高一数学点直线平面之间的位置关系练习题

合集下载

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题1.在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为。

(1)证明:直线∥平面;(2)求棱的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.【答案】(1)见解析(2)4 (3)【解析】(1)根据长方体的性质推断出平面平面平面.进而根据线面平行的判定定理推断出∥平面.设,进而根据几何体的体积关系求得棱柱的体积,进而利用体积公式求得.(3)在平面中作交于,过作交于点,根据线面垂直的性质推断出,进而根据,推断出,利用线面垂直的性质证明出.通过∽.利用比例关系求得,最后利用平方关系求得.试题解析:(1)∵是长方体,∴平面平面.∵平面,平面,∴平面.(2)解:设,∵几何体的体积为,∴,即,即,解得.∴的长为4.(3)在平面中作交于,过作交于点,则.因为,而,又,且.∽.为直角梯形,且高.【考点】直线与平面平行的判定;点、线、面间的距离计算.2.在正方体ABCD—A1B1C1D1各个表面的对角线中,与直线异面的有__________条【答案】.【解析】如图可知:与直线异面的面对角线总共有,.,,,,,∴总共有条【考点】空间中直线与直线的位置关系.3.教室内有一把直尺,无论怎样放置,地面上总有这样的直线与该直尺所在直线 ().A.平行B.异面C.垂直D.相交但不垂直【答案】C【解析】由题意,直尺所在直线若与地面垂直,则在地面总有这样的直线,使得它与直尺所在直线垂直;若直尺所在直线若与地面不垂直,则其必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直;综上,教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线垂直,故选B.【考点】空间中直线与平面之间的位置关系.4.以下四个命题中,正确的有几个()①直线a,b与平面a所成角相等,则a∥b;②两直线a∥b,直线a∥平面a,则必有b∥平面a;③一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面aA0个 B1个 C2个 D3个【答案】A【解析】本题考查点线面位置关系①直线a,b与平面a所成角相等,则a∥b或相交或异面三种情况②两直线a∥b,直线a∥平面a,则b∥平面a或;③不正确,必须是平面内的一条直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面a或AB与相交.【考点】点线面位置关系5.已知不同直线、和不同平面、,给出下列命题:①②③异面④其中错误的命题有()个A.1B.2C.3D.4【答案】C【解析】①,正确;②,当时不成立,故②错误;③异面,,故③错误;④,有可能,故④错误【考点】直线与平面(平行)垂直的判定和性质定理,平面与平面(平行)垂直的判定和性质定理6.在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.【答案】(1)见解析(2)见解析【解析】(1)通过借助中间量——直线,易得,,可得直线,从而证得平面;(2)通过证明平面,即可征得平面平面.试题解析:(1)连结.在长方体中,对角线,又∵、为棱、的中点,∴,∴.又∵平面,平面,∴平面.(2)在长方体中,平面,而平面,∴.又在正方形中,,∴平面.又∵平面,∴平面平面.【考点】1.直线与平面平行的证明;2.面面垂直的证明.7.正方体-中,与平面ABCD所成角的余弦值为( )A.B.C.D.【答案】D【解析】因为平面所以与平面所成角为求线面角关键找垂线,找出垂线就能在直角三角形中研究线面角大小.另外需熟悉正方体中面对角线与体对角线量的关系.【考点】直线与平面所成角.8.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1B.2C.3D.4【答案】B【解析】①若直线a不在α内,则a∥α或a与α相交,故此命题错误;②若直线l上有无数个点不在平面α内,则l∥α或a与α相交,故此命题错误;③若直线l与平面α平行,则l与α内的任意一条直线平行或异面,故此命题错误;④若l与平面α平行,则l与α内任何一条直线都没有公共点,正确;⑤平行于同一平面的两直线可以相交,正确.故选B【考点】本题考查了空间中的线面关系点评:熟练运用线面平行的概念、判定及性质是解决此类问题的关键,属基础题9.如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且∥,则下列结论中不正确的是()A.∥B.四边形是矩形C.是棱台D.是棱柱【答案】C【解析】因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平面BCC1B1,平面EFGH∩平面BCC1B1=FG,所以EH∥平面BCB1C1,又EH⊂平面EFGH,平面EFGH∩平面BCB1C1=FG,所以EH∥FG,故EH∥FG∥B1C1,所以选项A、D正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以选项B也正确,故选C.【考点】长方体的几何特征,直线与平面平行、垂直的判定与性质。

高考真题与模拟训练 专题15 点、直线、平面之间的位置关系(试题版)

高考真题与模拟训练 专题15 点、直线、平面之间的位置关系(试题版)

专题15 点、直线、平面之间的位置关系第一部分真题分类1.(2021·P 为11B D 的中点,则直线与1AD 所成的角为()A B 3C D2.(2021·1,M ,NA .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB B 平行,直线平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD B 异面,直线平面11BDD B 3.(2019·全国高考真题(理))如图,点N 为正方形ABCD ECD 为正三角形,平面ECD ⊥是线段ED 的中点,则A EN ,且直线B ,且直线,BM EN 是相交直线C .BM EN =,且直线D ,且直线,BM EN 是异面直线4.(2019·AC 所成角为所成角为β角为γ,则A BC.,βαγα<<D.,αβγβ<<5.(2021·全国高考真题)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的的是()A.B.C.D.6.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.②12p p∧③④34p p⌝∨⌝7.(2019·北京高考真题(理))已知l,m外的两条不同直线.给出下列三个论断:①l⊥m;②m;③l以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.8.(2021·BCD,中点.(1;(21在棱AD上,2DE EA=,且二面角.9.(2020·海南高考真题)如图,四棱锥P -ABCD 的底面为正方形,⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB PB 与平面QCD 所成角的正弦值.10.(2020·全国高考真题(理))如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.第二部分模拟训练一、单选题1l ,m //αβ,则l m ⊥;②若//l m ,则//l m ;④若l m ⊥,则//αβ.其中正确命题的个数是()A .1B .2C .3D .42n 为两条直线,A α,B α,C //m α,//αβD α,3及不在l 上两个不重合的点l 做平面,使得点PB 到平面α的距A .1个B .2个C .3个D .无数个4l ,是//n m 的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2:1,这一结论今称刘徽原ABCD ,且,AB AD =,则堑堵的体积为()A .8B .12C .16D .186中,1AB =,G 分别为1上的点,AF FB =1G EF D --G FB C --A BC D.与λ有关二、填空题7B,记作:下四个命题:①,则存在点P②,则存在点P满足()()αβf P f P=.③,则不存在点P④若对空间任意一点P,恒有()()()()αββαf f P f f P=其中所有真命题的序号是______.841的中点,点在侧面11AA B B内.若______.9,2AP=,点是矩形ABCD内(含边界)的动点,且1AB=,直线PM与平面4π.记点M tanα=______.。

