电化学
电化学基础知识讲解及总结
电化学基础知识讲解及总结电化学是研究电与化学之间相互作用的学科,主要研究电能转化为化学能或者化学能转化为电能的过程。
以下是电化学的基础知识讲解及总结:1. 电化学基本概念:电化学研究的主要对象是电解质溶液中的化学反应,其中电解质溶液中的离子起到重要的作用。
电池是电化学的主要应用之一,它是将化学能转化为电能的装置。
2. 电化学反应:电化学反应可以分为两类,即氧化还原反应和非氧化还原反应。
氧化还原反应是指物质失去电子的过程称为氧化,物质获得电子的过程称为还原。
非氧化还原反应是指不涉及电子转移的反应,如酸碱中的中和反应。
3. 电解和电解质:电解是指在电场作用下,电解质溶液中的离子被电解的过程。
电解质是指能在溶液中形成离子的化合物,如盐、酸、碱等。
4. 电解质溶液的导电性:电解质溶液的导电性与其中的离子浓度有关,离子浓度越高,导电性越强。
电解质溶液的导电性也受温度和溶质的物质性质影响。
5. 电极和电位:在电化学反应中,电极是电子转移的场所。
电极可以分为阳极和阴极,阳极是氧化反应发生的地方,阴极是还原反应发生的地方。
电位是指电极上的电势差,它与电化学反应的进行有关。
6. 电池和电动势:电池是将化学能转化为电能的装置,它由两个或多个电解质溶液和电极组成。
电动势是指电池中电势差的大小,它与电化学反应的进行有关。
7. 法拉第定律:法拉第定律是描述电化学反应速率的定律,它表明电流的大小与反应物的浓度和电化学当量之间存在关系。
8. 电解质溶液的pH值:pH值是衡量溶液酸碱性的指标,它与溶液中的氢离子浓度有关。
pH值越低,溶液越酸性;pH值越高,溶液越碱性。
总结:电化学是研究电与化学之间相互作用的学科,主要研究电能转化为化学能或者化学能转化为电能的过程。
其中包括电化学反应、电解和电解质、电极和电位、电池和电动势等基本概念。
掌握电化学的基础知识对于理解电化学反应和电池的工作原理具有重要意义。
电化学基础-PPT课件
Cu
√E
F
M
N
CCuu2SS OO 44
酒精
N a C l溶 液
H 2SO 4 H 2SO 4
大家学习辛苦了,还是要坚持
继续保持安静
例2. 在盛有稀H2SO4的烧杯中放入用 导线连接的锌片和铜片,下列叙述正
确的是( D )
(A)正极附近的SO42 -离子浓度逐渐增大 (B)电子通过导线由铜片流向锌片
知识结构
电化学基础
氧化还 原反应
§1原电池
化学能转化 §3电解池
为电能,自
§2化学电源
发进行
电能转化为
化学能,外
§4金属的电化学腐蚀与防护 界能量推动
一、原电池原理
把化学能转变为电能的装置叫 原电池
要解决的问题: 1. 什么是原电池? 2. 原电池的工作原理? (电子的流向、电流的流向、离子的流向、形 成条件、电极的判断、电极反应的写法)
(1) 热敷袋使用时,为什么会放出热量? 利用铁被氧气氧化时放热反应所放出的热量。
(2)碳粉的主要作用是什么?氯化钠又起了什么作 用?碳粉的主要作用是和铁粉、氯化钠溶液一起
构成原电池,加速铁屑的氧化。 氯化钠溶于水,形成了电解质溶液。
(3)试写出有关的电极反应式和化学方程式。
负极:2Fe - 4e- = 2Fe2+ 正极:O2+2H2O + 4e- = 4OH总反应:4Fe+3O2+6H2O = 4Fe(OH)3
反应过程中产生臭鸡蛋气味的气体,原电池总反 应方程式为
3Ag2S+2Al+6H2O=6Ag+2Al(OH)3↓+3H2S↑
2.熔融盐燃料电池具有高的发电效率, 因而受到重视,可用Li2CO3和Na2CO3的 熔融盐混合物做电解质,CO为阳极燃气, 空气与CO2的混合气为阴极助燃气,制 得在650℃下工作的燃料电池,完成有关 的电池反应式:
电化学基本原理
能斯特方程说明
①溶液的浓度变化,影响电极电势的数值,从 而影响物质的氧化、还原能力。
由能斯特方程
b 还原态 0 0.0592 lg EE a z 氧化态
可知当氧化态物质的浓度增大(或还原态物质的 浓度减小)时,其电极电势的代数值变大,亦即氧 化态物质的氧化性增加; 反之还原态物质的浓度增大时,其电极电势的代数 值变小,亦即还原态物质的还原性增加。
标表示电流密度。
极化曲线的测定装置原理图
此处参比电极
用的是饱和甘 汞电极,不是 标准氢电极。 参比电极常用 的除了标准氢 电极外,还有 饱和甘汞电极、 饱和氯化银电 极。
极化度
从曲线可以看出:随着电流密度不断增大,阴极电位也不断变 负。若阴极电流密度Dk改变某一值,曲线I的△E值也有所不同。 通常把ΔEk与△Dk 的比值称为阴极极化度。
析氢过电位
在平衡电位下,因氢电极的氧化反应速度 与还原反应速度相等,因此不会有氢气析出。 只有当电极上有阴极电流通过从而使还原反应 速度远大于氧化反应速度时,才会有氢气析出。 当电极上有阴极电流通过时,会使电位从平衡 电位向负方向偏移,即产生阴极极化。也就是 说,只有当电位向负的方向偏离氢的平衡电位 并达到一定的过电位值时,氢气才能析出。
氢氧燃料电池
阳极反应(负极)
H2 2e 2H
阴极反应(正极)
O2 2H 2O 4e 4OH
双电层模型示意图
双电层模型解释
当把金属插入其盐溶液时,金属表面正离子受到极性水分 子的作用,有变成溶剂化离子进入溶液而将电子留在金属表 面的倾向。金属越活泼、溶液中正离子浓度越小,上述倾向 就越大。与此同时溶液中金属离子也有从溶液中沉积到金属 表面的倾向,溶液中金属离子的浓度越大、金属越不活泼, 这种倾向就越大。当溶解与沉积速率达到相等时,即达到动 态平衡。当溶解倾向大于沉积倾向,则金属表面带负电层, 靠近金属表面附近的溶液带正电层,这样便构成双电层。相 反,若沉积倾向大于溶解倾向,则金属表面形成带正电荷层, 金属表面附近的溶液带一层负电荷。由于溶解和沉积达到平 衡时,形成双电层,从而产生电势差,这种电势差叫做电极 的平衡电极电势,也叫可逆电极电势。金属的活泼性不同, 其电极电势也不同,因此,可以用电极电势来衡量金属的得 失电子能力,即金属的还原性强弱。
电化学
例:电位滴定法确定酸碱滴定的终点
乌梅
【含量测定】
取本品最粗粉约4g,精密称定,置锥形瓶中, 精密加水100ml,加热回流4小时,放冷,滤过, 弃去初滤液,收集续滤液。精密量取续滤液 20ml,加水至80ml,照电位滴定法,用氢氧化 钠滴定液滴定,即得。
