数学必修2第一章空间几何体测试题
数学必修二经典试题
数学必修二第一章 空间几何体一、选择题1.右面的三视图所示的几何体是( ).A .六棱台B .六棱锥C .六棱柱D .六边形 (第1题)2.已知两个球的表面积之比为1∶9,则这两个球的半径之比为( ). A .1∶3B .1∶3C .1∶9D .1∶813.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( ).4.A ,B 为球面上相异两点,则通过A ,B 两点可作球的大圆(圆心与球心重合的截面圆)有( ).A .一个B .无穷多个C .零个D .一个或无穷多个5.右图是一个几何体的三视图,则此几何体的直观图是( ). ).A B C D6.下图为长方体木块堆成的几何体的三视图,堆成这个几何体的木块共有( ). A .1块 B .2块 C .3块正(主)视图侧(左)视图ABCD(第3题)正视图侧视图俯视图(第5题)正视图俯视图侧视图(第6题)D.4块7.关于斜二测画法画直观图说法不正确的是().A.在实物图中取坐标系不同,所得的直观图有可能不同B.平行于坐标轴的线段在直观图中仍然平行于坐标轴C.平行于坐标轴的线段长度在直观图中仍然保持不变D.斜二测坐标系取的角可能是135°8.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是().①正方体②圆锥③三棱台④正四棱锥(第8题)A.①②B.①③C.①④D.②④9.一正方体的各顶点都在同一球面上,用过球心的平面去截这个组合体,截面图不能是().A B C D10.如果一个三角形的平行投影仍然是一个三角形,则下列结论正确的是().A.原三角形的内心的平行投影还是投影三角形的内心B.原三角形的重心的平行投影还是投影三角形的重心C.原三角形的垂心的平行投影还是投影三角形的垂心D.原三角形的外心的平行投影还是投影三角形的外心二、填空题11.一圆球形气球,体积是8 cm3,再打入一些空气后,气球仍然保持为球形,体积是27 cm3.则气球半径增加的百分率为.12.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是.13.右图是一多面体的展开图,每个面内都给了字母,请根据要求回答问题:①如果A 是多面体的下底面,那么上面的面是 ; ②如果面F 在前面,从左边看是面B ,那么上面的面是 .14.一个几何体的三视图如下图所示,则此几何体的体积是 .三、解答题15.圆柱内有一个四棱柱,四棱柱的底面是圆柱底面的内接正方形.已知圆柱表面积为6 ,且底面圆直径与母线长相等,求四棱柱的体积.16.下图是一个几何体的三视图(单位:cm ) (1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积.(第14题)4俯视图正视图侧视图4 43俯视图A BC B 'A ' C '1 1 正视图B 'B A 'A 3 侧视图ABC1 (第16题)(第13题)17.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积及体积.18.已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,试比较它们的体积V 正方体,V 球,V 圆柱的大小.19.如图,一个圆锥形容器的高为a ,内装有一定量的水.如果将容器倒置,这时水所形成的圆锥的高恰为2a,求原来水面的高度.20.如图,四棱柱的底面是菱形,各侧面都是长方形.两个对角面也是长方形,面积分别为Q 1,Q 2.求四棱柱的侧面积.第二章 点、直线、平面之间的位置关系一、选择题1.垂直于同一条直线的两条直线一定( ). A .平行B .相交C .异面D .以上都有可能2.正四棱柱1111D C B A ABCD 中,AB AA 2=1,则异面直线11AD B A 与所成角的余弦值为( ).(第20题)(第19题)(第17题)A .51 B .52 C .53 D .54 3.经过平面外两点与这个平面平行的平面( ). A .可能没有B .至少有一个C .只有一个D .有无数个4.点E ,F ,G ,H 分别为空间四边形ABCD 中AB ,BC ,CD ,AD 的中点,若AC =BD ,且AC 与BD 所成角的大小为90°,则四边形EFGH 是( ).A .菱形B .梯形C .正方形D .空间四边形5.已知 m ,n 为异面直线,m ⊂平面 ,n ⊂平面 β,∩ =l ,则( ). A .l 与m ,n 都相交 B .l 与m ,n 中至少一条相交C .l 与m ,n 都不相交D .l 只与m ,n 中一条相交6.在长方体ABCD -A 1B 1C 1D 1中,AB =AD =23,CC 1=2,则二面角C 1-BD -C 的大小为( ).A .30°B .45°C .60°D .90°7.如果平面外有两点A ,B ,它们到平面 的距离都是a ,则直线AB 和平面的位置关系一定是( ).A .平行B .相交C .平行或相交D .AB ⊂8.设m ,n 是两条不同的直线,,是两个不同的平面.下列命题中正确的是( ).A .⊥,m ⊥,n ∥⇒m ⊥nB .∥,m ⊥,n ∥⇒m ⊥nC .m ⊥,n ⊂,m ⊥n ⇒⊥D .⊥,∩=m ,n ⊥m ⇒n⊥9.平面∥平面,AB ,CD 是夹在 和 之间的两条线段,E ,F 分别为AB ,CD 的中点,则EF 与 的关系是( ).A .平行B .相交C .垂直D .不能确定10.平面 ⊥平面 ,A ∈α,B ∈β,AB 与两平面 ,β所成的角分别为4π和6π,过A ,B 分别作两平面交线的垂线,垂足为A ′,B′,则AB ∶A ′B ′ 等于( ).A .2∶1B .3∶1C .3∶2D .4∶3二、填空题11.下图是无盖正方体纸盒的展开图,在原正方体中直线AB ,CD 所成角的大小为 .12.正三棱柱ABC -A 1B 1C 1的各棱长均为2,E ,F 分别是AB ,A 1C 1的中点,则EF 的长是 .13.如图,AC 是平面 的斜线,且AO =a ,AO 与 成60º角,OC ,AA ′⊥于A ′,∠A ′OC =45º,则点A 到直线OC 的距离是 .(第13题)14.已知正四棱锥的底面边长为2,侧棱长为5,则侧面与底面所成二面角的大小为 .15.已知a ,b 为直线,为平面,a ∥,b ∥,对于a ,b 的位置关系有下面五个(第12题)AB CA 1B 1C 1EFDCAB(第11题)结论:①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交. 其中可能成立的有 个.三、解答题16.正方体AC 1的棱长为a . (1)求证:BD ⊥平面ACC 1A 1;(2)设P 为D 1D 中点,求点P 到平面ACC 1A 1的距离.17.如图,ABCD 是正方形,O 是该正方形的中心,P 是平面ABCD 外一点,PO 底面ABCD ,E 是PC 的中点.求证:(1)P A ∥平面BDE ; (2)BD ⊥平面P AC .18.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.19.如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中, (1)求证:AC ⊥平面B 1D 1DB ; (2)求证:BD 1⊥平面ACB 1; (3)求三棱锥B -ACB 1体积.20. 已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E ,F 分别是AC ,AD 上的动点,且AC AE =ADAF=(0<<1). (1)求证:不论 为何值,总有平面BEF ⊥平面ABC ;(2)当为何值时,平面BEF ⊥平面ACD ?POEC DBA(第17题)D 1C 1B 1A 1CD BA(第19题)(第18题)第三章 直线与方程一、选择题1.下列直线中与直线x -2y +1=0平行的一条是( ). A .2x -y +1=0 B .2x -4y +2=0 C .2x +4y +1=0D .2x -4y +1=02.已知两点A (2,m )与点B (m ,1)之间的距离等于13,则实数m =( ). A .-1B .4C .-1或4D .-4或13.过点M (-2,a )和N (a ,4)的直线的斜率为1,则实数a 的值为( ). A .1B .2C .1或4D .1或24.