2021_2022年高中数学第二章点直线平面之间的位置关系3

2021_2022年高中数学第二章点直线平面之间的位置关系3

直线与平面垂直的性质基础巩固一、选择题1.△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则直线l,m的位置关系是( )A.相交B.异面C.平行D.不确定[答案] C2.在正方体ABCD-A1B1C1D1中,直线l⊥平面A1C1,则有( )A.B1B⊥l B.B1B∥lC.B1B与l异面D.B1B与l相交[答案] B[解析] 因为B1B⊥平面A1C1,又l⊥平面A1C1,则l∥B1B.3.(2013·浙江高考)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β[答案] C4.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC 所在平面,那么( )A.PA=PB>PCB.PA=PB<PCC.PA=PB=PCD.PA≠PA≠PC[答案] C5.(2015·杭州高二检测)如下图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别是B、D,如果增加一个条件,就能推出BD⊥EF,这个条件不可能是下面四个选项中的( )A.AC⊥βB.AC⊥EFC.AC与BD在β内的射影在同一条直线上D.AC与α、β所成的角相等[答案] D6.如图,正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP⊥BD1,则动点P的轨迹是( )A.线段B1CB.线段BC1C.BB1中点与CC1中点连成的线段D.BC中点与B1C1中点连成的线段[答案] A[解析] ∵DD1⊥平面ABCD,∴D1D⊥AC,又AC⊥BD,∴AC⊥平面BDD1,∴AC⊥BD1.同理BD1⊥B1C.又∵B1C∩AC=C,∴BD1⊥平面AB1C.而AP⊥BD1,∴AP⊂平面AB1C.又P∈平面BB1C1C,∴P点轨迹为平面AB1C与平面BB1C1C的交线B1C.故选A.二、填空题7.线段AB在平面α的同侧,A、B到α的距离分别为3和5,则AB的中点到α的距离为________.[答案] 4[解析] 如图,设AB的中点为M,分别过A,M,B向α作垂线,垂足分别为A1,M1,B1,则由线面垂直的性质可知,AA1∥MM1∥BB1,四边形AA1B1B为直角梯形,AA1=3,BB1=5,MM1为其中位线,∴MM1=4.8.AB是⊙O的直径,点C是⊙O上的动点(点C不与A,B重合),过动点C的直线VC 垂直于⊙O所在的平面,D,E分别是VA,VC的中点,则下列结论中正确的是________(填写正确结论的序号).(1)直线DE∥平面ABC;(2)直线DE⊥平面VBC;(3)DE⊥VB;(4)DE⊥AB.[答案] (1)(2)(3)三、解答题9.(2013·陕西)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1= 2.证明:A1C⊥平面BB1D1D.[分析] 先把线面垂直转化为线线垂直,再通过计算得出另一组线线垂直,最后可以得到线面垂直.[证明] ∵A1O⊥平面ABCD,∴A1O⊥BD.又底面ABCD是正方形,∴BD⊥AC,∴BD⊥平面A1OC,∴BD⊥A1C.又OA1是AC的中垂线,∴A1A=A1C=2,且AC=2,∴AC2=AA21+A1C2,∴△AA1C是直角三角形,∴AA1⊥A1C.又BB1∥AA1,∴A1C⊥BB1,∴A1C⊥平面BB1D1D.10.如右图,已知四边形ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点.(1)求证:MN⊥AB;(2)若PA=AD,求证:MN⊥平面PCD.[证明] (1)取CD的中点E,连接EM、EN,则CD⊥EM,且EN∥PD.∵PA⊥平面ABCD,∴PA⊥CD,又AD⊥DC,PA∩AD=A,∴CD⊥平面PAD,∴CD⊥PD,从而CD⊥EN.又EM∩EN=E,∴CD⊥平面MNE.因此,MN ⊥CD ,而CD ∥AB , 故MN ⊥AB .(2)在Rt △PAD 中有PA =AD , 取PD 的中点K ,连接AK ,KN , 则KN 綊12DC 綊AM ,且AK ⊥PD .∴四边形AMNK 为平行四边形,从而MN ∥AK. 因此MN ⊥PD .由(1)知MN ⊥DC ,又PD∩DC=D , ∴MN ⊥平面PCD .能力提升一、选择题1.(2015·深圳高一检测)直线l 垂直于梯形ABCD 的两腰AB 和CD ,直线m 垂直于AD 和BC ,则l 与m 的位置关系是( )A .相交B .平行C .异面D .不确定[答案] D[解析] ∵AD ∥BC ,∴梯形ABCD 确定一个平面α. ∵l ⊥AB ,l ⊥CD ,AB 和CD 相交. ∴l ⊥α.由于AD ∥BC ,m ⊥AD ,m ⊥BC , 则m ⊥α或m ∥α或m ⊂α或m 与α相交, 则l ∥m 或l 与m 异面或l 与m 相交.2.已知平面α与平面β相交,直线m ⊥α,则( ) A .β内必存在直线与m 平行,且存在直线与m 垂直 B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直 C .β内不一定存在直线与m 平行,必存在直线与m 垂直 D .β内必存在直线与m 平行,不一定存在直线与m 垂直 [答案] C3.下列命题正确的是( ) ①⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α;②⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b ;③⎭⎪⎬⎪⎫a ⊥αa ⊥b ⇒b ∥α;④⎭⎪⎬⎪⎫a ∥αa ⊥b ⇒b ⊥α.A .①②B .①②③C .②③④D .①②④[答案] A[解析] 由性质定理可得(1)(2)正确.4.(2015·河北衡水中学六模)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的命题是( )A.点H是△A1BD的垂心B.AH垂直于平面CB1D1C.AH的延长线经过点C1 D.直线AH和BB1所成角为45°[答案] D[解析] A中,△A1BD为等边三角形,∴四心合一,∵AB=AA1=AD,∴H到△A1BD各顶点的距离相等,∴A正确;易知CD1∥BA1,CB1∥DA1,又CD1∩CB1=C,BA1∩DA1=A1,∴平面CB1D1∥平面A1BD,∴AH⊥平面CB1D1,∴B正确;连接AC1,则AC1⊥B1D1,∵B1D1∥BD,∴AC1⊥BD,同理,AC1⊥BA1,又BA1∩BD=B,∴AC1⊥平面A1BD,∴A、H、C1三点共线,∴C正确,利用排除法选D.二、填空题5.三棱锥P-ABC中,O是P在底面内的射影.①若PA=PB=PC,则O是△ABC的________心;②若P到△ABC三条边的距离相等,则O是△ABC的________心;③若PA、PB、PC与底面ABC所成的角相等,则O是△ABC的________心.[答案] ①外②内③外6.△ABC的三个顶点A、B、C到平面α的距离分别为2 cm、3 cm、4 cm,且它们在α的同侧,则△ABC的重心到平面α的距离为________.[答案] 3 cm[解析] 如图,设A、B、C在平面α上的射影分别为A′、B′、C′,△ABC 的重心为G ,连接CG 并延长交AB 于中点E , 又设E 、G 在平面α上的射影分别为E′、G′,则E′∈A′B′,G′∈C′E′,EE′=12(A′A+B′B)=52,CC′=4,CG GE =21,在直角梯形EE′C′C 中,可求得GG′=3.三、解答题7.(2015·江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1,设AB 1的中点为D ,B 1C∩BC 1=E.求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.[答案] (1)详见解析;(2)详见解析.[分析] (1)由三棱锥性质知侧面BB 1C 1C 为平面四边形,因此点E 为B 1C 的中点,从而由三角形中位线性质得DE ∥AC ,再由线面平行判定定理得DE ∥平面AA 1C 1C .(2)因为直三棱柱ABC -A 1B 1C 1中BC =CC 1,所以侧面BB 1C 1C 为正方形,因此BC 1⊥B 1C ,又AC ⊥BC ,AC ⊥CC 1(可由直三棱柱推导),因此由线面垂直判定定理得AC ⊥平面BB 1C 1C ,从而AC ⊥BC 1,再由线面垂直判定定理得BC 1⊥平面AB 1C ,进而可得BC 1⊥AB 1.[解析] (1)由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE ∥AC . 又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE ∥平面AA 1C 1C .(2)因为棱柱ABC -A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AC ⊂平面ABC ,所以AC ⊥CC 1. 又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1, BC ⊂平面BCC 1B 1,BC∩CC 1=C , 所以AC ⊥平面BCC 1B 1,又因为BC 1⊂平面BCC 1B 1,所以B 1C ⊥AC .因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C . 因为AC ,B 1C ⊂平面B 1AC ,AC∩B 1C =C ,所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1.8.(2015·浙江模拟)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB =BC =2,AD =CD =7,PA =3,∠ABC =120°.G 为线段PC 上的点.(1)证明:BD ⊥平面APC ;(2)若G 为PC 的中点,求DG 与平面APC 所成角的正切值; (3)若G 满足PC ⊥平面BGD ,求PGGC 的值.[解析] (1)证明:设点O 为AC ,BD 的交点. 由AB =BC ,AD =CD ,得BD 垂直平分线段AC . 所以O 为AC 的中点,BD ⊥AC .又因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD . 又PA∩AC=A , 所以BD ⊥平面APC .(2)连接OG.由(1)可知OD ⊥平面APC ,则DG 在平面APC 内的射影为OG ,所以∠OGD 是DG 与平面PAC 所成的角.由题意得OG =12PA =32.在△ABC 中,因为AB =BC ,∠ABC =120°,AO =CO , 所以∠ABO =12∠ABC =60°,所以AO =OC =AB·sin60°= 3.在Rt △OCD 中,OD =CD 2-OC 2=2. 在Rt △OGD 中,tan ∠OGD =OD OG =433.所以DG 与平面APC 所成角的正切值为433.(3)因为PC ⊥平面BGD ,OG ⊂平面BGD ,所以PC ⊥OG. 在Rt △PAC 中,PC =32+232=15.所以GC =AC·OC PC =2155.从而PG =3155,所以PG GC =32.。

