否用待定系数法求解.主要是看所求解的数学问题是否具有某种确定的数学表达式.如果具有,就可以用待定系数法求解.例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解.使用待定系数法解题的基本步骤是:第一步,设出含有待定系数的解析式;第二步,根据恒等的条件,列出含待定系数的方程或方程组;第三步,解方程或方程组或者消去待定系数,从而使问题得到解决.2.运用待定系数法求二次函数的解析式时,一般可设出二次函数的一般形式y =ax 2+bx +c(a≠0),但如果已知函数的对称轴或顶点坐标或最值,则解析式设为y =a(x -h)2+k 会使求解比较方便,具体来说:(1)已知顶点坐标为(m ,n),可设y =a(x -m)2+n ,再利用一个独立条件求a ;(2)已知对称轴方程x =m ,可设y =a(x -m)2+k ,再利用两个独立的条件求a 与k ;(3)已知最大值或最小值为n ,可设y =a(x +h)2+n ,再利用两个独立条件求a 与h ;(4)二次函数的图象与x 轴只有一个交点时,可设y =a(x +h)2,再利用两个独立条件求a 与h.对于用待定系数法求二次函数的解析式,在课堂上要展开讨论,要让学生探索所需的已知条件,然后可由学生自行设计问题、解决问题.(设计者:张新军)。
人教版高中数学必修一第三章知识点总结
第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数(0)y kx k =≠仅有一个零点。
②反比例函数(0)k y k x=≠没有零点。
③一次函数(0)y kx b k =+≠仅有一个零点。
④二次函数)0(2≠++=a c bx ax y . (1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。
⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1.⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是函数()f x 零点的个数。
高中数学必修一第三章函数的概念与性质知识总结例题(带答案)
高中数学必修一第三章函数的概念与性质知识总结例题单选题1、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1,解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32. 综上:−12≤x ≤0或12≤x ≤32. 故选:A2、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可. 解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B3、若函数f(x)=x 2−mx +10在(−2,1)上是减函数,则实数m 的取值范围是( )A .[2,+∞)B .[−4,+∞)C .(−∞,2]D .(−∞,−4]答案:A分析:结合二次函数的对称轴和单调性求得m 的取值范围.函数f(x)=x 2−mx +10的对称轴为x =m 2,由于f (x )在(−2,1)上是减函数,所以m 2≥1⇒m ≥2. 故选:A4、函数f (x )=x 2−1的单调递增区间是( )A .(−∞,−3)B .[0,+∞)C .(−3,3)D .(−3,+∞)答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞).故选:B.5、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可解:∵函数f(x)=x ln(x+√a+x2)为偶函数,x∈R,∴设g(x)=ln(x+√a+x2)是奇函数,则g(0)=0,即ln√a=0,则√a=1,则a=1.故选:B.6、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.7、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D8、设a为实数,定义在R上的偶函数f(x)满足:①f(x)在[0,+∞)上为增函数;②f(2a)<f(a+1),则实数a 的取值范围为()A.(−∞,1)B.(−13,1)C.(−1,13)D.(−∞,−13)∪(1,+∞)答案:B分析:利用函数的奇偶性及单调性可得|2a|<|a+1|,进而即得.因为f(x)为定义在R上的偶函数,在[0,+∞)上为增函数,由f(2a)<f(a+1)可得f(|2a|)<f(|a+1|),∴|2a|<|a+1|,解得−13<a<1.故选:B.多选题9、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−20.2×0.5)x≥22.4,解得x的范围,可得答案.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2×0.5万册,则该杂志销售收入为(10−x−20.2×0.5)x万元,所以(10−x−20.2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x(x>2)元时的发行量是解题关键.10、已知函数f(x)={|x |+2,x <1x +2x,x ≥1 ,下列说法正确的是( ) A .f(f(0))=3B .函数y =f(x)的值域为[2,+∞)C .函数y =f(x)的单调递增区间为[0,+∞)D .设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是[−2,2]答案:ABD解析:作出函数f(x)的图象,先计算f(0),然后计算f(f(0)),判断A ,根据图象判断BC ,而利用参变分离可判断D .画出函数f(x)图象.如图,A 项,f(0)=2,f(f(0))=f(2)=3,B 项,由图象易知,值域为[2,+∞)C 项,有图象易知,[0,+∞)区间内函数不单调D 项,当x ≥1时,x +2x ≥|x 2+a|恒成立,所以−x −2x ≤x 2+a ≤x +2x 即−32x −2x ≤a ≤x 2+2x 在[1,+∞)上恒成立,由基本不等式可得x 2+2x ≥2,当且仅当x =2时等号成立,3x 2+2x ≥2√3,当且仅当x =2√33时等号成立, 所以−2√3≤a ≤2.