如果AB >0,BC >0,那么直线Ax ―By ―C =0不经过的象限是( ). A .第一象限B .第二象限C .第三象限D .第四象限5.已知等边△ABC 的两个顶点A (0,0),B (4,0),且第三个顶点在第四象限,则BC 边所在的直线方程是( ).A .y =-3xB .y =-3(x -4)C .y =3(x -4)D .y =3(x +4)6.直线l :mx -m 2y -1=0经过点P (2,1),则倾斜角与直线l 的倾斜角互为补角的一条直线方程是( ).A .x ―y ―1=0B .2x ―y ―3=0C .x +y -3=0D .x +2y -4=07.点P (1,2)关于x 轴和y 轴的对称的点依次是( ). A .(2,1),(-1,-2) B .(-1,2),(1,-2) C .(1,-2),(-1,2)D .(-1,-2),(2,1)8.已知两条平行直线l 1 : 3x +4y +5=0,l 2 : 6x +by +c =0间的距离为3,则b +c =( ).A .-12B .48C .36D .-12或489.过点P (1,2),且与原点距离最大的直线方程是( ). A .x +2y -5=0 B .2x +y -4=0 C .x +3y -7=0D .3x +y -5=010.a ,b 满足a +2b =1,则直线ax +3y +b =0必过定点( ). A .⎪⎭⎫⎝⎛21 ,61 -B .⎪⎭⎫ ⎝⎛61 - ,21C .⎪⎭⎫⎝⎛61 ,21D .⎪⎭⎫ ⎝⎛21 - ,61二、填空题11.已知直线AB 与直线AC 有相同的斜率,且A (1,0),B (2,a ),C (a ,1),则实数a 的值是____________.12.已知直线x -2y +2k =0与两坐标轴所围成的三角形的面积不大于1,则实数k 的取值范围是____________.13.已知点(a ,2)(a >0)到直线x -y +3=0的距离为1,则a 的值为________. 14.已知直线ax +y +a +2=0恒经过一个定点,则过这一定点和原点的直线方程是 ____________________.15.已知实数x ,y 满足5x +12y =60,则22 + y x 的最小值等于____________. 三、解答题 16.求斜率为43,且与坐标轴所围成的三角形的周长是12的直线方程. 17.过点P (1,2)的直线l 被两平行线l 1 : 4x +3y +1=0与l 2 : 4x +3y +6=0截得的线段长|AB |=2,求直线l 的方程.18.已知方程(m 2―2m ―3)x +(2m 2+m -1)y +6-2m =0(m ∈R ). (1)求该方程表示一条直线的条件;(2)当m 为何实数时,方程表示的直线斜率不存在?求出这时的直线方程; (3)已知方程表示的直线l 在x 轴上的截距为-3,求实数m 的值; (4)若方程表示的直线l 的倾斜角是45°,求实数m 的值.19.△ABC 中,已知C (2,5),角A 的平分线所在的直线方程是y =x ,BC 边上高线所在的直线方程是y =2x -1,试求顶点B 的坐标.第四章 圆与方程一、选择题1.圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ). A .相交B .外切C .内切D .相离2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ). A .1条B .2条C .3条D .4条3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ). A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1D .(x +1)2+(y -2)2=14.与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ). A .x -y ±5=0 B .2x -y +5=0 C .2x -y -5=0D .2x -y ±5=05.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ). A .2B .2C .22D .426.一圆过圆x 2+y 2-2x =0与直线x +2y -3=0的交点,且圆心在y 轴上,则这个圆的方程是( ).A .x 2+y 2+4y -6=0B .x 2+y 2+4x -6=0C .x 2+y 2-2y =0D .x 2+y 2+4y +6=07.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( ).A .30B .18C .62D .528.两圆(x -a )2+(y -b )2=r 2和(x -b )2+(y -a )2=r 2相切,则( ). A .(a -b )2=r 2 B .(a -b )2=2r 2 C .(a +b )2=r 2D .(a +b )2=2r 29.若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2+y 2=10相切,则c 的值为( ).A .14或-6B .12或-8C .8或-12D .6或-1410.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM | =( ).A .453B .253 C .253 D .213二、填空题11.若直线3x -4y +12=0与两坐标轴的交点为A ,B ,则以线段AB 为直径的圆的一般方程为____________________.12.已知直线x =a 与圆(x -1)2+y 2=1相切,则a 的值是_________. 13.直线x =0被圆x 2+y 2―6x ―2y ―15=0所截得的弦长为_________. 14.若A (4,-7,1),B (6,2,z ),|AB |=11,则z =_______________.15.已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆(x -1)2+(y -1)2=1的两条切线,A ,B 是切点,C 是圆心,则四边形P ACB 面积的最小值为 .三、解答题16.求下列各圆的标准方程:(1)圆心在直线y =0上,且圆过两点A (1,4),B (3,2);(2)圆心在直线2x +y =0上,且圆与直线x +y -1=0切于点M (2,-1).17.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是AB 的中点,F 是BB 1的中点,G 是不抛弃,不放弃。
(完整版)高一数学必修2第一章空间几何体测试题(答案)
则四边形 EFGH 是
;
②若 AC BD , 则四边形 EFGH 是
.
三、解答题: 解答应写出文字说明、证明过程或演算步骤 (共 76 分 ).
15.( 12 分)将下列几何体按结构分类填空
①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;
⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○ 11 量筒;○12 量杯;○13 十字架.
( 1)具有棱柱结构特征的有
;( 2)具有棱锥结构特征的有
;
( 3)具有圆柱结构特征的有
;( 4)具有圆锥结构特征的有
;
( 5)具有棱台结构特征的有
;( 6)具有圆台结构特征的有
;
( 7)具有球结构特征的有
;( 8)是简单集合体的有
;
( 9)其它的有
.
16.( 12 分)已知: a ,b ,a b A, P b, PQ // a.求证: PQ ..
C.③④
3.棱台上下底面面积分别为 16 和 81,有一平行于底面的截面面积为
() D . ①②③④
36,则截面戴的两棱台高
的比为
()
A .1∶ 1
B. 1∶ 1
C. 2∶ 3
D .3∶4
4.若一个平行六面体的四个侧面都是正方形 ,则这个平行六面体是
()
A .正方体
B.正四棱锥
C.长方体
D .直平行六面体
2la
Q1 2 Q2 2
S侧 4al 2 Q12 Q2 2
19.解:设 A1B1C1D1 是棱台 ABCD -A2B2C2D 2 的中截面,延长各侧棱交于
P 点.