空间点、直线、平面之间的位置关系(习题及答案)

空间点、直线、平面之间的位置关系(习题及答案)

空间点、直线、平面之间的位置关系(习题)1.判断正误,正确的打“√”,错误的打“×”(1)有三个公共点的两个平面必重合.()(2)空间中两条平行直线确定一个平面.()(3)空间两两相交的三条直线确定一个平面.()(4)三角形是平面图形.()(5)平行四边形、梯形、四边形都是平面图形.()(6)两组对边分别相等的四边形是平行四边形.()(7)垂直于同一直线的两直线平行.()(8)一条直线和两平行线中的一条相交,也必和另一条相交.()2.已知α,β为平面,A,B,M,N为点,a为直线,下列理解错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=直线MNC.M∈α,M∈β,α∩β=l⇒M∈lD.A,B,M∈α,A,B,M∈β,且A,B,M不共线⇒α,β重合3.l1,l2,l3是空间中三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.已知a,b,c为三条不重合的直线,α,β为两个不重合的平面,有下列命题:①若a∥c,b∥c,则a∥b;②若a∥β,b∥β,则a∥b;③若a∥c,c∥α,则a∥α;④若a∥β,a∥α,则α∥β.其中正确的是()A.①②B.①C.②④D.③④5.如图,在空间四边形ABCD中,AB,BC,CD的中点分别是P,Q,R,且PQ=2,QR=5,PR=3,则异面直线AC和BD 所成的角为()A.90°B.60°C.45°D.30°第5题图第6题图6.如图,正方体ABCD-A1B1C1D1两个面上成异面关系的两条对角线所成的角为()A.60°B.90°C.60°或90°D.30°7.如图,在正方体ABCD-A1B1C1D1中,AA1=AB=4,AD=2,E,F,G分别是DD1,AB,CC1的中点,则直线A1E,FG所夹的角为_______.8.将正方体的纸盒展开(如图),则直线AB,CD在原正方体中所成的角为________.9.如图,在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AC=BD=a,且AC与BD所成的角为60°,则四边形EFGH的面积是________.10.如图,在正方体ABCD-A1B1C1D1中,E,F分别是AA1,CC1的中点,求证:四边形BFD1E是平行四边形.11.如图,在正方体ABCD-A′B′C′D′中,求:(1)AA′和C′D′所成角的大小;(2)AA′和B′C所成角的大小;(3)A′B和B′C所成角的大小.12.如图,△ABC在平面α外,直线AB∩平面α=P,直线AC∩平面α=Q,直线BC∩平面α=R,求证:P,Q,R三点共线.【参考答案】1.×√×√××××2.B3.B4.B5.A6.C7.90°8.60°9.238a 10.略11.(1)90°;(2)45°;(3)60°12.略。

点直线平面之间的位置关系练习题(含答案)

点直线平面之间的位置关系练习题(含答案)

