1.3有理数的加减混合运算练习
有理数加减混合运算练习题
1.3有理数的加减法一、教材分析有理数的加法是有理数运算的一个非常重要的内容,它建立在小学算术运算的基础上。
但是,它与小学的算术又有很大的区别,小学的加法运算不需要确定和的符号,运算单一,而有理数的加法,既要确定和的符号,又要计算和的绝对值。
因此,有理数加法运算,在确定“和”的符号后,实质上是进行算术数的加减运算,思维过程就是如何把中学有理数的加法运算化归为小学算术的加减运算。
由于有理数的加法是有理数运算的开始,因而它是时一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。
同时,学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义。
本节课的重点是有理数的加法法则,理由是:(1)要熟练地进行有理数的加法运算,就得深刻理解运算法则,对运算法则理解得越深,运算才能掌握得越好。
(2)有理数的加法作为基本运算,在今后的各种运算中有着广泛的应用。
本课的教学难点是异号两数相加的法则,原因是:学生学习数学是一种认识过程,要遵循一般的认识规律。
而初一年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需有通过绝对值大小的比较来确定和的符号和加法转化为减法两个思维过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度。
在教学时,应从实例出发,充分利用数轴,从数形结合的观点加以讲授,并配以适量的练习,让学生在练习中感知法则的应用。
以求突破这一难点。
二、教学目的的确定1.使学生理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。
2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力。
3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神。
以上教学目的是从知识教学、技能训练和能力培养三个方面,根据《教学大纲》中关于“有理数加法”的教学要求,和加强“双基”教学的要求,以及培养学生良好的个性品质等要求而确定的。
1-3 有理数的加减法 练习 人教版数学七年级上册
1.3 有理数的加减法一、选择题1.计算−3+(−1)的正确结果是()A.2 B.-2 C.4 D.-42.某城市一月份某一天的天气预报中,最低气温为−6℃,最高气温为2℃,这一天这个城市的温差为()A.8℃B.−8℃C.6℃D.2℃3.不改变原式的值,将1-(+2)-(-3)+(-4)写成省略加号和括号的形式是()A.-1-2+3-4 B.1-2-3-4C.1-2+3-4 D.1-2-3—44.超市出售的某种品牌的大米袋上,标有质量为(50±0.4) kg的字样,从超市中任意拿出两袋大米,它们的质量最多相差()A.0.4 kg B.0.6 kg C.0.8 kg D.1 kg5.绝对值大于1且小于5的所有整数的和是()A.7 B.-7 C.0 D.56.若有理数a,b,满足|a|=﹣a,|b|=b,a+b<0,则a,b的取值正确的是()A.a=2,b=﹣1 B.a=﹣1,b=2C.a=﹣2,b=1 D.a=﹣1,b=﹣27.若m是-6的相反数,且m+n=-11,则n的值是()A.-5 B.5 C.-17 D.178.若|a|=8,|b|=5,且a+b>0,则a-b的值为()A.13或-1 B.13或3 C.3或-3 D.–3或-13二、填空题9.计算|−12|−12的结果是.10.A、B、C三点相对于海平面分别是-13m,6m,-21m,那么最高的地方比最低的地方高m.11.绝对值不大于3的所有整数的和为.12.小刚在计算21+n的时候,误将“+”看成“-”结果得-10,则21+n的值为.13.已知|m|=5,|n|=2,且n<0,则m+n的值是.三、解答题14.计算:(1)﹣3﹣4+19﹣11;(2)﹣9+(﹣3 34 )+3 34 ;(3)−12+(−16)−(−14)−(+23) ;(4)|﹣2 12 |﹣(﹣2.5)+1﹣|1﹣2 12 |;(5)8+(﹣ 14 )﹣5﹣(﹣0.25);(6)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).15.五袋白糖以每袋50kg 为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,-4,+2.3,-3.5,+2.5.这五袋白糖共超过多少kg ?总重量是多少kg ?16.有理数a 既不是正数,也不是负数,b 是最小的正整数,c 表示下列一组数:-2,1.5,0,130%, - 27 ,860,-3.4中非正数的个数,则a+b+c 等于多少?17.若|a|=5,|b|=3,(1)求a+b 的值;(2)若|a+b|=a+b ,求a ﹣b 的值.参考答案1.D2.A3.C4.C5.C6.C7.C8.B9.010.2711.012.5213.3或﹣714.(1)解:﹣3﹣4+19﹣11=19-18=1;(2)解:﹣9+(﹣3 34 )+3 34 =﹣9﹣3 34 +3 34 =-9;(3)解: −12+(−16)−(−14)−(+23)=−612−212+312−812= −1312 ;(4)解:|﹣2 12 |﹣(﹣2.5)+1﹣|1﹣2 12 |=2.5+2.5+1−|−1.5|=2.5+2.5+1−1.5=4.5;(5)解:8+(﹣ 14 )﹣5﹣(﹣0.25)=8-0.25-5+0.25=3;(6)解:[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5)=(1.4+3.6-5.2-4.3)+1.5=-4.5+1.5=-3.15.解:白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖共超过(4.5﹣4+2.3﹣3.5+2.5)=1.8千克,故这五袋白糖共超过1.8千克;总重量是5×50+1.8=251.8千克,故五袋白糖的总重量是251.8千克.16.解:根据“有理数a既不是正数,也不是负数”,可得到a是0;b是最小的正整数,则b是1;-2,1.5,0,130%,- 27,860,-3.4这组数中,是非正数的有:-2,0,- 27,-3.4,一共有4个;所以a+b+c=5.17.解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.。
2018-1.3有理数的加减法练习题
有理数的加减法练习题一、选择题1.(3分)若()﹣(﹣2)=3,则括号内的数是()A.﹣1 B.1 C.5 D.﹣52.对于正数x,规定f(x)=,例如f(3)==,f()==,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)…+f(2013)+f(2014)+f(2015)的结果是()A.2014 B.2014.5 C.2015 D.2015.53.计算2-3的结果是()A.-1 B.-2 C.1 D.24.计算(-6)﹢5的结果是()A.-11 B.11 C.-1 D.15.计算(﹣3)+(﹣9)的结果是()A.-12 B.-6 C.6 D.12 6.计算3+(-3)的结果是()(A)6 (B)-6 (C)1 (D)07.计算:3-2×(-1)=()A.5 B.1 C.-1 D.68.计算(-2)-3的结果等于(A)-1 (B)-5 (C)5 (D)19.在(–5)–()= –7中的括号里应填()A.–12 B.2 C.–2 D.1210.下列说法正确的是()A.异号两数相加,取较大的符号,并把绝对值相加B.同号两数相减,取相同的符号,并把绝对值相减C.符号相反的两个数相加得0D.0加上一个数仍得这个数11.计算(2-3)+(-1)的结果是()A.- 2 B. 0 C. 1 D. 212.将6-(+3)-(-7)+(-2)写成省略加号的和的形式为( )A.-6-3+7-2 B.6-3-7-2 C.6-3+7-2 D.6+3-7-2 13.下列计算正确的是A.-3+(-3)=6 B.(-2)3=一8 C.a+2a=2a D.-18+5=1314.下列各式中正确..的是()=0 D.+5-(+6)=-1A.-5-(-3)=-8B.+6-(-5)=1C.-7-715.计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1 D.﹣116.若两个有理数的和是正数,那么一定有结论()(A)两个加数都是正数(B)两个加数有一个是正数(C)一个加数正数,另一个加数为零(D)两个加数不能同为负数17.计算1+(-2)+3+(-4)+5+(-6)+…+19+(-20)得()A、10B、-10C、20D、-2018.若两数的和是负数,则这两个数一定()A、全是负数B、其中有一个是0C、一正一负D、以上情况均有可能一、解答题19.(10分)某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?20.(本题满分5分)某班抽查了8名同学的期末成绩以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下: 8,-2,1,2,-7,-1,0,3请同学们回答如下问题:(1)这8名同学中最高分是多少? 最低分是多少?(2)这8名同学的平均成绩是多少?21.(本题满分4分)如图,将-4,-3,-2,-1,0,1,2,3,4这9个数字填入图中的9个方格中,使得方格中,每行,每列,以及对角线上的3个数字之和都为0。
人教版2020年七年级数学上册1.3.2《有理数的加减混合运算》随堂练习(含答案)