a
∵ BC=a ,B2C2=b ∴ B1C1=
人教版高一数学必修2第一章《空间几何体》专题检测(含答案)
人教版高一数学必修2第一章《空间几何体》专题检测(含答案)1.在三棱锥P ABC -中, 2,1PA PB AC BC AB PC ======,则三棱锥P ABC -的外接球的表面积为( ) A. 43π B. 4π C. 12π D. 523π 2.直三棱柱111ABC A B C I 的各顶点都在同一球面上,若,则此球的表面积等于( )A. B. 20π C. 10π D. 3.某几何体的三视图如图所示,则此几何体的体积为( )A.23 B. 1 C. 43 D. 834.已知正四棱锥P ABCD -的顶点均在球O 上,且该正四棱锥的各个棱长均为2,则球O 的表面积为A. 4πB. 6πC. 8πD. 16π 5.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是A. 4cm 3B. 5 cm 3C. 6 cm 3D. 7 cm 36.如图,网格纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为( )A. B. C. 8 D. 97.我国古代数学名著《孙子算经》中有如下问题:“今有筑城,上广二丈,下广五丈四尺,高三丈八尺,长五千五百五十尺,秋程人功三百尺.问:须工几何?”意思是:“现要筑造底面为等腰梯形的直棱柱的城墙,其中底面等腰梯形的上底为2丈、下底为5.4丈、高为3.8丈,直棱柱的侧棱长为5550尺.如果一个秋天工期的单个人可以筑出300立方尺,问:一个秋天工期需要多少个人才能筑起这个城墙?”(注:一丈等于十尺)A. 24642B. 26011C. 52022D. 780338.已知某几何体是两个正四棱锥的组合体,其三视图如下图所示,则该几何体外接球的表面积为( )A. 2πB.C. 4πD. 8π9.在空间直角坐标系O xyz -中,四面体ABCD 的顶点坐标分别是()0,0,2A , ()2,2,0B , ()1,2,1C , ()2,2,2D .则该四面体的体积V =( )A.13 B. 43 C. 23 D. 3二、填空题10.在平行六面体1111ABCD A B C D - 中, 4AB = , 3AD = , 15A A = , 90BAD ∠=︒ , 1160A AB A AD ∠=∠=︒ ,则1AC = __________.11.Rt ABC ∆中, 30A =︒,斜边4cm AC =,将边BC 绕边AB 所在直线旋转一周,所形成的几何体的表面积为_____________2cm .12.在边长为2的菱形ABCD 中, BD =ABCD 沿对角线AC 对折,使BD =得三棱锥A BCD -的内切球的半径为______________.13.如图,在三棱锥P ABC -中, PC ⊥平面ABC , AC CB ⊥,已知2AC =, PB =PA AB +最大时,三棱锥P ABC -的体积为__________.14.如图,在直三棱柱111ABC A B C -中, 90BAC ∠=, 2AB AC ==,点M 为11A C 的中点,点N 为1AB 上一动点.(1)是否存在一点N ,使得线段//MN 平面11BB C C ?若存在,指出点N 的位置,若不存在,请说明理由.(2)若点N 为1AB 的中点且CM MN ⊥,求三棱锥M NAC -的体积.15.已知边长为2的正方形ABCD 与菱形ABEF 所在平面互相垂直, M 为BC 中点.(1)求证: EMP 平面ADF ;(2)若60ABE ∠=,求四面体M ACE -的体积.16.如图,四棱锥P ABCD -的底面ABCD 是直角梯形, //AD BC , 36AD BC ==, PB =点M 在线段AD 上,且4MD =, AD AB ⊥, PA ⊥平面ABCD .(1)求证:平面PCM ⊥平面PAD ;(2)当四棱锥P ABCD -体积最大时,求四棱锥P ABCD -的表面积.17.如图,正方形ABCD 中, AB = AC 与BD 交于O 点,现将ACD 沿AC 折起得到三棱锥D ABC -, M , N 分别是OD , OB 的中点.(1)求证: AC MN ⊥;(2)若三棱锥D ABC -的最大体积为0V ,当三棱锥D ABC -0,且DOB ∠为锐角时,求三棱锥D MNC -的体积.参考答案1.D 2.B 3.C 4.C 5.A 6.D 7.B 8.D 9.C10 11.12π 12 13.414.【解析】(1)存在点N ,且N 为1AB 的中点.证明如下:如图,连接1A B , 1BC ,点M , N 分别为11A C , 1A B 的中点,所以MN 为11A BC ∆的一条中位线, //MN BC ,MN ⊄平面11BB C C , 1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .(2)如图,设点D , E 分别为AB , 1AA 的中点,连接CD , DN , NE ,并设1AA a =,则221CM a =+,22414a MN +=+ 284a +=, 2254a CN =+ 2204a +=,由CM N ⊥M ,得222CM MN CN +=,解得a =又易得NE ⊥平面11AAC C , 1NE =,M NAC N AMC V V --= 111332AMC S NE ∆=⋅=⨯ 21⨯=所以三棱锥M NAC -的体积为3.15. (1)∵四边形ABCD 是正方形,∴BC ∥AD .∵BC ⊄平面ADF ,AD ⊂平面ADF ,∴BC ∥平面ADF .∵四边形ABEF 是菱形,∴BE ∥AF .∵BE ⊄平面ADF ,AF ⊂平面ADF ,∴BE ∥平面ADF .∵BC ∥平面ADF ,BE ∥平面ADF ,BC ∩BE=B ,∴平面BCE ∥平面ADF .∵EM ⊂平面BCE ,∴EM ∥平面ADF .(2)取AB 中点P ,连结PE .∵在菱形ABEF 中,∠ABE=60°,∴△AEB 为正三角形,∴EP ⊥AB .∵AB=2,∴EP∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF=AB ,∴EP ⊥平面ABCD , ∴EP 为四面体E ﹣ACM 的高.∴.16.【解析】(1)由6,4AD DM ==可得2AM =, 易得四边形ABCM 是矩形,∴CM AD ⊥,又PA ⊥平面ABCD , CM ⊂平面ABCD ,∴PA CM ⊥,又PM AD M ⋂=, ,PM AD ⊂平面PAD ,∴CM ⊥平面PAD ,又CM ⊂平面PCM ,∴平面PCM ⊥平面PAD(2)四棱锥P ABCD -的体积为()1132V AD BC =⋅⋅+⋅ 43AB PA AB PA ⋅=⋅⋅, 要使四棱锥P ABCD -的体积取最大值,只需AB PA ⋅取得最大值. 由条件可得22272PA AB PB +==,∴722PA AB ≥⋅,即36PA AB ⋅≤,当且仅当6PA AB ==时, PA AB ⋅取得最大值36.PC =, PD =, CD =,cos CPD ∠= 2222PC PD CD PC PD +-=⋅⋅,则sin CPD ∠=∴1sin 2PCD S PC PD CPD ∆=⋅⋅⋅∠= 则四棱锥P ABCD -的表面积为 ()1162666222⎛⎫⋅+⋅+⋅⋅⋅+ ⎪⎝⎭ (126102⋅⋅=.17.(1)依题意易知OM AC ⊥, ON AC ⊥, OM ON O ⋂=,∴AC ⊥平面OMN ,又∵MN ⊂平面OMN ,∴AC MN ⊥.(2)当体积最大时三棱锥D ABC -的高为DO ,当体积为02时,高为2DO ,OBD 中, OB OD =,作DS OB ⊥于S ,∴DS =,∴60DOB ∠=︒, ∴OBD 为等边三角形,∴S 与N 重合,即DN ⊥平面ABC , 易知D MNC C DMN V V --=.∵CO ⊥平面DOB ,∴2h CO ==,∴1111222DMN ODN S S ==⨯⨯=,∴1123346D MNC C DMN DMN V V S CO --==⋅=⨯⨯=。
高中数学必修2第一章《空间几何体》单元测试题
高中数学必修2第一章《空间几何体》单元测试题参考公式:球的体积公式34,3V R π=球,其中R 是球半径. 锥体的体积公式V锥体13Sh =,其中S 是锥体的底面积,h 是锥体的高. 台体的体积公式V台体1()3h S S '=,其中,S S '分别是台体上、下底面的面积,h 是台体的高.一、选择题(每小题5分,共60分):1.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )(A )2倍 (B )12倍 (C)2倍 (D)4倍 2.下面哪一个不是正方体的平面展开图( )(A ) (B ) (C ) (D )3.已知棱台的体积是76cm 3,高是6cm ,一个底面面积是18cm 2,则这个棱台的另一个底面面积为( ) (A )8cm 2 (B )7cm 2 (C )6cm 2 (D )5cm 24.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )5.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后剩下的几何体的体积是( ) (A )67 (B )56 (C )45 (D )236.一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的2倍,圆锥的高与底面半径之比为( )(A )4:3 (B )1:1 (C )2:1 (D )1:27.圆柱的侧面展开图是矩形ABCD,母线为AD ,对角线AC=8cm ,AB 与AC 成角为30,则圆柱的表E F DIA H GBC EF D AB C侧视 图1图2 BEA .BEB . BEC .BED .面积为( )(A)2(B)212)cm π(C)224)cm π(D)212)cm π8.球的表面积与它的内接正方体的表面积之比为( ) A3π B 4π C 2πD π 9.所有棱长为1的三棱椎的表面积为 ( ) A3 B 32 C 33 D 3410.在ABC 中,2AB =,BC=1.5,120ABC ∠=,如图所示。
高中数学必修2第一章空间几何体试题(含答案)
高一数学必修2第一章测试题班别姓名考号得分一、选择题:(每小题5分,共50分)1. 下图中的几何体是由哪个平面图形旋转得到的()A B C D2.若一个几何体的三视图都是等腰三角形,则这个几何体可能是()A.圆锥B.正四棱锥C.正三棱锥D.正三棱台3.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A. 1:3B. 1:1C. 2:1D. 3:14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A.1:2:3B.1:3:5C.1:2:4D.1:3:95.棱长都是1的三棱锥的表面积为()A. 3B. 32 C. 33 D. 346.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B. 2:3C.4:9D. 2:97.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:()俯视图主视图侧视图A.24πcm2,12πcm3B.15πcm2,12πcm3C.24πcm2,36πcm3D.以上都不正确8.下列几种说法正确的个数是()①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行④线段的中点在直观图中仍然是线段的中点A.1 B.2 C.3 D.49.正方体的内切球和外接球的半径之比为()10.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧面,则两圆锥的高之比为( ) A .3∶4 B .9∶16 C .27∶64 D .都不对二、填空题:(每小题6分,共30分)11.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。
12.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________。
空间几何体(必修2第一章)综合检测题
9.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分 的体积的比是( A.1∶8∶27 ) B.1∶1∶1 C.1∶7∶19 D.1∶2∶3
正方体
10.把表面积相等的球与正方体的体积依次记为 V 球与 V 棱长为 a,则有( ) B.d>a,V 球<V 正方体 D.d<a,V 球<V正四棱台的斜高与上、 下底面边长之比为 5∶2∶8, 体积为 14cm3, 求棱台的高.
