19_AdvancedAGVs

合集下载

agv术语英文大全

agv术语英文大全

agv术语英文大全
1. AGV (Automated Guided Vehicle) - 自动引导车辆
2. AGV System - 自动引导车辆系统
3. AGV Technology - 自动引导车辆技术
4. AGV Navigation - 自动引导车辆导航
5. AGV Control - 自动引导车辆控制
6. AGV Communication - 自动引导车辆通信
7. AGV Fleet Management - 自动引导车辆车队管理
8. AGV Safety - 自动引导车辆安全
9. AGV Battery - 自动引导车辆电池
10. AGV Charging - 自动引导车辆充电
11. AGV Path Planning - 自动引导车辆路径规划
12. AGV Traffic Management - 自动引导车辆交通管理
13. AGV Load Handling - 自动引导车辆载荷处理
14. AGV Speed Control - 自动引导车辆速度控制
15. AGV Collision Avoidance - 自动引导车辆避免碰撞
16. AGV Laser Guidance - 自动引导车辆激光导航
17. AGV Vision System - 自动引导车辆视觉系统
18. AGV Localization - 自动引导车辆定位
19. AGV Positioning - 自动引导车辆定位
20. AGV Mapping - 自动引导车辆地图绘制。

agvhd分级标准

agvhd分级标准

agvhd分级标准
AGV是自动导引车(Automated Guided Vehicle)的英文缩写,它是一种能够自主导航和运输物品的机器人车辆。

AGV的分级标准
可以根据其功能、载荷能力、导航方式等多个方面进行分类。

一种常见的AGV分级标准是根据其导航方式的不同进行分类。

根据导航方式的不同,AGV可以分为激光导航AGV、磁导航AGV、惯
性导航AGV等几种类型。

激光导航AGV利用激光传感器进行定位和
导航,适用于复杂环境下的精确定位;磁导航AGV则是通过在地面
铺设磁性导航线或点,利用磁性传感器进行导航;惯性导航AGV则
是通过内置的惯性导航系统来实现定位和导航,适用于对定位精度
要求不高的场景。

另一种常见的AGV分级标准是根据其载荷能力进行分类。

根据
载荷能力的不同,AGV可以分为轻载AGV、中载AGV和重载AGV等几
种类型。

轻载AGV适用于小件物料的搬运,载荷能力一般在几百千
克以下;中载AGV适用于中等大小的物料搬运,载荷能力在数吨左右;重载AGV则适用于大型物料的搬运,载荷能力可以达到数十吨
甚至更高。

此外,还可以根据AGV的功能特点进行分类,比如堆垛式AGV、载货式AGV、拖车式AGV等。

堆垛式AGV主要用于货物的堆垛和取放;载货式AGV则是专门用于搬运货物;拖车式AGV则可以连接多
个车辆,用于大批量货物的运输。

综上所述,AGV的分级标准可以从导航方式、载荷能力和功能
特点等多个角度进行分类,不同类型的AGV适用于不同的场景和需求。

黑翼飞行模拟器用户手册说明书

黑翼飞行模拟器用户手册说明书

IntroductionThe Blackwing BW 635RG is an ultralight two-seater aeroplane designed for recreational flying and training purposes. It features a sleek and modern design, with a composite airframe and a low-wing configuration. The Blackwing has a cruising speed of up to 120 knots and a range of approximately 700 nautical miles, making it suitable for both short and long-distance flights. The cockpit is equipped with state-of-the-art avionics, including a glass cockpit display and an autopilot system. The Blackwing is also known for its superior handling and stability, making it a popular choice among flying enthusiasts and flight schools. The BW 635RG is powered by the venerable Rotax 915 iS engine.Development Credits:Mal Cartwright Product LeadRuss White3D Modelling, Interior and Exterior TexturingJack Lavigne IntegrationHarry Stringer AnimationPropAir Flight Model and SystemsJordan Gough ManualWith special thanks to our Beta Testers:Rob Abernathy John BurgessNick Cooper John DowMatt McGee Darryl WightmanTable of ContentsIntroduction (2)Development Credits: (2)With special thanks to our Beta Testers: (2)Table of Contents (3)Notes on Hardware (4)Overview (5)Aircraft Limitations (6)Airspeed Limitations (6)Engine Limitations (6)Operating Conditions (6)Fuel (7)Other Limitations (7)Emergency Procedures (8)Engine Failure on the Take-off Roll (8)Engine Failure after Take-off (8)Glide Performance (8)Emergency Landing (9)Spin Recovery (9)Normal Procedures (10)Before Starting Engine (10)Starting Engine (10)Before Taxiing (11)Taxiing (11)Engine Runup (11)Before Take-off (11)Take-Off (12)Initial Climb (12)Cruise Climb (12)Cruise (12)Landing (13)Balked Landing (13)After Landing (13)Securing Aircraft (14)Basic Performance (15)Stall Speeds (15)Take-Off Performance (15)Landing Performance (16)Systems Description (17)Instrument Panel Layout (17)Switch Logic and Electrical System (18)Master Switch (18)Fuel Pump Switch (19)LAND/TAXI Switch (19)Strobe/Nav Switch (19)Electrical System Diagram (20)Engine (21)Propeller (21)Fuel (21)Notes on HardwareDue to the unusual 3-position switches in this aircraft, conventional hardware 2position toggle switches (eg. strobe or nav light switches) cannot be translated tothe single 3-position switch which combine these.Additionally, as this aircraft utilises a single level power control (throttle), conventional throttle/prop/mixture hardware may interfere with the function of this system, and not work as intended. It is recommended to place your propeller and mixture levers in the IDLE position, and not move them while the engine is running.OverviewThe Orbx BW 635RG has been developed using official documentation and Computer Aided Design (CAD) resources from Blackwing Sweden. As a result, the aeroplane has been created through masterful modelling, texturing, systems integration, and flight model development.Figure 1 – Aircraft 3-viewAircraft DimensionsLength 6.6m Height 2.2m Wingspan8.4mWeightsBasic Empty Weight 375kg Maximum Take-off Weight 600kg Maximum Fuel Capacity (Litres)130LThe content in this manual and the operation of the BW 635RG in Microsoft Flight Simulator strictly must not be used as reference material in any form for operating the real aircraft.Aircraft LimitationsAirspeed LimitationsAirspeed Description Airspeed (KIAS) RemarksVne Never Exceed Speed 157 Must not exceed this speed in any operation.Va Manoeuvring Speed 109 If full or abrupt control deflection is made, the airframe may be overstressed.Vfe1 Max flap extended speed20 degrees90 Maximum speed for flaps 20°Vfe2 Max flap extended speed35-45 degrees 70 Maximum speed for flaps 35-45°Vlo Maximum landing gearoperating speed 70Do not extended or retract the landing gearabove this speed.Vle Maximum landing gear extended speed 90 Do not exceed this speed with the landing gearalready down.Vs0 Stall speed flaps/gearextended 38 Stall speed with gear down/flaps >0° and in level flight at MTOWVs1 Stall speed clean 49 Stall speed flaps retracted, gear up and in level flight at MTOWEngine LimitationsEngineEngine Manufacturer Rotax Engine Model Rotax 915 iSMaximum Power Take-off (Max 5 min.) 141 hp Continuous 135 hpMaximum RPM Take-off (Max 5 min.) 5800 Continuous 5500Critical Altitude 15000ft AMSL Maximum OperatingAltitude23000ft AMSL Operating ConditionsAerobatic manoeuvres, flight in IFR conditionsand flights in icing conditions are prohibited inthis aircraft.FuelFuel TanksLeft Right Litres US Gal Litres US GalTotal Fuel in Tank 67.5 17.8 62.5 16.5Unusable Fuel 2.5 0.7 2.5 0.7 Total Useable Fuel in Tanks 66.5 17.6 61.5 16.2Other LimitationsMaximum demonstrated crosswind for the BW 635RG is 20 knots.Emergency ProceduresNote: The following procedures have been modified to be suitable for simulation. It does not cover emergencies that are a) not simulated and b) not reasonable. Checklist items from the real procedures have been omitted and these procedures must not under any circumstances be used for training purposes.Engine Failure on the Take-off RollThrottle: IDLEIgnition: OFFFuel Pump: MAIN (DOWN POS)Brakes: APPLYWhen stopped: SECURE AIRCRAFTEngine Failure after Take-offNose: IMMEDIATELY LOWERAirspeed: 65 KNOTSLanding Area: DETERMINE WITHIN 30° OF NOSEFlaps: USE AS REQUIREDLanding Gear: USE DESCRETIONFuel Selector: OFFIgnition: OFFMaster Switch: OFFGlide PerformanceThe BW 635RG, the approximate performance for a glide is 65 KIAS which willgive approximately a 545ft/min rate of descent in the clean configuration.Glide performance will degrade significantly on extension of flaps and landinggear.Emergency LandingAirspeed: 65 KIASField: PICK BEST OPTIONLanding Gear: USE DISCRETION DEPENDING ON FIELD TYPEFlaps: AS REQUIREDFuel Selector: OFFIgnition: OFFFuel Pump: MAIN (down)Master Switch: OFF BEFORE LANDINGSpin RecoveryThrottle: IDLEControl Stick: AILERON NEUTRALRudder: FULL OPPOSITE TO DIRECTION OF ROTATIONControl Stick: POSITIVELY FORWARD OF NEUTRALRudder: NEUTRAL WHEN ROTATION STOPSControl Stick: SMOOTHLY PULL OUT OF DIVEWARNING:INTENTIONAL SPINS ARE NOT APPROVED INTHIS AIRCRAFT.Normal ProceduresNote: The pre-flight inspection portion of the normal procedures has been removed due to impracticality in the simulator.Before Starting EngineIgnition: OFFMaster Switch: OFF (down)Backup Battery: OFF/AUTO (down)Landing Gear Lever: DOWNCircuit Breakers: INCanopy CLOSED (CLICKING THE LATCHON THE INSIDE LEFT SIDEWALL.) Starting EngineParking Brake: HOLD TOE BRAKES AND ENGAGE PARKINGBRAKEMaster Switch: ENGINE START (middle position)Fuel Selector: SETFuel Gauge: CHECKFuel Pump: BOTH (up)Ignition: BOTHNav Lights: STROBE (middle position)Throttle: SET ½-1 INCH OPENIgnition: STARTOil Pressure: GREEN WITHIN 10 SECWarnings: NONEBefore TaxiingMaster Switch: NORMAL OPERATION (up)Altimeter: SETAvionics: SETParking Brake: DISENGAGETaxiingInstruments: CHECKED (COMPASS/HSI/BALL/ATT) Engine RunupParking Brake: ENGAGERPM: 2500 RPMFuel Pump: CYCLE, CHECK FUEL PRESSUREIdle: CHECK IDLE 1800 +/- 100 RPM Before Take-offCanopy: CLOSED AND LOCKEDFlaps: 1 STAGE (20°)Elevator Trim: SET FOR TAKE-OFFEngine Instruments: NORMALLanding Light: ON (up)Controls: FULL FREE AND CORRECT MOVEMENTParking Brake: DISENGAGETake-OffThrottle: FULLControls: NEUTRAL45 Knots: ROTATEAccelerate: NOSE ON HORIZON, ACCEL TO 80 KIASPositive Rate of Climb: GEAR UPLanding Light: OFF (down)Flaps: RETRACT ABOVE 500’ AGLInitial ClimbThrottle: MAX CONTINUOUS (5500 RPM)Airspeed: 90 KIASFuel Pump: MAIN (down) ABOVE 500’ AGL Cruise ClimbThrottle: MAX CONTINUOUS (5500 RPM)Airspeed: 130 KIASCruiseThrottle: 55-75% PowerAirspeed: 120-157 KIAS (<130 KIAS IN TURB)LandingFuel: QTY CHECKEDFuel Selector: FULLEST TANKFuel Pump: BOTH (up position)Airspeed: 90 KIASFlaps: EXTEND FLAP 1 <90 KIASDownwind Airspeed: 65 KIASLanding Gear: DOWN @ 65 KIAS; CHECK 3 GREENLanding Light: ON (up position)Base Leg: EXTEND FLAP 2 < 65 KIASFinal Approach Airspeed: 60 KIASBalked LandingThrottle: SMOOTHLY INCREASEAirspeed: 60 KIASTrim: COURSE TRIM TO RELIEVE PRESSUREFlaps: RETRACT TO POSITION 1 (20°)Gear: UPTrim: TRIM FOR CLIMBAfter LandingFlaps: RETRACTExterior Lights: AS REQ’DFuel Pump: MAIN (down)Securing AircraftParking Brake: ENGAGEDThrottle: IDLESwitches: ALL OFF EXCEPT ACL AND MASTERIgnition: OFFNav Lights: OFF (down)Master Switch: OFFBasic PerformanceStall SpeedsMTOW 600kg | CG 32% MAC | Power Idle | Level FlightFlap Position Stall Speed (KIAS) 0° 49 20° 44 35° 39 45°38Take-Off PerformanceMTOW | ISA CONDITIONS | SEA LEVEL | FLAPS 1 (20°) | MTOW (600kg)Cruise PerformanceRunway Surface Ground RollOver 50ft Obstacleft mft mPaved Runway328 100 656 200 Unpaved (Grass) Runway 361110689208Pressure Altitude Power (%) TAS Fuel Flow LPH MAP (inHg) Endurance(hr)Range (nm) 500055 161 19.7 30 5.8 941 65 170 23.3 34.1 4.9 827 7517826.937.44.1738Landing PerformanceMTOW | ISA CONDITIONS | FLAPS 2 (35°) | MTOW (600kg) | Speed 1.3 x VsoRunway Surface Ground Roll Over 50ft Obstacle ft m ft mPaved Runway 525 160 951 290 Unpaved (Grass) Runway 558 170 984 300Systems Description Instrument Panel LayoutSwitch Logic and Electrical SystemThe electrical switches in the BW 635RG are 3-position switches. These are generally known as “DOWN”, “MIDDLE” and “UP”. They are briefly explained below.Master SwitchThe MASTER switch functions in a unique way, with the following switch logic:1.When the MASTER switch is DOWN, all battery power is off. There will beno electrical power provided to the aircraft.•Note: The engine CANNOT be shut down when the master switch isoff. Electrical power must be present for the engine to turn off.2.When the MASTER switch is in the MIDDLE (Engine Start) position, limitedsystem functionality will be present. The backup battery will be activatedand power the following systems:•Primary Flight Display•Compass•AHRS (Attitude Heading Reference System)•Radio3.When the MASTER switch is UP (Normal Operation), full electrical supplywill be provided to the aircraft. The following systems will be powered on: •Note: the engine CANNOT be started with the MASTER switch in theUP position. If the engine won’t start, check the switch is in theMIDDLE position•Multi-Function Display•Transponder•Autopilot•Audio panel•STBY instruments•Pitot Heat•Main battery is disconnected from running engine. Alternatorprovides power.See Section NORMAL PROCEDURES for positioning of the MASTER switch.Fuel Pump SwitchThe Fuel Pump switch also has some advanced logic to it, due to two fuel pumpsbeing present, however, to put it simply, it operates in the following way:1.In the DOWN position, the main fuel pump is in use.2.In the MIDDLE position, the auxiliary fuel pump is in use.3.In the UP position, both fuel pumps will be on.LAND/TAXI SwitchThe LAND/TAXI switch powers the Taxi and Landing lights. It operates in the following logic:1.In the DOWN position, both lights will be OFF.2.In the MIDDLE position, the taxi light will switch on when the landinggear is extended.3.In the UP position, the Landing Light will switch on when the landinggear is extended.Strobe/Nav SwitchThe Strobe/Nav switch powers the Navigation (Red/Green) and Strobe (flashingwhite) lights. It operates in the following logic:1.In the DOWN position, both lights will be OFF.2.In the MIDDLE position, the STROBE light will be on.3.In the UP position, both the strobe and Nav lights will be on.Electrical System DiagramThe BW 635RG’s electrical system is modelled in the following way in Microsoft Flight Simulator.Because the starter system is connected to the BACKUP BUS, this means you cannot start the engine with the MASTER switch in the UP position, due to the BACKUP BUS being disconnected from the circuit once the MAIN BAT BUS is powered.Page 21 of 21User Guide v1.0 –RevisionEngineThe BW 635RG is powered by the Rotax 915iS. The Rotax 915iS is a four-stroke, four-cylinder, fuel-injected, turbocharged aircraft engine with a maximum power output of141 horsepower. The engine utilizes electronic fuel injection (EFI) technology toprovide precise fuel delivery and improved fuel efficiency. It also features a modernliquid-cooling system and a dual electronic ignition system for reliable performance.The Rotax 915iS engine has a maximum operating RPM of 5,200, with a recommended continuous operation range of 5,000 RPM or less.PropellerThe propeller is a 3-blade wood-composite design, which is hydraulically adjustable for operation at various pitch angles, controlled independently of the pilot. The propeller is linked to the engine through an electronically controlled governor, where RPM isadjusted in accordance with the position of the throttle control. This pitch curve cannot be adjusted in flight, however is designed to ensure maximum performance in allphases of flight.FuelBoth wings have fuel tanks, which are fed to the engine via electric fuel pumps. Fuelsystem information is fed via sensors to the Garmin avionics suite and can be viewedon the displays inside the cockpit.AIRPLANE WEIGHTSBasic Empty Weight……………………….…375 KgMaximum Takeoff Weight…………………..600 KgMaximum Fuel Weight………………………...95 Kg Maximum Landing Weight………………….600 Kg TANK USABLE FUEL LEFT WING TANK67.5 litres 17.8 US Gallons RIGHT WING TANK62.5 litres 16.5 US Gallons TOTAL 130 litres34.3 US GallonsFUEL CAPACITY AIRSPEEDS Never Exceed Speed ……….…………….173 KIAS Max Structural Cruising Speed…………..156 KIAS Maneuvering Speed MTOW……………….109 KIAS Initial Climb………………………………………80 KIASBest Angle Climb……………………………….75 KIASBest Rate of Climb……………………………..90 KIASMax Flap Ext 20°……………………..............90 KIASMax Flap Ext 35-45°……………………………70 KIASMax Landing Gear Operation……………….70 KIASMax Landing Gear Extended………………..90 KIASPlanned Cruise TAS………………………….130 KIASFinal Approach Speed………………………..60 KIAS POWERPLANT LIMITATIONSENGINE LIMITS (RPM)Take-off (5 Minutes)………....5800 RPM Max Continuous……………….5500 RPMALTITUDE LIMITSMaximum Operating Altitude………………23 000ftFor Microsoft Flight Simulator Use Only0-12023 Orbx Simulation Systems Pty. Ltd BW 635RG QUICK REFERENCESHEETIssued: 21 Apr 2023Revised: 21 Apr 20230-2PROCEDURESBEFORE STARTING ENGINEPreflight Inspection………………………….COMPLETECrew Briefing………………………………….COMPLETEIgnition…………………………………………………….OFFMaster Switch…………………………………………..OFFBackup Battery …..…………………………….OFF/AUTOLanding Gear Lever………………………………..DOWNCircuit Breakers…………………………………………..IN Canopy………………………………………………CLOSED STARTING ENGINEArea……………………………………………………..CLEARParking Brake……………….HOLD TOE BRAKES ANDENGAGEMaster Switch …..……………….ENGINE START (MID)Fuel Selector…………………………………………….SETFuel Pump………………………………………BOTH (UP)Ignition………………………………………………….BOTHExternal Lights……………………………………..AS REQThrottle ………………………..………..Τ12-1 INCH OPENIgnition………………………………………………….START AFTER START Oil Pressure.…………………………………………RISING Master Switch ……………………………..NORMAL (UP)Radios………………………………………………………SET Altimeter…………………………………………………..SET ATIS and Clearance…………………………..OBTAINEDBEFORE TAXIBrakes/Park Brake ………………………….DISENGAGEFlight Instruments……………………………..CHECKEDCompass…………………………………………CHECKED BEFORE TAKEOFFCanopy/Harnesses………………………………SECURE Flaps…………………………………….……1 STAGE (20°)Trim ..……………………………………SET FOR TAKEOFF Flight Instruments………………………………………SET Engine Instruments………………CHECKED NORMAL Avionics…………………………………………………….SET External Lights………………………………………AS REQ Flight Controls…………..FULL, FREE AND CORRECT Takeoff Safety Brief………………………….DELIVERED TAKEOFFBrakes/Park Brake………………………….DISENGAGEPower…………SMOOTHLY INCREASE TO MAXIMUM45 knots………………………………………………ROTATEAccelerate……….…NOSE ON HORIZON, TO 80 KTSPositive Rate of Climb………………………….GEAR UPLanding Light.……………………………….OFF (DOWN)Flaps ………………………..RETRACT ABOVE 500’ AGLMEMORY ITEMS 2023 Orbx Simulation Systems Pty. Ltd ENGINE RUN UP Parking Brake ……………………………………..ENGAGE Engine Instruments……………………………CHECKED Engine RPM…………………………………SET 2500 RPM Fuel Pump…………………………………………….CYCLE Idle …………………..…..CHECK IDLE 1800 ±100RPM Navigation Equipment …..…………………………….SETFor Microsoft Flight Simulator Use OnlyIssued: 21 Apr 2023Revised: 21 Apr 2023AFTER TAKEOFF Engine Instruments……………………..WITHIN LIMITS Climb Speed…………………………………………90 KIAS Fuel Pump………….MAIN (DOWN ) ABOVE 500’ AGL0-3CRUISEPower….……………………………………….SET 55-75%Airspeed…..……….120-157KTS (<130KTS IN TURB.)DESCENTAltimeter…………………………………………………..SETFuel Selector………………………………FULLEST TANKPower Lever………………….AS REQUIRED FOR RODApproach Brief………………………………PLETE BEFORE LANDINGBrakes……………………………………………………..OFFFuel ………….………………………………QTY CHECKEDFuel Selector………………………………FULLEST TANK Fuel Pump……….………………………………BOTH (UP)LANDINGDOWNWINDAirspeed….………………………………………….90 KIASFlaps….………………………………………STAGE 1 (20°)Airspeed………….………………………………….65 KIASLanding Gear…..…………………….DOWN @ 65 KIASCHECK 3 GREENLanding Light………………………………………ON (UP)BASEFlaps…………………………… STAGE 2 (35°) < 65 KIASFINALAirspeed………….………………………………….60 KIASTouchdown ……………………….MAIN WHEELS FIRSTStick………………………………………………FULL BACK Brakes…………………………………………………..APPLYAFTER LANDING Flaps………………………………………………..RETRACT Landing Lights…………………………………………..OFFFuel Pump….………………………………MAIN (DOWN)SHUTDOWNParking Brake ……………………………………..ENGAGE Throttle……………………………………………………IDLE Switches….………………………….OFF EXCL. MASTERIgnition..…………………………………………………..OFFLights….……………………………………….OFF (DOWN)Master Switch..……………………………..OFF (DOWN)MEMORY ITEMS 2023 Orbx Simulation Systems Pty. Ltd For Microsoft Flight Simulator Use OnlyPROCEDURESIssued: 21 Apr 2023Revised: 21 Apr 2023。