人教版2020年七年级数学上册1.3.2《有理数的加减混合运算》随堂练习1.把-6-(+7)+(-2)-(-9)写成省略加号和括号的和的形式是( )A.-6-7+2-9 B.-6-7-2+9C.-6+7-2-9 D.-6+7-2+92.式子-20+3-5+7的正确读法是( )A.负20加3减5加7的和 B.负20加3减负5加正7C.负20加3减5加7 D.负20加正3减负5加正73.下列交换加数位置的变形中,正确的是( )A.1-4+5-4=1-4+4-5 B.1-2+3-4=2-1+4-3C.4-7-5+8=4-5+8-7 D.-3+4-1-2=2+4-3-14.某地冬季一天中午的气温是5 ℃,下午上升到7 ℃,受冷空气影响,到夜间气温最低时又下降了9 ℃,则这天夜间的最低气温是________ ℃.5.在算式-1+7-( )=-3中,括号里应填( )A.+2 B.-2 C.+9 D.-96.下列各式中,与式子-1-2+3不相等的是( )A.(-1)+(-2)+(+3) B.(-1)-2+(+3)C.(-1)+(-2)-(-3) D.(-1)-(-2)-(-3)7.若x是最大的负整数,y是最小的正整数,z是绝对值最小的数,w是相反数等于它本身的数,则x-z+y-w的值是( )A.0 B.-1 C.1 D.-28.运用去括号法则和加法交换律后,8-(-3)+(-5)+(-7)等于( )A.8-3+5-7 B.3+8-7-5C.-5-7-3+8 D.8+3-5+79.若表示运算x+z-(y+w),则的值是( )A.5 B.7 C.9 D.1110.请指出下面的计算从哪一步开始出现错误( )1+-(+)-(-)-(+1)=1-+-1①=(1+)-(-1)②=2-(-)③=2+=2④.A.① B.② C.③ D.④11.1减去-与的和,所得的差是________.12.已知有理数-1,-8,+11,-2,请你设计一种有理数的加减混合运算,使这四个数的运算结果最大,则列式为______________________________.13.计算:-20+(-14)-(-18)-13;14.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计了一种新的加减记数法,比如:9可以写成11,11=10-1;198可以写成202,202=200-2;7683可以写成12323,12323=10000-2320+3.总之,数字上画一杠表示减去它,按这个方法请计算5231-3241的结果为( )A.1990 B.2068 C.2134 D.302415.请根据如图所示的对话解答下列问题.求:(1)a,b的值;(2)8-a+b-c的值.16.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图10所示.设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值.17.某超市出售的三种品牌月饼袋上分别标有质量为(500±5)g,(500±10)g,(500±20)g 的字样,从中任意拿出两袋,它们的质量最多相差( )A.10 g B.20 g C.30 g D.40 g18.一家饭店,地面上有18层,地面下有1层,地上1层为接待处,顶楼为公共设施处,其余16层为客房;地下1层为停车场.(1)地面上7楼与停车场相差几层楼?(2)某会议接待员把汽车停在停车场,进入该层电梯,先向上走14层,又向下走5层,再向下走3层,最后向上走6层,你知道他最后在哪里吗?(3)某日电梯检修,一服务生在停车场停好汽车后,只能走楼梯,他依次到了8楼、接待处、4楼,又回到接待处,最后回到停车场,他总共走了几层楼梯?19.钟面上有1,2,3,…,11,12,共12个数字.(1)试在这些数前面加上正、负号,使它们的和为0;(2)在解题的过程中,你能总结出什么规律?请用文字叙述出来.20.问题:能否将1,2,3,4,…,10这10个数分成两组,使它们的差为5.解:1+2+3+…+10=55,要使差为5,需将这10个数分成两组,一组的和为30,另一组的和为25,然后把它们相减.下面给出一种分法,例如:(6+7+8+9)-(1+2+3+4+5+10)=5.应用:在1,2,3,4,5,6,7,8,9,10这10个数前面任意添上“+”号或“-”号.(1)能否使它们的和等于-7?若能,请给出一种分法;若不能,请说明理由.(2)能否使它们的和等于-2?若能,请给出一种分法;若不能,请说明理由.参考答案1.B2.C3.C4.-25.C6.D7.A8.B9.C10.B11.112.答案不唯一,如-(-1)-(-8)+(+11)-(-2)13.解:-20+(-14)-(-18)-13=-20-14+18-13=-20-14-13+18=-47+18=-29.14.B15.解:(1)因为a的相反数是3,b的绝对值是7,所以a=-3,b=±7.(2)因为a=-3,b=±7,c与b的和是-8,所以当b=7时,c=-15;当b=-7时,c=-1.当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.综上所述,8-a+b-c的值是33或5.16.解:(1)以B为原点,点A,C所对应的数分别是-2,1,p=-2+0+1=-1.以C为原点,点A,B,C所对应的数分别是-3,-1,0,p=(-3)+(-1)+0=-4.(2)p=(-28-1-2)+(-28-1)+(-28)=-88.17.D18.解:(1)地面上7楼与停车场相差7层楼.(2)14-5-3+6=12(层).答:他最后在地面上12层.(3)8+7+3+3+1=22(层).答:他总共走了22层楼梯.19.解:(1)答案不唯一,示例:-1-2-3-4-5+6-7-8-9+10+11+12=0.(2)规律:先算出总和,再取和的一半,在和为总和一半的几个数前面加正号,其余的数前面加负号.20.解:(1)能使它们的和等于-7.分法不唯一,如:1-2+3-4+5-6+7-9+8-10=-7.(2)不能.因为1+2+3+…+10=55,55是一个奇数,所以无论怎样分,结果都不可能为偶数.。
人教版数学七年级上册1.3 有理数的加减法 同步练习
一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( ) A .(-3)+5=-2 B .(-7)+(-7)=0 C .(-6)+(-3)=-9 D .9+(-9)=12. .用字母表示有理数的减法法那么正确的选项是( ) A .a -b =a +b B .a -b =a +(-b) C .a -b =-a +b D .a -b =a -(-b)3. 以下式子可读作“负10,负6,正3,负7的和〞的是( ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7C .-10-(-6)-3-(-7)D .-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17, -32,+13,+15,+4,-15,那么今年小麦的总产量与去年相比( )A .增产2千克B .减产2千克C .增产12千克D .与去年的产量一样 5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,那么房屋内的温度比冰箱冷冻室的温度高( )A .26℃B .14℃C .-26℃D .-14℃ 6. 0减去一个数等于( )A .这个数B .0C .这个数的相反数D .负数7. 在数1,2,3,4,…,405前分别加“+〞或“-〞,使所得数字之和为非负数,那么所得非负数最小为( )A .0B .1C .2D .3 8. a ,b 在数轴上的位置如下图,那么a -b 的结果的符号为( )A .正B .负C .0D .无法确定 9. 以下说法正确的选项是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数 10. 计算(-2.29)+8+(-7.71)时,以下简便运算正确的选项是( ) A .[(-2.29)+8]+(-7.71) B .(-2.29)+[8+(-7.71)] C .(-8)+(2.29+7.71) D .[(-2.29)+(-7.71)]+8 (-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( ) A .-8+4-5+2 B .-8-4-5+2 C .-8-4+5+2 D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______. 14. a +x =2021 ,b +y =-2021,那么a +b +x +y =_______. 15.绝对值大于1而小于6的所有整数的和是____. 16. 有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,那么列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,那么a +(-b )-|-c |的值为__ __.18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________) =[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________) =(-19)+(+21)(________________) =2.(______ __________)19. 假设a -(-b)=0,那么a 与 b 的关系是____________. 20. |x|=5,y =3,那么 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16).22.假设a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+〞表示股票比前一天上涨,“-〞表示股票比前一天下跌)上周末 收盘价 周一 周二 周三 周四 周五(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.A ,B 两点在数轴上分别表示的数为m ,n . (1)对照数轴填写下表:(2)假设A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)A,B在数轴上分别表示的数为x和-1,那么A,B两点间的距离d可表示为____________,如果d=3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是(C)A .(-3)+5=-2B .(-7)+(-7)=0C .(-6)+(-3)=-9D .9+(-9)=12. .用字母表示有理数的减法法那么正确的选项是( B ) A .a -b =a +b B .a -b =a +(-b) C .a -b =-a +b D .a -b =a -(-b)3. 以下式子可读作“负10,负6,正3,负7的和〞的是( B ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7C .-10-(-6)-3-(-7)D .-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,那么今年小麦的总产量与去年相比( D )A .增产2千克B .减产2千克C .增产12千克D .与去年的产量一样5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,那么房屋内的温度比冰箱冷冻室的温度高( A )A .26℃B .14℃C .-26℃D .-14℃ 6. 0减去一个数等于( C )A .这个数B .0C .这个数的相反数D .负数7. 在数1,2,3,4,…,405前分别加“+〞或“-〞,使所得数字之和为非负数,那么所得非负数最小为( B )A .0B .1C .2D .3 8. a ,b 在数轴上的位置如下图,那么a -b 的结果的符号为( B )A .