20.(本小题满分 14 分)已知一个圆锥的底面半径为 R,高为 H,在圆锥内部有一个高为 x 的内接圆柱. (1)画出圆锥及其内接圆柱的轴截面; (2)求圆柱的侧面积; (3)x 为何值时,圆柱的侧面积最大?
21.(本小题满分 15 分)如图,BD 是正方形 ABCD 的对角线, BD 的圆心是 A,半径为 AB,正方形 ABCD 以 AB 为轴旋转,求图中Ⅰ、Ⅱ、Ⅲ三部分旋转所 得旋转体的体积之比.
22.(本题满分 15 分)已知三棱台 ABC-A1B1C1 中,S△ABC=25,S△A1B1C1=9,高 h=6. (1)求三棱锥 A1-ABC 的体积 VA1-ABC. (2)求三棱锥 B-A1B1C1 的体积 VB-A1B1C1. (3)求三棱锥 A1-BCC1 的体积 VA1-BCC1.
1 3.圆锥的高扩大到原来的 2 倍,底面半径缩短到原来的 ,则圆锥的体积( 2 A.缩小到原来的一半 C.不变 B.扩大到原来的 2 倍 1 D.缩小到原来的 6
4.两个完全相同的长方体的长、宽、高分别为 5 cm、4 cm、3 cm,把它们重叠在一起 组成一个新长方体,在这些新长方体中,最长的对角线的长度是( A. 77 cm B.7 2 cm C.5 5 cm )
高中数学必修二第一章《空间几何体》单元考试题(含答案)
高中数学必修二第一章《空间几何体》单元测试(时间90分钟,满分100分)一、选择题(本大题共10小题,每小题4分,共40分) 1.下列说法中正确的是( ) A.棱柱的侧面可以是三角形 B.正方体和长方体都是特殊的四棱柱 C.所有几何体的表面都能展成平面图形 D.棱柱的各条棱都相等 2.下列命题正确的是( ) A.线段的平行投影可能是一点 B.圆的平行投影是圆 C.圆柱的平行投影是圆D.圆锥的平行投影是等腰三角形3.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A.21 B.41C.1D.12939 4.圆锥的高扩大到原来的2倍,底面半径缩短到原来的21,则圆锥体积( ) A.缩小到原来的一半 B.扩大到原来的两倍 C.不变 D.缩小到原来的61 5.如图所示,水平放置的圆柱形物体的三视图是( )6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,且四面体的四个顶点在一个球面上,则这个球的表面积为( ) A.16πB.32πC.36πD.64π7.如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B =∥C 1D 1,2321111==D C B A ,A 1D 1=1,则四边形ABCD 的面积是( ) A.10B.5C.25D.2108.如图,在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )9.如图所示,三视图的几何体是( )A.六棱台B.六棱柱C.六棱锥D.六边形10.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.3cm 34000 B.3cm 38000 C.2 000 cm 3D.4 000 cm 3二、填空题(本大题共4小题,每小题4分,共16分)11.圆锥的轴截面是一个正三角形,则它的侧面积是底面积的_____________倍. 12.如图是一个空间几何体的三视图,则该几何体为___________.13.设矩形边长分别为a ,b (a >b ).将其按两种方式卷成高为a 和b 的圆柱筒,以其为侧面的圆柱的体积分别为V a 和V b ,则V a____________V b .14.正方体的表面积是a 2,它的顶点都在球面上,则这个球的表面积是__________. 三、解答题(本大题共4小题,共44分)15.(10分)已知圆台外切于球,圆台的侧面积和球面积之比为4∶3,求圆台的体积和球的体积比.16.(10分)如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.17.(12分)根据下图所给出的一个物体的三视图,求出该物体的体积和表面积.18.(12分)一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h也相等,用a将h表示出来.参考答案1解析:由棱柱的特点,知侧面均为平行四边形,但底面可为三角形;其所有棱长不一定相等,但侧棱相等,所以A 、D 均错.又知球的表面不能展成平面图形,所以C 错. 答案:B 2答案:A3解析:由题意设上、下底面半径分别为r 、4r ,截面半径为x ,圆台的高为2h ,则有213=-r r x ,∴r x 25=. ∴12939)164(31)(312222=++++=r rx x h x rx r h V V ππ下上. 答案:D4解析:原变原V h r V h r V 212)2(31,3122=⋅⋅=⋅=ππ.答案:A5解析:水平放置的圆柱的正视图和俯视图都是矩形,侧视图为圆形. 答案:A6解析:将四面体补形为长方体,此长方体的对角线即为球的直径, ∴(2r )2=1+6+9=16,则S 球=4πr 2=π(2r )2=16π. 答案:A 7答案:B 8答案:B9解析:由俯视图可知,底面为六边形,又由正视图和侧视图知,该几何体为六棱锥. 答案:C10解析:由三视图可得几何体如下图所示,面EBC ⊥面ABCD ,四边形ABCD 为边长是20的正方形,棱锥高为20.∴)cm (3800020203132=⨯⨯=V .答案:B11解析:由题意可知l =2r , ∴222221221r r r l r S πππ=⋅⋅⋅=⋅⋅⋅=侧, S 底=πr 2.∴2222==r r S S ππ底侧. 答案:2 12答案:六棱台13解析:πππ4)2(22ab a b V a =⋅=,πππ4)2(22ba b a V b =⋅=.又∵a >b ,∴V a <V b . 答案:<14解析:设正方体的边长为b ,则R b 23=,2223)23(44b b R S πππ=⋅==球 , 又a 2=6b 2,∴22a S π=球.答案:22a π15解:设球的半径为r ,圆台的上、下底面圆的半径分别为r 1、r 2, 连结OD ,OC ,OG ,则OD ⊥O C,∴r 2=DG ·GC =DE ·CF =r 1·r 2,S 圆台侧∶S 球=[π(r 1+r 2)·DC ]∶4πr 2=4∶3. 又∵DC =r 1+r 2, ∴(r 1+r 2)2∶4r 2=4∶3. ∴(r 12+r 22+2r 1·r 2)∶4r 2=4∶3. ∴22221310r r r =+.∴2222121342)(31r r r rr r V V ππππ⋅++=球圈台 613231022222222121=+=++=r r r r r r r r . 16分析:由几何体的三视图知道,这个几何体是一个简单组合体,它的下部是一个圆台,上部是一个圆锥,并且圆锥的底面与圆台的上底面重合,我们可以先画出下部的圆台,再画出上部的圆锥.画法:(1)画轴.如图(1),画x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°.(2)画圆台的两底面.利用斜二测画法,画出底面⊙O ,在z 轴上截取OO′,使OO′等于三视图中的相应高度.过O′作Ox 的平行线O′x′,Oy 的平行线O′y′,利用O′x′与O′y′画出上底面⊙O′(与画⊙O 一样).(3)画圆锥的顶点.在Oz 上截取点P ,使PO′等于三视图中的相应高度.(4)成图.连结P A′、PB′、A′A 、B′B ,整理得到三视图表示的几何体的直观图,如图(2).17解:根据三视图可知原立体图形为长方体,由三视图中的数据,还原出原长方体如下图.体积V =4×5×3=60;表面积S =2(4×5+3×4+3×5)=94. 18解:32hh V ⋅=π圆锥液,h aV ⋅⋅=2)2(π圆柱液,由已知得h a h 23)2(3ππ=,∴a h 23=.。