OSHA现场作业手册说明书

OSHA现场作业手册说明书

DIRECTIVE NUMBER: CPL 02-00-150 EFFECTIVE DATE: April 22, 2011 SUBJECT: Field Operations Manual (FOM)ABSTRACTPurpose: This instruction cancels and replaces OSHA Instruction CPL 02-00-148,Field Operations Manual (FOM), issued November 9, 2009, whichreplaced the September 26, 1994 Instruction that implemented the FieldInspection Reference Manual (FIRM). The FOM is a revision of OSHA’senforcement policies and procedures manual that provides the field officesa reference document for identifying the responsibilities associated withthe majority of their inspection duties. This Instruction also cancels OSHAInstruction FAP 01-00-003 Federal Agency Safety and Health Programs,May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045,Revised Field Operations Manual, June 15, 1989.Scope: OSHA-wide.References: Title 29 Code of Federal Regulations §1903.6, Advance Notice ofInspections; 29 Code of Federal Regulations §1903.14, Policy RegardingEmployee Rescue Activities; 29 Code of Federal Regulations §1903.19,Abatement Verification; 29 Code of Federal Regulations §1904.39,Reporting Fatalities and Multiple Hospitalizations to OSHA; and Housingfor Agricultural Workers: Final Rule, Federal Register, March 4, 1980 (45FR 14180).Cancellations: OSHA Instruction CPL 02-00-148, Field Operations Manual, November9, 2009.OSHA Instruction FAP 01-00-003, Federal Agency Safety and HealthPrograms, May 17, 1996.Chapter 13 of OSHA Instruction CPL 02-00-045, Revised FieldOperations Manual, June 15, 1989.State Impact: Notice of Intent and Adoption required. See paragraph VI.Action Offices: National, Regional, and Area OfficesOriginating Office: Directorate of Enforcement Programs Contact: Directorate of Enforcement ProgramsOffice of General Industry Enforcement200 Constitution Avenue, NW, N3 119Washington, DC 20210202-693-1850By and Under the Authority ofDavid Michaels, PhD, MPHAssistant SecretaryExecutive SummaryThis instruction cancels and replaces OSHA Instruction CPL 02-00-148, Field Operations Manual (FOM), issued November 9, 2009. The one remaining part of the prior Field Operations Manual, the chapter on Disclosure, will be added at a later date. This Instruction also cancels OSHA Instruction FAP 01-00-003 Federal Agency Safety and Health Programs, May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045, Revised Field Operations Manual, June 15, 1989. This Instruction constitutes OSHA’s general enforcement policies and procedures manual for use by the field offices in conducting inspections, issuing citations and proposing penalties.Significant Changes∙A new Table of Contents for the entire FOM is added.∙ A new References section for the entire FOM is added∙ A new Cancellations section for the entire FOM is added.∙Adds a Maritime Industry Sector to Section III of Chapter 10, Industry Sectors.∙Revises sections referring to the Enhanced Enforcement Program (EEP) replacing the information with the Severe Violator Enforcement Program (SVEP).∙Adds Chapter 13, Federal Agency Field Activities.∙Cancels OSHA Instruction FAP 01-00-003, Federal Agency Safety and Health Programs, May 17, 1996.DisclaimerThis manual is intended to provide instruction regarding some of the internal operations of the Occupational Safety and Health Administration (OSHA), and is solely for the benefit of the Government. No duties, rights, or benefits, substantive or procedural, are created or implied by this manual. The contents of this manual are not enforceable by any person or entity against the Department of Labor or the United States. Statements which reflect current Occupational Safety and Health Review Commission or court precedents do not necessarily indicate acquiescence with those precedents.Table of ContentsCHAPTER 1INTRODUCTIONI.PURPOSE. ........................................................................................................... 1-1 II.SCOPE. ................................................................................................................ 1-1 III.REFERENCES .................................................................................................... 1-1 IV.CANCELLATIONS............................................................................................. 1-8 V. ACTION INFORMATION ................................................................................. 1-8A.R ESPONSIBLE O FFICE.......................................................................................................................................... 1-8B.A CTION O FFICES. .................................................................................................................... 1-8C. I NFORMATION O FFICES............................................................................................................ 1-8 VI. STATE IMPACT. ................................................................................................ 1-8 VII.SIGNIFICANT CHANGES. ............................................................................... 1-9 VIII.BACKGROUND. ................................................................................................. 1-9 IX. DEFINITIONS AND TERMINOLOGY. ........................................................ 1-10A.T HE A CT................................................................................................................................................................. 1-10B. C OMPLIANCE S AFETY AND H EALTH O FFICER (CSHO). ...........................................................1-10B.H E/S HE AND H IS/H ERS ..................................................................................................................................... 1-10C.P ROFESSIONAL J UDGMENT............................................................................................................................... 1-10E. W ORKPLACE AND W ORKSITE ......................................................................................................................... 1-10CHAPTER 2PROGRAM PLANNINGI.INTRODUCTION ............................................................................................... 2-1 II.AREA OFFICE RESPONSIBILITIES. .............................................................. 2-1A.P ROVIDING A SSISTANCE TO S MALL E MPLOYERS. ...................................................................................... 2-1B.A REA O FFICE O UTREACH P ROGRAM. ............................................................................................................. 2-1C. R ESPONDING TO R EQUESTS FOR A SSISTANCE. ............................................................................................ 2-2 III. OSHA COOPERATIVE PROGRAMS OVERVIEW. ...................................... 2-2A.V OLUNTARY P ROTECTION P ROGRAM (VPP). ........................................................................... 2-2B.O NSITE C ONSULTATION P ROGRAM. ................................................................................................................ 2-2C.S TRATEGIC P ARTNERSHIPS................................................................................................................................. 2-3D.A LLIANCE P ROGRAM ........................................................................................................................................... 2-3 IV. ENFORCEMENT PROGRAM SCHEDULING. ................................................ 2-4A.G ENERAL ................................................................................................................................................................. 2-4B.I NSPECTION P RIORITY C RITERIA. ..................................................................................................................... 2-4C.E FFECT OF C ONTEST ............................................................................................................................................ 2-5D.E NFORCEMENT E XEMPTIONS AND L IMITATIONS. ....................................................................................... 2-6E.P REEMPTION BY A NOTHER F EDERAL A GENCY ........................................................................................... 2-6F.U NITED S TATES P OSTAL S ERVICE. .................................................................................................................. 2-7G.H OME-B ASED W ORKSITES. ................................................................................................................................ 2-8H.I NSPECTION/I NVESTIGATION T YPES. ............................................................................................................... 2-8 V.UNPROGRAMMED ACTIVITY – HAZARD EVALUATION AND INSPECTION SCHEDULING ............................................................................ 2-9 VI.PROGRAMMED INSPECTIONS. ................................................................... 2-10A.S ITE-S PECIFIC T ARGETING (SST) P ROGRAM. ............................................................................................. 2-10B.S CHEDULING FOR C ONSTRUCTION I NSPECTIONS. ..................................................................................... 2-10C.S CHEDULING FOR M ARITIME I NSPECTIONS. ............................................................................. 2-11D.S PECIAL E MPHASIS P ROGRAMS (SEP S). ................................................................................... 2-12E.N ATIONAL E MPHASIS P ROGRAMS (NEP S) ............................................................................... 2-13F.L OCAL E MPHASIS P ROGRAMS (LEP S) AND R EGIONAL E MPHASIS P ROGRAMS (REP S) ............ 2-13G.O THER S PECIAL P ROGRAMS. ............................................................................................................................ 2-13H.I NSPECTION S CHEDULING AND I NTERFACE WITH C OOPERATIVE P ROGRAM P ARTICIPANTS ....... 2-13CHAPTER 3INSPECTION PROCEDURESI.INSPECTION PREPARATION. .......................................................................... 3-1 II.INSPECTION PLANNING. .................................................................................. 3-1A.R EVIEW OF I NSPECTION H ISTORY .................................................................................................................... 3-1B.R EVIEW OF C OOPERATIVE P ROGRAM P ARTICIPATION .............................................................................. 3-1C.OSHA D ATA I NITIATIVE (ODI) D ATA R EVIEW .......................................................................................... 3-2D.S AFETY AND H EALTH I SSUES R ELATING TO CSHO S.................................................................. 3-2E.A DVANCE N OTICE. ................................................................................................................................................ 3-3F.P RE-I NSPECTION C OMPULSORY P ROCESS ...................................................................................................... 3-5G.P ERSONAL S ECURITY C LEARANCE. ................................................................................................................. 3-5H.E XPERT A SSISTANCE. ........................................................................................................................................... 3-5 III. INSPECTION SCOPE. ......................................................................................... 3-6A.C OMPREHENSIVE ................................................................................................................................................... 3-6B.P ARTIAL. ................................................................................................................................................................... 3-6 IV. CONDUCT OF INSPECTION .............................................................................. 3-6A.T IME OF I NSPECTION............................................................................................................................................. 3-6B.P RESENTING C REDENTIALS. ............................................................................................................................... 3-6C.R EFUSAL TO P ERMIT I NSPECTION AND I NTERFERENCE ............................................................................. 3-7D.E MPLOYEE P ARTICIPATION. ............................................................................................................................... 3-9E.R ELEASE FOR E NTRY ............................................................................................................................................ 3-9F.B ANKRUPT OR O UT OF B USINESS. .................................................................................................................... 3-9G.E MPLOYEE R ESPONSIBILITIES. ................................................................................................. 3-10H.S TRIKE OR L ABOR D ISPUTE ............................................................................................................................. 3-10I. V ARIANCES. .......................................................................................................................................................... 3-11 V. OPENING CONFERENCE. ................................................................................ 3-11A.G ENERAL ................................................................................................................................................................ 3-11B.R EVIEW OF A PPROPRIATION A CT E XEMPTIONS AND L IMITATION. ..................................................... 3-13C.R EVIEW S CREENING FOR P ROCESS S AFETY M ANAGEMENT (PSM) C OVERAGE............................. 3-13D.R EVIEW OF V OLUNTARY C OMPLIANCE P ROGRAMS. ................................................................................ 3-14E.D ISRUPTIVE C ONDUCT. ...................................................................................................................................... 3-15F.C LASSIFIED A REAS ............................................................................................................................................. 3-16VI. REVIEW OF RECORDS. ................................................................................... 3-16A.I NJURY AND I LLNESS R ECORDS...................................................................................................................... 3-16B.R ECORDING C RITERIA. ...................................................................................................................................... 3-18C. R ECORDKEEPING D EFICIENCIES. .................................................................................................................. 3-18 VII. WALKAROUND INSPECTION. ....................................................................... 3-19A.W ALKAROUND R EPRESENTATIVES ............................................................................................................... 3-19B.E VALUATION OF S AFETY AND H EALTH M ANAGEMENT S YSTEM. ....................................................... 3-20C.R ECORD A LL F ACTS P ERTINENT TO A V IOLATION. ................................................................................. 3-20D.T ESTIFYING IN H EARINGS ................................................................................................................................ 3-21E.T RADE S ECRETS. ................................................................................................................................................. 3-21F.C OLLECTING S AMPLES. ..................................................................................................................................... 3-22G.P HOTOGRAPHS AND V IDEOTAPES.................................................................................................................. 3-22H.V IOLATIONS OF O THER L AWS. ....................................................................................................................... 3-23I.I NTERVIEWS OF N ON-M ANAGERIAL E MPLOYEES .................................................................................... 3-23J.M ULTI-E MPLOYER W ORKSITES ..................................................................................................................... 3-27 K.A DMINISTRATIVE S UBPOENA.......................................................................................................................... 3-27 L.E MPLOYER A BATEMENT A SSISTANCE. ........................................................................................................ 3-27 VIII. CLOSING CONFERENCE. .............................................................................. 3-28A.P ARTICIPANTS. ..................................................................................................................................................... 3-28B.D ISCUSSION I TEMS. ............................................................................................................................................ 3-28C.A DVICE TO A TTENDEES .................................................................................................................................... 3-29D.P ENALTIES............................................................................................................................................................. 3-30E.F EASIBLE A DMINISTRATIVE, W ORK P RACTICE AND E NGINEERING C ONTROLS. ............................ 3-30F.R EDUCING E MPLOYEE E XPOSURE. ................................................................................................................ 3-32G.A BATEMENT V ERIFICATION. ........................................................................................................................... 3-32H.E MPLOYEE D ISCRIMINATION .......................................................................................................................... 3-33 IX. SPECIAL INSPECTION PROCEDURES. ...................................................... 3-33A.F OLLOW-UP AND M ONITORING I NSPECTIONS............................................................................................ 3-33B.C ONSTRUCTION I NSPECTIONS ......................................................................................................................... 3-34C. F EDERAL A GENCY I NSPECTIONS. ................................................................................................................. 3-35CHAPTER 4VIOLATIONSI. BASIS OF VIOLATIONS ..................................................................................... 4-1A.S TANDARDS AND R EGULATIONS. .................................................................................................................... 4-1B.E MPLOYEE E XPOSURE. ........................................................................................................................................ 4-3C.R EGULATORY R EQUIREMENTS. ........................................................................................................................ 4-6D.H AZARD C OMMUNICATION. .............................................................................................................................. 4-6E. E MPLOYER/E MPLOYEE R ESPONSIBILITIES ................................................................................................... 4-6 II. SERIOUS VIOLATIONS. .................................................................................... 4-8A.S ECTION 17(K). ......................................................................................................................... 4-8B.E STABLISHING S ERIOUS V IOLATIONS ............................................................................................................ 4-8C. F OUR S TEPS TO BE D OCUMENTED. ................................................................................................................... 4-8 III. GENERAL DUTY REQUIREMENTS ............................................................. 4-14A.E VALUATION OF G ENERAL D UTY R EQUIREMENTS ................................................................................. 4-14B.E LEMENTS OF A G ENERAL D UTY R EQUIREMENT V IOLATION.............................................................. 4-14C. U SE OF THE G ENERAL D UTY C LAUSE ........................................................................................................ 4-23D.L IMITATIONS OF U SE OF THE G ENERAL D UTY C LAUSE. ..............................................................E.C LASSIFICATION OF V IOLATIONS C ITED U NDER THE G ENERAL D UTY C LAUSE. ..................F. P ROCEDURES FOR I MPLEMENTATION OF S ECTION 5(A)(1) E NFORCEMENT ............................ 4-25 4-27 4-27IV.OTHER-THAN-SERIOUS VIOLATIONS ............................................... 4-28 V.WILLFUL VIOLATIONS. ......................................................................... 4-28A.I NTENTIONAL D ISREGARD V IOLATIONS. ..........................................................................................4-28B.P LAIN I NDIFFERENCE V IOLATIONS. ...................................................................................................4-29 VI. CRIMINAL/WILLFUL VIOLATIONS. ................................................... 4-30A.A REA D IRECTOR C OORDINATION ....................................................................................................... 4-31B.C RITERIA FOR I NVESTIGATING P OSSIBLE C RIMINAL/W ILLFUL V IOLATIONS ........................ 4-31C. W ILLFUL V IOLATIONS R ELATED TO A F ATALITY .......................................................................... 4-32 VII. REPEATED VIOLATIONS. ...................................................................... 4-32A.F EDERAL AND S TATE P LAN V IOLATIONS. ........................................................................................4-32B.I DENTICAL S TANDARDS. .......................................................................................................................4-32C.D IFFERENT S TANDARDS. .......................................................................................................................4-33D.O BTAINING I NSPECTION H ISTORY. .....................................................................................................4-33E.T IME L IMITATIONS..................................................................................................................................4-34F.R EPEATED V. F AILURE TO A BATE....................................................................................................... 4-34G. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-35 VIII. DE MINIMIS CONDITIONS. ................................................................... 4-36A.C RITERIA ................................................................................................................................................... 4-36B.P ROFESSIONAL J UDGMENT. ..................................................................................................................4-37C. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-37 IX. CITING IN THE ALTERNATIVE ............................................................ 4-37 X. COMBINING AND GROUPING VIOLATIONS. ................................... 4-37A.C OMBINING. ..............................................................................................................................................4-37B.G ROUPING. ................................................................................................................................................4-38C. W HEN N OT TO G ROUP OR C OMBINE. ................................................................................................4-38 XI. HEALTH STANDARD VIOLATIONS ....................................................... 4-39A.C ITATION OF V ENTILATION S TANDARDS ......................................................................................... 4-39B.V IOLATIONS OF THE N OISE S TANDARD. ...........................................................................................4-40 XII. VIOLATIONS OF THE RESPIRATORY PROTECTION STANDARD(§1910.134). ....................................................................................................... XIII. VIOLATIONS OF AIR CONTAMINANT STANDARDS (§1910.1000) ... 4-43 4-43A.R EQUIREMENTS UNDER THE STANDARD: .................................................................................................. 4-43B.C LASSIFICATION OF V IOLATIONS OF A IR C ONTAMINANT S TANDARDS. ......................................... 4-43 XIV. CITING IMPROPER PERSONAL HYGIENE PRACTICES. ................... 4-45A.I NGESTION H AZARDS. .................................................................................................................................... 4-45B.A BSORPTION H AZARDS. ................................................................................................................................ 4-46C.W IPE S AMPLING. ............................................................................................................................................. 4-46D.C ITATION P OLICY ............................................................................................................................................ 4-46 XV. BIOLOGICAL MONITORING. ...................................................................... 4-47CHAPTER 5CASE FILE PREPARATION AND DOCUMENTATIONI.INTRODUCTION ............................................................................................... 5-1 II.INSPECTION CONDUCTED, CITATIONS BEING ISSUED. .................... 5-1A.OSHA-1 ................................................................................................................................... 5-1B.OSHA-1A. ............................................................................................................................... 5-1C. OSHA-1B. ................................................................................................................................ 5-2 III.INSPECTION CONDUCTED BUT NO CITATIONS ISSUED .................... 5-5 IV.NO INSPECTION ............................................................................................... 5-5 V. HEALTH INSPECTIONS. ................................................................................. 5-6A.D OCUMENT P OTENTIAL E XPOSURE. ............................................................................................................... 5-6B.E MPLOYER’S O CCUPATIONAL S AFETY AND H EALTH S YSTEM. ............................................................. 5-6 VI. AFFIRMATIVE DEFENSES............................................................................. 5-8A.B URDEN OF P ROOF. .............................................................................................................................................. 5-8B.E XPLANATIONS. ..................................................................................................................................................... 5-8 VII. INTERVIEW STATEMENTS. ........................................................................ 5-10A.G ENERALLY. ......................................................................................................................................................... 5-10B.CSHO S SHALL OBTAIN WRITTEN STATEMENTS WHEN: .......................................................................... 5-10C.L ANGUAGE AND W ORDING OF S TATEMENT. ............................................................................................. 5-11D.R EFUSAL TO S IGN S TATEMENT ...................................................................................................................... 5-11E.V IDEO AND A UDIOTAPED S TATEMENTS. ..................................................................................................... 5-11F.A DMINISTRATIVE D EPOSITIONS. .............................................................................................5-11 VIII. PAPERWORK AND WRITTEN PROGRAM REQUIREMENTS. .......... 5-12 IX.GUIDELINES FOR CASE FILE DOCUMENTATION FOR USE WITH VIDEOTAPES AND AUDIOTAPES .............................................................. 5-12 X.CASE FILE ACTIVITY DIARY SHEET. ..................................................... 5-12 XI. CITATIONS. ..................................................................................................... 5-12A.S TATUTE OF L IMITATIONS. .............................................................................................................................. 5-13B.I SSUING C ITATIONS. ........................................................................................................................................... 5-13C.A MENDING/W ITHDRAWING C ITATIONS AND N OTIFICATION OF P ENALTIES. .................................. 5-13D.P ROCEDURES FOR A MENDING OR W ITHDRAWING C ITATIONS ............................................................ 5-14 XII. INSPECTION RECORDS. ............................................................................... 5-15A.G ENERALLY. ......................................................................................................................................................... 5-15B.R ELEASE OF I NSPECTION I NFORMATION ..................................................................................................... 5-15C. C LASSIFIED AND T RADE S ECRET I NFORMATION ...................................................................................... 5-16。