当x <1时,|x |+2≥|x 2+a|恒成立,所以−|x |−2≤x 2+a ≤|x |+2在(−∞,1)上恒成立,即−|x |−2−x 2≤a ≤|x |+2−x 2在(−∞,1)上恒成立 令g (x )=|x |+2−x 2={−32x +2,x ≤0x 2+2,0<x <1 ,当x ≤0时,g (x )≥2,当0<x <1时,2<g (x )<32,故g (x )min =2;令ℎ(x )=−|x |−2−x 2={12x −2,x ≤0−3x 2−2,0<x <1 ,当x ≤0时,ℎ(x )≤−2,当0<x <1时,−72<ℎ(x )<−2,故ℎ(x )max =−2; 所以−2≤a ≤2.故f(x)≥|x 2+a|在R 上恒成立时,有−2≤a ≤2. 故选:ABD .小提示:关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.11、已知函数f (x )={x 2,−2≤x <1−x +2,x ≥1关于函数f (x )的结论正确的是( ) A .f (x )的定义域为RB .f (x )的值域为(−∞,4]C .若f (x )=2,则x 的值是−√2D .f (x )<1的解集为(−1,1)答案:BC分析:求出分段函数的定义域可判断A ;求出分段函数的值域可判断B ;分x ≥1、−2≤x <1两种情况令f (x )=2求出x 可判断C ;分x ≥1、−2≤x <1两种情况解不等式可判断D.函数f (x )={x 2,−2≤x <1−x +2,x ≥1的定义域是[−2,+∞),故A 错误; 当−2≤x <1时,f (x )=x 2,值域为[0,4],当x ≥1时,f (x )=−x +2,值域为(−∞,1],故f (x )的值域为(−∞,4],故B 正确;当x ≥1时,令f (x )=−x +2=2,无解,当−2≤x <1时,令f (x )=x 2=2,得到x =−√2,故C 正确; 当−2≤x <1时,令f (x )=x 2<1,解得x ∈(−1,1),当x ≥1时,令f (x )=−x +2<1,解得x ∈(1,+∞),故f (x )<1的解集为(−1,1)∪(1,+∞),故D 错误.故选:BC.填空题12、写出一个同时具有下列性质的函数f(x)=___________.①f(x)是奇函数;②f(x)在(0,+∞)上为单调递减函数;③f(x1x2)=f(x1)f(x2).答案:x−1(答案不唯一,符合条件即可)分析:根据三个性质结合图象可写出一个符合条件的函数解析式.f(x)是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又f(x)在(0,+∞)上为单调递减函数,同时f(x1x2)=f(x1)f(x2),故可选,f(x)=xα,α<0,且α为奇数,所以答案是:x−113、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a 的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)14、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x−13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13.所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平. 解答题15、美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的A ,B 两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A 芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B 芯片的毛收入y (千万元)与投入的资金x (千万元)的函数关系为y =kx a (x >0),其图像如图所示.(1)试分别求出生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式;(2)现在公司准备投入40千万元资金同时生产A ,B 两种芯片,求可以获得的最大利润是多少.答案:(1)生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式分别为y =0.25x ,y =√x (x >0),(2)9千万元分析:(1)根据待定系数法可求出函数解析式,(2)将实际问题转换成二次函数求最值的问题即可求解解:(1)因为生产A 芯片的毛收入与投入的资金成正比,所以设y =mx (m >0),因为当x =1时,y =0.25,所以m =0.25,所以y =0.25x ,即生产A 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =0.25x ,对于生产B 芯片的,因为函数y =kx a (x >0)图像过点(1,1),(4,2),所以{1=k k⋅4a=2,解得{k=1a=12,所以y=x12,即生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=√x(x>0),(2)设投入x千万元生产B芯片,则投入(40−x)千万元生产A芯片,则公司所获利用f(x)=0.25(40−x)+√x−2=−14(√x−2)2+9,所以当√x=2,即x=4千万元时,公司所获利润最大,最大利润为9千万元。
高中数学 2.2.3待定系数法课件 新人教B版必修1
【学习要求】 1.了解待定系数法的概念,会用待定系数法求一元一次函数、
一元二次函数及反比例函数解析式; 2.掌握待定系数法的特征,会用待定系数法求解综合问题. 【学法指导】 通过待定系数法的学习,培养由特殊事例发现一般规律的归纳 能力;通过在旧知识的基础上产生新知识,激发求知欲;通过 合作学习,培养团结协作的品质.