高一数学点直线平面之间的地位关系强化演习题一.选择题1.已知平面α外不共线的三点,,A B C 到α的距离都相等,则准确的结论是( )A. 平面ABC 必平行于αB. 平面ABC 必与α订交C. 平面ABC 必不垂直于αD. 消失ABC ∆的一条中位线平行于α或在α内2.给出下列关于互不雷同的直线l.m.n 和平面α.β.γ的三个命题: ①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β; ②若α∥β,l ⊂α,m ⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n. 个中真命题的个数为( )A.3B.2 C3.假如一条直线与一个平面垂直,那么,称此直线与平面组成一个“正交线面临”.在一个正方体中,由两个极点肯定的直线与含有四个极点的平面组成的“正交线面临”的个数是( )(A )48 (B )18 (C )24 (D )364. 已知二面角l αβ--的大小为060,m n 、为异面直线,且m n αβ⊥⊥,,则m n 、所成的角为( )(A )030 (B )060 (C )090 (D )0120 5.如图,点P 在正方形ABCD 地点的平面外,PD⊥平面ABCD,PD =AD,则PA 与BD 所成角的度数为( )A.30°B.45°C.60°D.90°7.设m .n 是两条不合的直线,α.β是两个不合的平面.考核下列命题,个中准确的命题是( )A .βαβα⊥⇒⊥⊂⊥n m n m ,,B .n m n m ⊥⇒⊥βαβα//,,//C .n m n m ⊥⇒⊥⊥βαβα//,,D .ββαβα⊥⇒⊥=⊥n m n m ,,8.设A.B.C.D 是空间四个不合的点,鄙人列命题中,不准确...的是( )A .AC 与BD 共面,则AD 与BC 共面B .若AC 与BD 是异面直线,则AD 与BC 是异面直线C .若AB =AC ,DB =DC ,则AD =BC D .若AB =AC ,DB =DC ,则AD ⊥BC9.若l 为一条直线,αβγ,,为三个互不重合的平面,给出下面三个命题:①αγβγαβ⊥⊥⇒⊥,;②αγβγαβ⊥⇒⊥,∥;③l l αβαβ⊥⇒⊥,∥. 个中准确的命题有( )A .0个B .1个C .2个D .3个10.如图,在正三棱锥P —ABC 中,E.F 分离是PA.AB 的中点,∠CEF=90°,若AB =a,则该三棱锥的周全积为( ) A.2233a + B.2433a + C.243a D.2436a + 11.如图,正三棱柱111ABC A B C -的各棱长都为2,E F 、分离为AB.A 1C 1的中点,则EF 的长是( )(A )2 (B )3 (C )5 (D )712.若P 是平面α外一点,则下列命题准确的是( )(A )过P 只能作一条直线与平面α订交 (B )过P 可作很多条直线与平面α垂直(C )过P 只能作一条直线与平面α平行 (D )过P 可作很多条直线与平面α平行13.对于随意率性的直线l 与平面α,在平面α内必有直线m ,使m 与l ( )(A )平行 (B )订交 (C )垂直 (D )互为异面直线14.对于平面α和共面的直线m .,n 下列命题中真命题是( )(A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m .n 与α所成的角相等,则m ∥n15.关于直线m .n 与平面α.β,有下列四个命题:① 若//m α,//n β且//αβ,则//m n ;② 若m α⊥,n β⊥且αβ⊥,则m n ⊥; ③ 若m α⊥,//n β且//αβ,则m n ⊥;④ 若//m α,n β⊥且αβ⊥,则//m n . 个中真命题的序号式( )A .①②B .③④C .①④D .②③16.给出下列四个命题:①垂直于统一向线的两条直线互相平行②垂直于统一平面的两个平面互相平行平③若直线12,l l 与统一平面所成的角相等,则12,l l 互相行④若直线12,l l 是异面直线,则与12,l l 都订交的两条直线是异面直线 个中假命题...的个数是( )(A )1 (B )2 (C )3 (D )417.如图平面α⊥平面β, ,,A B AB αβ∈∈与两平面α.β所成的角分离为4π和6π.过A.B 分离作两平面交线的垂线,垂足为'A .B ',若AB=12,则''A B =( )(A )4 (B )6 (C )8 (D )A'B'A B βα18.已知正四棱锥S ABCD-中,23SA=,那么当该棱锥的体积最大时,它的高为()A.1 B.3C. 2 D.319.已知三棱锥S ABC-中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()A.34B5C.7D.3420.有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连可以或许焊接成一个三棱锥形的铁架,则a的取值规模是()A.(62B.(1,22C.6262D.(0,22)21.在半径为R的球内有一内接正三棱锥,它的底面三个极点正好都在统一个大圆上,一个动点从三棱锥的一个极点动身沿球面活动,经由其余三点后返回,则经由的最短旅程是()A.2RπB.73RπC.83RπD.76Rπ22.已知,,,S A B C是球O概况上的点,SA ABC⊥平面,AB BC⊥,1SA AB==,2BC=则球O的概况积等于()A.4πB.3πC.2πD.π23.将半径都为1的4个钢球完整装入外形为正四面体的容器里,这个正四面体的高的最小值为( )A .3263+ B .2+263C .4+263D .43263+24.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H,则以下命题中,错误的命题是( ) A.点H 是△A 11D 111所成角为45°二.填空题1.多面体上,位于统一条棱两头的极点称为相邻的,如图,正方体的一个极点A 在平面α内,其余极点在α的同侧,正方体上与极点A 相邻的三个极点到α的距离分离为1,2和4,P 是正方体的其余四个极点中的一个,则P 到平面α的距离可能是:①3; ②4; ③5; ④6; ⑤7以上结论准确的为______________.(写出所有准确结论的编号..)2.平行四边形的一个极点A 在平面α内,其余极点在α的同侧,已知个中有两个极点到α的距离分离为1和2 ,那么剩下的一个极点到平面α的距离可能是:①1; ②2; ③3; ④4;以上结论准确的为______________.(写出所有准确结论的编号..)3.如图,在正三棱柱111ABC A B C -中,所有棱长均为1,则点1B 到平面1ABC 的距离为 .4.已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =,那么,A B 两点的球面距离为 ,球心到平面ABC 的距离为______________.5.如图,在正三棱柱111C B A ABC -中,1=AB .若二面角1C AB C --的大小为 60,ABC Dα则点C 到平面1ABC 的距离为______________.6.如图(同理科图),在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60,则点1C 到直线AB 的距离为 .7.(如图,在6题上)正四面体ABCD 的棱长为l,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影组成的图形面积的取值规模是____________.8.如图,矩形ABCD 中,DC=3,AD=1,在DC 上截取DE=1,将△ADE 沿AE 翻折到D 1点,点D 1在平面ABC 上的射影落在AC 上时,二面角D 1—AE —B 的平面角的余弦值是 .9.若一条直线与一个正四棱柱各个面所成的角都为α,则cos α=_____.10.已知正四棱椎的体积为12,地面的对角线为26,则正面与底面所成的二面角为____________.11.m n 、是空间两条不合直线,αβ、是空间两条不合平面,下面有四个命题: ①,;m n m n αβαβ⊥⇒⊥, ②,,;m n m n αβαβ⊥⊥⇒ ③,,;m n m n αβαβ⊥⇒⊥ ④,,;m m n n ααββ⊥⇒⊥ 个中真命题的编号是 (写出所有真命题的编号).12.如图,已知三棱锥S -ABC 中,底面ABC 为边长等于2的等边三角形,SA ⊥底面ABC ,SA =3,那么直线SB 与平面SAC 所成角的正弦值为________. 三.解答题:13.如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =4,点E 在C 1C上且C1E=3EC.(1)证实A1C⊥平面BED;(2)求二面角A1-DE-B的正切值..在正△ABC中,E.F.P分离是AB.AC.BC边上的点,知足AE∶EB=CF∶FA=CP∶PB=1∶2〔如图(1)〕.将△AEF沿EF折起到△A1EF的地位,使二面角A1-EF-B成直二面角,贯穿连接A1B.A1P〔如图(2)〕.(1)求证:A1E⊥平面BEP;(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B-A1P-F的余弦值.一.选择题1.D 2.C 3.D 4.B 5.C 7.B8.C 9.C 10.B 11.C 12.D 13.C 14.C15.D 16.D 17.B18.C;19.D;20.A;21.B;22.A;23.B;二.填空题1.①③④⑤ 2.①③ 3.217 4.13Rπ32R5.34 6.3 7.21[,]428. 32-9.63 10.3π 11.①,② 12.3913解法二:(1)证实:如图,贯穿连接B1C1C是A1C在面BCC1B1内的射影,在矩形BCC1B1中,B1B=C1C=4,BC=B1C1=2,C1E=3,EC=1.因为211==B B BC BC CE 且∠B 1BC =∠BCC 1=90°, 所以△BB 1C∽△BCE.所以∠BB 1C =∠CBE.所以由互余可得∠BFC =90°.所以BE⊥B 1C.所以BE⊥A 1C;由四边形ABCD 为正方形,所以BD⊥AC. 所以BD⊥A 1C 且BD∩BE=B. 所以A 1C⊥平面BDE.(2)贯穿连接OE,由对称性知必交A 1C 于G 点,过G 点作GH⊥DE 于点H,贯穿连接A 1H.由(1)的结论,及三垂线定理可得,∠GHA 1就是所求二面角的平面角,依据已知数据,盘算3651=G A , 在Rt△DOE 中,1530=GH ,所以55tan 11==∠GHGA GHA . 故二面角A 1DEB 的大小为55arctan . 解法一:无妨设正△ABC 的边长为3.(1)证实:在图(1)中,取BE 的中点D,贯穿连接DF. ∵AE∶EB=CF∶FA=1∶2, ∴AF=AD =2.而∠A=60°, ∴△ADF 是正三角形. 又AE =DE =1,∴EF⊥AD. 在图(2)中,A 1E⊥EF,BE⊥EF,∴∠A 1EB 为二面角A 1-EF-B 的平面角. 由题设前提知此二面角为直二面角,∴A 1E⊥BE.又BE∩EF=E,∴A 1E⊥平面BEF, 即A 1E⊥平面BEP.(2)在图(2)中,∵A 1E 不垂直于A 1B, ∴A 1E 是平面A 1BP 的斜线. 又A 1E⊥平面BEP,∴A 1E⊥BP.从而BP 垂直于A 1E 在平面A 1BP 内的射影(三垂线定理的逆定理). 设A 1E 在平面A 1BP 内的射影为A 1Q,且A 1Q 交BP 于点Q,则 ∠EA 1Q 就是A 1E 与平面A 1BP 所成的角,且BP⊥A 1Q. 在△EBP 中,∵BE=BP =2,∠EBP=60°, ∴△EBP 是等边三角形.∴BE=EP. 又A 1E⊥平面BEP,∴A 1B =A 1P. ∴Q 为BP 的中点,且3=EQ . 又A 1E =1,在Rt△A 1EQ 中,3tan 11==∠EA EQQ EA , ∴∠EA 1Q =60°.∴直线A 1E 与平面A 1BP 所成的角为60°.(3)在图(3)中,过F 作FM⊥A 1P 于点M,贯穿连接QM.QF.(3)∵CF=CP =1,∠C=60°, ∴△FCP 是正三角形.∴PF=1.又PQ =21BP =1, ∴PF=PQ.①∵A 1E⊥平面BEP,EQ =EF =3, ∴A 1F =A 1Q.∴△A 1FP≌△A 1QP. 从而∠A 1PF =∠A 1PQ.②由①②及MP 为公共边知△FMP≌△QMP, ∴∠QMP=∠FMP=90°,且MF =MQ. 从而∠FMQ 为二面角B-A 1P-F 的平面角. 在R t△A 1QP 中,A 1Q =A 1F =2,PQ =1, ∴51=P A . ∵MQ⊥A 1P, ∴55211=•=P A PQ Q A MQ . ∴552=MF . 在△FCQ 中,FC =1,QC =2,∠C=60°, 由余弦定理得3=QF . 在△FMQ 中,872cos 222-=•-+=∠MQ MF QF MQ MF FMQ .∴二面角B-A 1P-F 的大小为87arccos -π.。

高中数学必修2第二章《点、直线、平面之间的位置关系》单元测试(一)

高中数学必修2第二章《点、直线、平面之间的位置关系》单元测试(一)