基于改进DDPG的多AGV路径规划算法

基于改进DDPG的多AGV路径规划算法

基于改进DDPG的多AGV路径规划算法目录1. 内容综述 (2)1.1 研究背景 (2)1.2 研究目的 (4)1.3 文献综述 (4)1.4 问题提出与论文结构 (6)2. 多智能体系统(MAS)理论基础 (7)2.1 多智能体系统概述 (9)2.2 多智能体通信模型 (10)2.3 多智能体协同任务规划 (11)3. 深度确定性策略梯度算法(DDPG) (13)3.1 DDPG算法简介 (14)3.2 DDPG算法结构 (16)3.3 DDPG算法的训练与参数调整 (17)4. 基于改进DDPG的多AGV路径规划算法 (19)4.1 智能体交互模型设计 (20)4.2 多智能体协同路径规划的优化方法 (22)4.3 基于奖励机制的路径规划评估标准设计 (23)4.4 改进DDPG算法流程 (24)4.5 仿真实验设置与结果分析 (25)4.5.1 仿真环境搭建 (27)4.5.2 仿真数据与指标 (28)4.5.3 仿真对比实验 (29)5. 结论与展望 (31)5.1 主要贡献与创新点 (32)5.2 研究展望 (33)1. 内容综述本文档旨在深入探讨基于改进型深度确定性策略梯度(DDPG)算法的多自主导引车(AGV)路径规划技术。

现代社会对高效物流和自动化仓储的需求日益增长,而AGV在这一领域展现了巨大的潜力和应用价值。

要求增加的全局路径规划效率和实时更新的能力对传统的规划算法提出挑战。

我们研究并构建了一种新型的、结合强化学习技术的路径优化方案,该方案旨在提升调度决策的速度与质量。

改进DDPG算法通过引入先进的Q网络优化技术和动作重复机制,极大地削弱了传统DDPG算法的时序维度依赖,同时加强了对特定场景的适应能力。

在多AGV协同工作的实际情境下,该算法博客摆明了,目标是通过学习目标函数的稳定梯度,在确保安全的前提下,以最短路径完成货物运输,避免无用的转弯和冗余路径,从而提高吞吐量和资源利用率。

慈溪agv小车方案

慈溪agv小车方案

慈溪agv小车方案项目背景AGV(Automated Guided Vehicle)中文翻译为自动导引车,是一种可以自主导航的无人驾驶运输车辆。

AGV小车广泛应用于仓储、物流、制造业等领域,可以实现物流自动化、提高生产效率、减少人力成本等目标。

本文将介绍慈溪地区AGV小车方案,包括方案概述、硬件配置和软件功能等内容。

方案概述慈溪AGV小车方案旨在提供一种经济实用的自动导引车解决方案,满足慈溪地区企业的物流自动化需求。

该方案采用无线通信、激光导航、自主定位等技术,实现小车的自主导航和货物运输。

方案具备以下特点:1.灵活性:小车可以根据环境和任务实时调整路径和速度,适应不同的工作场景。

2.安全性:小车配备多重安全传感器和防撞装置,能够及时发现障碍物,并避免碰撞。

3.高效性:小车通过自动化控制,提高了物流作业效率,减少了人工干预。

4.可扩展性:方案支持多小车协同作业,可以根据需要扩展车辆数量,满足不同规模的物流需求。

硬件配置AGV小车慈溪AGV小车方案使用的小车为电动车型,具备以下硬件配置:•导航系统:小车配备激光导航和自主定位系统,实现室内导航和定位功能。

•载货平台:小车的载货平台采用模块化设计,可根据需要调整大小和高度,适应不同尺寸的货物运输。

•电池系统:小车搭载高容量锂电池,提供持久的电力支持,满足长时间工作的需求。

•安全传感器:小车配备多重安全传感器,包括红外线传感器、超声波传感器等,能够及时感知障碍物。

•通信模块:小车内置无线通信模块,与慈溪AGV控制中心进行实时通信,接收任务指令并上报工作状态。

AGV控制中心慈溪AGV小车方案的控制中心是该方案的核心部分,具备以下硬件配置:•服务器:控制中心采用高性能服务器,用于管理和分配任务,实时监控和控制小车运行。

•路由器:控制中心配备高速路由器,用于和AGV小车进行无线通信,传输任务指令和接收工作状态。

•交换机:控制中心通过交换机将服务器、路由器和AGV小车连接起来,建立局域网,实现快速通信。

工业机器人英汉词汇

工业机器人英汉词汇

工业机器人英汉词汇Aabrasive wheel 砂轮绝对精度absolute accuracy交流变频器驱动AC inverter drive加速性能 acceleration performance加速时间acceleration time准确定位accurate positioning适应控制adaptive controladaptive robot 适应机器⼈附加轴additional axis附加负载additional loadadditional mass附加质量附加操作additional operation㬵黏剂密封adhesive sealingadvanced collision avoidance高级碰撞避免航空航天工业 aerospace industryagricultural robot农业机器人air robot 空中机器人air tube 空气管alignment pose 校准位姿全电动工业机器人 all-electric industrial robotant colony algorithm蚁群算法 anthropomorphic robot 拟人机器人应用程序application program圆弧示教arc teachingarc welding 点焊,电弧焊弧焊机器人arc welding purpose robot电弧焊机器人arc welding robotarch motion 圆弧运动arm 手臂手臂配置arm configuration关节模型articulated model铰接式机器人,关节(形)机器人 articulated robot关节结构articulated structure人工智能artificial intelligence流水线,装配线assembly lineassembly robot 装配机器人atomization air雾化空气attained pose 实到位姿增强现实技术 augmented reality technologyauto part 汽车零件自动码垛automated palletizingautomated production 自动化生产automatic assembly line自动装配线自动控制automatic control末端执行器自动更换装置 automatic end effector exchanger自动物流运输automatic logistics transportautomatic mode 自动模式自动操作automatic operation自动换刀automatic tool changerautomatically controlled自动控制automation technology 自动化技术汽车行业automotive industry辅助轴电缆auxiliary axis cableaxis 轴axis movement 轴运动BBase 机座机座坐标系base coordinate system机座安装面base mounting surfacebeltless structure无带结构bend motion 弯曲运动big data 大数据bio-inspired robotics仿生机器人制动过滤器brake filter制动电阻brake resistor内置碰撞检测功能 built-in collision detection feature内置控制器built-in controller内置梯形图逻辑处理 built-in ladder logic processingbus cable 总线电缆C电缆干扰cable interferencecamera sensor 相机传感器基于相机的工件定位 camera-based part locationCartesian coordinate笛卡尔坐标系笛卡尔坐标机器人 Cartesian coordinate robot直⻆坐标机器人cartesian robot儿童看护机器人child care robotclean room 洁净室clean room robot 清洁室机器人cloud computing 云计算云存储技术cloud storage technology协作机器人collaborative robot彩色触摸屏color touch screencombustible gas 可燃气体command pose 指令位姿commissioning 试运行communication feature 通信功能communication protocol 通信协议紧凑式六臂机器人compact six-axis robotcompliance 柔顺性component placemen 元件贴装复合材料composite materialcompound movement 复合运动compressed air 压缩空气计算机数控computer numerical control计算机数控机床 computer numerical control machine计算机数控系统 computer numerical control systemcomputing control 计算控制computing power 计算能力构形configuration无缝连接connect seamlessly可连接控制器connectable controllerconsumable part 中小型零部件消费类电子产品consumer electronicscontinuous path 连续路径连续路径控制continuous path control轨迹控制continuous- path controlled控制算法control algorithmcontrol electronics电子控制装置control movement 控制运动control program 控制程序control scheme 控制方案control system 控制系统控制器机柜;控制柜 controller cabinet控制器系统面板 controller system panel (CSP)人机协作 cooperation of humans and machines坐标变换 coordinate transformation核心竞争力core competitiveness对应关节corresponding joint曲线示教curve teaching网络物理系统cyber-physical systemcycle 循环cycle time 循环时间圆柱坐标系 cylindrical coordinate systemcylindrical joint圆柱关节圆柱坐标机器人cylindrical robotD达芬奇手术机器人 DaVinci surgical robot电弧焊机器人 dedicated arc welding robot防护等级degree of protectiondegrees of freedom 自由度Delta并联关节机器人 Delta parallel joint robotDelta robot Delta机器人DexTAR教育机器人 DexTAR educational robotdie-casting machine压铸机数字动力digital power直接空气管路direct air line直接耦合direct coupling直接驱动direct drive残障辅助机器人 disability auxiliary robotdisplacement machine 变位机距离准确度distance accuracy距离重复性distance repeatability分布关节distributed jointDOF 自由度double-arm SCARA robot 双臂SCARA机器人 drawing machine 拉丝机drift of pose accuracy位姿准确度漂移位姿重复性漂移 drift of pose repeatability伺服驱动器轴drive controller for axesdrive controller伺服驱动器drive mechanism 驱动机构drive power supply驱动电源驱动比drive ratio驱动单元drive unitdriving device驱动装置dual arm 双臂。

汽车行业常用缩写

汽车行业常用缩写

Milford Proving Ground
试验场
Master Process Index
主程序索引
Master Parts List
主零件列表
Material Planning System
原料计划系统
序号 缩写
117 MRD 118 MSDS 119 MSE 120 MSS 121 MTBF 122 MTS 123 MVSS 124 NAMA 125 NAO 126 NAOC 127 NC 128 NOA 129 NSB 130 OED 131 OSH 132 OSHA 133 OSHMS 134 OSHS 135 PA 136 PAA 137 PAC 138 PACE 139 PAD 140 PARTS 141 PC 142 PCL 143 PCM 144 PCR 145 PDC 146 PDM 147 PDS 148 PDT 149 PED 150 PEP 151 PER 152 PET 153 PGM 154 PI 155 PIMREP
国际统一车辆审核
Job Element Sheet
工作要素单
Job Issue Sheet
工作要素单
Just in Time
准时制
Job per hour
每小ቤተ መጻሕፍቲ ባይዱ工作量
Key Control Characteristics
关键控制特性
Key Characteristics Designation System
制造综合工程师
Marketing
营销
Material Labor Balance System
物化劳动平衡系统
Manufacturing Major Subsystem Technical Specificatio制ns造重要子系统技术说明书