必修2第一章空间几何体单元测试题
必修2第一章《空间几何体》单元测试题(时间:60分钟,满分:100分)班别座号姓名成绩一、选择题(本大题共10小题,每小题5分,共50分)1、图(1)是由哪个平面图形旋转得到的()A B C D2、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A.1:2:3B.1:3:5C.1:2:4 D1:3:93、棱长都是1的三棱锥的表面积为()A. 3B. 23C. 33D. 434、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=A. 1:3B. 1:1C. 2:1D. 3:15、如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A.8:27B. 2:3C.4:9D. 2:96、有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:A.24πcm2,12πcm3B.15πcm2,12πcm3C.24πcm2,36πcm3D.以上都不正确7、一个球的外切正方体的全面积等于6 cm2,则此球的体积为()A.334cmπ B. 386cmπ C. 361cmπ D. 366cmπ8、一个体积为38cm的正方体的顶点都在球面上,则球的表面积是A.28cmπ B.212cmπ C.216cmπ D.220cmπ9、一个正方体的顶点都在球面上,此球与正方体的表面积之比是()A.3π B.4π C.2π D. π10、如右图为一个几何体的 三视图,其中府视图为 正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为 (A)6+3 (B)24+3 (C)24+23 (D)32二、填空题(本大题共4小题,每小题5分,共20分)11. 长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_______________. 12.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 ______.13、球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.14、一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是_________.三、解答题(本大题共3小题,每小题10分,共30分)15.将圆心角为1200,面积为3 的扇形, 16. (如图)在底半径为2母线长为4的 作为圆锥的侧面,求圆锥的表面积和体积. 圆锥中内接一个高为3的圆柱,求圆柱的表面积A B 1正视图侧视图府视图*16、如图,在四边形ABCD 中,,,,,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.参考答案:1.A ;2.B ;3.A ;4.D ;5.C ;6.A ;7.C ;8.B ;9.C ;10.C.11.15;12.910Q;13.8;14.2:1 15.解:l=3,R=1;S=4π;V=322π.16.R=1,h=3,S=2π+2π3.17.S=60π+4π2;V=52π-38π=3148π.必修2第二章《点、直线、平面之间的位置关系》单元测试题(时间:60分钟,满分:100分)班别 座号 姓名 成绩 一、选择题(本大题共10小题,每小题5分,共50分)1.若直线a 不平行于平面α,则下列结论成立的是( )A. α内所有的直线都与a 异面;B. α内不存在与a 平行的直线;C. α内所有的直线都与a 相交;D.直线a 与平面α有公共点. 2.已知两个平面垂直,下列命题①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. 其中正确的个数是( ) A.3 B.2 C.1 D.03.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AC 与BD 所成角为A 、030B 、045C 、060D 、090 4. 给出下列命题:(1)直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (2)直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; (3)异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直; (4)若直线a 和b 共面,直线b 和c 共面,则a 和c 共面其中错误命题的个数为( ) (A )0 (B ) 1 (C )2 (D )35.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条 A 3 B 4 C 6 D 8 6. 点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O ,若PA=PB=PC ,则点O 是ΔABC 的( ) (A )内心 (B )外心 (C )重心 (D )垂心7.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为( )(A )300 (B )450 (C )600 (D )900 8.直线a,b,c 及平面α,β,γ,下列命题正确的是( )A 、若a ⊂α,b ⊂α,c ⊥a, c ⊥b 则c ⊥αB 、若b ⊂α, a//b 则 a//αC 、若a//α,α∩β=b 则a//bD 、若a ⊥α, b ⊥α 则a//b 9.平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行;B.直线a//α,a//βA BC D A 1B 1C 1D 1C.直线a α⊂,直线b β⊂,且a//β,b//αD.α内的任何直线都与β平行 10、 a, b 是异面直线,下面四个命题:①过a 至少有一个平面平行于b ; ②过a 至少有一个平面垂直于b ; ③至多有一条直线与a ,b 都垂直;④至少有一个平面与a ,b 都平行。
高中数学必修二第一章《空间几何体》单元测试卷及答案
的表面积为()
7.—个正方体的体积是8,则这个正方体的内切球的表面积是()
A.8nB.6nC.4nD. n
&如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体
的体积为()
1
c1
1
A.1
B .-
C .-
1
V-3 4 6 168 36 128
2
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)
40
17•【答案】-°cm.
3
【解析】如图,设圆锥母线长为I,则』-,所以I理cm.
I43
其中AB=AC,AD丄BC,且BC的长是俯视图正六边形对边的距离,即BC .3a,AD是
正六棱锥的高,即AD 3a,所以该平面图形的面积为-.3a 3a -a2.
2
1
1
1一,故选C.
3
3
9.【答案】
B
【解析】
设圆锥底面半径为
r,则-23r
8,
16
•r上,所以米堆的体积为
2
4
3
1 1
3
16
320
5
故堆放的米约为
320
1.6222,故选B.