数学必修2第二章《点、直线、平面之间的位置关系》单元测试一.单项选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.面α⋂面β=l ,A α∈,B α∈,AB ⋂l =D ,C β∈,C l ∉,则平面ABC 与平面β的交线是()A .有无数条B .有两条C .至多有两条D .有一条2.圆锥的轴截面是边长为2的正三角形,则圆锥的表面积为()A.)π1 B.4π C.3πD.5π3.已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A .10B .5-C .5D .54.点E ,F ,G ,H 分别为空间四边形ABCD 中AB ,BC ,CD ,AD 的中点,若AC=BD ,且AC 与BD 所成角的大小为90°,则四边形EFGH 是()A.梯形B.空间四边形C.正方形D.有一内角为60°的菱形5在四棱锥P ABCD -中,底面ABCD 是平行四边形,Q 为AD 中点,点M 在线段PC 上,且PM tPC =,0t >,试确定实数t 的值,使得//PA 面MQB .A .14B .1C .23D .136.在直三棱柱111ABC A B C -中,2BAC π∠=,12AB AC AA ===,点,G E 分别为线段111,A B CC 的中点,点,D F 分别为,AC AB 上的动点,且GD EF ⊥,则线段DF 的最小值为A .12B .1C D .二.多项选择题:本大题共2小题,每小题4分,共8分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.7.设a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,a b 都垂直,斜边AB 以直线AC 为旋转轴,有以下结论:(1)当直线AB 与a 成60 角时,AB 与b 成30角.(2)当直线AB 与a 成60角时,AB 与b 成60角.(3)直线AB 与a 所成角的最小值为45 .(4)直线AB 与a 所成角的最大值为60.则正确结论的序号为A (1)B(2)C(3)D(4)8.一张A4纸的长宽之比为,E ,F 为AD ,BC 的中点.现分别将ABE ∆,CDF ∆沿BE ,DF 折起,且A ,C 在面BFDE 同侧,下列命题正确的是()(1)A ,G ,H ,C 四点共面.(2)当面ABE //面CDF 时,AC //面BFDE .(3)当A ,C 重合于点P 时,面PDE ⊥面PBF .(4)当A ,C 重合于点P 时,设面PBE ⋂面PDF =l ,则l //面BFDE .A (1)B(2)C(3)D(4)三、填空题:本大题共4题,每小题4分,共16分.9已知长方体ABCD -A 1B 1C 1D 1中,BA 1=C 1D =5,C 1A 1=BD =,DA1=BC 1=.则三棱锥B -A 1DC 1的体积为________10.已知点E ,F 分别为正方体ABCD -A 1B 1C 1D 1的棱AB ,AA 1点,且12AE AB =,113AF AA =.点,M N 分别为线段1D E 和线段1C F 上的动点.则与面ABCD 平行的直线MN 有__________条.11.在正方体1111ABCD A B C D -中,E 是AB 的中点,F 在1CC 上,且12CF FC =.点P 是侧面11AA D D 上一动点,且1//PB 面DEF ,则tan ABP ∠的取值范围是__________.12设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n.其中正确的命题是________和________.四、解答题:本大题共3小题,共52分,解答应写出文字说明,证明过程或演算步骤.13.(本小题满分16分)在正四棱柱1111ABCD A B C D -中,2AB BC ==,1AA =E 为1CC 中点,F 为AB 上一点.证明面EBD ⊥面1A FC .14.(本小题满分18分)如图,已知二面角α-MN-β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD=60°,E 是AB 的中点,DO ⊥面α,垂足为O.(1)证明:AB ⊥平面ODE;(2)求异面直线BC 与OD 所成角的余弦值.15.(本小题满分18分)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A 1C 1D 1,且这个几何体的体积为403(1)求棱A 1A 的长;(2)求经过A 1,C 1,B ,D 四点的球的表面积.数学必修2第二章《点、直线、平面之间的位置关系》测试答案一.单项选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1选D 2选C 3选C 4选C 5选D 6选C二.多项选择题:本大题共2小题,每小题4分,共8分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.7选B ,C 8选A BCD三、填空题:本大题共4题,每小题4分,共16分.9.20解析:111114B A DC B A B C V V V --=-长方体.设长方体的长宽高分别为,,a b c ,易求得5a =,4b =,3c =.所以111114B A DC B A B C V V V --=-长方体20=.10.无数条解析:取113BH BB =,连接FH ,则//FH AB .在线段1D E 上取113OE D E =,在线段DE 上取13EK DE =.连接,,OH OK BK .则易得四边形OKBH 为矩形.连接HE ,在段1D E 上任取一点M ,过点M 在面1D HE 中,作//HO MG ,交1D H 于G .再过点G 作//GN HF ,交1C F 于N ,连接MN .由面面平行的判定定理可知面MNG //面ABCD ,又MN ⊂面MNG ,所以//MN 面ABCD .由于M 为1D E 上任意一点,故与面ABCD 平行的直线MN有无数条.11.11333⎡⎢⎣⎦,.解析:取112AM MA =,连接11,,B M B F DM .易证四边形1MDFB 为平行四边形,所以1//B M DF .取11D C 中点N ,连接1,B N MN ,则1//B N DE .故面1//B NM 面DEF .作//NG DF ,连接MG ,则1//NG MB .因此面1//B NGM 面DEF .所以点P 落在面11AA D D 与面1B NGM 的交线上,即P MG ∈.易求得tan ABP ∠的取值范围是11333⎡⎢⎣⎦,.12(3)和(4)①不正确,面α,β可能相交.②不正确,当直线m ,n 平行时,α,β还可能相交;根据面面平行的判定定理只有当m ,n 相交时,α∥β.③正确,根据面面平行的定义可知l 与β无公共点,即可知l ∥β.④正确,因为α∩β=l ,可知l ⊂α,又因为l ∥γ,γ∩α=n ,则m ∥n.四、解答题:本大题共3小题,共52分,解答应写出文字说明,证明过程或演算步骤.13(本小题满分16分)证明:如图所示,易知BE ⊥1CB .又BE ⊥11A B ,1111CB A B B ⋂=,所以BE ⊥面11A B C .由于1A C ⊂面11A B C ,所以BE ⊥1AC .又BD ⊥CA ,BD ⊥1A A ,1CA A A A ⋂=,所以BD ⊥面1A AC .由于1A C ⊂面1A AC ,所以BD ⊥1AC .由于BE BD B ⋂=,所以1AC ⊥面EBD ,所以面EBD ⊥面1A FC14(本小题满分18分)(1)因为DO ⊥α,AB ⊂α,所以DO ⊥AB.连接BD ,由题设知,△ABD 是正三角形.又因为E 是AB 的中点,所以DE ⊥AB.而DO∩DE=D ,故AB ⊥平面ODE.(2)因为BC ∥AD ,所以BC 与OD 所成的角等于AD 与OD 所成的角,即∠ADO 是BC 与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE.又DE ⊥AB ,于是∠DEO 是二面角α-MN-β的平面角,从而∠DEO=60°.不妨设AB=2,则AD=2,易知DE=3.在Rt △DOE 中,DO=DE·sin 60°=32.连接AO ,在Rt △AOD 中,cos ∠ADO=DO AD =322=34.故异面直线BC 与OD 所成角的余弦值为34.15(本小题满分18分)(1)设A 1A=h ,因为几何体ABCD-A 1C 1D 1的体积为403,所以V ABCD−A 1C 1D 1=V ABCD−A 1B 1C 1D 1-V B−A 1B 1C 1=403即S 四边形ABCD ·h-13·S △A 1B 1C 1·h=403,即2×2×h-13×12×2×2×h=403解得h=4.所以棱A 1A 的长为4.(2)如图,连接D 1B ,设D 1B 的中点为O ,连接OA 1,OC 1,OD.因为ABCD-A 1B 1C 1D 1是长方体,所以A 1D 1⊥平面A 1AB.因为A 1B ⊂平面A 1AB ,所以A 1D 1⊥A 1B.所以OA 1=12D 1B.同理OD=OC 1=12D 1B.所以OA 1=OD=OC 1=OB.所以经过A 1,C 1,B ,D 四点的球的球心为点O.因为D 1B 2=A 1D 12+A 1A 2+AB 2=22+42+22=24,所以S 球=4π·(OD 1)2=4π·(D 1B 2)2=π·D 1B 2=24π.故经过A 1,C 1,B ,D 四点的球的表面积为24π.。

直线与平面的位置关系练习题

直线与平面的位置关系练习题

直线与平面的位置关系练习题直线和平面是几何中常见的基本要素,它们之间的位置关系也是我们在学习几何时需要掌握的重要内容。

下面我们来做一些关于直线与平面的位置关系的练习题。

1. 已知直线l与平面α相交于点A,直线l上的一点B在平面α内部。

则直线l和平面α的位置关系是________。

解析:直线l与平面α相交于点A,说明直线l与平面α有交集。

又由于直线上的一点B在平面α内部,说明直线l与平面α也有一些其他的点在平面α内部。

综上所述,直线l和平面α的位置关系是“有交集”。

2. 平面β包含直线m,且直线l与直线m平行,则直线l和平面β的位置关系是________。

解析:直线l与直线m平行,说明直线l与平面β没有交点。

但由于直线l和直线m的位置关系,直线l和平面β的位置关系可以是以下三种情况之一:1) 直线l在平面β内部;2) 直线l与平面β重合;3) 直线l与平面β平行但不重合。