本品含有机酸以枸橼酸计,不得少于15.0%。
5
§1 基本原理 一、Nernst方程
注 意: cOx、cRed 包括了所有参加电极反应的物质 固体或液体的活度定为1
6
二、化学电池
(一)分类(根据电极反应是否能自发进行) 1.原电池:将化学能转化为电能的装置(自发进行) 应用:直接电位法,电位滴定法 2.电解池:将电能转化为化学能的装置(非自发进行) 应用:永停滴定法
电流取决于浓度较低的 一方
37
二、基本概念 1、可逆电对:I2/I- ,外加很小电压就能电解
不可逆电对:S4O62-/ S2O32-,外加很大电压才能电解 2、可逆电对:电流取决于浓度小的型体
[Ox]=[Red]时电流最大 不可逆电对:无电流
38
三、分类: 根据滴定过程的电流变化,分为3种类型
VSP
Fe3+ + e → Fe2+
( ) f = f q + 0.059 lg aFe3+ aFe2+
应用:测定氧化型、还原型浓度或比值
10
4.膜电极(离子选择电极) 以固体膜或液体膜为传感体,用以指示溶 液中某种离子浓度的电极 应用:测定某种特定离子 例:测量溶液pH用的玻璃电极;各种离子选择 性电极
40
小结 玻璃电极的使用注意事项 pH计的使用步骤 电位法指示终点的原理(内插法) 永停滴定法终点的确定
电化学原理讲解
电分析成为独立的方法学
• 三大定量关系的建立 1833年法拉第定律Q=nFM 1889年能斯特W.Nernst提出能斯特方程
1934年尤考维奇D.Ilkovic提出扩散电流方程 Id = kC
近代电分析方法
(1) 电极的发展:化学修饰电极、超微电极 (2) 多学科参与:生物电化学传感器 (3)与其他方法联用:光谱-电化学、HPLC-EC、
更灵敏的检测方法
循环伏安法
检测限10-5 mol/L
改变加载 电位的波形
示差脉冲伏安法(DPV) 方波伏安法(SWV)
检测限10-8 mol/L 扫描速率快
示差脉冲伏安法DPV Differential-Pulse Voltammetry
示差脉冲伏安法的激发信号(施加的电压)
示差脉冲伏安图
Differential-pulse voltammograms for a 1.3 × 10−5 M chloramphenicol solution.
方波伏安法SWV Square-wave Voltammograms
方波伏安法的激发信号(施加的电压)
方波伏安图
Square-wave voltammograms for TNT solutions of increasing concentration from 1 to 10 ppm (curves b–k), along with the background voltammogram (curve a) and resulting calibration plot (inset).
无/有液体接界电池
化学电池的阴极和阳极
发生氧化反应的电极称为阳极,发生还 原反应的电极叫做阴极。
一般把作为阳极的电极和有关的溶液体系写在左边,把
生活中的电化学
生活中的电化学
电化学是一门研究电子在化学反应中的作用的学科,它在我们的日常生活中扮
演着重要的角色。
从电池到电镀,从蓄电池到电解水,电化学无处不在。
首先,让我们来谈谈电池。
电池是一种将化学能转化为电能的装置,它们广泛
应用于我们的日常生活中,如手提电话、手表、遥控器等。
电池内部的化学反应产生了电子,这些电子通过导线流动,从而产生了电流。
这种电流为我们的生活提供了便利,让我们的设备可以随时随地使用。
其次,电化学还在金属加工领域发挥着重要作用。
电镀就是电化学的应用之一。
通过在金属表面上施加电流,可以使金属离子在电极上还原成金属沉积在表面上,从而实现对金属表面的保护或者美化。
这种技术被广泛应用于汽车零部件、家具、珠宝等领域,为我们的生活带来了美观和保护。
此外,电化学还在环境保护和能源领域发挥着重要作用。
蓄电池和电解水就是
两个很好的例子。
蓄电池可以将电能储存起来,当我们需要时可以释放出来,为可再生能源的发展提供了便利。
而电解水则可以将水分解成氢气和氧气,这种技术可以用来制取氢气燃料,为替代传统石油燃料提供了可能。
总的来说,电化学在我们的日常生活中扮演着重要的角色,从电池到电镀,从
蓄电池到电解水,它无处不在。
它为我们的生活带来了便利,美观和环保,也为能源领域的发展提供了可能。
因此,我们应该更加重视电化学在生活中的应用,更加关注它的发展,为我们的生活和环境做出更大的贡献。
应用电化学第一章 电化学理论基础
应是均一平滑、洁净且容易清洁。
❖工作电极:导电的固体或液体
❖根据研究的性质确定电极材料
❖常用的“惰性”固体电极材料是 玻碳(GC)、铂、金、银、铅和导 电玻璃
❖采用固体电极时,为了保证实验的 重现性,必须建立合适的电极预处 理步骤。
❖在液体电极中,汞和汞齐是最常用 的工作电极,都有可重现的均相表 面,制备和保持清洁都较容易 .
相对于研究体系, 参比电极是一个已知电 势的接近于理想化的不极化的电极。
❖参比电极上基本没有电流通过,用于测定 研究电极的电极电势。
❖在控制电位实验中,因为参比半电池保持 固定的电势,因而加到电化学池上的电势 的任何变化值直接表现在工作电极/电解质 溶液的界面上。
❖实际上,参比电极起着既提供热力学参比, 又将工作电极作为研究体系隔离的双重作 用。
电 解质(electrolyte)
(3) 固体电解质. 具有离子导电性的晶态或非 晶态物质,如聚环氧乙烷和全氟磺酸膜 Nafion膜及ß -铝氧土(Na2O·ß -Al2O3)等。
(4) 熔盐电解质: 兼顾(1)、(2)的性质,多用于 电化学方法制备碱金属和碱土金属及其合 金体系中。
溶剂:
除熔盐电解质外,一般电解质只有溶解 在一定溶剂中才具有导电能力,因此溶剂 的选择也十分重要,介电常数很低的溶剂 就不太适合作为电化学体系的介质。
电解质是使溶液具有导电能力的物质, 它可以是固体、液体,偶尔也用气体, 一般分为四种:
电解质(electrolyte)
(1) 起导电和反应物双重作用。电解质作为电 极反应的起始物质,与溶剂相比,其离子 能优先参加电化学氧化-还原反应.