4 3
3
9
9
10.【答案】B
【解析】由题意知棱柱的高为2.3cm,底面正三角形的内切圆的半径为.3 cm,
•••底面正三角形的边长为6cm,正三棱柱的底面面积为9 3cm2,•••此三棱柱的体积
2 2
(3)设这个正六棱锥的底面积是S,体积为V,则S6出a2兰a2,
人教版高中数学必修2第一章空间几何体练习题及答案(全)
第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。
图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”“你”“前”分别表示正方体的—————祝你前程似锦三、解答题:11、长方体ABCD —A 1B 1C 1D 1中,AB =3,BC =2,BB 1=1,由A 到C 1在长方体表面上的最短距离为多少?AA 1B 1BCC 1D 1D12、说出下列几何体的主要结构特征(1)(2)(3)1.2空间几何体的三视图和直观图一、选择题1、两条相交直线的平行投影是( ) A 两条相交直线 B 一条直线C 一条折线D 两条相交直线或一条直线 2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是( )① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱 A ②①③ B ①②③ C ③②④ D ④③②正视图侧视图俯视图 正视图 侧视图 俯视图 正视图 侧视图 俯视图甲 乙 丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( )A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥 4、下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21倍 B42倍 C 2倍 D 2倍 6、如图(1)所示的一个几何体,,在图中是该几何体的俯视图的是( )(1) 二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图与俯视图是两个全等的———————三角形。
(word版)高中数学必修2第一章空间几何体试题(含答案),文档
高一数学必修2第一章复习题一、选择题:〔每题5分,共50分〕1.以下图中的几何体是由哪个平面图形旋转得到的〔〕A B C D2.假设一个几何体的三视图都是等腰三角形,那么这个几何体可能是〔〕A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台3.圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,那么V1:V2=〔〕A.1:3B.1:1C. 2:1D.3:14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三局部的面积之比为〔〕:2:3 :3:5 :2:4 :3:95.棱长都是1的三棱锥的外表积为〔〕A. 3B. 2 3 3 D. 4 36.如果两个球的体积之比为8:27,那么两个球的外表积之比为〔〕A.8:27B.2:3C.4:9D.2:97.有一个几何体的三视图及其尺寸如下〔单位cm〕,那么该几何体的外表积及体积为:〔〕56俯视图主视图侧视图πcm2,12πcm3πcm2,12πcm3πcm2,36πcm3 D.以上都不正确8.以下几种说法正确的个数是〔〕①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行-1-④线段的中点在直观图中仍然是线段的中点A.1B.2C.3D.49.正方体的内切球和外接球的半径之比为〔〕A.3:1B.3:2C.2:3D.3:310.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4.再将它们卷成两个圆锥侧面,那么两圆锥的高之比为〔〕A.3∶4B.9∶16C.27∶64D.都不对请将选择题的答案填入下表:题号12345678910答案二、填空题:〔每题6分,共30分〕11.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱。
12.图〔1〕为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图〔2〕中的三视图表示的实物为_____________。
必修2第一章空间几何体测试题
空间几何体测试题姓名______班级________分数______________一.选择题1.向高为H的水瓶中匀速注水,注满为止,如果注水量V与水深h的函数关系如下面左图所示,那么水瓶的形状是()2. 棱长都是1的三棱锥的表面积为()A A. 3B 23C 33D 433.一个正三棱柱(底面是正三角形,侧棱与底面垂直的三棱柱)的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是()A.4 B.22 C.32D.34. 如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。
则该几何体的俯视图可以是( )5.正方体的内切球外接球的体积之比为( )A. 1∶3B. 1∶3C. 1∶33D. 1∶96.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:A. 224cmπ,212cmπ B. 215cmπ,212cmπC. 224cmπ,236cmπ D.以上都不正确7.一个几何体的三视图如图所示,则这个几何体的体积等于( )(A) 4 (B) 6 (C) 8 (D)128.已知一个几何体的三视图如图所示, 则这个几何体的体积为( )A.8/3B.4C.8D.169.一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为()A.46B.43C.23D.2610.如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是()65题号 1 2 3 4 5 6 7 8 9 10 答案二.填空题11. 一球与棱长为2cm 的正方体的各棱相切,则球的体积是______12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是_______3cm .(第13题)13.一个的空间几何体的三视图如图所示,则该几何体的体积为_______14.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 _________ 15.正四棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为______cm 2.16.圆柱形容器内盛有高度为3cm 的水,若放入三个相同的珠(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如右下图所示),则球的半径是____cm. 17.一个几何体的三视图及其尺寸如图所示,则该几何体的侧面积为_______cm 2.(第17题) (第16题)三.解答题18.画出下列空间几何体的三视图.19.一个圆台的母线长为12cm ,两底面面积分别是24cm π和225cm π,求: (1)圆台的高1OO 的长度;(2)截得此圆台的圆锥的母线长SA 的长度.20.一个正三棱柱的三视图如图所示,(1)做出该三棱柱的斜二测直观图(不要求叙述过程) (2)求这个三棱柱的表面积和体积.21.某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P -EFGH,下半部分是长方体ABCD -EFGH. 图5、图6分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图;(2)求该安全标识墩的体积俯视图正(主)视图88侧(左)视8222正(主)视 2 2侧(左)视图 俯视图。
【人教A版】高中数学必修2第一章《空间几何体》单元测试题
高中数学必修2第一章《空间几何体》单元测试题(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的)1.下列说法正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等2.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是()A.长方形B.圆柱C.立方体D.圆锥3.如图所示的直观图表示的四边形的平面图形A′B′C′D′是()A.任意梯形B.直角梯形C.任意四边形D.平行四边形4.半径为R的半圆卷成一个圆锥,则它的体积为()A.324πR3 B.38πR3C.524πR3 D.58πR35.如图所示为一个简单几何体的三视图,则其对应的实物是()6.若长方体相邻三个面的面积分别为2,3,6,则长方体的体积等于()A. 6 B.6C.6 6 D.367.一个几何体的三视图如下图所示,已知这个几何体的体积为103,则h 为()A.32B. 3C.3 3 D.5 38.过球的一条半径的中点作垂直于该半径的平面,则所得截面圆的面积与球的表面积的比值为()A.316 B.916C.38 D.9329.一个正方体内接于一个球,过球心作一截面,如图所示,则截面所有可能的图形是()A.①③B.②④C.①②③D.②③④10.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.24 cm3B.40 cm3C.36 cm3D.48 cm311.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π12.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E是棱BC上的一点,则三棱锥D1B1C1E的体积等于()A.13 B.512C.36 D.16二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.圆台的底面半径为1和2,母线长为3,则此圆台的体积为________.14.圆柱形容器内部盛有高度为8 cm的水,若放入三个相同的球(球的半径为圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.15.已知一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如下图所示,侧视图是一个矩形,则这个矩形的面积是________.16.如图是一个棱长为1的无盖正方体盒子的平面展开图,A,B,C,D为其上四个点,则以A,B,C,D为顶点的三棱锥的体积为________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示是一个长方体截去一个角得到的几何体的直观图及正视图和侧视图(单位:cm).(1)画出该多面体的俯视图,并标上相应的数据;(2)按照给出的数据,求该几何体的体积.18.(本小题满分12分)一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h也相等,用a将h表示出来.19.(本小题满分12分)把一块边长为10的正方形铁片按如图所示的阴影部分裁下,用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与等腰三角形的底边边长x的函数关系式,并求出函数的定义域.20.(本小题满分12分)在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.21.(本小题满分12分)如图所示是已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.22.(本小题满分12分)已知一圆锥的母线长为10 cm,底面半径为5 cm.(1)求它的高;(2)若该圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,求球的体积.高中数学必修2第一章《空间几何体》单元测试题(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的)1.下列说法正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等答案:B2.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是()A.长方形B.圆柱C.立方体D.圆锥解析:由正视图和侧视图可知该几何体是棱柱或圆柱,则D不可能.再由俯视图是圆可知该几何体是圆柱.答案:B3.如图所示的直观图表示的四边形的平面图形A′B′C′D′是()A.任意梯形B.直角梯形C.任意四边形D.平行四边形解析:AB∥Oy,AD∥Ox,故A′B′⊥A′D′.又BC∥AD且BC≠AD,所以为直答案:B4.半径为R的半圆卷成一个圆锥,则它的体积为()A.324πR3 B.38πR3C.524πR3 D.58πR3解析:设圆锥的底面半径为r,高为h.依题意πR=2πr,所以r=R 2,则h=R2-T2=3 2R.