根据题意,我们可以确定直线l和平面β的位置关系是“直线l在平面β内部”。

3. 直线n与平面γ相交于点P,直线n与平面δ相交于点Q,点P 与点Q在空间中重合,则直线n和平面γ、δ的位置关系是________。

解析:由于点P与点Q在空间中重合,说明直线n与平面γ、δ有一个公共的点。

因此直线n必然与平面γ和平面δ都有交点。

综上所述,直线n和平面γ、δ的位置关系是“有交集”。

4. 直线p与平面η相交于点M,直线p包含于平面η内。

则直线p和平面η的位置关系是________。

解析:直线p与平面η相交于点M,说明直线p与平面η有交集。

并且由于直线p包含于平面η内部,说明直线p上的其他点也在平面η内部。

综上所述,直线p和平面η的位置关系是“直线p包含于平面η内”。

5. 直线q与平面ζ平行但不在平面ζ内,直线r与平面ζ相交于点N,则直线q和直线r的位置关系是________。

解析:直线q与平面ζ平行但不在平面ζ内,说明直线q与平面ζ没有交点。

而直线r与平面ζ相交于点N,说明直线r与平面ζ有交点。

人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2

人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2

【答案】A
15.如图,在三棱柱 ABC-A′B′C′中,点 E、F、H、K 分别为 AC′、CB′、A′B、B′C′
的中点,G 为△ABC 的重心,从 K、H、G、B′中取一点作为 P,使得该三棱柱恰有 2
条棱与平面 PEF 平行,则点 P 为 ( )
A.K
B.H
C.G
D.B′
【来源】人教 A 版高中数学必修二第 2 章 章末综合测评 3
A.30°
B.60°
C.90°
D.120°
【来源】人教 A 版高中数学必修二第二章 章末检测卷
【答案】C
19.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B 到 l 的距离分别是 a 和 b,AB 与α、β
试卷第 5页,总 17页
所成的角分别是θ和φ,AB 在α、β内的射影长分别是 m 和 n,若 a>b,则 ( )
【来源】2013-2014 学年福建省清流一中高一下学期第二次阶段考数学试卷(带解析) 【答案】①②
30.如图所示,在正方体 ABCD A1B1C1D1 中, M,N 分别是棱 AA1 和 AB 上的点, 若 B1MN 是直角,则 C1MN ________.
试卷第 8页,总 17页
【来源】人教 A 版 2017-2018 学年必修二第 2 章 章末综合测评 1 数学试题 【答案】90°
29.如图,将边长为1的正方形 ABCD 沿对角线 AC 折起,使得平面 ADC 平面 ABC , 在折起后形成的三棱锥 D ABC 中,给出下列三个命题: ① DBC 是等边三角形; ② AC BD ; ③三棱锥 D ABC 的体积是 2 .
6
其中正确命题的序号是* * * .(写出所有正确命题的序号)
试卷第 1页,总 17页

2021_2022年高中数学第二章点直线平面之间的位置关系1

2021_2022年高中数学第二章点直线平面之间的位置关系1

平面[基础巩固]1.下列四个选项中的图形表示两个相交平面,其中画法正确的是( )解析:A错误,因为两平面的交线没有画出,且被遮住的部分没有画成虚线或者不画;B,C都错误,因为被遮住的部分没有画成虚线或者不画.答案:D2.用符号表示“点A在直线l上,l在平面α外”,正确的是( )A.A∈l,l∉αB.A∈l,l⊄αC.A⊂l,l⊄αD.A⊂l,l∈α解析:注意点与直线、点与平面之间的关系是元素与集合间的关系,直线与平面之间的关系是集合与集合之间的关系.故选B.答案:B3.(2016·襄阳五中)给出下列三个命题:①A,B,C三点确定一个平面;②若直线a∩b=A,则直线a与b能够确定一个平面;③已知平面α,直线l和点A,B,若A∈l,B∈l,且A∈α,B∈α,则l⊂α.其中正确命题的序号是________.解析:①中,只有不共线的三点可以确定一个平面,因此①错误;②中,由于两条直线相交,则必然确定一个平面,因此②正确;③中,由于点A,B既在直线l上又在平面α内,即直线l上的两点在平面α内,所以直线l在平面α内,即l⊂α,因为③正确.综上可知,正确命题的序号是②③.答案:②③4.(2016·运城一中)如图,已知正方体ABCD-A1B1C1D1,E,F分别是B1C1,C1D1的中点,且AC∩BD=P,A1C1∩EF=Q.(1)求证:D,B,E,F四点共面;(2)求四边形BDFE 的面积.解:(1)如图,连接B 1D 1,交A 1C 1于点M .∵BB 1∥DD 1,且BB 1=DD 1,∴四边形BB 1D 1D 是平行四边形,∴BD ∥B 1D 1.又E ,F 分别是B 1C 1,C 1D 1的中点,∴EF ∥B 1D 1,∴EF ∥BD ,∴D ,B ,F ,E 四点共面.(2)连接PQ ,由分析知四边形BDFE 是等腰梯形,PQ 为高.设正方体的棱长为a ,则BD =B 1D 1=2a ,EF =12B 1D 1=22a ,BE =DF =52a , ∴PQ =⎝ ⎛⎭⎪⎫52a 2-⎝ ⎛⎭⎪⎫24a 2=324a , ∴四边形BDFE 的面积S =12(BD +EF )·PQ =12⎝ ⎛⎭⎪⎫2a +22a ·324a =98a 2. [能力提升]1.下列推理错误的是( )A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂αB .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=ABC .l ⊄α,A ∈l ⇒A ∉αD .A ,B ,C ∈α,A ,B ,C ∈β,且A ,B ,C 不共线⇒α与β重合解析:当l ⊄α,A ∈l 时,也有可能A ∈α,如l ∩α=A .答案:C2.用符号表示“点A 在直线l 上,在平面α外”为( )A .A ∈l ,A ∉αB .A ∈l ,A ⊄αC .A ⊂l ,A ⊄αD .A ⊂l ,A ∉α解析:“点A 在直线l 上”用“A ∈l ”表示,“点A 在平面α外”用“A ∉α”表示.故选A.答案:A3.空间四点A ,B ,C ,D 共面而不共线,那么这四点中( )A .必有三点共线B .必有三点不共线C .至少有三点共线D .不可能有三点共线解析:空间四点A、B、C、D共面而不共线,则至少有一点不在其余点中的两点确定的直线上,如C∉AB,无论C点在何位置,C、A、B不共线.答案:B4.如图,平面α∩平面β=l,A、B∈α,C∈β,C∉l,直线AB∩l=D,过A、B、C 三点确定的平面为γ,则平面γ、β的交线必过( )A.点AB.点BC.点C,但不过点DD.点C和点D解析:根据基本性质判定点C和点D既在平面β内又在平面γ内,故在β与γ的交线上.答案:D5.(2016·绵阳中学)下列命题正确的是( )A.一条直线和一点确定一个平面B.两条相交直线确定一个平面C.四点确定一个平面D.三条平行直线确定一个平面解析:根据一条直线和直线外的一点确定一个平面,知A不正确;B显然正确;C中四点不一定共面,故C不正确;三条平行直线可以确定一个平面或三个平面,故D不正确.故选B.答案:B6.(2016·桐乡一中)已知α,β是不同的平面,l,m,n是不同的直线,P为空间中一点.若α∩β=l,m⊂α,n⊂β,m∩n=P,则点P与直线l的位置关系用符号表示为________.解析:因为m⊂α,n⊂β,m∩n=P,所以P∈α且P∈β.又α∩β=l,所以点P在直线l上,所以P∈l.答案:P∈l7.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.答案:C8. (2016·黄石二中)在长方体ABCD ­A 1B 1C 1D 1的所有棱中,既与AB 共面,又与CC 1共面的棱有________条.解析:作图并观察可知既与AB 共面,又与CC 1共面的棱有CD ,BC ,BB 1,AA 1,C 1D ,共5条.答案:59. (2015·河北省邢台一中月考)在空间四边形ABCD 中,H ,G 分别是AD ,CD 的中点,E ,F 分别是边AB ,BC 上的点,且CF FB =AE EB =13.求证:直线EH ,BD ,FG 相交于一点.解:如图所示,连接EF ,GH .∵H ,G 分别是AD ,CD 的中点,∴GH ∥AC ,且GH =12AC . ∵CF FB =AE EB =13, ∴EF ∥AC ,且EF =34AC . ∴GH ∥EF ,且GH ≠EF .∴EH 与FG 相交,设交点为P .∵EH ⊂平面ABD ,∴P ∈平面ABD .同理P ∈平面BCD .又∵平面ABD ∩平面BCD =BD ,∴P ∈BD .∴直线EH ,BD ,FG 相交于一点.10.如图,在棱长为a 的正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别是AA 1,D 1C 1的中点,过D ,M ,N 三点的平面与正方体的下底面相交于直线l .(1)画出直线l ;(2)设l ∩A 1B 1=P ,求PB 1的长.解:(1)设过D ,M ,N 三点的平面为α,α与平面AA 1D 1D 的交线为直线DM ,设DM ∩D 1A 1=Q .由于D 1A 1⊂平面A 1B 1C 1D 1,所以Q ∈平面A 1B 1C 1D 1,所以α与平面A 1B 1C 1D 1的交线为QN ,则QN 即为所要画的直线l .如下图所示.(2)设QN ∩A 1B 1=P ,△A 1MQ ≌△AMD ,所以A 1Q =AD =A 1D 1,即A 1是QD 1的中点, 所以A 1P =12D 1N =14a ,即PB 1=34a .。