(2) 电解质只起导电作用,在所研究的电位范 围内不参与电化学氧化-还原反应,这类 电解质称为支持电解质。
电化学原理知识点
电化学原理知识点电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。
分类:1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数:活度:即“有效浓度”。
活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
规定:活度等于1的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度I:离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol·dm-3 时才有效。
电导:量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为G,单位为S ( 1S =1/Ω)。
第二章是电化学热力学界面:不同于基体的两相界面上的过渡层。
相间电位:两相接触时存在于界面层的电位差。
产生电位差的原因是带电粒子(包括偶极子)分布不均匀。
形成相间电位的可能情况:1。
残余电荷层:带电粒子在两相间的转移或外部电源对界面两侧的充电;2.吸附双电层:界面层中阴离子和阳离子的吸附量不同,使界面和相体带等量相反的电荷;3.偶极层:极性分子在界面溶液侧定向排列;4.金属表面电势:各种短程力在金属表面形成的表面电势差。
电化学
电化学:研究电现象和化学现象之间相互关系以及电能和化学能之间相互转化规律的科学。
prim ary cellelectrolytic cell原电池电解池化学能电能Zn + Cu 2+ Cu + Zn 2+最大非体积功(可逆电功) W r ’ = Δr G Өm,298K = - 212.55 kJ/mol§7.1 电解质溶液和法拉第定律electrolyte solution & Faraday ’s law电子导体、离子导体铜—锌电池,即丹聂尔电池 Daniell cell :电化学:研究电现象和化学现象之间相互关系以及电能和化学能之间相互转化规律的科学。
prim ary cellelectrolytic cell原电池电解池化学能电能Zn + Cu 2+Cu + Zn 2+最大非体积功(可逆电功) W r ’ = Δr G Өm,298K = - 212.55 kJ/mol§7.1 电解质溶液和法拉第定律electrolyte solution & Faraday ’s law电子导体、离子导体铜—锌电池,即丹聂尔电池 Daniell cell :失电子,氧化: 得电子,还原:Zn – 2e → Zn 2+ Cu 2+ + 2e → Cu电池反应:Zn + Cu 2+ ═ Zn 2++ Cu 电极 electrode :正/负极 positive /negative pole :外电路电流方向或电势高低 (常用于原电池) 阴/阳极 cathode /anode :电极反应的性质(常用于电解池) 阴/阳离子 anion /catione失电子,氧化: 得电子,还原: 2Cl - - 2e → Cl 2 2H + + 2e → H 2 阳极 阴极电解反应:2HCl (aq) ═ H 2 + Cl 2 Δr G Өm,298K = 262.46 kJ/mole氧化(阳极): 还原(阴极): Zn – 2e → Zn 2+ Zn 2+ + 2e → Zn 2Cl - - 2e → Cl 20.763Zn φϕ=-V ,2 1.358Cl φϕ=V电镀 electroplating阳极溶解: 阴极析出: Cu – 2e → Cu 2+ Cu 2++ 2e → Cu阳极泥电解精炼 electrorefining很明显,在电极上发生反应的物质的数量和通过的电量成正比。
物理化学第七章电化学
第七章电化学7.1电极过程、电解质溶液及法拉第定律原电池:化学能转化为电能(当与外部导体接通时,电极上的反应会自发进行,化学能转化为电能,又称化学电源)电解池:电能转化为化学能(外电势大于分解电压,非自发反应强制进行)共同特点:(1)溶液内部:离子定向移动导电(2)电极与电解质界面进行的得失电子的反应----电极反应(两个电极反应之和为总的化学反应,原电池称为电池反应,电解池称为电解反应)不同点:(1)原电池中电子在外电路中流动的方向是从阳极到阴极,而电流的方向则是从阴极到阳极,所以阴极的电势高,阳极的电势低,阴极是正极,阳极是负极;(2)在电解池中,电子从外电源的负极流向电解池的阴极,而电流则从外电源的正极流向电解池的阳极,再通过溶液流到阴极,所以电解池中,阳极的电势高,阴极的电势低,故阳极为正极,阴极为负极。
不过在溶液内部阳离子总是向阴极移动,而阴离子则向阳极移动。
两种导体:第一类导体(又称金属导体,如金属,石墨);第二类导体(又称离子导体,如电解质溶液,熔融电解质)法拉第定律:描述通过电极的电量与发生电极反应的物质的量之间的关系=Fn=FzQξ电F -- 法拉第常数; F = Le =96485.309 C/mol = 96500C/molQ --通过电极的电量;z -- 电极反应的电荷数(即转移电子数),取正值;ξ--电极反应的反应进度;结论: 通过电极的电量,正比于电极反应的反应进度与电极反应电荷数的乘积,比例系数为法拉第常数。
依据法拉第定律,人们可以通过测定电极反应的反应物或产物的物质的量的变化来计算电路中通过的电量。
相应的测量装置称为电量计或库仑计coulometer,通常有银库仑计和铜库仑计 。
7.2 离子的迁移数1. 离子迁移数:电解质溶液中每一种离子所传输的电量在通过的总电量中所占的百分数,用 tB 表示1=∑±=-++t 或显然有1:t t离子的迁移数主要取决于溶液中离子的运动速度,与离子的价数无关,但离子的运动速度会受到温度、浓度等因素影响。
第五章电化学
电解池
电极①: 与外电源负极相接,是负极。 发生还原反应,是阴极。 Cu2++2e-→Cu(S)
①
②
电极②: 与外电源正极相接,是正极。 发生氧化反应,是阳极。 Cu(S)→ Cu2++2e-
物 理 化 学 简 明 教 程
(3). 几组基本概念 正极: 电势高的极称为正极,电流从正极流向 负极。在原电池中正极是阴极;在电解 池中正极是阳极。 负极: 电势低的极称为负极,电子从负极流向 正极。在原电池中负极是阳极;在电解 池中负极是阴极。
3.电解后含某离子的物质的量n(终了)。
4.写出电极上发生的反应,判断某离子浓度是增加了、减少了 还是没有发生变化。 5.判断离子迁移的方向。
物 理 化 学 简 明 教 程
【5-1】在Hittorf 迁移管中,用Ag电极电解AgNO3水溶液,电解前,溶 液中每 1kg 水中含 43.50 mmol AgNO3。实验后,串联在电路中的银库 仑计上有0.723mmol Ag析出。据分析知,通电后阳极区含 23.14g 水和 1.390 mmol AgNO3。试求Ag+和NO3-的离子迁移数。
上有4 mol 阴离子氧化,阴极上有4 mol阳离子还原。
两电极间正、负离子要共同承担4 mol电子电量的运输
任务。
现在离子都是一价的,则离子运输电荷的数量只取决于 离子迁移的速度。
物 理 化 学 简 明 教 程
设正、负离子迁移的速率相等, u+ = u- ,则导电任务各分 担2mol,在假想的AA、BB平面上各有2mol正、负离子逆向通 过。
物 理 化 学 简 明 教 程
Hittorf 法中必须采集的数据:
1. 通入的电量,由库仑计中称重阴极质量的增加而得,例如, 银库仑计中阴极上有0.0405 g Ag析出,
无机化学—第四章电化学
选用标准氢电极作为比较标准 规定它的电极电势值为零.