例 2 已知一个二次函数 f(x),f(0)=-5,f(-1)=-4,f(2) =5,求这个函数. 解 设所求函数为 f(x)=ax2+bx+c (a≠0),其中 a,b,c 待定,
根据已知条件,得方程组0a+-0b++cc==--54 , 4a+2b+c=5
解此方程组,得 a=2,b=1,c=-5.
问题 4 对于两个按降幂顺序排列的一元多项式,当满足什么 条件时,它们才相等? 答 当且仅当它们对应同类项的系数相等,则这两个多项式 相等.
探究点二 用待定系数法求一次函数 问题 1 我们要确定反比例函数或正比例函数的解析式时,通
常需要几个条件? 答 只需要一个条件. 问题 2 我们要确定一次函数的关系式时,通常需要几个独立 的条件?为什么? 答 需要 2 个独立的条件.因为一次函数的解析式中有 2 个 待定的系数.
探究点三 用待定系数法求二次函数 问题 1 二次函数解析式有哪几种表达式?
答 二次函数解析式有三种形式:一般式:y=ax2+bx+c; 两根式:y=a(x-x1)(x-x2) ; 顶点式:y=a(x-h)2+k. 问题 2 我们要确定二次函数的解析式,需要几个条件?为什 么? 答 需要三个条件,因为二次函数解析式中有三个待定的系 数.
因此,所求函数为 f(x)=2x2+x-5.
小结 确定二次函数的解析式时,应该根据条件的特点,恰当 地选用一种函数表达式.
人教版新课标高一数学必修一 第三章 函数的应用 3..2函数模型及其应用 待定系数法 教案及课后习题
待定系数法【考点精讲】1. 待定系数法的概念:在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数。
这种通过求待定系数来确定变量之间关系式的方法叫作待定系数法。
2. 待定系数法可以求一次函数,二次函数,及复合函数的解析式。
3. 注意求复合函数解析式时,函数相等则系数对应相等原则。
【典例精析】例题1 已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,试求f (x )的解析式。
思路导航:(1)设f (x )=ax 2+bx +c (a ≠0),∵f (0)=0,∴c =0,又f (x +1)=f (x )+x +1,∴a (x +1)2+b (x +1)=ax 2+bx +x +1。
即2ax +a +b =x +1,∴⎩⎪⎨⎪⎧ 2a =1,a +b =1,∴⎩⎪⎨⎪⎧a =12,b =12, ∴f (x )=12x 2+12x 。
答案:f (x )=12x 2+12x 。
点评:这里不但运用到待定系数法,还用到换元思想。
例题2 已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析。
思路导航:利用一次函数定义,将x +1,x -1,看成元,换元。
设f (x )=kx +b ,∴3f (x +1)-2f (x -1)=3[k (x +1)+b ]-2[k (x -1)+b ] =kx +5k +b =2x +17。
∴⎩⎨⎧ k =25k +b =17,即⎩⎨⎧ k =2b =7。
∴f(x)=2x+7。
答案:f(x)=2x+7。
点评:已知一次函数的解析式,可利用换元法解决此题。
例题3已知f(x)是一次函数,f [f(x)]=4x-3,求f(x)的解析式。
思路导航:设f(x)=kx+b,(k≠0)f [f(x)]=f(kx+b)=2k x+kb+b=4x-32k=4,kb+b=-3,解得:k=±2,b=-1或b=3。
最新人教版高中数学必修1第三章《待定系数法》课堂探究