空间点、直线、平面之间的位置关系测试题(含答案)

空间点、直线、平面之间的位置关系测试题(含答案)

空间点、直线、平面之间的位置关系测试题(含答案)空间点、直线、平面之间的位置关系测试题1.已知平面α内有无数条直线都与平面β平行,那么正确的选项是()A。

α∥βB。

α与β相交C。

α与β重合D。

α∥β或α与β相交2.两条直线a,b满足a∥b,b⊥平面α,则a与平面α的关系是()A。

a∥αB。

a与α相交C。

a与α不相交D。

a⊥α3.对于命题:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行。

其中正确的个数有(。

)A。

1个B。

2个C。

3个D。

4个4.经过平面外两点与这个平面平行的平面()A。

只有一个B。

至少有一个C。

可能没有D。

有无数个5.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A。

3条B。

4条C。

5条D。

6条6.a,b是两条异面直线,下列结论正确的是()A。

过不在a,b上的任一点P,可作一个平面与a,b平行B。

过不在a,b上的任一点P,可作一条直线与a,b相交C。

过不在a,b上的任一点P,可作一条直线与a,b都平行D。

过a可以并且只可以作一平面与b平行7.m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A。

若m‖α,n‖α,则m‖nB。

若α⊥γ,β⊥γ,则α‖βC。

若m‖α,m‖β,则α‖βD。

XXX⊥α,n⊥α,则m‖n8.如图1,正四面体ABCD的棱长均为a,且AD⊥平面α于A,点B,C,D均在平面α外,且在平面α同一侧,则点B到平面α的距离是()A。

a/2B。

a/3C。

a/23D。

2a/39.如图2,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是A。

PB⊥ADB。

平面PAB⊥平面PBCC。

直线BC∥平面PAED。

直线PD与平面ABC所成的角为45°10.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A。

高中数学第二章点、直线、平面之间的位置关系阶段测试同步训练试题

高中数学第二章点、直线、平面之间的位置关系阶段测试同步训练试题

高中数学第二章点、直线、平面之间的位置关系阶段测试同步训练试题2019.091,化简11410104848++的值等于__________2,计算:(log )log log 2222545415-++=3,已知x y x y 224250+--+=,则log ()x x y 的值是_____________4,方程33131=++-x x的解是_____________5,函数1218x y -=的定义域是______;值域是______6,判断函数2lg(y x x =的奇偶性 7,若log a x =log b y =-21log c 2,a ,b ,c 均为不等于1的正数,且x >0,y>0,c =ab ,则xy =________.8,若lg2=a ,lg3=b ,则log 512=________.9,3a =2,则log 38-2log 36=__________.10,下列四个结论: ( )⑴两条直线都和同一个平面平行,则这两条直线平行⑵两条直线没有公共点,则这两条直线平行⑶两条直线都和第三条直线垂直,则这两条直线平行⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行其中正确的个数为A.0B.1C.2D.311,下面列举的图形一定是平面图形的是( )A.有一个角是直角的四边形B.有两个角是直角的四边形C.有三个角是直角的四边形D.有四个角是直角的四边形12,垂直于同一条直线的两条直线一定( )A.平行B. 相交C. 异面D.以上都有可能13,如图所示,正三棱锥V ABC -(顶点在底面的射影是底面正三角形的中心)中,,,D E F 分别是 ,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( )A. 030B. 090C. 060 D. 随P 点的变化而变化14,互不重合的三个平面最多可以把空间分成( )个部分A. 4B. 5C. 7D. 815,把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )A. 90B. 60C. 45D. 3016,已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A. 16π B. 20π C. 24π D. 32π17,已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥,则EF 与CD 所成的角的度数为( )A. 90 B. 45 C. 60 D. 3018,三个平面把空间分成7部分时,它们的交线有( )A. 1条 B. 2条 C. 3条 D. 1条或2条19,在长方体1111ABCD A B C D -,底面是边长为2的正方形,高为4,则点1A 到截面11AB D 的距离为( ) A. 83 B. 38 C. 43 D. 3420,直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点,连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为( ) A. 361a B. 3123a C. 363a D. 3121a试题答案1, 1616====2,2- 原式12222log 52log 5log 52log 52-=-+=--=-3, 0 22(2)(1)0,21x y x y -+-===且,22log ()log (1)0x x y ==4, 1- 33333,113x x xx x x ---⋅+===-+5, {}1|,|0,2x x y y ⎧⎫≠>≠⎨⎬⎩⎭且y 11210,2x x -≠≠;12180,1x y y -=>≠且6, 奇函数22()lg(lg(()f x x x x x f x -=-=-=- 7, 218, a ba -+129, a -210, A ⑴两条直线都和同一个平面平行,这两条直线三种位置关系都有可能⑵两条直线没有公共点,则这两条直线平行或异面⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能 ⑷一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内11, D 对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形 12, D 垂直于同一条直线的两条直线有三种位置关系13, B 连接,VF BF ,则AC 垂直于平面VBF ,即AC PF ⊥,而//DE AC ,DE PF ∴⊥14, D 八卦图 可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交15, C 当三棱锥D ABC -体积最大时,平面DAC ABC ⊥,取AC 的中点O ,则△DBO 是等要直角三角形,即045DBO ∠=16, C 正四棱柱的底面积为4,正四棱柱的底面的边长为2,正四棱柱的底面的对角线为,而球的直径等于正四棱柱的对角线,即2R =2424R S R ππ===球17, D 取BC 的中点G ,则1,2,,EG FG EF FG ==⊥则EF 与CD 所成的角030EFG ∠=18, C 此时三个平面两两相交,且有三条平行的交线19, C 利用三棱锥111A AB D -的体积变换:111111A AB D A A B D V V --=,则1124633h ⨯⨯=⨯⨯20, B 11211332A A BD D A BA a V V Sh --===⨯=。