正B .负C .0D .无法确定 9. 以下说法正确的选项是( B )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数 10. 计算(-2.29)+8+(-7.71)时,以下简便运算正确的选项是( D ) A .[(-2.29)+8]+(-7.71) B .(-2.29)+[8+(-7.71)] C .(-8)+(2.29+7.71) D .[(-2.29)+(-7.71)]+8 (-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B ) A .-8+4-5+2 B .-8-4-5+2 C .-8-4+5+2 D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____. 14. a +x =2021 ,b +y =-2021,那么a +b +x +y =____-5___. 15.绝对值大于1而小于6的所有整数的和是__0__.16. 有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,那么列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,那么a +(-b )-|-c |的值为__ 1 __.18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________) =[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___) =(-19)+(+21)(____有理数加法法那么__) =2.(______ 有理数加法法那么______)19. 假设a -(-b)=0,那么a 与 b 的关系是___互为相反数_________. 20. |x|=5,y =3,那么 x -y 的值为__2或-8______. 三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16).解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212.(4)原式=212+2.5+1-112=4.5.(5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20. (6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2.(7)原式=-12+5+4+(-9)=-12.(8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513.22.假设a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值. 解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8; 当a =3,b =-10,c =-5时,a -b -(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+〞表示股票比前一天上涨,“-〞表示股票比前一天下跌)上周末 收盘价 周一 周二 周三 周四 周五(1)(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.〔3〕周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.A,B两点在数轴上分别表示的数为m,n.(1)m 6 -6 -6 -6 2 -n 4 0 4 -4 -8 -A,B两点间的距离 2 6 10 2 10 0(2)假设A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)A,B在数轴上分别表示的数为x和-1,那么A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1|当d=3时,|x-(-1)|=3,所以x=2或-4。
有理数加减混合计算题100道【含答案】
有理数加减混合计算题100道【含答案】(七年级数学)92267(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5); (5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68; (3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1; (4))432()413(-+-;(5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2);(5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18); (3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ --(-)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算(1)-7+13-6+20; (2)-+-+10; (3)(-53)+51-54;(4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)-+(-); (2)(-)-21+(-51); (3)21-(-)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)-(-)+(-); (2)(-8)-(-15)+(-9)-(-12);(3)+(-41)-(-)+21; (4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-; (2)(-)+3-+(-52); (3)31+(-45)+; (4)7-(-21)+; (5)49-(-)-53; (6)(-56)-7-(-)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨; (8)(- )+ 1098 + +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-+++(-)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)--(-413)+-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2) (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-12、【答案】 (1)51; (2)-25; (3)-1516; (4); (5)74; (6)0;(7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-或-1016 9、【答案】 (1)20; (2); (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1); (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1); (2)-; (3)30; (4)9; (5)69; (6)-6; (7); (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。
1.3 有理数的加减法(含答案)-
1.3 有理数的加减法●知识单一性训练1.3.1 有理数的加法一、有理数加法法则1.下列计算正确的是()A.+(+20)+(-30)=10 B.(-31)+(-11)=-20C.(-3)+(+3)=0 D.(-2.5)+(+2.4)=0.42.绝对值大于3而小于6的所有整数的和是()A.9 B.-9 C.0 D.13.若│x│=6,│y│=4,则x+y的值是()A.10或2 B.-2或-10 C.10 D.±10或±24.一天早晨的气温是-12℃,中午上升了5℃,半夜又下降了8℃,半夜的气温是(• ) A.-25℃ B.-9℃ C.1℃ D.-15℃5.-10与+7的和的相反数是_______.6.若a>0,b>0,则a+b______0.7.(+35)+(-12)=______.8.已知两个数是3和-5,这两个数的和的绝对值是_______,这两个数的绝对值的和是______.9.计算.(1)47+(-58);(2)(-3)+(-10).10.现有10箱苹果梨,称重记录如下(单位:kg):11,12,11.5,11.8,12.2,•12.3,13,12.5,11.7,12.3,求这10箱苹果梨的总重量.二、有理数加法的运算律11.如果两个有理数的和是正数,那么这两个数() A.一定都是正数 B.一定都是负数C.一定都是非负数 D.至少有一个是正数12.(-2)+4+(-6)+8+…+(-98)+100=________.13.用简便方法计算-19+28+19+(-8)=________.14.计算314+(-235)+534+(-825).15.某商店在一周中每天的盈亏情况如下(盈为正):+120,-25,-20,+30,-21,35,90,计算说明该周是盈还是亏.(单位:元)16.某商业银行一天中午完成了7项业务,取出95元,存入50元,取出90•元,•存入130元,取出103元,存入30元,取出20元,则共增加多少元?17.张村共有10块小麦田,今年的收成与去年相比(增产为正,减产为负)•的情况如下:55kg,79kg,-40kg,-25kg,10kg,-16kg,27kg,-5kg,31kg,4kg,• 今年的小麦总产量与去年相比情况如何?1.3.2 有理数的减法三、有理数减法法则18.下列计算正确的是( )A .-2-5=-3B .-5-0=5C .-12+12=-1 D .-1.5-(-0.5)=-1 19.一天广州的温度是+18℃,而吉林的温度是-22℃,这天广州比吉林的温度高( ) A .-4℃ B .4℃ C .40℃ D .-40℃ 20.与(-a )-(-b )相等的式子是( ) A .(+a )-(-b ) B .(-a )+b C .(-a )+(-b ) D .(-a )-(+b ) 21.关于算式-4-6,下列说法不正确的是( ) A .表示-4与6的差 B .表示-4与-6的和 C .表示-4与-6的差 D .读作-4减去622.黄山的气温中午是零上2℃,下午下降了7℃,则下午的气温是______. 23.吉林某天的气温是-10~5℃,这天的温差是_____. 24.