所以圆锥的体积V=13πr2n=13π⎝⎛⎭⎪⎫R22·32R=324πR3.答案:A5.如图所示为一个简单几何体的三视图,则其对应的实物是()解析:根据三种视图的对角线的位置关系,容易判断A正确.答案:A6.若长方体相邻三个面的面积分别为2,3,6,则长方体的体积等于()A. 6 B.6C.6 6 D.36解析:设长方体的长、宽、高分别为a,b,c,则不妨设ab=6,ac=3,所以a 2b 2c 2=2×3×6=6. 故长方体的体积V =abc = 6. 答案:A7.一个几何体的三视图如下图所示,已知这个几何体的体积为103,则h 为( )A .32B . 3C .3 3D .5 3解析:由三视图可知,该几何体是四棱锥,其底面是长为6,宽为5的矩形,高为h ,所以V =13×6×5×h =103,解得h = 3.答案:B8.过球的一条半径的中点作垂直于该半径的平面,则所得截面圆的面积与球的表面积的比值为( )A.316B.916C.38D.932解析:设球的半径为R ,截面圆的半径为r , 则⎝ ⎛⎭⎪⎫R 22+r 2=R 2,所以r 2=34R 2. 故S 截面S 球=πr 24πR 2=14×34=316. 答案:A9.一个正方体内接于一个球,过球心作一截面,如图所示,则截面所有可能的图形是()A.①③B.②④C.①②③D.②③④解析:当截面平行于正方体的一个侧面时得③,当截面过正方体的体对角线时得②,当截面不平行于任何侧面也不过体对角线时得①,但无论如何都不能截出④.答案:C10.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.24 cm3B.40 cm3C.36 cm3D.48 cm3解析:由三视图可知,该几何体是由一个三棱柱截去两个全等的与三棱柱等底面且高为2的三棱锥形成的,故该几何体的体积V=12×4×3×8-2×13×12×4×3×2=40(cm3),故选B.答案:B11.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC .20πD .28π解析:根据三视图还原出几何体,再根据表面积公式求解. 由三视图可知其对应几何体应为一个切去了18部分的球,由43πr 3×78=28π3,得r =2,所以此几何体的表面积为4πr 2×78+3×14πr 2=17π,故选A. 答案:A 12.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是棱BC 上的一点,则三棱锥D 1B 1C 1E 的体积等于( )A.13B.512C.36D.16解析:VD 1B 1C 1E =VE B 1C 1D 1=13S △B 1C 1D 1·CC 1=13×12×12×1=16,故选D.答案:D二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.圆台的底面半径为1和2,母线长为3,则此圆台的体积为________. 解析:作圆台的轴截面如图所示,则r 1=O 1D =1,r 2=O 2A =2,AD =3.所以圆台的高h =AD 2-AH 2=32-(2-1)2=2 2.因此圆台的体积V =π3(r 21+r 22+r 1r 2)h =14 2 π3.答案:1423π14.圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径为圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析:设球的半径为r ,放入3个球后,圆柱液面高度变为6r ,则有πr 2·6r =8πr 2+3×43πr 3,即2r =8,所以r =4.答案:415.已知一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如下图所示,侧视图是一个矩形,则这个矩形的面积是________.解析:设正三棱柱的侧棱与底面边长为a ,则V三棱柱=34a 2·a =23,所以a =2,因此底面正三角形的高2×sin 60°= 3.故侧视图(矩形)的面积S =3×2=2 3.答案:2 316.如图是一个棱长为1的无盖正方体盒子的平面展开图,A ,B ,C ,D 为其上四个点,则以A ,B ,C ,D 为顶点的三棱锥的体积为________.解析:将展开图还原为正方体,如图所示.故以A ,B ,C ,D 为顶点的三棱锥的体积V =V C ABD =13×⎝ ⎛⎭⎪⎫12×12×1=16. 答案:16三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示是一个长方体截去一个角得到的几何体的直观图及正视图和侧视图(单位:cm).(1)画出该多面体的俯视图,并标上相应的数据;(2)按照给出的数据,求该几何体的体积.解:(1)该几何体的俯视图如图所示.(2)该几何体的体积V =V 长方体-V 三棱柱=4×4×6-13×(12×2×2)×2=2843(cm 3).18.(本小题满分12分)一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h 也相等,用a 将h 表示出来.解:V 圆锥液=πh 2·h 3, V 圆柱液=π·(a 2)2·h ,由已知得πh 33=π·(a 2)2h ,所以h =32a .19.(本小题满分12分)把一块边长为10的正方形铁片按如图所示的阴影部分裁下,用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与等腰三角形的底边边长x 的函数关系式,并求出函数的定义域.解:在Rt △EOF 中,EF =5,OF =12x ,则EO =25-14x 2,于是V =13x 225-14x 2. 依题意,函数的定义域为{x |0<x <10}.20.(本小题满分12分)在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.解:设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S ,则R =OC =2,AC =4,AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EB OC ,即323=r 2,所以r =1, S 底=2πr 2=2π,S 侧=2πr ·h =23π.所以S =S 底+S 侧=2π+23π=(2+23)π.21.(本小题满分12分)如图所示是已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.解:(1)这个几何体的直观图如图所示.(2)这个几何体可看成是由正方体AC 1及直三棱柱B 1C 1Q A 1D 1P 的组合体. 由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).22.(本小题满分12分)已知一圆锥的母线长为10 cm ,底面半径为5 cm.(1)求它的高;(2)若该圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,求球的体积.解:(1)它的高为102-52=53(cm).(2)其轴截面如图所示.设球的半径为r cm.由题意知△SCE与△SBD相似,则r5=53-r10.解得r=533.于是,所求球的体积V球=4π3r3=4π3⎝⎛⎭⎪⎫5333=5003π27(cm3).。
高中数学必修二第一章《空间几何体》单元测试卷及答案
高中数学必修二第一章《空间几何体》单元测试卷及答案(2套)测试卷一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知某空间几何体的三视图如图所示,则此几何体为( )A .圆台B .四棱锥C .四棱柱D .四棱台2.如图,△O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积为( )A .6B .32C .62D .123.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .3034B .6034C .3034135+D .1354.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A .3324R π B .338R π C .3525R π D .358R π 5.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( ) A .1:3B .1:1C .2:1D .3:16.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为( )A .163π B .193π C .1912π D .43π7.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8πB .6πC .4πD .π8.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )A .1B .12 C .13D .169.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )A .14斛B .22斛C .36斛D .66斛103cm 的内切球,则此棱柱的体积是( ) A .393B .354cmC .327cmD .318311.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727 B .59C .1027 D .1312.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A .3500cm 3πB .3cm 3866πC .3cm 31372πD .3cm 32048π 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.14.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x 轴和正三角形的一边平行,则这个正三角形的直观图的面积是__________________.15.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为__________________.16.如图是一个组合几何体的三视图,则该几何体的体积是__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长为10cm.求圆锥的母线长.18.(12分)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.19.(12分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.20.(12分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,求这个几何体的体积.21.(12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?22.(12分)如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D的体积.)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】D【解析】由几何体的三视图可得,该几何体为四棱台.故选D.【解析】△OAB 是直角三角形,OA =6,OB =4,∠AOB =90°,∴164122OAB S =⨯⨯=△.故选D .3.【答案】A【解析】由菱形的对角线长分别是9和15,得菱形的边长为22915334222⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则这个菱柱的侧面积为3434530342⨯⨯=.故选A . 4.【答案】A【解析】依题意,得圆锥的底面周长为πR ,母线长为R ,则底面半径为2R,高为32R ,所以圆锥的体积2313332224R R R ⎛⎫⨯π⨯⨯=π ⎪⎝⎭.故选A . 5.【答案】D【解析】()121::3:13V V Sh Sh ⎛⎫== ⎪⎝⎭.故选D .6.【答案】B【解析】设球半径是R ,依题意知,该三棱柱是一个底面边长为2,侧棱长为1的正三棱柱,记上,下底面的中心分别是O 1,O ,易知球心是线段O 1O 的中点,于是222123192312R ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,因此所求球的表面积是2191944123R ππ=π⨯=, 故选B . 7.【答案】C【解析】设正方体的棱长为a ,则a 3=8,所以a =2,而此正方体内的球直径为2,所以S 表=4πr 2=4π.故选C . 8.【答案】C【解析】该几何体的直观图为如图所示的四棱锥P -ABCD ,且P A =AB =AD =1,P A ⊥AB ,P A ⊥AD ,四边形ABCD 为正方形,则2111133V =⨯⨯=,故选C .