课堂探究知能点一:确实函数解析式利用待定系数法求函数解析式时,首先分清函数类型,然后设出函数表达式,若表达式不唯一时,则应根据条件合理选择,从而达到简化运算的目的,同时应注意挖掘题目中的隐含条件进行求解.典型例题1如果f [f (x )]=2x -1,求一次函数f (x )的表达式.由于f (x )是一次式,故可设为f (x )=ax +b (a ≠0)的形式,然后只需将a ,b 确定下来即可.解:∵f (x )为一次函数,设f (x )=ax +b (a ≠0),则f [f (x )]=a ·f (x )+b =a (ax +b )+b =a 2x +ab +b .则由[][]22()2121()f f x x a ab b f f x a x ab b⎧=-⎧=⎪⇔⎨⎨+=-=++⎩⎪⎩解得1a b ⎧=⎪⎨=⎪⎩或1a b ⎧=⎪⎨=+⎪⎩∴()1f x +()1f x=+本题解法是待定系数法,我们只要清楚所求函数解析式的类型,便可设出其函数解析式,只要设法确定其系数即可求得结果.1.反比例函数图象过点(-2,-3),则一定经过( ).A .(2,-3)B .(3,2)C .(3,-2)D .(-3,2)答案:B解析:设反比例函数为k y x =, ∴3,62k k -==-, ∴6y x=,则一定经过(3,2). 2.已知抛物线的对称轴是x =-1,它与x 轴交点间的距离等于4,它在y 轴上的截距是-6,则它的解析式为____________________.答案:y =2x 2+4x -6解析:由条件知,抛物线与x 轴的两交点为(-3,0)和(1,0),故设其解析式为y =a (x -1)(x +3),令x =0得y =-3a =-6,∴a =2,即y =2(x -1)(x +3)=2x 2+4x -6. 知能点二:待定系数法的综合应用待定系数法的主要应用是求函数解析式或求某些参数的值,本部分内容常与其他内容结合在一起进行考查.因此,待定系数法的基础性较强,是很重要的一种方法.典型例题2已知直线AB 过x 轴上的一点A (2,0)且与抛物线y =ax 2相交于B (1,-1)、C 两点.(1)求直线和抛物线的解析式;(2)问抛物线上是否存在一点D ,使S △OAD =S △OBC ?若存在,求出D 点坐标;若不存在,请说明理由.设出解析式,利用已知条件解出参数即可.解:(1)设直线的解析式为y =kx +b ,又∵直线过点A (2,0),B (1,-1),∴201k b k b +=⎧⎨+=-⎩解得k =1,b =-2. ∴直线的解析式为y =x -2.又∵抛物线y =ax 2过点B (1,-1),∴a =-1.∴抛物线的解析式为y =-x 2.(2)直线与抛物线相交于B 、C 两点,故22y x y x =-⎧⎨=-⎩解得B 、C 两点坐标为B (1,-1),C (-2,-4),由图可知,S △OBC =S △OAC -S △OAB =11421222⨯-⨯-⨯-⨯ =3.假设抛物线上存在一点D ,使S △OAD =S △OBC ,设D (m ,-m 2), ∴22122OAD S m m ∆=⨯⨯=, ∴m 2=3,∴m m ==,即存在这样的点D (3,-3)或D (-3,-3)满足题意.本题主要考查了利用待定系数法,根据条件列方程组求得待定系数的值,从而求出函数解析式.对于判定是否存在一点使得条件成立,可以先假设存在,并设出相应的点,然后根据条件列出方程,若方程有解,则存在相应的点,若方程无解,则不存在相应的点.1.已知f (x )=x 2,g (x )是一次函数,且是增函数,若f [g (x )]=4x 2-20x +25,则g (x )=________.答案:2x -5解析:设g (x )=kx +b (k >0).f [g (x )]=f (kx +b )=(kx +b )2=k 2x 2+2kbx +b 2=4x 2-20x +25,比较系数得22422025k kb b ⎧=⎪=-⎨⎪=⎩解得k =2,b =-5.∴g (x )=2x -5.2.已知f (x )是二次函数,且满足f (0)=1,f (x +1)-f (x )=2x ,求f (x )的表达式.解:设所求的二次函数为y =ax 2+bx +c (a ≠0).∵f (0)=1,∴c =1,则y =ax 2+bx +1.又∵f (x +1)-f (x )=2x ,对任意x ∈R 成立,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .即2ax +a +b =2x ,由恒等式性质,得220a a b =⎧⎨+=⎩∴11a b =⎧⎨=-⎩ ∴所求二次函数f (x )的表达式为f (x )=x 2-x +1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学人教B必修1第二章2.2.3 待定系数法1.了解待定系数法的概念.2.掌握用待定系数法求函数的解析式.3.理解待定系数法的适用范围及注意事项.1.待定系数法的概念一般地,在求一个函数时,如果知道这个函数的______,可先把所求函数写为一般形式,其中______待定,然后再根据题设条件求出这些待定系数,这种通过__________来确定变量之间关系式的方法叫做待定系数法.利用待定系数法解题的关键是依据已知条件,正确列出含有未知系数的等式.运用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.要判断一个问题是否能用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解,其基本步骤如下:(1)设出含有待定系数的解析式;(2)根据恒等条件,列出含待定系数的方程或方程组;(3)解方程或方程组求出待定系数,从而使问题得到解决.【做一做1】若f(x)为一次函数,且满足f[f(x)]=1+2x,则f(x)的解析式为________.2.二次函数的三种表示形式(1)一般式:________________,其中____决定开口方向与大小,____是y轴上的截距,而__________是对称轴.(2)顶点式(配方式):______________,其中______是抛物线的顶点坐标,______是对称轴.(3)两根式(因式分解):________________,其中x1,x2是抛物线与x轴两个交点的______.【做一做2-1】已知抛物线经过点(-3,2),顶点是(-2,3),则抛物线的解析式为() A.y=-x2-4x-1B.y=x2-4x-1C.y=x2+4x-1D.y=-x2-4x+1【做一做2-2】已知二次函数的图象过(0,1),(2,4),(3,10)三点,则这个二次函数的解析式为__________.确定二次函数解析式所需的条件剖析:二次函数解析式的求法有以下几种情况:(1)已知三点坐标,求解析式.可将函数解析式设为y=ax2+bx+c(a≠0).将点的坐标分别代入所设解析式,列出关于a,b,c的三元一次方程组,解出a,b,c即可.(2)已知顶点坐标为(m,n),可设y=a(x-m)2+n,再借助于其他条件求a.(3)已知对称轴方程为x=m,可设y=a(x-m)2+k,再借助于其他条件求a与k.(4)已知最大值或最小值为n,可设y=a(x-h)2+n,再借助于其他条件求a和h.(5)二次函数的图象与x轴只有一个交点时,可设y=a(x-h)2,再借助于其他条件求a 和h.(6)已知二次函数图象与x轴有两个交点x1,x2时,可设y=a(x-x1)(x-x2),再借助于其他条件求a.题型一用待定系数法求函数解析式【例1】求下列函数的解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).(2)已知二次函数y =f (x )的图象过A (0,-5),B (5,0)两点,它的对称轴为直线x =2,求这个二次函数的解析式.分析:对于(1)可设出一次函数f (x )=ax +b (a ≠0),对于(2)可设出二次函数的顶点式或一般式,利用待定系数法求出解析式.反思:通过解决本题,我们可得出:利用待定系数法求函数的解析式的具体做法是先根据题目中给出的函数类型设出解析式的一般形式,再由已知条件列方程或方程组,然后求出待定系数即可.当已知函数的类型,如二次函数、一次函数、反比例函数等,可以设出所求函数的一般形式,如y =ax 2+bx +c (a ≠0),y =kx +b (k ≠0),y =k x(k ≠0)等.设待定系数本着“宁少勿多”的原则进行,注意提炼解题过程,简化解方程的途径.题型二 已知函数图象求函数解析式【例2】如图,函数的图象由两条射线及抛物线的一部分组成,求函数的解析式.