即 j (H+/H2)= 0 V
19
2-1 标准电极电势
标准氢电极
j (H+/H2)= 0 V
H2←
H2(100kpa) →
Pt →
←H+(1mol·L-1)
20
2-1 标准电极电势
准态时反应自发进行的方向。
电对
j /V
Pb2+/Pb Sn2+/Sn
>
-0.126V -0.136V
反应自发向右进行
38
非标准态时:先根据Nernst方程求出j(电对), 再计算电动势E 或比较j (电对)。
例 试判断下列反应:Pb2++ Sn Pb + Sn2+,在c(P
b2+) /c(Sn2+)=0.1/1.0 时反应自发进行的方向。
EE
RT ln cG nF cA
c g cD c a cB
c d c b
平衡时: E
=0
cG c g cD c d cA c a cB c b K
平衡时 E 0.05917 lg K 0
(298K):
n
lg K nE 0.05917
(4.3b) 17
§4-2 电极电势
18
2-1 标准电极电势
j 越大,电对中氧化态物质的氧化能力越强,
还原态物质的还原能力越弱
强氧化剂对应弱还原剂 弱氧化剂对应强还原剂
类似酸碱共轭关系 酸 === 质子 + 碱
氧化还原反应的规律:
较强
较强
电化学 第1章 绪论
第1章 绪论1.1 电化学的发展与研究对象1.1.1 电化学的产生及其在历史上的作用1、电化学的产生电化学的产生与发展始于18世纪末19世纪初。
1791年意大利生物学家伽伐尼(Galvanic )从事青蛙的生理功能研究时,用手术刀触及解剖后挂在阳台上的青蛙腿,发现青蛙腿产生剧烈的抽动。
分析原因后认为,由于肌肉内有电解液,这时是偶然地构成了电化学电路。
这件事引起了很大的轰动。
当时成立了伽伐尼动物电学会,但未搞明白。
1799年伏打(Volta ),也是意大利人,他根据伽伐尼实验提出假设:认为蛙腿的抽动是因二金属接触时通过电解质溶液产生的电流造成的。
故将锌片和银片交错迭起,中间用浸有电解液的毛呢隔开,构成电堆。
因电堆两端引线刺激蛙腿,发生了同样的现象。
该电堆被后人称为“伏打电堆”,是公认的世界历史上第一个化学电源。
2、电化学在历史上的作用伏打电堆的出现,使人们较容易地获得了直流电。
科学家们利用这种直流电得以进行大量的研究,大大地扩展了人们对于物质的认识,同时促进了电化学的发展,也极大地促进了化学理论的发展。
1)扩展了对于物质的认识。
最初人们认为自然界中有33种元素,实际上其中有一部分是化合物。
如:KOH 、NaOH 、NaCl 、O H 2等。
1800年尼克松(Nichoson )、卡利苏(Carlisle )利用伏打电堆电解水溶液,发现有两种气体析出,得知为2H 和2O 。
此后人们做了大量的工作:如电解4CuSO 得到Cu ,电解3AgNO 得到Ag ,电解熔融KOH 得到K 等等。
10年之内,还得到了Na 、Mg 、Ca 、Sr 、Ba 等,这就是最早的电化学冶金。
10年时间,人们所能得到或认识的元素就已多达55种。
没有这个基础,门捷列夫周期表的产生是不可能的。
2)促进了电学的发展1819年,奥斯特用电堆发现了电流对磁针的影响,即所谓电磁现象。
1826年,发现了欧姆定律。
这都是利用了伏打电堆,对于电流通过导体时发生的现象进行了物理学的研究而发现的。
第一章电化学
解:负极2 H2(Pө) -4e-→4H+(aH+) 正极O2(Pө) +4H++4e- →2H2O(l) 净反应2 H2(Pө) + O2(Pө) → 2H2O(l) 2 H2(Pө) +
△rGm,1 △rGm,2 △rGm O2(Pө) → 2H2O(l,Ps=3.2Kpa)
△rGm,3
2 H2O(g,Pө)
电化学分析法
王勤
Email:qinwang86@
第一节 概 述 电化学:是研究化学现象和电现象之间的 相互关系以及化学能与电能相互转换规律 的学科。 电化学分析法 :应用电化学的基本原理和 实验技术,依据物质的电化学性质来测定 物质组成及含量的分析方法称之为电化学 分析或电分析化学。 电位法 :根据测定原电池的电动势,以确 定待测物含量的分析方法 。
(一)电解质溶液 (1)电解质溶液的导电机理
能够导电的物体称为导体
金属 依靠自由电子的迁移导电
导体分为
电解质溶液、熔融电解质或固体电 解质 依靠离子的迁移导电
电解质溶液的连续导电过程必须在电化学装置中实现, 而且总是伴随着电化学反应和化学能与电能相互转换发 生。
电化学装置示意图(a)电解池
负极(阴极):2H++2e-→H2
与外电源相连的两个铂电极插入HCl 水溶液而构成。(实际应该两个烧 杯的溶液放在一个水槽中)。在溶 液中,由于电场力的作用,H+ 向着 与外电源负极相连的、电势较低的 Pt电极-负极迁移,而Cl-向着与外电 源正极相连的、电势较高的Pt电极正极迁移。这些带电离子的迁移, 形成了电流在溶液中的通过。外加 电压的存在保证了电流的连续。
2 H2O(g,3.2Kpa)
电化学基本知识.
三电极组成
研究 电极: WE
三电 极 参比 电极: RE
辅助 电极: CE
两回路
极化回路(串联电路)
由极化电源、WE、CE、 可变电阻以及电流表等组 成。
测量回路(并联电路)
功能
目的
调节或控制流经 WE的电流
实现极化电流的变化与测量
由控制与测量电位的 仪器、WE、RE、盐桥 等组成。
实现控制或测量极 化的变化
固液界面固气界面固固界面如钢铁在海水中的腐蚀如电化学传感器催化剂如全固态锂电池燃料电池znsoznso44cusocuso44znzncucu电化学工作站电压表内阻无限大恒电源恒流源交流电压交流电流开路电压电化学噪声恒电压线性扫描循环伏安极化曲线电压脉冲恒电流电流扫描电流脉冲恒流充放电交流阻抗莫特肖特基曲线电压电流时间频率化学反应电化学测试示意图电化学工作站ceresewe电解池示意图rsweserece施加测量电位施加测量电流三电极与两回路原理图rewece测量回路极化回路电解池经典恒流法测量电路研究电极
2. 电容
de iC dt XC 1 C i CE sin(t ) 2
E i sin(t ) XC 2
电容的容抗(),电容的相位角=/2
写成复数: 实部: 虚部:
ZC jX C j (1/ C)
' ZC 0
'' ZC 1/ C
* -Z'' * * * * Z'
2. 三电极两回路具有足够的测量精度。
1.2.5 辅助电极
1.2.5.1 辅助电极的作用 实现WE导电并使WE电力线分布均匀。 1.2.5.2 辅助电极的要求 ①辅助电极面积大;
为使参比电极等势面,应使辅助电极面积增大,以保证满足研究电极表面电位 分布均匀,如是平板电极:S辅 5S研;
电化学常识
tafel曲线一般指极化曲线中强极化区的一段。该段曲线(E-logi曲线)在一定的区域(Tafel区)呈现线性关系。
计时电流法(CA)
一种研究电极过程动力学的电化学分析法和技术。在电解池上突然施加一个恒电位,足够使溶液中某种电活性物质(或称去极剂)发生氧化或还原反应,记录电流与时间的变化,得到电流-时间曲线,故称计时电流法
工作电极是可极化的微电极,如滴汞电极、静汞电极或其他固体电极;而辅助电极和参比电极则具有相对大的表面积,是不可极化的。常用的电位扫描速率介于0.001~0.1V/s。可单次扫描或多次扫描。根据电流-电位曲线测得的峰电流与被测物的浓度呈线性关系,可作定量分析,更适合于有吸附性物质的测定。
Tafel图(TAFEL)
计时电流法常用于电化学研究,即电子转移动力学研究。近年来还有采用两次电位突跃的方法,称为双电位阶的计时电流法。第一次突然加一电位,使发生电极反应,经很短时间的电解,又跃回到原来的电位或另一电位处,此时原先的电极反应产物又转变为它的原始状态,从而可以在i-t曲线上更好地观察动力学的反应过程;并从科特雷耳方程出发,考虑反应速率,进行数学推导和作图,求出反应速率常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Theory of the reversible electrode process in case of cyclicvoltammetry at finite thickness film electrodeB.F.Nazarov,rionova *,A.G.Stromberg ,I.S.AntipenkoTomsk Polytechnic University,NPP Technoanalit,Lenin Avenue,30,634050Tomsk,Russian FederationReceived 2February 2007;received in revised form 21April 2007;accepted 23April 2007Available online 30April 2007AbstractIn this report the theory of the reversible process of amalgam formation and dissolution reaction at a mercury film electrode of dif-ferent thickness is developed using an additional boundary condition approach for asymmetricaldiffusion.The profile of the entire vol-tammetric peak is simulated using a wide range of values of the parameter H ¼l ffiffiffir p =ffiffiffiffiD p (where l is the film thickness,r =nFW /RT ,D is diffusion coefficient,n is number of electrons,W is scan rate,and F and R are the Faraday and Universal gas constants,respectively)from 20to 0.001.In addition the influence of the initial potential E i and the switching potential E k is included in the calculations.The dependence of the anodic and cathodic peak currents,peak potentials and half-height-full-widths on the initial potential,E i ,and the value of ln H ,are described using approximate equations;the dependence of the ratio of peak currents and peak-to-peak separation on the switching potential E k and value of ln H ,using cyclic voltammetry are also described.Ó2007Elsevier B.V.All rights reserved.Keywords:Stripping voltammetry;Cyclic voltammetry;Simulation;Reversible electrode process;Film electrode1.IntroductionThe study of reversible electrochemical processes at film electrodes has been the subject of much attention during the last thirty years.This matter has fundamental signifi-cance for the theory of stripping and cyclic voltammetry,because the electrochemically reversible process is the lim-iting case for heterogeneous redox processes coupled to preceding or subsequent homogeneous chemical reactions (e.g.CE or EC mechanisms),irreversible and quasi-revers-ible processes at electrodes made of different film and sub-strate materials (Hg,Bi,Hg–Au,Hg–Ag and others)and different geometries of electrodes [1].To obtain exact solutions of the diffusion problem over a finite area in the case of linear sweep voltammetry it is required to use the powerful mathematical tool.Initialattempts to take into account the asymmetrical area of dif-fusion were made for the case of mercury hanging drop electrodes [2–4]and mercury film electrodes [5–8].De Vries and Van Dalen’s works [9–11]are one of the most well known and powerful approaches to mathemati-cally model the thin