【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,∴163r =,所以米堆的体积为21116320354339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭,故堆放的米约为320 1.62229÷≈,故选B . 10.【答案】B【解析】由题意知棱柱的高为23cm ,底面正三角形的内切圆的半径为3cm , ∴底面正三角形的边长为6cm ,正三棱柱的底面面积为293cm ,∴此三棱柱的体积()3932354cm V =⨯=.故选B .11.【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示.切削掉部分的体积V 1=π×32×6-π×22×4-π×32×2=20π(cm 3), 原来毛坯体积V 2=π×32×6=54π(cm 3).故所求比值为1220105427V V π==π.故选C . 12.【答案】A【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4, 球心到截面圆的距离为R -2,则R 2=(R -2)2+42,解得R =5.∴球的体积为3345500cm 33π⨯π=.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】①②③⑤【解析】三棱锥的三视图中含有三角形,∴正视图有可能是三角形,满足条件. 四棱锥的三视图中含有三角形,满足条件. 三棱柱的三视图中含有三角形,满足条件. 四棱柱的三视图中都为四边形,不满足条件. 圆锥的三视图中含有三角形,满足条件. 圆柱的三视图中不含有三角形,不满足条件. 故答案为①②③⑤.14.【答案】6415.【答案】11【解析】设棱台的高为x ,则有2165016512x -⎛⎫= ⎪⎝⎭,解之,得x =11. 16.【答案】36+128π【解析】由三视图可知该组合几何体下面是一个圆柱,上面是一个三棱柱,故所求体积为1346168361282V =⨯⨯⨯+π⨯=+π.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】403cm . 【解析】如图,设圆锥母线长为l ,则1014l l -=,所以cm 403l =.18.【答案】(1)正六棱锥;(2)见解析,232a ;(3)332a .【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥. (2)该几何体的侧视图如图.其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边的距离,即3BC a =,AD 是正六棱锥的高,即3AD a =,所以该平面图形的面积为2133322a a a =.(3)设这个正六棱锥的底面积是S ,体积为V ,则223336S =,所以2313333322V a a a =⨯⨯=.19.【答案】不会,见解析.【解析】因为()33314144134cm 2323V R =⨯π=⨯⨯π⨯≈半球,()22311412201cm 33V r h =π=π⨯⨯≈圆锥,134<201,所以V 半球<V 圆锥,所以,冰淇淋融化了,不会溢出杯子. 20.【答案】74V π=. 【解析】由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半径为2和32的同心圆,故该几何体的体积为23741124V π⎛⎫=π⨯-π⨯= ⎪⎝⎭.21.【答案】282m .【解析】如图所示,连接AC 和BD 交于O ,连接SO .作SP ⊥AB ,连接OP .在Rt △SOP 中,)7m SO =,()11m 2OP BC ==,所以)22m SP =, 则△SAB 的面积是)2122222m 2⨯⨯=.所以四棱锥的侧面积是)242282m ⨯,即制造这个塔顶需要282m 铁板.22.【答案】(13;(2)33a .【解析】(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴2A B A C A D BC BD C D a ''''''======,∴三棱锥A ′-BC ′D 的表面积为213422232a a a ⨯=.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为2233a . (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的.故V三棱锥A′-BC′D=V正方体-4V三棱锥A′-ABD=3 32114323a a a a-⨯⨯⨯=测试卷二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下图中的图形经过折叠不能围成棱柱的是()2.一个几何体的三视图如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.123.下列命题中,正确的命题是()A.存在两条异面直线同时平行于同一个平面B.若一个平面内两条直线与另一个平面平行,则这两个平面平行C.底面是矩形的四棱柱是长方体D.棱台的侧面都是等腰梯形4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图所示,是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0 B.9 C.快D.乐5.如图,O A B'''△是水平放置的OAB△的直观图,则AOB△的面积是()。
数学必修2第一章空间几何体测试题
数学必修2第一章空间几何体测试题姓名 班级 计分一、选择题1、若一个几何体的俯视图是圆,则它不可能是( )A 、球;B 、圆柱;C 、圆锥;D 、三棱锥。
2 有一个几何体的三视图如下图所示,这个几何体应是一个( )A 棱台B 棱锥C 棱柱D 都不对3. 棱长都是1的三棱锥的表面积为( )A A.BCD4 圆台的一个底面周长是另一个底面周长的3倍,母线长为3, 圆台的侧面积为84π,则圆台较小底面的半径为( ) A 7 B 6 C5 D 35、将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )∙D C B A 题图 6 半径为R 的半圆卷成一个圆锥,则它的体积为( )A324R B38R C324R D38R7 棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( )A 1:7 B 2:7 C 7:19 D 5:16主视图 左视图俯视图8.图(1)是由哪个平面图形旋转得到的()A B C D9.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V和2V,则12:V V=()A. 1:3B. 1:1C. 2:1D. 3:110.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:A. 224cmπ,212cmπ B. 215cmπ,212cmπC. 224cmπ,236cmπ D.以上都不正确二、填空题11 等体积的球和正方体,它们的表面积的大小关系是S球___S正方体12若三个球的表面积之比是1:2:3,则它们的体积之比是_____________13.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________14 如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________15、正方体的全面积为18cm 2,则它的体积是____________16.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 .17.球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.18.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.19.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________。
高中数学必修2第一章空间几何体试题(含答案)
高一数学必修2第一章测试题班别 姓名 考号 得分 一、选择题:(每小题5分,共50分)1. 下图中的几何体是由哪个平面图形旋转得到的( )A B C D2.若一个几何体的三视图都是等腰三角形,则这个几何体可能是( ) A .圆锥 B .正四棱锥 C .正三棱锥 D .正三棱台3.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( ) A. 1:3 B. 1:1 C. 2:1 D. 3:14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( ):2:3 :3:5 C.1:2:4 :3:9 5.棱长都是1的三棱锥的表面积为( ) A.3 B. 32 C. 33 D. 346.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) :27 B. 2:3 C.4:9 D. 2:97.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:( )俯视图 主视图 侧视图 πcm 2,12πcm 3 πcm 2,12πcm 3 πcm 2,36πcm 3 D.以上都不正确 8.下列几种说法正确的个数是( )①相等的角在直观图中对应的角仍然相等 ②相等的线段在直观图中对应的线段仍然相等 ③平行的线段在直观图中对应的线段仍然平行 ④线段的中点在直观图中仍然是线段的中点 A .1 B .2 C .3 D .49.正方体的内切球和外接球的半径之比为( )A B .2 C .2 D 310.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧面,则两圆锥的高之比为( ) A .3∶4 B .9∶16 C .27∶64 D .都不对题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:(每小题6分,共30分)11.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修2第一章空间几何体测试题
一、选择题
1、若一个几何体的俯视图是圆,则它不可能是( )
A 、球;
B 、圆柱;
C 、圆锥;
D 、三棱锥。
2 有一个几何体的三视图如下图所示,这个几何体应是一个( )
A 棱台
B 棱锥
C 棱柱
D 都不对
3. 棱长都是1的三棱锥的表面积为( )
A A.
B
C
D
4 圆台的一个底面周长是另一个底面周长的3倍,母线长为3, 圆台的侧面积为84π,则圆台较小底面的半径为( ) A 7 B 6 C
5 D 3
5、将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )
•
D C B A C B
A
5 题图
6 半径为R 的半圆卷成一个圆锥,则它的体积为( )
A
3R B
3R C
3R D
3R
7 棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成
两部分的体积之比是( )
A 1:7 B 2:7 C 7:19 D 5:16 主视图 左视图
俯视图
8.图(1)是由哪个平面图形旋转得到的()
A B C D
9.已知圆柱与圆锥的底面积相等,高也相等,它们的体积
分别为
1
V和
2
V,则
12
:
V V=()
A. 1:3
B. 1:1
C. 2:1
D. 3:1
10.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:
A. 2
24cm
π,2
12cm
π B. 2
15cm
π,2
12cm
π
C. 2
24cm
π,2
36cm
π D.以上都不正确
二、填空题
11 等体积的球和正方体,它们的表面积的大小关系是S球___S正方体
12若三个球的表面积之比是1:2:3,则它们的体积之比是_____________
13.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;
图(2)中的三视图表示的实物为_____________
14 如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,
则四边形 E BFD 1在该正方体的面上的射影可能是____________
15、正方体的全面积为18cm 2,则它的体积是____________
16.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 .
17.球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.
18.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水
面升高9厘米则此球的半径为_________厘米.
19.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为
___________。
图(1) 图(2)。