比-19小3的数是______,比-19小-3的数是______.25.A ,B 两种海拔高度分别为100米、-20米,B 地比A 地低_______.26.一种机器零件,图纸标明是Ф0.040.0230+-,合格品的最大直径与最小直径的差是_____.27.已知m 是6的相反数,n 比m 的相反数小6,求m 比n 大多少.28.一辆货车从超市出发,向东走了2km 到小明家,继续走了2.5km 到小奇家,又向西走了8.5km 到达小华家,最后回到超市.(1)以超市为原点,向东为正方向,用1个单位长度表示1km ,画数轴表示小明、小奇、小华家的位置;(2)小华家距小奇家多远?(3)货车共行驶了多少千米?四、有理数加减混合运算29.下列各式不成立的是()A.20+(-9)-7+(-10)=20-9-7-10B.-1+3+(-2)-11=-1+3-2-11C.-3.1+(-4.9)+(-2.6)-4=3.1-4.9-2.6-4D.-7+(-18)+(-21)=-7-(18-21)-3430.把(-23)+(-5)-(-4)-(+9)写成省略括号和的形式_______,可读作______.31.若│a│=8,│b│=1,c是最大的负整数,则a+b-c=________.32.三个数-10,-7,+5的和比它们的绝对值的和小________.33.从-1中减去-112与-78的和所得的差是_________.34.某次外语竞赛,成绩85分以上为优秀,•现将某小组参加外语竞赛的同学成绩简记为10,-5,0,+8,-3,这几名同学的平均成绩是________.35.计算:(1)-6-8-2+3.54-4.72+16.46-5.28;(2)(-323)-(-234)-(-123)-1.75.36.根据下列条件,求a+(-b)-(-c)的值.(1)a=3,b=-4,c=-5;(2)a=-6.5,b=12.7,c=-2.9.37.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?●能力提升性训练1.计算(-200056)+(-199923)+400034+(-112).2.若m,n互为相反数,则│2+m+(-1)+n│的值是多少?3.若│x-3│与│y+2│互为相反数,求x+y+3的值.4.小明的妈妈是一个蔬菜经销商,一天妈妈到市场共购进8筐蔬菜,•称重的记录如下(单位:千克):53,44,54,52,49,46,45,46.你能帮小明的妈妈计算出这些蔬菜的总重量吗?把你的做法写出来.5.某日长春等五个城市的最高气温与最低气温记录如下:哪个城市的温差最大?哪个城市的温差最小?6.某日小明在一条南北方向的公路上跑步,他从A地出发,每隔10•分钟记录下自己的跑步情况(向东为正方向,单位:m).-1008,+1100,-976,+1010,-827,+946.1小时后他停下来信息,此时他在A地的什么方向?距A地多远?小明共跑了多少米?7.计算1-3+5-7+9-11+…+97-99.8.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所,已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,•若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.9.某水利勘察队,第一天向上游走了523千米,第二天又向上游走了413千米,•第三天向下游走了4.5千米,第四天又向下游走了423千米,试用有理数结合加法计算,•第四天勘察队在出发点的什么位置?10.计算11111 122334989999100 +++++⨯⨯⨯⨯⨯.●针对性训练1.计算:(1)(-4)+(-7);(2)1.3+(-2.7);(3)67+(-73);(4)(+3.8)+(-4.9).2.计算:(1)(-41)+(+56)+(-21)+(-31);(2)57+(-56)+16+(-27).3.计算:(1)-2.4+3.5-4.6+3.5;(2)3.75-(+1.5)-(-414)-(+812);(3)(-412)-{325-[-0.13-(-0.33)]}.●中考全接触1.(2006,临安)我市2005年的最高气温为39℃,,最低气温为零下7℃,则2005•年温差列式正确的是()A.(+39)-(-7) B.(+39)+(+7)C.(+39)+(-7) D.(+39)-(+7)2.(2005,济南)若a与2互为相反数,则│a+2│等于()A.0 B.-2 C.2 D.43.(2005,温州)计算-1+(+3)的结果是()A.-1 B.1 C.2 D.34.(2005,南京)比-1大1的数是()A.-2 B.-1 C.0 D.15.(2005,北京海淀)已知(1-m)2+│n+2│=0,则m+n的值为()A.-1 B.-3 C.3 D.不确定6.(2005,浙江)计算-2-1的结果是()A.-3 B.-2 C.-1 D.37.(2006,浙江)计算1-2的结果是()A.-1 B.0 C.1 D.±18.(2006,哈尔滨)若x的相反数是-3,│y│=5,则x+y的值为()A.-8 B.2 C.8或-2 D.-8或29.(2005,湖州)计算1-3=_______.10.(2005,安徽)冬季的某日,上海最低气温是3℃,北京最低气温是-5℃,这一天上海的最低气温比北京的最低气温高_______℃.11.(中考预测题)若m,n互为相反数,则m+n=______.12.(中考预测题)阅读理解题.下表列出了国外几个城市与北京的时差(•带正号的数表示同一时刻比北京时间早的小时数).(1)如果现在北京时间是9:30,那么现在纽约时间是多少?东京时间是多少?(2)小明现在想给远在巴黎的表姐打电话,你认为合适吗?答案:【知识单一性训练】1.C [提示:根据加法法则可知,互为相反数的和为0,故选C.]2.C [提示:符合条件的整数有±4,±5,所以和为0,故选C.]3.D [提示:│x│=6,│y│=4,所以x=±6,±4,所以x+y=±2,±10,故选D.] 4.D [提示:根据题意可列式-12+5-8=-15,故选D.]5.3 [提示:-(-10+7)=3.]6.> [提示:因为a>0,b>0,属于两个正数相加,所以和为正,故a+b>0.]7.110[提示:(+35)+(-12)=(+65)(1010+-)=110.]8.2 8 [提示:│3+(-5)│=2,│3│+│-5│=8.]9.解:(1)47+(-58)=32353()565656+-=-.(2)(-3)+(-10)=-13.10.解:11+12+11.5+11.8+12.2+12.3+13+12.5+11.7+12.3=120.3(kg).11.D [提示:例如:4+(-2)=2,排除A;两负数之和仍是负数,排除B;0+0=0,排除C,故选D.]12.50 [提示:(-2)+4+(-6)+8+…+(-98)+100=25×2=50.]13.20 [提示:-19+28+19+(-8)=[(-19)+19]+[28+(-8)]=20.]14.解:314+(-235)+534+(-825)=(314+534)+[(-235)+(-825)]=9+(-11)=-2.15.解:120+(-25)+(-20)+30+(-21)+35+90=(120+30+35+90)+[(-25)+(-20)+(•-21)]=275+(-66)=209(元),所以盈利209元.答:该周盈利209元.16.提示:存入记为正,取出记为负,将各数加起来求和.解:(-95)+(+50)+(-90)+(+130)+(-103)+(+30)+(-20)=-98(元).答:共增加-•98元.17.解:55+79+(-40)+(-25)+10+(-16)+27+(-5)+31+4=(55+79+10+27+31+4)+[(-40)+(-16)+(-25)+(-5)]=120(kg).答:今年的小麦总产量与去年相比增产120kg.18.D [提示:-2-5=-7,-5-0=-5,-12+12=0,排除A,B,C.]19.C [提示:(+18)-(-22)=40℃,故选C.]20.B [提示:(-a)-(-b)=-a+b.故选B.]21.C [提示:-4-6是省略加号的和的形式.]22.-5℃ [提示:2-7=-5℃.]23.15℃ [提示:5-(-10)=15℃.]24.-22 -16 [提示:-19-3=-22,-19-(-3)=-16.]25.120米 [提示:100-(-20)=120(米).]26.0.06 [提示:最大直径是30.04,最小直径是29.98,其差是30.04-29.98=0.06.] 27.解:因为m是6的相反数,所以m=-6,又因为n比m的相反数小6,所以n=-6-•6=•-12,所以m-n=-6-(-12)=-6+12=6,答:m比n大6.28.解:(1)如图所示.(2)4.5-(-4)=8.5,小华家距小奇家8.5km.(3)2+2.5+8.5+4=17,共行驶了17km.29.D [提示:-7+(-18)+(-21)-34=-7-18-21-34.故选D.]30.-23-5+4-9 负23,负5,正4,负9的和 [提示:先将减法统一成加法,再写成省略括号的和的形式,还可以读作负23减5加4减9.]31.±8 -6 10 [提示:因为│a│=8,│b│=1,c是最大的负整数,所以a=•±8,b=±1,c=-1,所以①当a=8,b=1,c=-1时,a+b-c=8+1-(-1)=10.②当a=-8时,b=1,c=•-1时,a+b-c=-8+1-(-1)=-6.③当a=8,b=-1,c=-1时,a+b-c=8+(-1)-(-1)=8.④当a=•-8,b=-1,c=-1时,a+b-c=-8+(-1)-(-1)=-8.]32.34 [提示:(│-10│+│-7│+│+5│)-(-10-7+5)=34.]33.-124[提示:-1-(-112-78)=-124.]34.87 [提示:85+(10-5+0+8-3)÷5=87.]35.解:(1)-6-8-2+3.54-4.72+16.46-5.28=(-6-8-2-4.72-5.28)+(3.54+16.46)=-26+20=-6.(2)(-323)-(-234)-(-123)-1.75=(-323)+234+123-134=(-323+123)+(234-134)=-2+1=-1.36.解:(1)当a=3,b=4,c=-5时,a+(-b)-(-c)=a-b+c=3-(-4)+(-5)=3+4-5=2.(2)当a=-6.5,b=12.7,c=-2.9时,a+(-b)-(-c)=a-b+c=-6.5-12.7-2.9=-22.1.37.解:(1)因为+5-3+10-8-6+12-10=0,所以小虫最后回到出发点A.(2)•第一次爬行距离原点是5cm,第二次爬行距离原点是5-3=2(cm)•,• 第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12-8=4(cm),第五次爬行距离原点是│4-6│=│-2│(cm),第六次爬行距离原点是-2+12=10(cm),第七次爬行距离原点是10-•10=•0(cm),从上面可以看出小虫离开原点最远是12cm.