分析:由图象可知:①函数图象由两条射线及抛物线的一部分组成;②当x ≤1或x ≥3时,函数解析式可设为y =kx +b (k ≠0);③当1≤x ≤3时,函数解析式可设为y =a (x -2)2+2(a <0)或y =ax 2+bx +c (a <0). 反思:由函数图象求函数的解析式,关键是观察函数图象的形状,分析图象由哪几种函数组成,然后针对不同区间上的函数,利用待定系数法求出相应的解析式.题型三 易错辨析【例3】已知f (x )是二次函数,不等式f (x )<0的解集是{x |0<x <5},且f (x )在区间[-1,4]上的其中一个最值为12,求f (x )的解析式.错解:根据f (x )是二次函数,且f (x )<0的解集是{x |0<x <5},可设f (x )=ax (x -5). 又∵f (x )在[-1,4]上的其中一个最值为12,则有可能出现f (-1)=12或f ⎝⎛⎭⎫52=12,即6a =12或-254a =12,解得a =2或a =-4825. 综上可知f (x )=2x (x -5)=2x 2-10x 或f (x )=-4825x (x -5)=-4825x 2+485x . 反思:在涉及二次函数、二次方程、二次不等式等含参数的问题时,一定要注意分类讨论思想的合理应用,更应该及时地检验所求结果是否满足已知条件,千万别出现增解或漏解现象.1若函数y =kx +b 的图象经过点P (3,-2)和Q (-1,2),则这个函数的解析式为( )A .y =x -1B .y =x +1C .y =-x -1D .y =-x +12已知二次函数y =ax 2+bx +c (a ≠0)的最大值为2,图象顶点在直线y =x +1上,并且图象过点(3,-6),则a ,b ,c 的值为( )A .-2,4,0B .4,-2,0C .-4,-2,0D .-2,-4,03已知f (x )=x 2,g (x )是一次函数,且是增函数,若f [g (x )]=4x 2-20x +25,则g (x )=__________.4已知抛物线y =ax 2(a ≠0)与直线y =kx +1(k ≠0)交于两点,其中一交点为(1,4),则另一交点为______.5已知二次函数f (x )图象的对称轴是直线x =-1,并且经过点(1,13)和(2,28),求二次函数f (x )的解析式.答案:基础知识·梳理1.一般形式 系数 求待定系数【做一做1】f (x )=-2x -2-1或f (x )=2x +2-1 已知f (x )为一次函数,可以使用待定系数法.设f (x )=kx +b (k ≠0),则f [f (x )]=f (kx +b )=k (kx +b )+b =k 2x +kb +b ,利用对应系数相等即可求得k =-2,b =-2-1或k =2,b =2-1.2.(1)f (x )=ax 2+bx +c (a ≠0) a c x =-b 2a(2)f (x )=a (x -h )2+k (a ≠0) (h ,k ) x =h (3)f (x )=a (x -x 1)(x -x 2)(a ≠0) 横坐标【做一做2-1】A 设所求解析式为y =a (x +2)2+3(a ≠0).∵抛物线过点(-3,2),∴2=a +3.∴a =-1,∴y =-(x +2)2+3=-x 2-4x -1.【做一做2-2】f (x )=32x 2-32x +1 根据题意设这个二次函数的解析式为y =ax 2+bx +c (a ≠0),然后将图象所经过的三个点的坐标分别代入方程,联立三个方程,得⎩⎪⎨⎪⎧ 1=a ·02+b ·0+c ,4=a ·22+b ·2+c ,10=a ·32+b ·3+c ,解得⎩⎪⎨⎪⎧a =32,b =-32,c =1.故f (x )=32x 2-32x +1. 典型例题·领悟 【例1】解:(1)设f (x )=ax +b (a ≠0), 则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, 则⎩⎪⎨⎪⎧a =2,b +5a =17,∴⎩⎪⎨⎪⎧ a =2,b =7,∴f (x )=2x +7. (2)解法一:利用二次函数的顶点式.