film system.The exact integral equa-tion was obtained by Laplace transformation method.In order to calculate the full profile of the linear sweep cur-rent–potential curves obtained during oxidation or reduc-tion,the numerical integration method of Huber is required.Numerical simulations are widely applied to solve a variety of voltammetric problems.Numerical methods rely on approximating the mass transport field by dividing it up into discrete elements,which are handled mathematically [12].The system of Fick’s equation has directly been solved by finite difference method [13–15].The time dependent backward implicit method was used to simulate anodic stripping voltammetry at mercury thin film electrode under hydrodynamic conditions for electrochemically reversible1388-2481/$-see front matter Ó2007Elsevier B.V.All rights reserved.doi:10.1016/j.elecom.2007.04.014*Corresponding author.E-mail address:evs@anchem.chtd.tpu.ru (rionova).Deceased./locate/elecomElectrochemistry Communications 9(2007)1936–1944[16–19],quasi-reversible and irreversible processes[20,21]. It should be noted that the advantages of numerical meth-ods in comparison with semi-analytical methods include theirflexibility in applying them to different voltammetric conditions and kinetic regimes,and their relative mathe-matical simplicity.However,in our opinion the important advantages of semi-analytical methods are that the solu-tions in the analytical form are obtained.Among the advantages of semianalytical methods,a high degree of accuracy and ready applicability to different forms of the applied voltage should also be emphasized.Keller and Reinmuth[22]have developed a new approach to solvefinite and infinite diffusion problems in potential scan voltammetry using equations in the form of infinite series.Investigation of the electrochemically reversible process at afilm electrode by applying the Laplace transformation method with additional boundary conditions is also an alternative and fruitful mathematical approach[3,23–27]. This approach,in which additional boundary conditions holds true for semi-infinite diffusion,wasfirst used by Reinmuth[3].For successful application of this method tofinite diffusion problem,it is necessary to choose the cor-rect boundary condition for the solution/electrode inter-face.The additional boundary condition reported by Nemov and coworkers[23–27]defines the concentration of oxidized and reduced forms on the solution–electrode interface in case of asymmetrical diffusion.The use of cyclic voltammetry atfilm electrodes can pro-vide more information about a given system compared to stripping voltammetry alone.Cyclic voltammetry at mer-cury electrodes of various geometries has been applied to the study of the electrochemical properties of oxidation–reduction couples and the mechanism of these electrode processes,such as amalgam formation,etc.[1].Cyclic vol-tammetry is used as a tool to study the electrochemical characteristics of mercury microelectrodes[28–32].The theory of cyclic voltammetry involving amalgam formation at a hanging mercury drop electrode was described generally elsewhere[33–38].Theoretical treat-ment of cyclic voltammetry for hanging mercury drop elec-trode,taking into consideration the diffusion coefficient of the metal ion,sphericity andfinal volume of the mercury drop and other factors,has been developed by authors of the work[36].The direct solution of differential equa-tions system was obtained by difference explicit method [37,38].Authors of works[39,40]further developed the theory of cyclic voltammetry to include a stage of amalgam forma-tion with metal initially present in the mercuryfilm and ions of the metal in the solution.To calculate current–potential curves,the approximation of De Vries and Van Dalen’s equation for thin-film systems was used,though De Vries and Van Dalen’s equation describes only one-direction scan processes.In our recently published papers[26,27]we have obtained simple,yet exact explicit expressions describing linear scan stripping voltammetry at a thinfilm mercury electrode with the help of Nemov’s additional boundary condition.The purpose of the present work is theoretically to investigate current–potential curves for linear sweep cyc-lic voltammetry at afilm electrode to test the application of Nemov’s additional boundary condition.2.TheoryLet us consider a simple electrochemical reaction of reversible anodic and cathodic electrode processes at afilm electrode in the case of linear sweep voltammetry:M nþþne$MðHgÞ;ð1ÞE¼E iþWt;E¼E kÀWt;ð2Þwhere E is the potential,E i is the initial potential,E k is the switching potential,W is the scan rate.Fig.1shows the form of change of the potential of the working electrode in case of practical realization of cyclic process(1).As can be seen from Fig.1,cyclic process con-sists of several parts:A1B1–the amalgam formation at constant potential during the time of electrolysis t,B1C1–the dissolution step at linear sweep potential,C1A2–the amalgam formation at linear sweep potential.It is to be noted that equilibrium is rapidly reached at point C1. In the second cycle the section A2B2corresponds to the reduction of the metal ion during time of electrolysis t. The time periods A1B1,A2B2etc.serve to establish the equilibrium condition determined by Nernst equation. Such form of the working electrode potential change gives us the possibility of carrying out multicycle processes.According to works[26,27]in order to obtain expression for c sRand c sOxin the case of a limited region of diffusion Fick’s equations:o c Rðx;tÞ¼DRo2c Rðx;tÞ2o c Oxðx;tÞo t¼D Ox o2c Oxðx;tÞo x29=;ð3Þshould be solved with the following initial and boundary conditions:t¼0:c Rðx;0Þ¼c0R¼const;ð06x6lÞð3aÞc Oxðx;0Þ¼c0Ox¼const;ðx>lÞð3bÞc0Ox¼h0c0Rð3cÞB.F.Nazarov et al./Electrochemistry Communications9(2007)1936–19441937t >0:o c R ðx ;t Þo xx ¼0¼0;ð3d Þlim x !1ðc Ox ðx ;t ÞÞ¼c 0Ox ;ð3e ÞD Ro c R ðx ;t Þo x x ¼l¼D Ox o c Ox ðx ;t Þo xx ¼l ¼i nFS ;ð3f Þc s Ox ¼h c sR :ð3g ÞThis system of Fick’s Eq.