(3)小虫爬行的总路程为:│+5│+│-3│+│+10│+│-8│+│-6│+│+12│+│-10│=54(cm),则小虫一共得到54•粒芝麻.【能力提升性训练】1.解:原式=[(-2000)+(-56)]+[(-1999)+(-23)]+(4000+34)+[(-1)+(-12)] =[(-2000)+(-1999)+(-1)+4000]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114. 2.解:因为m ,n 互为相反数,所以m+n=0,所以│2+m+(-1)+n │=│2+(-1)+m+n │=•│1+m+n │=│1+0│=1.3.解:因为│x-3│与│y+2│互为相反数,所以│x-3│+│y+2│=0,所以│x-•3│=0,│y+2│=0,即x-3=0,y+2=0,所以x=3,y=-2,所以x+y+3=3+(-2)+3=4.4.解:取基数50,超过50的记为正,不足50的记为负,于是得3,-6,4,2,-1,-4,-5,-4,所以总质量为:50×8+[3+(-6)+4+2+(-1)+(-4)+(-5)+(-4)]=400+(-11)=389(千克).5.解:2-(-12)=2+(+12)=14,3-(-10)=3+(+10)=13,3-(-8)=3+(+8)=11,12-2=10,6-(-2)=6+(+2)=8,故五个城市中哈尔滨的温差最大,为14℃,大连的温差最小,•为8℃.6.解:(-1008)+(+1100)+(-976)+(+1010)+(-827)+(946)=[(-1008)+(-976)+(•-827)]+[(+1100)+(+1010)+(+946)]=(-2811)+(3056)=+(3056-2811)=245(m )•.•│-1008│+│+1100│+│-976│+│1010│+│-827│+│+946•│=•1008+•1100+•976+1010+827+946=5867(m ).答:小明在A 地南方,距A 地245m ,小明共跑了5867m .7.解:1-3+5-7+9-11+…+97-99=(1-3)+(5-7)+(9-11)+…+(97-99)=-2+(-2)+(•-2)+…+(-2)=25×(-2)=-50.8.解:(1)如图所示. (2)300-(-200)=500(m ).9.解:设向上游为正,则向下游为负,根据题意,得(+523)+(+413)+(-4.5)+(-423)=10+(-916)=56(千米),答:第四天勘察队在出发点的上游56千米处. 10.解:原式=(11-12)+(12-13)+(13-14)+…(198-199)+(199-1100)=11-12+12-13+13-14+…198-199+199-1100=1-1100=99100.【针对性训练】1.解:(1)(-4)+(-7)=-(4+7)=-11.(2)1.3+(-2.7)=-(2.7-1.3)=-1.4.(3)67+(-73)=-(73-67)=-6.(4)(+3.8)+(-4.9)=-(4.9-3.8)=-1.1.2.(1)(-41)+(+56)+(-21)+(-31)=[(-41)+(-21)+(-31)]+(+56)=-(41+21+31)+(+56)=-93+(+56)=-(93-56)=-37.(2)57+(-56)+16+(-27)=[57+(-27)]+[(-56)+16]=(57-27)+(-56+16)=37+(-23)=9141495()()2121212121+-=--=-.3.提示:去括号时,先去小括号,再去中括号,最后去大括号,每一步要认真仔细,不要跳步.解:(1)-2.4+3.5-4.6+3.5=(-2.4-4.6)+(3.5+3.5)=-7+7=0.(2)3.75-(+1.5)-(-414)-(+812)=3.75-1.5+414-812=(3.75+414)+(-1.5-812)=8+(-10)=-2.(3)(-412)-{325-[-0.13-(-0.33)]}=(-412)-{3250.13+0.33}}=(-412)-{325-0.2}=(-4.5)-(3.4-0.2)=-4.5-3.2=-7.7.【中考全接触】1.A2.A [提示:a与2互为相反数,则a+2=0,所以│a+2│=0.]3.C [提示:-1+(+3)=+(3-1)=2.]4.C [提示:0-(-1)=1,故选C.]5.A [提示:因为(1-m)2+│n+2│=0,且(1-m)2≥0,│n+2│≥0,所以1-m=0,n+2=0,所以m=1,n=-2,所以m+n=1+(-2)=-1.]6.A [提示:-2-1=-2+(-1)=-3.]7.A [提示:1-2=1+(-2)=-1.]8.C [提示:由题意可知x=3,y=±5,所以x+y=3+5=8,或x+y=3+(-5)=-2.]9.-210.8 [提示:3-(-5)=8℃.]11.012.解:(1)纽约时间:9:30-13+24=20:30,东京时间:9:30+1=10:30.(2)•巴黎时间:9:30-7=2:30,所以此时巴黎是半夜2:30,他这时打电话不合适.。
第1章《有理数》易错题集(04):1.3+有理数的加减法
第1章《有理数》易错题集(04):1.3有理数的加减法© 2011 菁优网选择题1、某汽车厂上半年一月份生产汽车200辆,由于另有任务,每月上班人数不一定相等,上半年各月与一月份的生产量比较如下表(增加为正,减少为负).则上半年每月的平均产量为()A、205辆B、204辆C、195辆D、194辆2、某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差()A、0.8kgB、0.6kgC、0.4kgD、0.5kg3、(2003•江汉区)已知|a|=3,|b|=5,且ab<0,那么a+b的值等于()A、8B、﹣2C、8或﹣8D、2或﹣24、已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A、﹣1B、0C、1D、25、计算3+5+7+9+…+195+197+199的值是()A、9699B、9999C、9899D、9799填空题6、﹣9,6,﹣3三个数的和比它们绝对值的和小_________.7、已知a、b互为相反数,且|a﹣b|=6,则b﹣1=_________.解答题8、一家饭店,地面上18层,地下1层,地面上1楼为接待处,顶楼为公共设施处,其余16层为客房;地面下1楼为停车场.(1)客房7楼与停车场相差_________层楼;(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,那么他最后停在_________层;(3)某日,电梯检修,一服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、接待处、4楼,又回接待处,最后回到停车场,他共走了_________层楼梯.9、已知a,b,c的位置如图,化简:|a﹣b|+|b+c|+|c﹣a|=_________.10、某人用400元购买了8套儿童服装,准备以一定价格出售.他以每套55元的价格为标准,将超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2(单位:元)他卖完这八套儿童服装后是_________,盈利或亏损了_________元.答案与评分标准选择题1、某汽车厂上半年一月份生产汽车200辆,由于另有任务,每月上班人数不一定相等,上半年各月与一月份的生产量比较如下表(增加为正,减少为负).则上半年每月的平均产量为()A、205辆B、204辆C、195辆D、194辆考点:正数和负数;有理数的加法;有理数的减法。
1.3有理数的加减法知识点分类练习(附答案)2021-2022学年七年级数学人教版上册
2021-2022学年人教版七年级数学上册《1.3有理数的加减法》知识点分类练习(附答案)一.有理数的加法1.计算(﹣3)+(﹣9)结果是()A.﹣6B.﹣12C.6D.122.计算:3+(﹣1),其结果等于()A.2B.﹣2C.4D.﹣43.计算(﹣5)+2的结果是()A.﹣7B.3C.﹣3D.74.20+(﹣20)的结果是()A.﹣40B.0C.20D.405.比﹣2大5的数是()A.﹣7B.﹣3C.3D.76.计算:18+(﹣17)+7+(﹣8).二.有理数的减法7.计算1﹣2,结果正确的是()A.3B.1C.﹣1D.﹣38.计算3﹣(﹣2)的结果等于()A.﹣6B.6C.﹣5D.59.计算2﹣|﹣3|的结果是()A.﹣5B.﹣1C.1D.510.计算(﹣5)﹣(﹣8)的结果等于()A.﹣13B.13C.﹣3D.311.计算﹣(﹣)的结果等于()A.B.﹣C.D.﹣12.比﹣2小3的数是()A.5B.1C.﹣1D.﹣513.下列说法正确的是()A.减去一个数,等于加上这个数的相反数B.被减数的绝对值大于减数的绝对值,其差必为正数C.零减去一个有理数,差一定是负数D.两个数的差必小于零三.有理数的加减混合运算14.把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.6+3=9B.﹣6﹣3=﹣9C.6﹣3=3D.﹣6+3=﹣3 15.我市2021年的最高气温为33℃,最低气温为零下27℃,则计算2021年温差列式正确的是()A.(+33)﹣(﹣27)B.(+33)+(+27)C.(+33)+(﹣27)D.(+33)﹣(+27)16.珠穆朗玛峰海拔高8848米,塔里木盆地海拔高﹣153米,求珠穆朗玛峰比塔里木盆地高多少米,列式正确的是()A.8848+153B.8848+(﹣153)C.8848﹣153D.8848﹣(+153)17.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7 18.若数轴上点A、B表示的数分别为5和﹣5,则AB之间的距离可以表示为()A.5+(﹣5)B.5﹣(﹣5)C.(﹣5)+5D.(﹣5)﹣5 19.计算:﹣17+(﹣33)﹣10﹣(﹣24)=.20.计算:(﹣3)+1﹣5﹣(﹣8).21.计算:﹣2+(﹣3)﹣(﹣5).22.计算:(1)12﹣(﹣18)+(﹣7)﹣6.(2)(﹣0.5)+3+2.75+(﹣5).23.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数d 的点到原点的距离为4,求a﹣b﹣c+d的值.24.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?25.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期一二三四五六日柚子销售超过或不足计+3﹣5﹣2+11﹣7+13+5划量情况(单位:千克)(1)小王第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?26.