卡梅伦液压数据手册(第 20 版)说明书

卡梅伦液压数据手册(第 20 版)说明书
11
iv

CONTENTS OF SECTION 1
☰ Hydraulics
⌂ Cameron Hydraulic Data ☰
Introduction. . . . . . . . . . . . . ................................................................ 1-3 Liquids. . . . . . . . . . . . . . . . . . . ...................................... .......................... 1-3
4
Viscosity etc.
Steam data....................................................................................................................................................................................... 6
1 Liquid Flow.............................................................................. 1-4
Viscosity. . . . . . . . . . . . . . . . . ...................................... .......................... 1-5 Pumping. . . . . . . . . . . . . . . . . ...................................... .......................... 1-6 Volume-System Head Calculations-Suction Head. ........................... 1-6, 1-7 Suction Lift-Total Discharge Head-Velocity Head............................. 1-7, 1-8 Total Sys. Head-Pump Head-Pressure-Spec. Gravity. ...................... 1-9, 1-10 Net Positive Suction Head. .......................................................... 1-11 NPSH-Suction Head-Life; Examples:....................... ............... 1-11 to 1-16 NPSH-Hydrocarbon Corrections.................................................... 1-16 NPSH-Reciprocating Pumps. ....................................................... 1-17 Acceleration Head-Reciprocating Pumps. ........................................ 1-18 Entrance Losses-Specific Speed. .................................................. 1-19 Specific Speed-Impeller. .................................... ........................ 1-19 Specific Speed-Suction...................................... ................. 1-20, 1-21 Submergence.. . . . . . . . . ....................................... ................. 1-21, 1-22 Intake Design-Vertical Wet Pit Pumps....................................... 1-22, 1-27 Work Performed in Pumping. ............................... ........................ 1-27 Temperature Rise. . . . . . . ...................................... ........................ 1-28 Characteristic Curves. . ...................................... ........................ 1-29 Affinity Laws-Stepping Curves. ..................................................... 1-30 System Curves.. . . . . . . . ....................................... ........................ 1-31 Parallel and Series Operation. .............................. ................. 1-32, 1-33 Water Hammer. . . . . . . . . . ...................................... ........................ 1-34 Reciprocating Pumps-Performance. ............................................... 1-35 Recip. Pumps-Pulsation Analysis & System Piping...................... 1-36 to 1-45 Pump Drivers-Speed Torque Curves. ....................................... 1-45, 1-46 Engine Drivers-Impeller Profiles. ................................................... 1-47 Hydraulic Institute Charts.................................... ............... 1-48 to 1-52 Bibliography.. . . . . . . . . . . . ...................................... ........................ 1-53

移动机器人和Intralogistics永恒的供应链 阿哥五AGV

移动机器人和Intralogistics永恒的供应链  阿哥五AGV

移动机器人和Intralogistics永恒的供应链阿哥五AGV收藏供应链从不睡觉。

机器人也不会。

移动机器人将物料流速传递到履行工作站和制造过程之间。

他们减少挑选错误并提高吞吐量。

它们有助于整合存储空间和面向未来的操作。

机器人抵消劳动力成本上涨和短缺。

它们提高人体工程学,并更好地利用您熟练的员工队伍。

机器人移动性导致可追溯性和可预测性,您通向行业4.0的道路。

您通往永远在线的供应链的道路。

“ 2016年度”MHI“年度行业报告”显示了“数字化,永续供应链”的出现,近900名行业高管受访。

研究发现,51%的受访者认为机器人和自动化具有竞争优势或破坏性技术。

与此同时,58%的人认为雇用和保留熟练劳动力来实施这些技术是一个主要的障碍。

供应商需要可靠,经济高效的即插即用解决方案。

许多新的机器人创业公司和成立的玩家正在交付货物。

机架式机器人,亚马逊效应当Amazon在2012年收购Kiva Systems时,他们获得了机器人技术的竞争优势。

专利申请将该技术保存在亚马逊在美国的法庭。

但在欧洲,CarryPick?系统的工作方式类似。

模块化的CarryPick货物对人系统使用低调机器人车辆(由地板上的QR码引导的AGV)驱动下面的移动机架,并将其传送到工作站。

从那里,工作人员将所要求的物品放在装运箱中。

参见Swisslog的全球物流公司DB Schenker 的CarryPick系统。

在CarryPick系统中使用的AGV运营商是Swisslog和德国公司Grenzebach共同开发的结果。

印度创业公司GreyOrange有一个类似的系统,配有一系列“巴特勒”机器人,将货物货物运送到载人车站。

自动移动机器人在整个仓库内运输材料,而不需要特殊的基础设施。

(由OTTO Motors提供)有人表示,亚马逊的Kiva收购通过从市场上淘汰先进技术来恢复行业,而另一些人认为这一举措实际上可能激发了更多的创新。

为您的工厂,仓库和配送中心(DC)内部物流争夺的自动化技术阵列倍增。

悍马汽车部件维修指南说明书

悍马汽车部件维修指南说明书
Your Airbags ............................ 46 Additional Safety Precautions.... 51 How the Passenger Airbag
Cutoff Indicator Works........... 49
How Your Front Airbags Work.......................................... 46
CONTINUED
I
v w
Main Menu
Index
Bulb Replacement Back-up Lights ........................... 206 Stop Light ................................... 206 Cargo Area Light ....................... 211 Front Parking Lights................. 205 Front Side Marker Lights......... 204 Headlights .................................. 202 High-mount Brake Light .......... 207 Interior Lights............................ 210 License Plate Lights.................. 209 Side Marker Lights ................... 204 Side Turn Signal Lights ............ 208 Specifications ............................. 251 Turn Signal Lights..................... 203

国外比较知名的AGV公司汇总

国外比较知名的AGV公司汇总

国外比较知名的AGV公司汇总据Tractica 预测,2021 年全球仓储和物流机器人市场将达到224 亿美元,无疑这期间是快速增长的爆发期。

相对于前端的物流机器人,留守仓库的仓储机器人发展更为成熟。

对电商来说,仓储管理是整个电商营运体系中极其重要的一环,也是开始成本最高的环节之一。

在电商的仓储中,需要对货物进行分拣、位移、包装等多个步骤,早期这些步骤基本上都由人工完成,虽然很多仓储都有传送带等设备来代替人类移动货物,但机器是固定位置,灵活度较低,很多工作还是需要人类完成。

每至节庆假日或购物狂欢季,都是仓储人员的恶梦,甚至很多电商员工要昼夜轮班,每天工作十几个小时,这种工作压力难以想像。

这种情况不仅在电商中发生,物流工业的仓储管理和分拣也是一样。

2012 年,亚马逊以7.75 亿美元大手笔收购Kiva System,并将其整编为旗下机器人部门Amazon Robotics,随后亚马逊开始在仓库大规模部署仓储机器人,大大提升仓储执行的效率。

也正因为Kiva 的出现,正式开启了仓储机器人领域的大门,让人们了解仓储机器人的重要性。

今天为大家盘点一下除了Kiva 之外,国外还有哪些知名的仓储机器人公司。

GreyOrangeGreyOrange 成立于2011 年,创始人Samay Kohli 建立公司的目的是想做教育培训相关的机器人,后来电商业和物流业迅猛发展,世界第二人口大国的印度对仓储自动化管理的需求也日渐旺盛,Samay Kohli 看到这个商机,所以公司逐渐转为一家工业机器人制造公司。

目前,GreyOrange 公司致力于工业机器人,主要目标市场在零售、物流及仓储机器人领域的构建业务,可以说瞄准电商公司。

GreyOrange 主要推出3 款机器人自动化产品:高速动态的大小维度称重系统Profiler、包裹分析和路径的高速分拣机械系统Sorter,以及储存和检索机器人Butler,可收集派发给用户的包裹,系统还会计算程序库存,按需要补齐货源。

智能车辆体系结构汽车和自动驾驶系统

智能车辆体系结构汽车和自动驾驶系统

课程名称
22
11.5 智能车辆旳自主驾驶与辅助导航
11.5.5 研究动向分析与问题探讨 ➢ 研究背景旳民用化 ➢ 系统构造旳轻型化 ➢ 研究成果旳实用化 ➢ 产校双方旳协作化
课程名称
23
11.6 小结
本章简朴简介了智能车辆旳概念、研究目旳、意义、应 用情况以及目前世界上智能车辆旳研究方向、研究范围。 总旳来看,限于我国旳基础设施水平和经济实力,我国 智能车辆旳研究与工业发达国家有相当旳距离,在一定 旳时间内大范围开发、实施智能车辆旳应用还不太现实。 但不论是从学科发展、理论研究旳角度,还是从发展汽 车工业与有关产业,以及市场竞争旳角度看,超前研究 都是必要旳 。
基于条带状路标旳计算机视觉自主导航 自动辨认数字编码旳多停靠工位和多分支途径 自动辨认加速、减速、直角转弯、停车等车辆运动状态标识
符 智能辨认障碍物
课程名称
13
11.3 智能车辆系统构造与微机测控系统
11.3.2 车辆体系构造及性能指标
课程名称
14
11.4 基于视觉导航旳智能车辆模糊逻辑控制
11.4.1 计算机视觉导航旳优点 ➢ 有关传感器系统简朴、经济,而且使控制器旳设计愈加
灵活以便 ➢ 视觉导航能更轻易地提供车辆行车环境旳障碍物信息,
从而使车辆避障愈加轻易
课程名称
15
11.4 基于视觉导航旳智能车辆模糊逻辑控制
11.4.2 条带状路标检测算法 图像预处理 :
➢ 像质改善,如图像锐化、平滑、复原、校正等; ➢ 图像分析,如边沿与线旳检测、区域分割、形状特征测
量等; ➢ 图像重建,如投影图像重建、利用对象生成立体图像、
课程名称
11
11.3 智能车辆系统构造与微机测控系统

林德推出前移式AGV叉车

林德推出前移式AGV叉车
评 价 委 员会 认 为 ,中 鼎 集 成 项 目宴 现 了锂 电 池 各 生 产 工序 之间的物 流 自动化与信 息同步化 ,宴时地采集 生 产 过程 的 相 关 信 息 ,建 立 了产 品 质 量 追 溯 体 系 。 该项 目 的 顺 利 实 施 ,将 提 升 新 能 源 动 力 锂 电 池 生 产:过 程 的 自 动 化 和 智 能 化 水 平 ,并 促 进 和 加 快 该 行 业 的 标 准 化 建 设 。 此 外 , 该项 目打 破 国 外 技 术 垄 断 ,对 促 进 我 同 动 力 钝 电 池 上下 游 产 业链 的 整 体 发 展 、全 提 升 智 能 制 造 行 业 的 技 术水 平 具 台重 耍意 义 。
斑马技 术推 出TC25耐 用型触 控 式数据ห้องสมุดไป่ตู้ 端
斑 技 术 公 近 口宙 、I 人 地 推 出 新 FC25Ifj 讨Hl】型触 式 数捌 终 端 ..T 25将 帮助 售 商和 物 流 供 商 现货 物 运 输 的现 场 奠 ¨、fnf 化 。
TC25 主 要特 ‘ 包括 :1. F(]25 发 汁 上 能 够 承 受 高 、 i寒 棚 多 环 境 、 防 』匕意 外 跌 。 从 而 降 低 J,昂 1r1,=)维 成 本 ,并 确 更 长 久 且 更 高 效 的使 用 。 2.TC25拥 有 统 一 的 斑 马 技 术 2D条 码 扫 描 技 术 ,能 够 为 全 球 诸 多 最 佳 的现 场 服 务 团 队提 供 有 力 支 持 。 即 使 在 标 签褪 色 、损 坏 或 有 污 渍 的 情 况 下 ,都 能 精 准 捕 获 条 码 信 息 。 3.通 过 斑 马 技 术 测 试 ,TC25捕 捉 条码的 速度 明显快 于消费级智能终端 设备的摄像 头 ,能 够 节省 时 间 并 提 高 现 场 考 察 的 效 率 。 4.借 助 W orkforce Connect和 PTT功 能 ,TC25可 实 现 与 其 他 兼 容 的 斑 马 技 术 移 动 设 备 、iPhone、iPad以 及 部 分 安 卓 智 能 手 机 之 间 的 通 话 。企 业 可 随 时 联 系 到 工 作 人 员 ,为 团 队 提 供 所 需 的 协 作 , 从 而 改 善 客 户 服 务 并 提 高 员 工 的 工 作 效 率 。5硒 备 Zebra OneCare 。M超 值 服务 (SV )以 及 支 持 Android 的 LifeGuard , 在TC25的 使 用 寿 命 内 可 以 延 长 安 全 更 新 ,从 而 确保 操 作 系 统 始 终 安 全 无 忧 。

自动导引车(agv)通用安全标准英文

自动导引车(agv)通用安全标准英文

自动导引车(agv)通用安全标准英文General Safety Standards for Automated Guided Vehicles (AGVs)1. IntroductionAutomated Guided Vehicles (AGVs) are used in a variety of industries to transport materials and products. As these vehicles operate autonomously, it is important to establish general safety standards to ensure the safety of workers and equipment.2. General Safety Requirements2.1. AGVs must be designed and manufactured to meet all applicable safety standards and regulations.2.2. AGVs must be equipped with safety features such as emergency stop buttons, obstacle detection sensors, and warning lights.2.3. AGVs must be programmed to operate within designated areas and avoid collisions with other vehicles, equipment, and personnel.2.4. AGVs must be regularly inspected and maintained to ensure proper functioning of safety features and equipment.3. Personnel Safety3.1. Personnel must be trained on the safe operation of AGVs and thepotential hazards associated with their use.3.2. Personnel must be provided with appropriate personal protective equipment (PPE) such as safety vests and hard hats.3.3. Personnel must not ride on or operate AGVs unless specifically authorized and trained to do so.4. Equipment Safety4.1. AGVs must be equipped with appropriate safety devices such as bumpers, sensors, and warning lights.4.2. AGVs must be inspected and maintained regularly to ensure proper functioning of safety devices and equipment.4.3. AGVs must be operated within their designated load capacity and weight limits.5. Emergency Procedures5.1. Emergency stop buttons must be clearly marked and easily accessible on AGVs.5.2. Personnel must be trained on emergency procedures and evacuation plans in the event of an AGV malfunction or accident.5.3. AGVs must be equipped with backup power sources and fail-safe mechanisms to prevent accidents in the event of power failure or other malfunctions.6. ConclusionAGVs are an important tool in many industries, but their safe operation requires adherence to general safety standards. By following these standards, workers and equipment can be protected from potential hazards associated with AGV use.。