(3)with initial and boundary conditions (3a)–(3g)was solved using the Laplace transfor-mation method to obtain equations for c s R and c sOx [26].Next the additional boundary condition for asymmetric diffusion [26]was obtained as:c s R ¼c 0R 1þh 1þh 0À2ðh Àh 0Þ1þh X 1k ¼11Àh 1þh k À1erfc kHðr t Þ1=2"#()ð4Þwhere t is time,x is the distance from electrode substrate,x =l is the film thickness,D R ,D Ox are the diffusion coeffi-cients of reduced (M(Hg))and oxidized form (M n +),c 0R and c 0Ox are the initial concentrations of reduced (M(Hg))andoxidized form (M n +),c s R and c sOx are concentrations of re-duced (M(Hg))and oxidized form (M n +)at the electrodesurface.For the anodic process h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD Ox =D R p h 0exp ðr t Þ,h 0¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD Ox =D R p exp nF RT E i ÀE 0ÀÁÀÁ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD Ox =D R p exp ðw i Þ,r t ¼nFW t ¼nF ðE ÀE i Þ,where w i is dimensionless initial potential;E 0is standard potential of the electrode couple(arbitrarily,let the standard potential be zero),whilstfor the cathodic process:h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD Ox =D R p h 0exp ðÀr t Þ,h 0¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD Ox =D R p exp nF ðE k ÀE 0ÞÀÁ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD Ox =D R p exp ðw k Þ,r t ¼nFW t ¼nF E k ÀE ðÞ,where w k is dimensionless switching potential;H ¼l ffiffiffir p =ffiffiffiffiffiffiffiD R p ,n is number of elec-trons,F and R are the Faraday and universal gas constants,respectively.It is obvious that as H !1expression (4)be-comes the additional boundary condition for symmetrical diffusion [26].The equation for the anodic current i a (in amperes)was developed previously,using the superposition principle [26]:i a¼n 2F 2Sc 0R lW RTv aðr t Þ;ð5Þwhere S is the electrode area,v a (r t )is the dimensionless anodic current function:v a ðr t Þ¼2H Z t 0o c 0ðs Þo s X 1k ¼1exp Àð2k À1Þ2p 24r ðt Às ÞH d s ;ð6Þwhere c 0¼c s R =c 0R is the dimensionless concentration and is determined from the additional boundary condition (4).More detailed mathematical description and analysis of Eqs.(4)and (5)were presented in our previous papers [26,27].There is disadvantage at the application of equitation (6).It is connected with constraint of use of direct comput-ing facilities in case of H !0.Let us consider the limiting case of equitation (6)for H !0.It is known that [41]Z 1d ðx Àx 0Þf ðx Þd x ¼f ðx 0Þ:ð7ÞIf d (x Àx 0)is (Dirac)delta function,then it has the fol-lowing properties:(i)d (x Àx 0)=0provided that x ¼x 0;(ii)d (x Àx 0)=1provided that x =x 0and R 1d ðx Þd x ¼paring expression (6)to expression (7)it can be shown that:q ðr t Þ¼2H 2X 1k ¼1exp Àð2k À1Þ2p 24r ðt Às ÞH 2 ð8Þis a delta function at H !0.It is evident thatlim H !0q (r t )=0provided that t ¼0and the followingexpressions lim H !0q (r t )=1and 2R 10P 1k ¼1exp Àð2k À1Þ2p 24r ðt Às ÞH 2h i d r tH 2¼1are true provided that t =0.Therefore the limiting equation for current–potential curves at vanishing values of H <0.01can be written as lim H !0v aðr t Þ¼d c 0ðt Þd t:ð9ÞFirstly the Eq.(9)was suggested by Baev [42]but the detailed study of applicability of the expression (9)was not carried out by this author.We estimated that the errors D v a ðr t Þ¼ðv a ðr t ÞÀlim H !0ðv a ðr t ÞÞ100%=v a ðr t Þcalculated by the Eqs.(6)and (9)rapidly decreases with decreasing H and those become less then 1%at H =0.1.The dimensionless cathodic current v c (r t )can be calcu-lated by Eqs.(6)and (9)with use of the parameters of cathodic process.These are the negative value of W ,the switching potential E k and the initial concentration of oxi-dized form c 0Ox determined by the Nernst Eq.(3c).The function v (r t )allows one to calculate the theoretical cyclic curves under the condition where the initial quantity of metal (Q R =const)is constant.This is achieved by increasing the concentration of M n +with a corresponding decrease in film thickness.Let us now introduce a new function v 0(r t ):v 0ðr t Þ¼H v ðr t Þ;ð10Þcorresponding to the condition where the initial concentra-tion of M n +is constant,that is equivalent to constant ini-tial concentration of M ðHg Þðc 0R ¼const Þ.Thus,the major parameters determining the shape of v (r t )is H ,w i and w k .To calculate theoretical curves v (r t )Eq.(6)should be used and Eq.(9)at vanishing values of H <0.1should be applied.1938 B.F.Nazarov et al./Electrochemistry Communications 9(2007)1936–19443.Results and discussion3.1.Anodic processThe full contour of anodic peak(Fig.2)in the dimen-sionless coordinates v a—r t for following values of H: 0.001;0.01;0.05;0.2;0.5;1.11;2.5;5;10are calculated by Eqs.(6)and(9).Deformation of peak form depended on the value of the dimensionless initial potential w i(À8;À5;À2;1;4)or E i,mV(À205.43;À128.39;À51.36;25.68;102.71),that corresponds to the following relations of concentration c Ox/c R0.0003;0.0067;0.1353; 2.7183;54.5982,for the parameter H given above is investigated. The calculations were performed under the condition that Q R=const.The basic anodic peak parameters(height of peak v amax ,peak potential e ap ¼ðnF=RTÞðEÀE iÞand d a=(nF/RT)E1/2,where E1/2–width at half peak height/V)as a function of ln H at different values of w i are shown in Fig.3.The basic peak parameters which depend on ln H and w i can be pre-sented by the following approximation model:P1¼a1þb1ln Hþd1w iþe1ðln HÞ2þf1w2iþg1ðln HÞw ið11Þfor1ÆHæ0.001andÀ8Æw iæÀ2,where P1is v amax ,e ap,d a.Coefficients of the approximation formula(11)are found by a method of nonlinear optimization and also coefficients of correlation r are estimated(Table1).It is apparent from Fig.3,that the values of H and w i significantly influence the form of the anodic peak.As can be seen from Fig.3,the value of v amaxdepends on thevalues of w i for semi-infinite linear diffusion and increases to the limiting value,1,for H!0and for all values ofw i.It is to be noted that on the v amaxðln HÞ–curve at w i=À8plateau of value0.298is observed as it was founded by De Vries and Van Dalen.The width at half height E1/2changes from203.4mV to17.7mV at all valuesof w i.The peak potential e apbecomes more negative and forH!0the limiting value of e apis individual for every value of w i.It is to be emphasized that in the practical area of strip-ping voltammetry(l<10l m,w i=À8;À5)the basic peak parameters strongly depend on the value of w i.This fact is necessary to take into account during analytical data processing and interpretation.3.2.Cathodic processThe full contour of the cathodic peak(Fig.4)in the dimensionless coordinates v0c–r t for following values of H:0.001;0.01;0.05;0.2;0.5;1.11;2.5;5;10is calcu-lated by Eqs.