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?参考答案一.有理数的加法1.解:(﹣3)+(﹣9)=﹣12.故选:B.2.解:3+(﹣1)=2.故选:A.3.解:原式=﹣(5﹣2)=﹣3.故选:C.4.解:20+(﹣20)=0.故选:B.5.解:比﹣2大5的数是:﹣2+5=3.故选:C.6.解:18+(﹣17)+7+(﹣8)=1+7+(﹣8)=8+(﹣8)=0.二.有理数的减法7.解:1﹣2=1+(﹣2)=﹣1,故选:C.8.解:3﹣(﹣2)=3+2=5,故选:D.9.解:原式=2﹣3=﹣1,故A、C、D错误,故选:B.10.解:(﹣5)﹣(﹣8)=(﹣5)+8=3.故选:D.11.解:﹣(﹣)===.故选:A.12.解:﹣2﹣3=﹣5,故选:D.13.解:A.减去一个数,等于加上这个数的相反数,故符合题意;B.被减数的绝对值大于减数的绝对值,若被减数为负数时,其差为负数,故不符合题意;C.零减去一个负有理数,差为正数,故不符合题意;D.较大的数减去较小的数,差大于零,故不符合题意,故选:A.三.有理数的加减混合运算14.解:由题意可知:﹣6+3=﹣3,故选:D.15.解:把0℃以上记作正数,把0℃以下记作负数,则:最高温度为+33℃,最低温度为﹣27℃,∴温差=(+33)﹣(﹣27),故选:A.16.解:8848﹣(﹣153)=8848+153,故选:A.17.解:(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.18.解:∵数轴上点A、B表示的数分别为5和﹣5,∴AB之间的距离可以表示为:5﹣(﹣5).故选:B.19.解:﹣17+(﹣33)﹣10﹣(﹣24)=﹣17﹣33﹣10+24=﹣60+24=﹣36.故答案为:﹣36.20.解:(﹣3)+1﹣5﹣(﹣8)=﹣2﹣5+8=﹣7+8=1.21.解:原式=﹣2﹣3+5=﹣5+5=0.22.解:(1)12﹣(﹣18)+(﹣7)﹣6=30﹣7﹣6=17.(2)(﹣0.5)+3+2.75+(﹣5)=[﹣0.5+(﹣5)]+(3+2.75)=(﹣6)+6=0.23.解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数d 的点到原点的距离为4,∴a=1,b=﹣1,c=0,d=±4,则当a=1,b=﹣1,c=0,d=﹣4时,a﹣b﹣c+d=1+1﹣0﹣4=﹣2;当a=1,b=﹣1,c=0,d=4时,a﹣b﹣c+d=1+1﹣0+4=6.故a﹣b﹣c+d的值为﹣2或6.24.解:(1)14﹣(﹣8)=22(分钟),∴小李跑步时间最长的一天比最短的一天多跑22分钟.(2)30×7+(10﹣8+12﹣6+11+14﹣3)=240(分钟),240×0.1=24(千米)∴若小李跑步的平均速度为每分钟0.1千米,则这七天他共跑了24千米.25.解:(1)13﹣(﹣7)=13+7=20(千克).答:小王第一周销售柚子最多的一天比最少的一天多销售20千克.(2)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(3)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.26.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)。
七年级数学上册 1.3.2 有理数的减法 第2课时 有理数的加减混合运算练习 (新版)新人教版
第2课时 有理数的加减混合运算基础题知识点1 加减混合算式的读法与写法1.下列式子可读作“负10,负6,正3,负7的和”的是( )A .-10+(-6)+(+3)-(-7)B .-10-6+3-7C .-10-(-6)-3-(-7)D .-10-(-6)-(-3)-(-7)2.下列等式正确的是( )A .-3+4-2=(-3)+(+4)-(-2)B .(+9)-(-10)-(+6)=9-10-6C .(-8)-(-3)+(-5)=-8+3-5D .-3+5+6=6-(3+5)3.把(-478)-(-512)-(+318)写成省略括号和加号的形式是____________________. 4.式子“-3+5-7+4”读作________________或________________.知识点2 有理数的加减混合运算5.计算(-25)-(-16)+2的结果是( )A .7B .-7C .8D .-86.计算:1-3+7-5=________.7.在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](________________________)=(-19)+(+21)(________________)=2.(________________)8.计算:(1)(-9)-(+6)+(-8)-(-10)=________;(2)-14-(+134)-(-3.75)-0.25+(-312)=________. 9.计算:(1)(-5)-(-10)+(-32)-(-7);(2)-8.4+10-4.2+5.7.知识点3 有理数的加减混合运算的应用10.(宁波中考)杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A .19.7千克B .19.9千克C .20.1千克D .20.3千克11.某地一天早晨的气温是-7 ℃,中午气温上升了11 ℃,下午又下降了9 ℃,晚上又下降了5 ℃,则晚上的温度为________℃.12.已知某银行办理了7笔业务:取款8.5万元,存款6万元,取款7万元,存款10万元,存款16万元,取款9.5万元,取款3万元,则这个银行的现金是增加了还是减少了?增加或减少了多少元?中档题13.-7,-12,+2的和比它们的绝对值的和小( )A .-38B .-4C .4D .3814.小明近期几次数学测试成绩如下:第一次88分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分,那么小明第四次测验的成绩是( )A .93分B .78分C .94分D .84分15.在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( )A .0B .1C .2D .316.计算:(1)(-913)-|-456|+|0-516|-23;(2)213+635+(-213)+(-525);(3)635+24-18+425-16+18-6.8-3.2.17.检查一商店某水果罐头10瓶的质量,超出记为“+”号,不足记为“-”号,情况如下:-3克,+2克,-1克,-5克,-2克,+3克,-2克,+3克,+1克,-1克.(1)总的情况是超出还是不足?(2)这些罐头平均超出或不足为多少?(3)最多与最少相差是多少?综合题18.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?参考答案1.B2.C3.-478+512-3184.负3加5减7加4 负3,正5,负7,正4的和5.B6.07.统一为加法 加法的交换律、结合律 有理数加法法则 有理数加法法则8.(1)-13 (2)-29.(1)-20.(2)3.1.10.C 11.-1012.规定取出为负,存进为正,由题意可得-8.5+6-7+10+16-9.5-3=4(万元).答:这个银行的现金增加了4万元.13.D 14.C 15.B16.(1)-923. (2)115. (3)9.17.(1)-3+2-1-5-2+3-2+3+1-1=-5(克),即总的情况是不足5克.(2)5÷10=0.5(克),即平均不足0.5克.(3)3-(-5)=8(克),即最多与最少相差8克.18.(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.(3)周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.。
人教版七年级上册数学有理数的加减法 题型分类练习题
2022-2023学年人教版七年级数学上册《1.3有理数的加减法》题型分类练习题(附答案)一.有理数的加法1.若|a|=﹣a,则a0;|x|=3.|y|=4,且x>y,则x+y=;b为正整数,且a,b满足|2a﹣4|+b=1,则a+2006b=.2.用“>”或“<”填空:(1)如果a>0,b>0,那么a+b0;(2)如果a<0,b<0,那么a+b0;(3)如果a>0,b<0,|a|>|b|,那么a+b0;(4)如果a>0,b<0,|a|<|b|,那么a+b0.3.计算(1)23+(﹣17)+6+(﹣22)(2)﹣6.35+(﹣1.4)+(﹣7.6)+5.35.4.计算题(1)﹣(﹣8)+(﹣32)+(﹣|﹣16|)+(+28)(2)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64;(3)(﹣3.5)+(﹣)+(﹣)+(+)+0.75+(﹣)(4)(+17)+(﹣9)+(﹣2.25)+(﹣17.5)+(﹣10)(5)1+(﹣2)+3+(﹣4)…+2019+(﹣2020)+2021+(﹣2022)5.阅读下列第(1)题中的计算方法,再计算第(2)题中式子的值. (1)﹣+(﹣9)++(﹣3)解:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+[(+17)+(+)]+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+(+17)+(﹣3)]+[(﹣)+(﹣)+(+)+(﹣)] =0+(﹣1)=﹣上面这种方法叫拆项法.仿照上述方法计算: (2)(﹣2021)+(﹣2020)+324043+(﹣)6.计算:(1)(﹣9)+15(2)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)7.请根据情景对话回答下面的问题:小明:这条数轴上的两个点A 、B 表示的数都是绝对值是4的数,点A 在点B 的左边; 小宇:点C 表示负整数,点D 表示正整数,且这两个数的差为3; 小智:点E 表示的数的相反数是它本身;(1)求A 、B 、C 、D 、E 五个不同的点对应的数. (2)求这五个点表示的数的和.8.如图,在数轴上,点A 向右移动1个单位得到点B ,点B 向右移动(n +1)个单位得到点C (n 为正整数),点A 、B 、C 分别表示有理数a 、b 、c(1)若a 、b 、c 这三个数的和与其中最大的数相等,则a =(2)若a、b、c这三个数中只有一个数为正数,且这三个数的和等于6,则正整数n的最小取值为多少?9.