攀登车 Cannondale 2019 车辆指南补充说明书

攀登车 Cannondale 2019 车辆指南补充说明书

2019READ THIS SUPPLEMENT AND YOURCANNONDALE BICYCLE OWNER’S MANUAL. Both contain important safety information. Keep both for future reference.Trigger/JekyllOwner’s Manual SupplementSafety MessagesIn this supplement, particularly important information is presented in the following ways:The following symbols are used in this manual:1134942 Rev 1.EnglishCONTENTSSafety Information ............................2-6Technical Information ......................7-19Replacement Parts ........................28-29Tightening Torques ............................30Maintenance .......................................31Notes .. (32)Cannondale SupplementsThis manual is a “supplement” to your Cannondale Bicycle Owner’s Manual. This supplement provides additional and important model specific safety, maintenance, and technical information. It may be one of several important manuals/supplements for your bike; obtain and read all of them.Please contact your AuthorizedCannondale Dealer immediately if you need a manual or supplement, or have a question about your bike. You may also contact us using the appropriate country/region/location information. You can download Adobe Acrobat PDF versions of any manual/supplement from our website:Contacting CannondaleCannondale USACycling Sports Group, Inc. 1 Cannondale Way, Wilton CT, 06897, USA 1-800-726-BIKE (2453)Cycling Sports Group Europe B.V Mail: Postbus 5100 Visits: Hanzepoort 277575 DB, Oldenzaal, NetherlandsYour Cannondale DealerTo make sure your bike is serviced and maintained correctly, and that you protect applicable warranties, please coordinate all service and maintenance through your Authorized CannondaleDealer.2134942 Rev 1.Trigger / Jekyll - Owners Manual SupplementSAFETY INFORMATIONImportant CompositesMessageInspection & Crash Damage Of CarbonFrames/Forks3134942 Rev 1.EnglishIntended UseThe intended use of all models is ASTM CONDITION 4,All-Mountain.Servicing4134942 Rev 1.Trigger / Jekyll - Owners Manual SupplementMaximum Fork LengthMaximum Fork Length is an important frame safety testing specification for front suspension mountain bikes. You must observe the measurement when installing headset parts, headset adapters, installing and adjusting a fork, and selectingreplacement forks.To Center Of The Fork AxleEnglish Tire Size x Maximum Width134942 Rev 1.56134942 Rev 1.Trigger / Jekyll - Owners Manual SupplementMinimum Seat PostInsertRear ShocksEnglish TECHNICAL INFORMATION Specifications - Trigger 27.5134942 Rev 1.7Trigger / Jekyll - Owners Manual Supplement Specifications - Jekyll 27.5134942 Rev 1.8Specifications - Jekyll 29Geometry - TriggerDimensions = centimeterA Seat Tube Length 40.043.046.052.0B Top Tube Horizontal 57.660.262.765.5C Top Tube Actual ----D Head Tube Angle 66°***E Seat Tube Angle Effective 74.5°***F Standover 75.076.076.579.5G Head Tube Length 9.711.012.213.5H Wheelbase 113.6116.4119.0122.0I Front Center 71.674.477.180.0J Chain Stay Length 42.0***K Bottom Bracket Drop 1.2***L Bottom Bracket Height 34.5***M Fork Rake 4.4***N Trail 10.1***O Stack 57.658.859.961.0PReach41.643.946.148.6All Specifications subject to change without notice.* - Indicates same.Geometry - JekyllDimensions = centimeterJekyll 29 Jekyll 27.5A Seat Tube Length 40.043.046.052.0B Top Tube Horizontal 58.661.163.666.458.460.963.466.2C Top Tube Actual 56.858.961.364.153.756.258.762.1D Head Tube Angle 65°65°65°65°65°***E Seat Tube Angle Effective 75°75°75°75°75.0°***F Standover 76.076.677.678.87575.876.777.5G Head Tube Length 10.211.512.714.010.211.512.714H Wheelbase 117.9120.7123.4126.4116118.7121.4124.4I Front Center 73.876.579.282.37476.779.482.4J Chain Stay Length 44.2***42***K Bottom Bracket Drop 1.6 1.6 1.6 1.60.8***L Bottom Bracket Height 36.036.036.036.034.9***M Fork Rake 4.2*** 4.4***N Trail 13.0***11.4***O Stack 59.861.062.163.359.260.461.562.6PReach41.944.046.248.742.544.746.949.4All Specifications subject to change without notice.* - Indicates same.Chainstay Left (outer)Chainstay Right (outer)WELDProtector 1Protector 2align with edgeinsert tab into boltInside (wheel side)Inside Rightwider endtowarddropoutwider endwider endtowardbottom bracket Center on tubeDowntubeSeatstay6 NmLoctite 242 (blue)DropoutKey Information:A special service tool KP169/ contains parts necessary to service the assembly. The parts of this tool are shown shaded above.When connecting the seat stays to the dropouts, always insert the small end of pivot spacers into the dropout bearings . The flat side of the spacers should face out, as shown.When tightening the axles, insert the 5 mm hex key completely into the axle to prevent damage when turning the bolt. Always tighten with a torque wrench to the specified torque.MaintenanceThe condition of the bearings, pivot axles, and spacers should be inspected periodically. These are normal wear parts so plan to have them renewed as they wear-out.Inspection frequency should bebased upon how and where you ride. Evidence of damage would be excessive play, visible wear, or perhaps corrosion of bearings.If you find any damage to the parts, discontinue riding until all the parts (bearings, pivot axles, spacers) can be renewed. This will help prevent damage elsewhere.See the kits list in the back of this supplement for renewal kits.The Ai rear hub is offset 3 mm to the drive side. This both aligns the cassette with the Ai frame’s 55mm chainline, and aligns the rim/tire with frame’s centerline for correct tire clearance.Ai wheels have equal spoke angles and tension on both sides (non-dished wheel) which improves wheel stiffness, strength.• The 3mm offset is for 148 X 12mm spacing only!•Other Ai equipped bike with 142mm or135mm rear spacing use a 6mm offset. Asymmetric Integration - Ai Rear Wheel- 3 mm OffsetLockRBe sure to support the bike or swingarm to prevent personal injury or bike damage when removing/disconnecting linkages of an axle.To remove the LockR from the frame:1. Loosen the screw 4-6 turns using a T25 Torx key.2. Tap head of screw with a rubber mallet to un-seat the wedge bolt located on the opposite side..3. Remove the screw and wedge bolt from the still installed axle.4. If it did not come out with the screw, insert a 5 mm hex key and turn to free and remove it. If wedge still sticks insert a wooden or plastic dowel into the drive side and drive it out.5. To remove the axle itself, on non-drive side, insert a 6 mm hex key into the axle on the non-drive side and and turn counter-clockwise until it can be removed.To install the LockR from the frame:1. Disassemble and clean all parts of the LockR axle. Do not install it assembled. Inspect the parts for damage (burrs, scratches, deformity, wear). Replace the entire LockR assembly if any damage is found.2. Apply a light coating of a high-quality bicycle bearing grease to all parts.3. Align the linkage and bearing and insert the threaded end of the pivot axle (1) into the non-drive side.4. Tighten the inserted pivot axle to 1 Nm using a 6 mm hex key fitted torque wrench from the non-drive side.5. Insert the wedge bolt (2) into the drive side of the axle and insert the small end of the wedge (3) into the non-drive side axle head.6. Thread the screw (4) into wedge bolt with a wrench and tighten to 5.0 Nm.1 N-m5 N-mUnthread &tap mallet 4T25Correct tightening torque for the fasteners (bolts, screws, nuts) on your bicycle is very important to your safety, durability, and performance of your bicycle.We urge you to have your dealer correctly torque all fasteners using a torque wrench. If you decide to tighten fasteners yourself always use a calibrated torque wrench!Tightening TorquesHanger ReplacementHanger replacement kit is available as Cannondale kit - CK3257U00OS.The kit includes the hanger (1) and a new pivot bolt (3). Before installing a new hanger, be sure to clean any dirt or debris on the dropout with a nylon brush (old toothbrush). Inspect the area for any damage. Lightly grease the dropout surface. Apply Loctite 242 (blue) to the pivot bolt (4). Align the hanger on the opposite side of the dropout and tighten the bolt to the specified torque.2 N-mM5x25 5.The rubber grommets are pressed into the frame holes when no battery is installed.Battery InstallationFor Di2, use the seat post type battery(Shimano SM-BTR2)1. Remove fork and headset from the frame.2. Attach mounting plate (1) included in Cannondalekit K32027/ to the battery (2) using two 3mm nylon ties (3). Make sure the plate lip (a) is aligned withthe case groove on the battery nearer the cableconnection (b). See inset A.3. Tie a thin dental string (5) to the battery plate4. Plug in Di2 wire (to junction B) into the battery5. Use a shift cable inserted into the top tube holeand out the lower head tube to guide.6. Attached the end of the dental thread to the shiftcable and draw the dental thread through and outthe top tube hole.7. Insert the battery and plate in the bottom of thehead tube and use the dental thread to guide thebattery and plate into position. 5. With the batteryin position as shown, holding the string (5) taught,apply grease to the screw (6) and tighten to 2 Nm.The screw threads should cut the string so it can beremoved.Apply lightgrease to4mm 5 mm x 25 mm4mm5 4mm5 mm 4mm1 Nm1 Nm1 NmInternal Guides - KP436/Internal Frame Guides:Install plastic spiral wire wrap (5) over Di2 wires (6) passing through internal guide (7).Use the 4mm guide opening for Di2 wire.Use the guide inserts in open locations.Gemini Rear ShockTo set air pressure:1. Set handlebar remote to Flow mode: press the black handlebar remote button (a) so that the remote handlebar control is in the position shown below.(a)(b)2. Remove the Schrader valve cap (1) and pressurize the shock with a shock pump.3. Remove the shock pump.4. Cycle the shock 10 times to allow the positive and negative air pressures to equalize.NOTE: Air pressure measured at the pump will decrease after air has transferred from positive to negative chambers.5. Check sag to confirm your shock setup. Recommended seated sag with full riding gear is 30%6. If there is too much sag, add air pressure in 10 psi increments until correct sag is achieved. If there is too little sag, reduce air pressure in 10 psi increments until correct sag is achieved.7. Install the Schrader valve cap onto the air valve.8. Turn the red rebound adjuster clock-wise towards “slow” until it stops.a. Float X - Insert a 2mm hex wrench into a cutout in the red rebound knob located near the eyelet on the frame side of the shock. Use the wrench to turn the knob towards “slow” until it stops.b. Float DPS - Turn the red rebound knob located under the blue com-pression adjustment lever on the frame side of the shock clockwise towards “slow” until it stops.9. Turn the red rebound knob counter-clockwise towards “fast”, counting each detent click until you reach the recommended number of clicks based on the table below.Remote Cable Installation1. Cut a piece of derailleur housing that fits from Gemini’s housing stop to the Gemini remote without interfering with the rotation of the handle bars. Install a ferrule on one end of the housing.2. Place the Gemini remote in Flow mode by pressing the black button on the Gemini remote while placing upward pressure on the silver button.3. Insert a derailleur cable into the round hole below the silver button on the Gemini remote. Feed the cable through the remote until the cable head is fully seated.4. Insert the cable into the cable noodle end opposite the barrel adjuster. Slide the cable noodle along the cable until it is fully inserted into the remote.5. Insert the derailleur cable into the Gemini cable housing end with the ferrule and push it through until the housing is fully seated in the barrel adjuster on the cable noodle.6. Insert the derailleur cable through the housing stop on the Gemini shock, then pull the cable until the housing is fully seated in the housing stop. There should not be a housing ferrule on this side of the Gemini housing.7. Use a 2 mm hex wrench to loosen the set screw located on the rear of the Gemini shock cam until there are only 2 threads engaged.8. Insert the cable between the set screw and Gemini cam. Pull the cable so the cable and housing are fully seated and tight.9. Tighten the set screw to 1.2 Nm witha 2mm hex wrench to secure the cable.10. Function Test: Push on the remote’s silver Hustle mode button, then press the black Flow mode button.a. Cable is too tight: the remote cannot stay in Hustle mode. Reduce cable tension by turning barrel adjuster clockwise. If problem persists, reduce cable tension by loosening the set screw and resetting cable tension as described in steps 7-9.b. Cable is too loose: the cam will not turn as soon as you engage the lever. Increase cable tension by turning the barrel adjuster counter-clockwise. If problem persists increase cable ten-sion by loosening the set screw and resetting cable tension as described in steps 7-9.MAINTENANCEThe following table lists only supplemental maintenance items. Please consult yourfor more information on basic bike maintenance.Cannondale Bicycle Owner’s ManualREPLACEMENT PARTS29134942 Rev 1.30134942 Rev 1.Jekyll 27.5Trigger / Jekyll - Owners Manual Supplement31134942 Rev 1.EnglishTrigger / Jekyll - Owners Manual SupplementNOTESUse this page to write /record important information about your bike : (e.g. maintenance history,dealer contact information, settings, etc.)134942 Rev 1.32© 2019 Cycling Sports GroupTrigger/Jekyll Owner’s Manual Supplement 134942 Rev. 1CANNONDALE USA Cycling Sports Group, Inc.1 Cannondale Way, Wilton CT, 06897, USA1-800-726-BIKE (2453) CANNONDALE EUROPECycling Sports Group Europe, B.V.Hanzepoort 27, 7575 DB, Oldenzaal******************************CANNONDALE UKCycling Sports GroupVantage Way, The Fulcrum,Poole, Dorset, BH12 4NU+44 (0)1202732288***************************.uk。