(8)and(11).Deformation of peak form depends on the value of the dimensionless switching potential w k(8;5;2;À1;À4)or E k,mV(205.43; 128.39;51.36;À25.68;À102.71),that corresponds to the following relations of concentration c Ox/c R(2980; 148;7;0.37;0.018),for the parameter H given above is investigated.The calculations were carried out pro-vided that the initial amount of metal at electrode is con-stant(c0R¼constÞ.B.F.Nazarov et al./Electrochemistry Communications9(2007)1936–19441939Fig.5shows basic cathodic peak parameters (height ofpeak v 0cmax ,peak potential e c p ¼ðnF =RT ÞðE k ÀE Þ,and d c=(nF /RT )E 1/2,where E 1/2is width at half peak height)as a function of ln H at different values of w k .The following properties of v 0(Àr t )from Fig.5are apparent:(i)As can be seen from Fig.3,the value of v 0cmaxdepends on the values of w k for semi-infinite linear diffusion (H !0)and increase to the limiting value,1.243,for H !0and for all values of w k .Withdecreasing H the value of v 0cmax increases so with decreasing film thickness and increasing the value of scan rate the maximum of cathodic currents decreases.In the cathodic process,during the initial time of electrolysis,the currents decrease with decreasing film thickness.In the following,the rate of this process grows accordingly exponentially,and the descending branch of the cathodic peak will only be defined by the rate of transport of fresh material.Thereby the descending branches of catho-dic current–potential curves have root character.This fact proves that at r t !1the value v 0ffiffiffiffiffir t p is equal to 1=ffiffiffip p .(ii)The width at half peak height E 1/2changes from203.4mV to 78.5mV at all values of w k .(iii)The peak potential e c p becomes more negative.ForH !0,the limiting value of e c p is individual for each value of w k .(iv)All dependences in the area of small H and positivevalue w k have linear character.For negative value w k the dependence of the basic cathodic peak param-eters on ln H is more complicated.In that case it is observed that the condition applied by Berzins and Delahay [43]at which concentration of M(Hg)is con-stant applies.We have shown that the same occurs at more positive values of w i for the anodic peak.The width at half peak height,d c ,which depends on ln H and w k ,can be presented by the following approximation model:P 2¼a 2þb 2ln H þd 2w k þe 2ðln H Þ2þf 2w 2k þg 2ðln H Þw kð12Þfor 1ÆH æ0.001and 8Æw k æ2,where P 2is d c .The approxi-mate equation for the dependence of v 0c max and e c p on ln H and w k can be written as:P 3¼a 3þb 3ln H þd 3w kð13Þfor 1ÆH æ0.001and 8Æw k æ2,where P 3is v 0cmax and e c p .Thecoefficients of the approximate expressions (12)and (13)are found using the method of nonlinear optimization and coefficients of correlation r are also estimated (Table 1).As it can be seen from Table 1,correlation between peak parameters and approximation model in case of anodic process is not so good than in case of cathodic processes.1940 B.F.Nazarov et al./Electrochemistry Communications 9(2007)1936–1944In case of anodic process with change of parameter H and initial potential,the effect of asymmetry of diffusion pro-cess is much stronger than in case of cathodic one.For this reason the dependences for anodic peak parameters from H and E i are more complex than for cathodic one in the given variation range of H and E i(1ÆHæ0.001and À8Æw iæÀ2).However,accuracy of calculations of anodic peak parameters by approximation equations,resulted in Table1,is quite relevant to practical application.3.3.Cyclic voltammetryThe effect of parameter H and switching potential w k on the form of cyclic voltammogram is illustrated by Fig.6.Parameters i cp =i ap(i apand i cp–maximum of anodic andcathodic peak,accordingly,in amps)and D e p¼e ap Àe cpare presented in Fig.7at different values of switching potentials w k.For semi-infinite linear diffusion,the param-eter i cp =i apequals1,for H!0the parameter i cp=i apdependson w k.For semi-infinite linear diffusion for8>w k<2the parameter D e p has the well known value2.22RT/nF[1]. For H!0,the limiting value of D e p depends on the value of w k.From the data presented in Fig.7and experimentally measured values of D e p,it is possible to determine the ‘‘equilibrium’’value of H for the reversible electrode pro-cess,which can differ from that calculated using experimen-tal data,for example,because of roughness of the interface, Ag/Hg,dissolution of the mercury in silver,etc.The dependence of the parameters i cp=i apand D e p on ln H and w k can be presented by the following approximate model:P4¼a4þb4ln Hþd4w kþe4ðln HÞ2þf4w2kþg4ðln HÞw k;ð14Þwhere P4is i cp=i apand D e p.The coefficients of the approxi-mate expression(14)are found by a method of nonlinear optimization and also coefficients of correlation r are esti-mated(Table1).In case of practical realization multicycle processes for periods A2B2etc.the process of an equilibrium achievement is enough complex.The time of electrolysis depends on the initial potential,switching potential and parameter of H. We can estimate the time of electrolysis when concentrationTable1Value of coefficients of expressions(11)–(14),standard errors S r and coefficients of correlation r Coefficients of model Anodic processv a max e apd aCoefficient