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是;(3)从下到上前35个台阶上数的和为.10.|a|=22,|b|=2022,|a+b|≠a+b,试计算a+b的值.11.若两个有理数A、B满足A+B=8,则称A、B互为“吉祥数”.如5和3就是一对“吉祥数”.回答下列问题:(1)求﹣5和2x的“吉祥数”;(2)若3x的“吉祥数”是﹣4,求x的值;(3)4|x|和9能否互为“吉祥数”?若能,请求出;若不能,请说明理由.12.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?13.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?14.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5,8筐白菜的总重量是多少?二.有理数的减法15.用p、m分别表示加法、减法,例如:5p6m4=5+6﹣4=7,按照以上规定,计算下列各题.(1)12m1p(﹣5)p6m3p(﹣4)(2)m1p(﹣)p|﹣2|m.16.列式计算:(1)已知甲、乙两数之和为﹣2030,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.17.已知x是绝对值最小的有理数,y是最大的负整数,z是最小的正整数,m的绝对值等于3,求:x﹣y﹣z+m的值.18.已知|a|=8,|b|=6.(1)若a,b同号,求a+b的值;(2)若|a﹣b|=b﹣a,求a+b的值.19.已知|a|=4,|b|=2,且|a+b|=|a|+|b|,求a﹣b的值.三.有理数的加减混合运算20.若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.21.计算:|﹣16.2|+|﹣2|+[﹣(﹣3)]﹣|10.7|22.计算题:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)5.7﹣4.2﹣8.4﹣2.3+1(3)﹣(﹣12)+(+18)﹣(+37)+(﹣41)(4)(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.参考答案一.有理数的加法1.解:若|a|=﹣a,则a≤0;|x|=3.|y|=4,且x>y,则x=3、y=﹣4或x=﹣3、y=﹣4,∴x+y=﹣1或﹣7;∵|2a﹣4|≥0,b为正整数,且a,b满足|2a﹣4|+b=1,所以b=1,2a﹣4=0,解得:a=2,b=1,把a=2,b=1代入a+2006b=2+2006=2008,故答案为:≤,﹣1或﹣7,2008.2.解:同号两数相加,取相同的符号,所以(1)中两数的和为正;(2)中两数的和为负;异号两数相加,取绝对值较大的加数的符号,所以(3)中两数的符号为正;(4)中两数的符号为负.故答案为:(1)>,(2)<,(3)>,(4)<.3.解:(1)23+(﹣17)+6+(﹣22)=23﹣17+6﹣22=29﹣39=﹣10;(2)﹣6.35+(﹣1.4)+(﹣7.6)+5.35=(﹣6.35+5.35)+(﹣1.4﹣7.6)=﹣1﹣9=﹣10.4.解:(1)﹣(﹣8)+(﹣32)+(﹣|﹣16|)+(+28)=8﹣32﹣16+28=36﹣48=﹣12;(2)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64=(0.36+0.64)+(﹣7.4﹣0.6)+0.3=1﹣8+0.3=﹣6.7;(3)(﹣3.5)+(﹣)+(﹣)+(+)+0.75+(﹣)=(﹣3.5+)+(﹣﹣)+(﹣+0.75)=0﹣3+0=﹣3;(4)(+17)+(﹣9)+(﹣2.25)+(﹣17.5)+(﹣10)=(+17﹣2.25﹣17.5)+(﹣9﹣10)=﹣2﹣20=﹣22;(5)1+(﹣2)+3+(﹣4)…+2019+(﹣2020)+2021+(﹣2022)=(1﹣2)+(3﹣4)…+(2019﹣2020)+(2021﹣2022)=﹣1×1011=﹣1011.5.解:原式=(﹣2021)+(﹣)+(﹣2020)+(﹣)+4043++(﹣1)+(﹣),=(﹣2021﹣2020+4043﹣1)+(﹣﹣+﹣),=1﹣,=﹣.6.解:(1)(﹣9)+15=(﹣9﹣15)+[(15﹣3)﹣22.5]=﹣25+[12.5﹣22.5]=﹣25﹣10=﹣35;(2)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)=(﹣18+18)+(+53﹣53.6)+(﹣100)=0+0﹣100=﹣100.7.解:(1)∵点E表示的数的相反数是它本身,∴E表示0,∵A.B表示的数都是绝对值是4的数,且点A在点B左边,∴A表示﹣4,B表示4,∵点C表示负整数,点D表示正整数,且这两个数的差是3,∴若C表示﹣1,则D表示2:若C表示﹣2.则D表示1.即A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0或﹣4,4,﹣2,1,0;(2)当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0时,这五个点表示的数的和是﹣4+4+(﹣1)+2+0=1;当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣2,1,0时,这五个点表示的数的和是﹣4+4+(﹣2)+1+0=﹣1.8.解:(1)依题意有a+(a+1)+(a+1+n+1)=a+1+n+1,解得a=﹣;(2)依题意有a+(a+1)+(a+1+n+1)=6,n=3﹣3a,∵a、b、c这三个数中只有一个数为正数,∴a+1≤0且a+1+n+1>0,则a≤﹣1且n>﹣a﹣2,即3﹣3a>﹣a﹣2,解得a≤﹣1,∴n≥6,∵n是正整数,∴正整数n的最小取值为6.故答案为:﹣.9.解:(1)由题意得前4个台阶上数的和是:﹣5+(﹣2)+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;(3)由题意知台阶上的数字是每4个一循环,35÷4=8……3,∵﹣5﹣2+1+9=3.∴3×8+(﹣5)+(﹣2)+1=24﹣6=18.即从下到上前35个台阶上数的和为18.故答案为:﹣5,18.10.解:∵|a|=22,|b|=2022∴a=±22,b=±2022.∵|a+b|≠a+b,∴|a+b|=﹣(a+b),∴a+b<0.当a=22,b=﹣2022时,a+b=22+(﹣2022)=﹣2000,当a=﹣22,b=﹣2022时,a+b=(﹣22)+(﹣2022)=﹣2044,当b=2022时,不合题意,∴a+b的值为﹣2000或﹣2044.11.解:(1)根据“吉祥数”的定义可得,﹣5的吉祥数为8﹣(﹣5)=13,2x的“吉祥数”为8﹣2x,答:﹣5的吉祥数为13,2x的“吉祥数“为8﹣2x;(2)由题意得,3x﹣4=8,解得x=4,答:x的值是4;(3)不能,由题意得,4|x|+9=8,则|x|=﹣,因为任何数的绝对值都是非负数,所以4|x|和9不能互为“吉祥数”.12.解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).13.解:(1)超产记为正、减产记为负,所以星期四生产自行车(200+13)辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409(辆),故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26(辆),故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675(元),故该厂工人这一周的工资总额是84675元.14.解:1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=[1.5+1+(﹣2.5)]+[2+(﹣2)]+[(﹣3)+(﹣2)+(﹣0.5)]=0+0+(﹣5.5)=﹣5.525×8+(﹣5.5)=194.5(千克),答:8筐白菜的总重量是194.5千克.二.有理数的减法15.解:(1)原式=12﹣1+(﹣5)+6﹣3+(﹣4)=5;(2)原式=﹣1+(﹣)+2﹣=1.16.解:(1)根据题意知乙数为﹣2030﹣(﹣7)=﹣2030+7=﹣2023;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.17.解:∵x是绝对值最小的有理数,∴x=0,∵y是最大的负整数,∴y=﹣1,∵z是最小的正整数,∴z=1,∵m的绝对值等于3,∴m=±3,故x﹣y﹣z+m=0+1﹣1±3=±3.18.解:∵|a|=8,|b|=6,∴a=±8,b=±6.(1)因为a,b同号,所以a=8,b=6或者a=﹣8,b=﹣6.①当a=8,b=6时a+b=14.当a=﹣8,b=﹣6时a+b=﹣14.所以,当a,b同号时a+b等于14或﹣14;(2)由题意得b>a所以a=﹣8,b=6,或者a=﹣8,b=﹣6.①当a=﹣8,b=6时,a+b=﹣2;②当a=﹣8,b=﹣6时,a+b=﹣14.所以,当|a﹣b|=b﹣a时,a+b等于﹣2或者﹣14.19.解:∵|a+b|=|a|+|b|,∴a、b同号,∵|a|=4,|b|=2,∴a=±4,b=±2,当a=4,b=2时,a﹣b=2;当a=﹣4,b=﹣2时,a﹣b=﹣2.三.有理数的加减混合运算20.解:∵|a|=2,|b|=3,|c|=6,∴a=±2,b=±3,c=±6,∵|a+b|=﹣(a+b),|b+c|=b+c,∴a+b≤0,b+c≥0,∴a=±2,b=﹣3,c=6,∴当a=2,b=﹣3,c=6时,a+b﹣c=2+(﹣3)﹣6=﹣7,a=﹣2,b=﹣3,c=6时,a+b﹣c=﹣2+(﹣3)﹣6=﹣11.21.解:|﹣16.2|+|﹣2|+[﹣(﹣3)]﹣|10.7|=16.2+2+3﹣10.7=11.5.22.解:(1)原式=﹣53+21+69﹣37=(21+69)+(﹣53﹣37)=90﹣90=0;(2)原式=(5.7+1.2)+(﹣4.2﹣8.4﹣2.3)=6.9﹣14.9=﹣8;(3)原式=12+18﹣37﹣41=30﹣78=﹣48;(4)原式=(﹣1﹣2)+(﹣1+3+1)+4=﹣4+3+4=3.。
1.3.有理数的加减法
解:6﹣9﹦ 6﹢﹙-9﹚
﹦-3
(+3)-(―7) ﹦ 3 ﹢﹙+7﹚ ﹦3 ﹢7 ﹦10
(-5)-(―8) ﹦ (-5) ﹢(+7) ﹦2
0-(―5) ﹦0 ﹢5 ﹦5
(―2.5)-5.9 ﹦(-2.5) ﹢(―5.9)﹦-8.4
1.9-(―0.6).﹦1.9﹢0.6 ﹦2.5
2.解:
(1) 2﹣8 ﹦2 ﹢ (-8) ﹦-6 ℃ (2)-2﹣6 ﹦-2 ﹢ (-6) ﹦-8 ℃
探究
怎样进行有理数的加减混合运算?