设f (x )=a (x -2)2+k (a ≠0),把点A (0,-5),B (5,0)的坐标代入上式,得⎩⎪⎨⎪⎧ -5=4a +k ,0=9a +k ,解得⎩⎪⎨⎪⎧ k =-9,a =1,∴所求函数的解析式为f (x )=(x -2)2-9,即f (x )=x 2-4x -5.解法二:利用二次函数的一般式.设f (x )=ax 2+bx +c (a ≠0).由题意,得⎩⎪⎨⎪⎧ -5=c ,0=25a +5b +c ,即⎩⎪⎨⎪⎧ c =-5,5a +b -1=0.①② 又∵对称轴为x =2,∴-b 2a=2. ∴b =-4a .③ 由①②③,得⎩⎪⎨⎪⎧ a =1,b =-4,c =-5.因此所求函数的解析式为f (x )=x 2-4x -5.【例2】解:设左侧的射线对应的函数解析式为y =kx +b (k ≠0,x ≤1).因为点(1,1),(0,2)在此射线上,故⎩⎪⎨⎪⎧k +b =1,b =2, 解得k =-1,b =2,所以左侧射线对应的函数解析式为y =-x +2(x ≤1).同理可求x ≥3时,函数的解析式为y =x -2(x ≥3).当1≤x ≤3时,抛物线对应的函数为二次函数.解法一:设函数解析式为y =a (x -2)2+2(1≤x ≤3,a <0).由点(1,1)在抛物线上可知a +2=1,所以a =-1.所以抛物线对应的函数解析式为y =-x 2+4x -2(1≤x ≤3).解法二:设函数解析式为y =ax 2+bx +c (a <0,1≤x ≤3).因为其图象过点(1,1),(2,2),(3,1), 所以有⎩⎪⎨⎪⎧ a +b +c =1,4a +2b +c =2,9a +3b +c =1,解得⎩⎪⎨⎪⎧ a =-1,b =4,c =-2. 所以抛物线对应的解析式为y =-x 2+4x -2(1≤x ≤3).综上,函数的解析式为y =⎩⎪⎨⎪⎧ -x +2,-x 2+4x -2,x -2, x <1,1≤x <3,x ≥3.【例3】错因分析:没有对a 的值进行检验,而出现错解现象.正解:根据f (x )是二次函数,且f (x )<0的解集是{x |0<x <5},可设f (x )=ax (x -5). 又∵f (x )在[-1,4]上的其中一个最值为12,则有可能出现f (-1)=12或f ⎝⎛⎭⎫52=12,即6a =12或-254a =12,解得a =2或a =-4825. 当a =2时,满足题意;当a =-4825时,二次函数的图象开口向下,不符合f (x )<0的解集是{x |0<x <5},故舍去.综上,所求解析式为f (x )=2x 2-10x .随堂练习·巩固1.D 把点P (3,-2)和Q (-1,2)的坐标分别代入y =kx +b ,得⎩⎪⎨⎪⎧ -2=3k +b ,2=-k +b ,解得⎩⎪⎨⎪⎧ k =-1,b =1. ∴y =-x +1,故选D.2.A 由已知可设此二次函数为y =a (x -h )2+2(a ≠0).∵图象顶点在直线y =x +1上,∴2=h +1,得h =1.又图象过点(3,-6),∴-6=a (3-1)2+2.∴a =-2.∴y =-2(x -1)2+2=-2x 2+4x .∴a =-2,b =4,c =0.3.2x -5 设g (x )=kx +b (k >0),则f [g (x )]=g 2(x )=(kx +b )2=k 2x 2+2kbx +b 2=4x 2-20x +25,比较系数可得k =2,b =-5.∴g (x )=2x -5.4.⎝⎛⎭⎫-14,14 将(1,4)的坐标分别代入y =ax 2与y =kx +1,得⎩⎪⎨⎪⎧ 4=a ,4=k +1,解得⎩⎪⎨⎪⎧a =4,k =3.再联立⎩⎪⎨⎪⎧ y =4x 2,y =3x +1,解得⎩⎪⎨⎪⎧ x =1,y =4或⎩⎨⎧ x =-14,y =14.5.分析:设出二次函数的顶点式,利用待定系数法求函数f (x )的解析式. 解:设f (x )=a (x +1)2+k (a ≠0).由题意,得f (1)=13,f (2)=28,则有⎩⎪⎨⎪⎧4a +k =13,9a +k =28, 解得a =3,k =1,所以f (x )=3(x +1)2+1.。