agv认证标准

agv认证标准

agv认证标准什么是AGV?AGV是自动引导车(Automated Guided Vehicle)的缩写,是一种能够自主运行且无需人工操作的机器人车辆。

AGV通常被用于物流、制造业和仓储领域,可以用来运送货物、执行各种任务以及自动管理货物流动。

AGV在工业领域的应用越来越广泛,不仅可以提高工作效率,还能降低人工操作带来的错误。

然而,为了确保AGV的运行安全和稳定,需要进行AGV认证。

AGV认证的目的是什么?AGV认证的主要目的是确保AGV的设计、制造和运行符合特定的安全标准和规定。

AGV是一种具有自主运行能力的机器人技术,因此,在使用AGV之前,必须对其进行严格的认证和测试,以确保其安全性。

AGV认证有哪些标准?目前,国际上主要采用ISO 3691-4标准作为AGV认证的基本依据。

ISO 3691-4标准规定了AGV的各项要求,包括设计、制造、测试和运行等方面。

此外,还有一些地区或国家会根据自身的需求制定特定的AGV认证标准,例如欧洲的EN 1525和美国的ANSI/ITSDF B56.5等。

AGV认证的过程是怎样的?AGV认证的过程通常包括以下步骤:1. 前期准备:确定要认证的AGV类型和数量,并准备相关文件和资料。

2. 设计审查:对AGV的设计方案进行审查,包括控制系统、传感器、安全装置等。

3. 制造检查:检查生产线和质量控制流程,确保生产过程符合要求。

4. 性能测试:对AGV进行各项性能测试,包括导航准确性、载重能力、防碰撞能力等。

5. 安全评估:评估AGV的安全性能,包括紧急停止、避开障碍、人机交互等方面。

6. 现场验证:将认证的AGV带至特定场地进行现场验证,测试其在实际环境中的运行能力。

7. 发布认证:根据认证结果,颁发认证证书,并在相关领域内进行宣传和推广。

AGV认证的意义是什么?AGV认证的意义在于确保AGV的安全运行和稳定性。

通过认证,可以确保AGV各个方面的设计和功能达到国际标准,减少运行过程中的事故风险和损坏,提高整体工作效率。

无人驾驶,驾驭未来——人工智能AGV汽车的安装与实践

无人驾驶,驾驭未来——人工智能AGV汽车的安装与实践

无人驾驶,驾驭未来——人工智能AGV汽车的安装与实践发表时间:2019-10-24T16:31:59.207Z 来源:《科学与技术》2019年第11期作者:宋启源[导读] AGV(Automated Guided Vehicle)即“自动引导运输车”便是无人驾驶科技的重要体现之一。