例5 计算(―20)+(+3)―(―5)―(+7). 分析:这个算式中有加法,也有减法.可以根据有理
数减法法则,把它改写为
(―20)+(+3): (―20)+(+3)―(―5)―(+7) =(―20)+(+3)+(+5)+(―7) =[(―20)+(―7)]+[(+5)+(+3)] =(―27)+(+8) =―19.
探究 在数轴上,点A, B分别表示数 a,b. 利用有理数 减法,分别计算下列情况下点A,B之间的距离: a= 2 , b = 6 ; a= 0 , b = 6 ; a=2, b=-6; a=-2, b=-6. 你能发现点 A, B 之间的距离与数a,b之间的关 系吗?
综合运用 如图,陆上最高处是珠穆朗玛峰的峰顶,最低处 位于亚洲西部名为死海的湖,两处高度相差多少?
1.3 有理数的加减法
有理数减法法则: 减去一个数,等于加这个数的相反数.
a―b=a+(―b).
练习 1.计算: (1)6-9(2)(+3)-(―7);(3)(-5)-(―8) ; (4)0-(―5); (5)(―2.5)-5.9; (6)1.9-(―0.6). 2. 计算 (1)比2℃低8℃的温度;(2)比-3℃低6℃的温度.
1.3.3有理数的加减混合运算_典型例题
1.3.3有理数的加减混合运算_典型例题典型例题例1 计算: 例 (1)-6-2.4 (2)0-85.7 (3)-29+101 (5)-49.5+49.5 (6)-71.8-71.8分析: 分析:解:(1)-6-2.4=-8.4 解: (2)0-85.7=-85.7 (3)-29+101=72 (5)-49.5+49.5=0 (6)-71.8-71.8=-143.6说明:初学有理数计算的学⽣,因为受⼩学加减运算的习惯所影响,若把例1中各题两数之 说明:间的符号读作“加”、“减”,则⾮常容易出错误,所以建议把式中的“+”、“-”号⼀律读作“正”、“负”,按加法进⾏运算,经过⼀段时间的练习之后,再灵活掌握.例2 填空题: 例 (4)⽐0⼩4的数是______,⽐-12⼤7的数是______; (5)-9⽐______⼩18,-9⽐______⼤18; (6)若m<0,n<0,|m|<|n|,则m-n______0; (7)若m>0,n<0,|m|<|n|,则m+n______0.分析:有理数的加法与减法是互为逆运算的:加数=和-被加数;减数=被减数-差;被减数 分析:=差+减数. 如果a,b代表任意两个有理数,那么⽐a⼤m的数就是a+m,⽐a⼩n的数就是a-n,求a⽐b ⼤(或⼩)多少,就是求a-b=?例3 把下列两个式⼦写成省略括号的和的形式.把它读出来,并计算出结果. 例 (1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07)分析:引⼊负数后,“+”、“-”号的读法有两种,作为运算符号读作“加”、“减”;作为性质符号 分析:读作“正”、“负”.解: 解: (1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07) =(-5)+(-9.6)+(+7.3)+(-0.7)+(+3.07) =-5-9.6+7.3-0.7+3.07 =(7.3+3.07)+(-5-9.6-0.7) (加法交换律和结合律) =10.37+(-15.3) =-4.93说明:在进⾏有理数加、减混合运算时,为了使计算简便,经常根据以下四种情况灵活运 说明:⽤加法交换律和结合律. (1)先把符号相同的数相加,最后再把⼀个正数与⼀个负数相加; (2)有互为相反的两个数,应先⾏相加; (3)相加后得数是整数的若⼲个数应先⾏相加; (4)分母相同或易于通分的分数,可先求出它们的和.注意: 注意: (1)“+”、“-”号虽然有两种读法,但在算式中只能“⼀号⼀读,⼀号⼀⽤”,不能同⼀个符号既看成是性质符号,⼜看成运算符号.即同⼀符号两次应⽤是错误的. (2)两个有理数相加,不都是绝对值相加.异号两数相加时,绝对值是相减. (3)在交换加数的位置时,切记要连同前⾯的符号⼀起交换.例4 计算: 例 (1)-12-(-25)+(-32)-(+4)+10 分析:分析:(1)题是有理数加减混合运算,应先把减法转化为加法,然后作加法运算; (2)题如果按括号的顺序进⾏计算,显然⾮常⿇烦,应当⽤加法运算律,把同分母的分数结合起来进⾏计算.解:(1)-12-(-25)+(-32)-(+4)+10 解: =-12+25-32-4+10 =-12-32-4+25+10 =-48+35 =-13说明:1.对于有理数的加减混合运算,⾸先应统⼀成加法,然后省略加号,运算熟练后统 说明:⼀成加法及省略各加号可同时⼀次完成. 2.在有理数的减法运算未转化为有理数的加法运算时,被减数与减数的位置不能交换.对减法来讲,没有交换律. 3.求若⼲个有理数的代数和时,应注意运⽤加法的交换律、结合律,使⽤加法交换律的⽬的主要是为进⼀步使⽤结合律,即把需要结合在⼀起计算的数换位到⼀起.熟练地运⽤加法交换律和结合律,不但可以使运算简捷,⽽且对提⾼和发展思维能⼒也是⼤有裨益的.例5 计算: 例分析:这两个算式都是求代数和,灵活运⽤加法的交换律和结合律能使计算简便. 分析: (1)题中,把分数化为⼩数计算较好; (2)题中,把分母相同的分数先相加为好.解:(1)原式=(1.78+3.64+0.3+0.06)-(5.25+0.2+0.33) 解: =5.78-5.78=0说明1.加减混合运算写成代数和形式后,最好把所有符号都看成是性质符号,看成是数的 说明⼀部分,不能与数分开,在运⽤加法交换律时带着符号⼀起“搬家”,这样可避免产⽣错误. 2.加减混合运算时,通常把正数、负数分别相加;把能凑成整数的或同分母的分数先相加;…,这样可以使运算简捷. 3.在遇⼩数,分数混合运算时,是把⼩数化分数,还是把分数化⼩数,应因题⽽易,选择简便⽅法.例6 例分析:算式中带有括号时,有两种计算⽅法.⼀是先做⼩括号,再做中括号,最后做⼤括 分析:号⾥⾯的,⼆是先逐层去掉括号后“再计算”,⼀般先去⼩括号,再去中括号,最后去⼤括号.解:⽅法⼀ 解:⽅法⼀⽅法⼆ ⽅法⼆说明:1.⽐较以上两种计算⽅法,显然⽅法⼆简便,但要采⽤⽅法⼆,则必须掌握去括号 说明:的法则,不掌握去括号法则的学⽣,只能⽤⽅法⼀. 2.括号前为“-”(减)号时,去括号的⽅法是:a-(b+c)=a-b-ca-(b-c)=a-b+c有理数加减混合运算的⽅法 有理数的加减混合运算中,可根据题⽬特点,简化过程,提⾼解题速度. 1.正负数分别结合相加 2.相加得零的数结合相加 3.⾮整数相加,相加得整数的数结合相加 =-7+10=3. 4.分数相加,同分母或分母有倍分关系的分数结合相加 5.带分数相加,将带分数拆开相加 6.分数与⼩数相加,灵活考虑将⼩数化成分数或将分数化成⼩数后再相加。