estimation S r Coefficient estimation S r Coefficient estimation S ra10.510.060.650.20 1.70.4 b10.0730.025À0.460.08À0.320.14 c1À0.1060.0180.480.060.240.08 d10.00530.00240.0470.008–ae1À0.01150.0019À0.1060.006À0.0130.007 f1–a0.0620.007–ar0.94900.98700.9275Cathodic processv0cmax e cpd cCoefficient estimation S r Coefficient estimation S r Coefficient estimation S ra2,30.5560.007À1.0790.022 5.260.09 b2,3À0.04830.0012 1.0190.004À0.2450.036 c2,30.04800.0011À0.02780.00330.3170.026 d20.01100.0035 e2À0.01680.0028 f20.01950.0031 r0.99740.99990.9860Cyclic processi c p =i apD e pCoefficient estimation S r Coefficient estimation S ra4À2.9 1.80.740.06 b40.30.40.1550.014 c4À2.20.7À0.370.03 d40.120.07À0.00800.0024 e4À0.80.1À0.0570.003 f4 2.10.40.0180.004 r0.93190.9933a Coefficient estimation is not significant.B.F.Nazarov et al./Electrochemistry Communications9(2007)1936–194419411942 B.F.Nazarov et al./Electrochemistry Communications9(2007)1936–1944c s Ox calculated by the solution of system of Eq.(3)achievesconcentration c0Ox calculated by Nernst equation.It is esti-mated that for H<0.1the time of electrolysis will exceed the time of periods B1C1,B2C2etc in tens times.For example,in thefield of potentials from the switch-ing potential to a potential of peak maximum the time of electrolysis is negligible quantity.On the descending branch at stopping potential on the level of3/4heights of cathodic peak if the time of electrolyses is equal10periods of B2C2than the deviation of concentration from equilib-rium does not exceed20%.It corresponds to the error of equilibrium achievement which is equal to5mV or less. At stopping cathodic process at1/4height of peak the time of electrolysis increases on two orders.Stirring of solution during electrolysis considerably increases the time of equi-librium achievement.4.ConclusionThus,the additional boundary condition approach for calculation of cyclic voltammograms in case offinitefilm thickness electrode is realized.The full profile of current–potential curves obtained during oxidizing and reducing linear potential sweep at differentfilm thickness(from0 to1)is calculated.It is to be noted that application of Eq.(8)for vanishing values of H leads to an increase in the volume of calcula-tions.However,using the limiting Eq.(11)for vanishing values of H allows us to extend the range of variation of H(H<0.05).It is relevant because voltammetry at solid modified electrodes and microelectrodes has become increasingly popular.The anodic and cathodic curves are given at values of H(from10to0.001)and different values of initial and switching potential.It is established that the dependence basic parameters of anodic peak on H in thefield of their small values is more complicated than has been shown in previous works[9–11].It is also been shown that the results of De Vries and Van Dalen for cathodic processes are valid only for thickfilms,which are practi-cally unrealizable in voltammetry using mercuryfilm electrodes.B.F.Nazarov et al./Electrochemistry Communications9(2007)1936–19441943Significant effect of initial and switching potentials on the form of anodic and cathodic curves is shown.The approximate equations for the key parameters characteriz-ing the anodic,cathodic and cycle curves are given.Acknowledgementrionova thanks Tomsk Polytechnic University for a young scientist grant.References[1]Z.Galus,Fundamentals of Electrochemical Analysis,Polish scientificpublishers PWN,Warsaw,1994.[2]W.H.Reinmuth,Anal.Chem.33(1961)185.[3]W.H.Reinmuth,Anal.Chem.34(1962)1446.[4]I.Shain,J.Lewinson,Anal.Chem.33(1961)187.[5]M.M.Nicholson,J.Am.Chem.Soc.79(1957)7.[6]V.A.Igolinsky,Ph.D.Thesis,Tomsk Polytechnic University,Tomsk,1963.[7]D.K.Roe,J.E.K.Toni,Anal.Chem.37(1965)1503.[8]E.M.Roizenblat,I.M.Reznik,Russian J.Anal.Chem.36(1981)48.[9]W.T.De Vries,E.Van Dalen,J.Electroanal.Chem.10(1965)183.[10]W.T.De Vries,E.Van Dalen,J.Electroanal.Chem.12(1966)9.[11]W.T.De Vries,E.Van Dalen,J.Electroanal.Chem.14(1967)315.[12]P.J.Mahon,J.C.Myland,K.B.Oldham,J.Electroanal.Chem.537(2002)1.[13]M.Penczek,Z.Stojek,J.Electroanal.Chem.170(1984)99.[14]M.Penczek,Z.Stojek,J.Electroanal.Chem.181(1984)83.[15]M.Penczek,Z.Stojek,J.Electroanal.Chem.191(1985)91.[16]J.C.Ball,pton,Electroanal.9(1997)765.[17]J.C.Ball,J.A.Cooper,pton,J.Electroanal.Chem.435(1997)229.[18]J.C.Ball,pton,J.Phys.Chem.B102(1998)3967.[19]J.C.Ball,pton,C.M.A.Brett,J.Phys.Chem.B102(1998)162.[20]J.C.Ball,pton,Electroanal.9(1997)1305.[21]C.Agra-Gutierrez,J.C.Ball,pton,J.Phys.Chem.B102(1998)7028.[22]H.E.Keller,W.H.Reinmuth,Anal.Chem.44(1972)434.[23]V.A.Nemov,Ph.D.Thesis,Tomsk Polytechnic University,Tomsk,1972.[24]B.F.Nazarov,V.A.Nemov,in:Proceedings of Tomsk PolytechnicUniversity.Tomsk,250,1975,p.111.[25]B.F.Nazarov,V.A.Nemov,in:Proceedings of Tomsk PolytechnicUniversity.Tomsk,250,1975,p.115.[26]B.F.Nazarov, A.G.Stromberg,Russ.J.Electrochem.41(2005)49.[27]B.F.Nazarov,A.G.Stromberg,rionova,Russ.J.Electro-chem.41(2005)63.[28]J.Golas,Z.Galus,J.Osteryoung,Electrochim.Acta.32(1987)66.[29]M.A.Baldo,S.Daniele,G.A.Mazzocchin,Electrochim.Acta.41(1996)811.[30]J.Golas,Z.Galus,J.Osteryoung,Anal.Chem.59(1987)389.[31]A.M.Bond,T.L.E.Henderson,W.Thormann,J.Phys.Chem.90(1986)2911.[32]M.Ciszkowska,Z.Stojek,J.Electroanal.Chem.191(1985)101.[33]J.Golas,Z.Kowalski,Anal.Chim.Acta.221(1989)305.[34]F.H.Beyerlein,R.S.Nicholson,Anal.Chem.44(1972)1647.[35]C.Guminski,Z.Galus,Roczniki.Chem.43(1969)2147.[36]K.Tokuda,N.Enomoto,H.Matsuda,N.Koizumi,J.Electroanal.Chem.159(1983)23.[37]J.E.Spell,R.H.Philp,Anal.Chem.51(1979)2287.[38]sia,J.Electroanal.Chem.191(1985)185.[39]M.Donten,Z.Stojek,Z.Kublik,J.Electroanal.Chem.163(1984)11.[40]M.Donten,Z.Kublik,J.Electroanal.Chem.195(1985)251.[41]V.G.Bagrov,V.V.Belov,V.N.Zadorozhniy,A.Y.TrifonovMethodsof mathematics physics,vol.1,Technical-scientific literature publish-ers,Tomsk,2002.[42]B.C.Baev,Ph.D.Thesis,Institute of organic catalysis and electro-chemistry,Alma-Ata,1977.[43]T.Berzins,P.Delahay,J.Am.Chem.Soc.75(1953)555.1944 B.F.Nazarov et al./Electrochemistry Communications9(2007)1936–1944。