山东师范大学附属中学,山东济南 250002摘要:无人驾驶汽车研究从20世纪80年代开始出现。

1986年,卡耐基梅隆大学的Navlab制造了第一辆由计算机控制的汽车。

如今21世纪,无人驾驶汽车的技术在全球广泛传播并不断优化,涌现大量无人驾驶汽车系统的项目。

其中AGV(Automated Guided Vehicle)即“自动引导运输车”便是无人驾驶科技的重要体现之一。

关键词:无人驾驶汽车;计算机控制;全球传播; AGV 一、 AGV汽车组装与树莓派安装运行 AGV汽车的组装过程较为繁琐。

其中,在解决马达与树莓派连接的走线问题是组装的难点。

由于铜线丝外部有塑料绝缘层的包裹,安装时应该先用剪刀将绝缘皮剥掉,再将露出的铜线与马达电动机绕组连接。

连接时应注意并联法连接,即上连上,下连下。

串联法会损耗电机。

其中,在连接树莓派的相连接口中,因为无法使接口精准的锁住铜线,造成整车的断路问题。

但是,通过寻找规律发现,在剪开绝缘层的步骤中,可使剪刀一侧用力斜向划过绝缘层,露出较长的铜线穿过马达电动机绕组。

并且,这种方法可以避免铜线头的松散,因此针对于树莓派接口的连接与马达中电动机绕组的绕线问题均可高效解决。

当AGV汽车主框架搭建完毕之后,可通过电脑连接汽车自身的树莓派网络。

通过“远程连接”程序启动树莓派,搭建Python环境。

通过指定命令使小车可以启动。

当针对于AGV汽车运动的Python语言得以输入正确时,便可通过谷歌网络进行对应的IP地址输入,实现汽车的开动。

在这其中,经常遇到谷歌网络无法打开相应网址的情况,可通过关闭电脑自身防火墙与更换浏览器的方法进行汽车的操控与运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 13. Advanced AGVs13.1 IntroductionThis is an advanced chapter on AGVs and provides further details on the controller event contexts, AGV commands, and popups that are described in Chapter 12, AGVs.13.2 ObjectivesThis is an advanced chapter on AGVs and provides details on the controller event contexts, AGV commands, and popups that are described in Chapter 12, AGVs.In this chapter it is assumed that you are now familiar with the basics of the QUEST user interface, with the concepts of elements, classes, and parts, and have a good knowledge of SCL. It is also assumes that you have read Chapter 12, AGVs.13.3 Controller Event ContextsThis section explains the different controller event types (or contexts) generated in QUEST. There is a set of pre-defined controller event types generated by the occurrence of simulation events, the execution of some SCL statements, and from the AGV process logic. These pre-defined controller event contexts are represented by constant values, which are specified in the ‘agv.inc’ include file. For each controller event, the related additional information attached to the event and the basic decisions made by the controller are explained below.PART_AT_DECThis controller event type is generated if a part is ready to enter the path system through a decision point. The part is available (logically) at the decision point ready to be picked up by an AGV. When the elements outside the path systemtry to send the part to the decision points using transfer/route SCL statements, this controller event is generated and sent to the controller. The related information for this context is the part handle of the part to be picked and the decision point where it is available.When the controller receives this event, it:•selects an available AGV and•issues a load command to the AGV for the part at the available decision point, and•issues the MOVE command to the AGV to go to the specified decision point.If no AGV is available the controller event is added to the pending list of the controller for later processing. If any special AGV is needed to pick up the part, the decision should be handled in the AGV_SELECTION popup. Popups are discussed in detail in Chapter 14, Advanced SCL — Popups.Using Run | Trace | Current State | Entity to look at the current state of a decision point shows what parts are trying to enter that decision point. These are the parts for which a PART_AT_DEC event has been generated. If an AGV has been selected for the part the current state of the AGV would show the corresponding pending load command. If no AGV had been selected the current state of the controller would show the corresponding pending event.AGV_REQUESTThis controller event is when an element requires an AGV for a process at a connected. The process requirement related statements such as Do_Process, Require AGV, used in the process logics of the connected elements or those set through the user-interface under cycle process requirements requiring AGV generate this event. The AGV_REQUEST eventrepresents the need for an AGV only for processing and not for picking up parts. When an AGV is moving to a decision point in response to this event, it is reserved for the process.. It is released only after the process is completed. In general, in the default logics a reserved AGV is not selected for other load or unload related tasks.The information for this context is the decision point at which the AGV is requested and the AGV class needed.For this context, the controller tries to select an available AGV similar to PART_TO_DEC context.After the AGV is selected, the controller reserves it dDuring simulation, the current state on the AGV (using Run | Trace | Current State | Entity) shows whether the AGV is reserved or not. The current state of the machines shows any pending AGV requirements that need to be fulfilled. If no AGV has been selected the current state of the controller would show the corresponding pending controller event.AGV_REACHING_DECThis controller event occurs when an AGV approaches a decision point. When an AGV moves along path segments and approaches a decision point it needs to know if it has to stop at the decision point. A simulation event is scheduled where the AGV has to start decelerating to stop at the decision point, based on the deceleration speed defined for the AGV. When this simulation event occurs a notification is sent to the controller with this context. The information specified in this event is the decision point and the AGV.In general, for the AGV_REACHING_DEC context, the controller stops the AGV by issuing a STOP_AGV command if required otherwise it issues a CONTINUE_MOVE command to the AGV.• d•If the stop mode is STOP_AT_EACH (stop at each decision point on the AGV's path), the AGV is forced to stop at the decision point.•If the stop mode is NON_STOP (stop only at the destination decision point), the AGV stops only if this decision point is the destination. Otherwise the AGV is allowed to continue moving on its current path.•If the mode is STOP_IF_REQUIRED (stop at decision points where some task is to be performed), the controller checks for any loading or unloading to be done at this decision point (by looking at AGV'spending command list). If any task needs to be done the AGV is stopped, otherwise it continues to move. AGV_AT_DECThis controller event context is generated when an AGV stops at a decision point.For the AGV_AT_DEC context the controller, in general, instructs the AGV to check for any pending tasks to be completed at the specified decision point by issuing a CHECK_PENDING_AGV command.The information attached to this event is the AGV and the decision point where the AGV has stopped.When an AGV is residing at a decision point, the current state on the AGV would show the decision point name in its current element field. Similarly, the current state on the decision point would show the name of the AGV in the residing AGV field.If the AGV passes through a decision point without stopping this controller event is not generated.CMD_COMPLETEDWhen an AGV stops at a decision point, in most cases, it already knows what kind of tasks (such as loading and unloading), need to be performed at that decision point. After a task is completed, the AGV can notify the controller with the CMD_COMPLETED context. This context informs the controller that the AGV has completed a task. It is generated from the AGV process logic.For this context, the controller instructs the AGV to check for any other pending commands that need to be done at this decision point, by issuing a CHECK_PENDING_AGV command.The information attached to this event is the decision point and the AGV.AGV_READY_TO_DEPARTWhen an AGV, at a decision point, has finished all its tasks, such as loading and unloading, it notifies the controller with the AGV_READY_TO_DEPART context. It is generated from the AGV process logic.For this context, the controller executes the AGV_DEPARTURE popup to decide whether the AGV can depart or not. The departure decision can be one of the three values of TRUE, FALSE, or WAIT_AGV.•If the AGV can depart, the controller checks whether the AGV has any other pending commands to be done at different decision points and selects the next destination by executing the AGV_DESTINATION popupfor the AGV. If the AGV has no pending commands, the controller tries to select a new task for the AGVby executing the CTLR_EVT_SELECTION popup and assigns it the AGV. If no task is selected thecontroller instructs the AGV to park by executing the AGV_PARKING popup. By default, the AGVParking popup instructs the AGV to park at the current location. Hence, the AGV will stay at the currentdecision point in IDLE state.•If the AGV cannot depart, the AGV stays at current location until any other part is routed to the decision point and the AGV is selected for it. After loading that part the AGV_DEPARTURE popup is executedagain.•If the AGV has to wait, the controller instructs the AGV to wait by issuing an AGV command WAIT_AGV. The AGV can wait for some known duration or until some user-specified condition occurs.After the AGV's wait is completed, another AGV_READY_TO_DEPART event is generated. Thus theAGV_DEPARTURE popup is executed repeatedly until the AGV can depart.The information attached to this event is the AGV and the decision point.When the AGV is waiting at the decision point for some departure requirement to be met, it is in theDEPART_REQMT_BLOCK state..AGV_LEAVING_DECWhen an AGV is ready to leave a decision point this event is generated with the AGV_LEAVING_DEC context. This controller event is generated only when the AGV is currently residing at a decision point and is about to start moving. The controller does nothing special for this context. This is added to provide some flexibility for you to do any housekeeping tasks when an AGV leaves a decision point.PENDING_PART_AT_DECThis context indicates that there is a part to be picked up at a decision point that has been pending with the controller. A part becomes pending to be picked up at a decision point, when the originally selected AGV for the task has become unavailable due to failure, or when the originally selected AGV had been re-routed to do some other task, or no suitable AGV was available when the corresponding PART_AT_DEC event occurred.This context is the same as the PART_AT_DEC context. The only difference between these two contexts is that, in case of a pending part, it already knows the destination decision point where it has to be unloaded, so the controller does not need to find a destination for the part. For this context the controller makes similar decisions as in PART_AT_DEC. The information attached to this event is the part and the decision point.AGV_UNAVAILABLEThis controller event occurs when an AGV fails or goes into a shift break. For this context the controller executes the AGV_FAILURE popup that may try to submit the pending LOAD commands of the AGV to the controller for some other AGV to take care of them. The information for the event is the AGV.AGV failures are not restricted to occur at decision points, they can happen any time when the AGV is moving, loading, or unloading. If the AGV fails at a decision point the notification to the controller goes through the decision point. If theAGV fails somewhere along a path segment, the notification goes directly to the controller . When an AGV fails, the current state of the AGV shows its state as unavailableAGV_AVAILABLEThis event occurs when an AGV is repaired after a failure or at the end of the shift break.. For this context the controller checks whether the AGV has some pending commands, or incomplete move commands, and lets the AGV complete them. If an AGV has no pending commands and is residing at a decision point, the controller tries to select a task from its pending Ctlr_events list by executing the CTLR_EVT_SELECTION popup and assigns it to the AGV.13.4 AGV CommandsThis section explains the different AGV command that are issued to the AGV. There is a set of pre-defined AGV command types issued from the controller and decision point logics. These pre-defined AGV commands are represented by constant values, which are specified in the ‘agv.inc’ include file. For each AGV command (AGV_cmd), the related additional information attached to the command and the actions taken by the AGV are explained below.MOVE_AGVThis command instructs the AGV to move to its destination decision point. The information attached to this command is the AGV path (AGV_path) through which the AGV has to move to reach the destination.AGV_path is the list of segments and the decision points on them through which the AGV moves. This AGV_path is a data type in SCL, which has several inquiry fields providing all the information related to the given path. For every new move the AGV is provided with a new AGV_path. The AGV path should not be confused with the AGV path system that is an element class that represents the whole layout.When the AGV receives this command it checks whether it already has a current AGV_path to some destination. If current AGV_path exists the AGV is asked to give up the current path and re-route itself with the new AGV_path. To take care of pending tasks to be performed in its current AGV_path the AGV_REROUTE popup is executed.If the AGV has no current AGV_path it starts moving by executing the START_AGV_MOVE ALONG SCL statement. With the default logics provided by the system re-routing is generally avoided. More information on re-routing and how it is avoided is explained under AGV_REROUTE popup. If re-routing is not desired in any user logic, care must be taken before issuing a MOVE_AGV command to the AGV.After executing the MOVE_AGV command, the AGV tries to claim the next or all decision points based on the claim mode of the current AGV_path. If claiming of the decision point(s) is not successful, the AGV cannot move and has to wait until claiming is successful.•When an AGV is moving, its current state (found using Run | Trace | Current State | Entity) will show the details of the current AGV_path under the heading current path. This section shows all the remainingsegments through which the AGV moves and the decision points through which it needs to pass through. Ifthe AGV is not moving the current path field will be none.•When the AGV is moving with no parts in it, its status would be BUSY EMPTY_TRAVEL.•When the AGV is moving with some parts in it, its status would be BUSY LOADED_TRAVEL.When the AGV is unable to move because of claim failure, its status CLAIM_BLOCKED.STOP_AGVThis command instructs the AGV to stop the current move. Upon receiving this command the AGV starts decelerating (stop is not immediate) by executing the STOP_AGV_MOVE SCL statement. There is no additional information attached to this command.When the AGV approaches a decision point a the AGV_REACHING_DEC controller event is generated. If the controller decides to stop the AGV at the decision point, it issues STOP_AGV command to the AGV.CONTINUE_MOVEThis command instructs the AGV to continue along its current AGV_path. The controller issues this command to make the AGV continue in its current AGV_path when the AGV is stopped at decision points, along a segment when failed, or after the specified stop is over.When this command is received the AGV executes the CONTINUE_AGV_MOVE SCL statement and starts moving. The additional information provided for the MOVE_AGV command is also true for the CONTINUE_MOVE command.NEXT_MOVEThis command instructs the AGV about a future move command. The information attached to this command is the decision point and the AGV_path to be used. When the AGV gets this command it first checks whether it currently has an AGV_path. If true the NEXT_MOVE command is added to the AGV's pending commands list. If the AGV is not moving when the command is received and the specified starting decision point (if any) is the same as where the AGV is located, the AGV will do the requested move immediately.If the AGV does not have a current AGV_path, it checks whether it is currently residing at the specified starting decision point. If true it starts the NEXT_MOVE, otherwise it starts moving towards the specified starting decision point.CHECK_PENDINGThis command instructs the AGV to check for any pending commands to be executed at the specified decision point and to complete them. The related information attached to this command is the decision point. If the AGV is not currently residing at the specified decision point it ignores this command. The AGV completes the tasks to be done at the decision point by executing the pending commands in the following order:•Unload commands•Load commands•Next Move commandsThe AGV first gets the unload commands to be completed at the decision point and executes them. After all the unloading is done, it checks for any loading and next move commands. When all the pending commands for the decision point are completed the AGV notifies the controller that it has completed all the tasks with an AGV_READY_TO_DEPART controller event.While the AGV executes the load and unload commands, there are options in the AGV_LOAD and AGV_UNLOAD popups that send a notification back to the controller after the completion of each or all load/unload task(s). In those cases, before completing all the pending commands at the decision point, the AGV notifies the controller with aCMD_COMPLETED controller event.When the controller gets the CMD_COMPLETED event, it asks the AGV to check for further pending commands to be finished with another CHECK_PENDING command. This cycle of AGV and controller communication after completion of each load or unload task continues until the AGV issues the AGV_READY_TO_DEPART event context to the controller.The current state on an AGV shows the pending commands that are to becompleted by the AGV.LOAD_AGVThis command instructs the AGV to load a particular part at the specified decision point. The information attached to the command is the part to be loaded and the decision point where the part is available.When the AGV receives this command it first checks if it is currently residing at the specified decision point. If the AGV is not at the specified decision point, the load command is added to the pending commands list. Otherwise, if the AGV is at the specified decision point, the AGV_LOAD popup is executed. The logic of the AGV_LOAD popup is to execute anyload process attached to AGV or the decision point and require the specified part. With the default options provided for the AGV_LOAD popup the controller can be notified about the completion of either each or all of the loading tasks.In the default AGV_LOAD popup options when a part is loaded into the AGV, and the part's destination decision point is known, the corresponding UNLOAD_AGV command is generated for the part and added to the pending command list of the AGV.While the AGV is doing the load process its state and is BUSY LOADING. Sometimes, if the part's current element has failed, the AGV will need to wait until the part is available to be transferred from its current element. For this duration the AGV's state is LOAD_BLOCK.UNL6OAD_AGVThis command instructs the AGV to unload a particular part at the specified decision point. The information attached to the command is the part to be unloaded and the decision point where the part is to be dropped.When the AGV receives this command it first checks whether it is currently residing at the specified decision point. If the AGV is not at the specified decision point, the unload command is added to the pending commands list. Otherwise, if the AGV is at the specified decision point, the AGV_UNLOAD popup is executed. The logic of the AGV_UNLOAD popup is to execute any unload process attached to AGV or the decision point and transfer the specified part to the element connected to the decision point. With the default options provided for the AGV_UNLOAD popup the controller can be notified after the completion of either each or all the unloading tasks.While the AGV is doing the unload process, its state is BUSY UNLOADING. Sometimes, if the connected element has failed or is under a shift break, the AGV will need to wait till the part is successfully transferred to the connected element. For this duration the AGV's state is UNLOAD_BLOCK.WAIT_AGVThis command instructs the AGV to wait at its current decision point. The duration of the waiting time is not specified in this command. There is no additional information attached to this command.Upon receiving this command the AGV executes the AGV_WAIT popup that makes the AGV wait for a specific duration or until some user-defined condition is satisfied. After the specified wait is over, the AGV informs the controller with the AGV_READY_TO_DEPART event.The controller may issue this WAIT_AGV command in the following situations:•When the AGV has completed all the tasks at a decision point it notifies the controller with an AGV_READY_TO_DEPART event. The controller then executes the AGV_DEPARTURE popup. Thereturn value of the AGV_DEPARTURE popup may be one of the following values:—True : AGV can depart.—False : AGV can't depart and has some departure requirement to be met at the decision point.—Wait_Agv : AGV can't depart and will wait for some duration or until some specific condition occurs.•When the controller gets a WAIT_AGV response from the AGV_DEPARTURE popup it issues the WAIT_AGV command to the AGV.•When the AGV is ready to depart from a decision point, the controller finds a new destination for the AGV by executing the AGV_DESTINATION popup. In general the AGV gets its destination from the parts it iscarrying or the pending commands it has to complete at other decision points. If the AGV is carrying partsand the parts have no destination set, then the AGV does not have a destination to move to. In that case thecontroller issues a WAIT_AGV command to the AGV.If you create logic to make the AGV wait at a decision point until some condition occurs, the user-specific logic has to be done in the AGV_DEPARTURE and AGV_WAIT popups that are attached to the local decision point. TheAGV_DEPARTURE popup checks for the wait condition and based on that it returns either true or wait_agv. The actual waiting of the AGV is done with the AGV_WAIT popup. When the AGV is made to wait with a WAIT_AGV command its state is not changed. When the AGV starts waiting for some departure requirement, the state isDEPART_REQMT_BLOCK. If no departure requirement is specified at the decision point and the AGV is made to wait, its state will be IDLE.13.5 AGV PopupsThis section describes the various popups available for use with the AGV or AGV controllers. For a general description on creating and using popups, refer to Chapter 17, Advanced SCL — Popups.AGV_PART_ROUTEThis popup is used to set a destination decision point for a part that has entered an AGV path system through a decision point. The return data type of this popup is an element handle that represents the destination decision point. The arguments that are sent to the external SCL routine for this popup are:•the_part — The part handle for which a destination is needed.•the_dec — The decision point where the part is available.This popup is executed under the following conditions:•When a new part tries to enter the AGV path system through a decision point with the controller's PART_AT_DEC controller event context.•Before the AGV departs, if there are any parts without a destination, then this popup is called to set their destination. The AGVs destination is found by executing the AGV_DESTINATION popup.•When an AGV is approaching a decision point, which is also the final destination of the AGV, in the controller's AGV_REACHING_DEC context the controller checks for any part carried by the AGV with nodestination and tries to assign a destination for the part. If the part gets the destination to be the same as theapproaching decision point, then the controller stops the AGV at the decision point.Two methods are provided through the user-interface to set the destination decision points for parts entering the path system. The first method is to specify fixed information, which specifies what part class should go to what decision point. The second method is through a set of decision points defined as a group. In general, a group represents a set of elements. When a group is created, a type is assigned to it. The types that are applicable to AGV_PART_ROUTE popup are: •AGV route cyclic•AGV route percent•AGV route priority•AGV route next freeAll the elements that belong to the above specified groups can only be of type AGV decision point. As these groups are created, two of them, AGV route percent and AGV route priority, have the additional information of specifying the percent and priority values for each decision point in the group.Default Options. The various available options are:•Fixed Part Route — This option uses information provided by you at individual decision points for fixed destination for different part classes. Using the Model | MHS | Dec Point | Part Destination button you canprovide the different destination decision points for different part classes or for any part class, which will beused to find the destination for the given part.•Cyclic Route Group — This option calls the AGV route cyclic group attached to the departure decision point and selects a destination decision point in a cyclic fashion from the set of decision points of the group.•Percent Route Group — This option calls the AGV route percent group attached to the departure decision point and selects a destination decision point based on the percentage values provided for each decisionpoint in the group.•Priority Route Group — This option calls the AGV route priority group attached to the departure decision point and selects a destination decision point based on the availability of the connected element from thehighest to the lowest priority values assigned to decision points of the group. The highest priority decisionpoint is found and the connected element's status is checked for accepting the specified part. If theavailability check is successful, the decision point is selected as the part's destination. Otherwise, the nextpriority decision point is checked.•Next Free Route Group — This option calls the AGV route next free group attached to the departure decision point and selects a destination decision point based on the availability of the connected element forthe given part. If the availability check is successful that decision point becomes the part's destination.Otherwise, the next decision point from the group is selected for availability check. If all the connectedelements of the decision points are not available no destination is assigned to the part.•Default Part Route — This is the default option, which looks at the departure decision point for any specified fixed information. If fixed destination information is available, it uses the fixed part route option.Otherwise, it looks for any AGV route group attached to the decision point and uses the correspondingoption to find a destination. Since multiple part route groups can be attached to a decision point, the firstAGV route group is used to set the part destination.•User Func — The user written logic that returns the destination decision point for the specified part.The coordination between assigning routing information at decision point level and the option selected for this popup needs to be understood. If fixed information is specified through the user-interface and the option selected for this popup is cyclic route group, the fixed information will not be used for part destination. The information specified through the user-interface is accessed by the appropriate options and used. Similarly, attaching a AGV route priority group to the decision point and assigning the cyclic route group option for this popup would also result in wrong behavior.Multiple types of routing information that are mutually exclusive can be set for experimentation purposes. The actual data used is decided by popup assignment. So if the AGV route cyclic option is selected, the fixed data will not be considered even if set. In such a case, if no AGV route cyclic is attached to decision point, an error will occur.NOTE: It is not necessary for a part to have a destination before it gets loaded into an AGV. Before leaving a decision point the controller checks the parts of the AGV with no destination assignedand tries to assign a destination. Similarly when the AGV is reaching a decision point if the partshave no destination or the approaching decision point is the finaldestination, and that decision point has no output connection to outside elements the controllertries to find a destination using this popup. Therefore the destination of a part may be decidedsomewhere along the path and not necessarily at the loading decision point.Order of Hierarchy. The hierarchy in which this popup is searched, as specified in the default logics, is decision point and controller. If the popup is attached to the decision point, it is obtained and executed. If the popup is not attached to a decision point, the controller level popup is executed.The SCL file with the default code to implement this popup is: ../QUESTlib/SYSDEF/LOGICS/wgt_r out.scl.src.AGV_SELECTIONThis popup is used to select an AGV to pick up a part or to do a process. The return type for this popup is an element that represents the selected AGV. The arguments to the SCL routine of this popup are:•the_part —the part to be picked up. In case of an AGV that is requested for a process requirement, this handle (the_part) would be NULL.•the_dec —the decision point where the part is available, or the decision point where the AGV is needed fora process.。

相关文档
最新文档