必修二点、直线、平面之间的位置关系练习

必修二点、直线、平面之间的位置关系练习

A B C E F S 1、如图在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是A 、30B 、45C 、60D 、902、在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 、Q 分别是棱AB 、BC 、CD 、CC 1的中点,直线MN 与PQ 所成的度数是 ( )A 、30B 、45C 、60D 、903、若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a 与c 的关系是( )A 、异面B 、平行C 、垂直D 、相交4、设a, b, c 是空间的三条直线,下面给出三个命题:① 如果a, b 是异面直线,b, c 是异面直线,则a, c 是异面直线;② 如果a, b 相交,b, c 也相交,则a, c 相交;③ 如果a, b 共面,b, c 也共面,则a, c 共面.上述命题中,正确的命题的个数是( )A 、3B 、2C 、1D 、05、如图:正四面体S -ABC 中, E ,F 分别是SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于( )A 、30B 、45C 、60D 、906、以下命题正确的是( )A 、两个平面有一条交线B 、一条直线与一个平面最多有一个公共点C 、两个平面有一个公共点,它们可能相交D 、两个平面有三个公共点,它们一定重合 7、下面四个命题中,真命题的个数为( ) ⑴如果两个平面有三个公共点,那么这两个平面重合 ⑵两条直线可以确定一个平面⑶若M ∈α,M ∈β,α∩β=l ,则M ∈l⑷空间中,相交于同一点的三直线在同一平面内A 、1B 、2C 、3D 、48、如果a ⊥b ,那么a 与b ( )A 、一定相交B 、一定异面C 、一定共面D 、一定不平行9、如图,点S 在平面ABC 外,SB ⊥BC ,SB =AC =2,E 、F 分别是SC 和AB 的中点,则EF 的长是( )A 、 1B 、 2C 、22D 、 21 10、经过平面外两点与这个平面平行的平面( )A 、 只有一个B 、 至少有一个C 、 可能没有D 、 有无数个11、若b a //,A c b ,则a ,c 的位置关系是( ).A 、异面直线B 、相交直线C 、平行直线D 、相交直线或异面直线12、下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行 ⑵两条直线没有公共点,则这两条直线平行 ⑶两条直线都和第三条直线垂直,则这两条直线平行 ⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行.其中正确的个数为( )A 、0B 、1C 、2D 、3F B S E C13、已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥,则EF 与CD 所成的角的度数为( )A、90 B、45 C、60 D、3014、已知b a 、是两条异面直线,直线a 上的两点B A 、的距离为6,直线b 上的两点D C 、的距离为8,BD AC 、的中点分别为N M 、且5=MN ,求异面直线b a 、所成的角.15、已知AB 、BC 、CD 为不在同一平面内的三条线段,AB ,BC ,CD 的中点P 、Q 、R 满足PQ =2,QR PR =3,求AC 与BD 所成的角.16、已知四面体ABC S -的所有棱长均为a .SC 、AB 的中点分别为E 、F求:(1)EF 的长;(2)异面直线EF 和SA 所成的角.。

空间点、直线、平面之间的位置关系和平行判定习题

空间点、直线、平面之间的位置关系和平行判定习题

1.点A 在直线上,记作 ;点A 在平面α内,记作 ;直线α在平面α内,记作 .2.平面基本性质即三条公理的“文字语言”、“符号语言”、“图形语言”列表如下:3.公理的作用:(1)公理1作用:判断直线是否在平面内;(2)公理2作用:确定一个平面的依据;(3)公理3作用:判定两个平面是否相交的依据. 4. 空间两条直线的位置关系:5. 等角定理:6. 已知两条异面直线,经过空间任一点作直线,把所成的锐角(或直角)叫异面直线所成的角(或夹角). 所成的角的大小与点的选择无关,为了简便,点通常取在异面直线的一条上;异面直线所成的角的范围为,如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作. 求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.7. 公理4:8. 公理4作用:判断空间两条直线 的依据.9.直线与平面有三种位置关系:(1) —— 有无数个公共点(2)——有且只有一个公共点(3)——没有公共点10. 两个平面之间有两种位置关系:(1)——没有公共点(2)——有且只有一条公共直线2.2 直线、平面平行的判定及其性质11.判定定理的符号表示为:.12. 证明线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.13.面面平行判定定理:.用符号表示为:.14. 垂直于同一条直线的两个平面平行.15. 平面α上有不在同一直线上的三点到平面β的距离相等,则α与β的位置关系是.16.线面平行的性质定理:符号语言:18. 面面平行的性质:. 用符号语言表示为:.19. 其它性质:①;②;③夹在平行平面间的平行线段相等.1.四面体ABCD中,AB=CD=2,E、F分别是AC、BD的中点,且EF=3,则AB与CD所成的角为__________.3 / 72.在空间四边形ABCD 中,已知AD =1,BC =3,且AD ⊥BC ,对角线BD =213,AC =23,求AC 和BD 所成的角.3.已知E 、F 、G 、H 分别是空间四边形ABCD 各边AB 、AD 、CB 、CD 上的点,并且有GB CG EB AB =,HD CH FD AF =,试证EF 、GH 、BD 共点或两两平行.4 已知异面直线a 、b 所成的角为60°,在过空间一定点P 的直线中,与a ,b 所成的角均为60°的直线有多少条?过P 与a 、b 所成角均为50°,或均为70°的直线又各有多少呢?希望读者通过对上述三个具体问题的求解,总结解题方法,然后再探讨关于与异面直线成等角的直线的存在性问题的一般性情况:已知异面直线a ,b 所成的角为θ0且θ0<90°,过空间一点P 的直线中与a ,b 所成的角均为θ的直线有多少条?5.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB 和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D B 1与MN 所成角的余弦值。

高中数学 章末检测卷(二)点、直线、平面之间的位置关系 新人教A版必修2-新人教A版高一必修2数学试

高中数学 章末检测卷(二)点、直线、平面之间的位置关系 新人教A版必修2-新人教A版高一必修2数学试

章末检测卷(二)(时间:120分钟满分:150分)一、选择题1.在正方体ABCD-A1B1C1D1中,直线AC与直线BC1所成的角为( )A.30°B.60°C.90°D.45°解析连接A1C1,A1B,则AC∥A1C1,因为△A1BC1是正三角形,所以∠A1C1B=60°,即直线AC 与直线BC1所成的角为60°.答案 B2.设a、b为两条直线,α、β为两个平面,下列四个命题中,正确的命题是( )A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则a∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析A中a、b可以平行、相交或异面;B中a、b可以平行、相交或异面;C中的α、β可以平行或相交.答案 D3.设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可能在β内,也可能与β相交,故错误.故选C.答案 C4.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E解析由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,C正确.答案 C5.设l为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析选项A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;选项B,若l⊥α,l⊥β,则α∥β,故正确;选项C,若l⊥α,l∥β,则α⊥β,故错误;选项D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,l⊂β,故错误.故选B.答案 B6.(2015·某某高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析对于A,α,β垂直于同一平面,α,β关系不确定,A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C错;对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项,故D正确.答案 D7.(2014·某某高考)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析选项A,若m⊥n,n∥α,则m⊂α或m∥α或m与α相交,错误;选项B,若m∥β,β⊥α,则m⊂α或m∥α或m与α相交,错误;选项C,若m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;选项D,若m⊥n,n⊥β,β⊥α,则m与α相交或m⊂α或m ∥α,错误.答案 C8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8B.9C.10D.11解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.答案 A9.正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是( )A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°解析因为AH⊥平面A1BD,BD⊂平面A1BD,所以BD⊥AH.又BD⊥AA1,且AH∩AA1=A.所以BD⊥平面AA1H.又A1H⊂平面AA1H.所以A1H⊥BD,同理可证BH⊥A1D,所以点H是△A1BD的垂心,A正确;因为平面A 1BD ∥平面CB 1D 1, 所以AH ⊥平面CB 1D 1,B 正确;易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确;因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误. 答案 D10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ) A.5π12B.π3C.π4D.π6解析 如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠PAO 即为PA 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334, V ABC -A 1B 1C 1=S ×PO =94,∴PO = 3.又AO =33×3=1,∴tan ∠PAO =PO AO =3,∴∠PAO =π3. 答案 B二、填空题11.矩形ABEF 和正方形ABCD 有公共边AB ,且它们所在的平面互相垂直,AB =BC =2a ,BE =a ,则DE =________,DE 与平面ABEF 所成的线面角的正弦值为________. 解析 如图,在Rt △DBE 中,BD =22a ,BE =a ,∴DE =(22a )2+a 2=3a ,∵DA ⊥平面ABEF ,∴∠DEA 即为DE 与平面ABEF 所成的角, 在Rt △DAE 中,sin ∠DEA =DA DE =23. 答案 3a 2312.如图所示为一个正方体的一种表面展开图,图中的四条线段AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对,成60°角的有________对.解析 正方体如图AB 与CD ,AB 与GH ,GH 与EF 互为异面直线,AB 与CD ,AB 与EF ,AB 与GH ,CD 与GH ,EF 与GH 成60°角.答案 3 513.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.解析 ∵B 1C 1⊥平面A 1ABB 1,MN ⊂平面A 1ABB 1, ∴B 1C 1⊥MN ,又∠B 1MN 为直角. ∴B 1M ⊥MN 而B 1M ∩B 1C 1=B 1.∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1,∴∠C 1MN =90°. 答案 90°14.已知平面α∥平面β,点A ,C ∈α,点B ,D ∈β,直线AB ,CD 交于点S ,且SA =8,SB =9,CD =34.(1)若点S 在平面α,β之间,则SC =________. (2)若点S 不在平面α,β之间,则SC =________. 解析 根据题意得AS SB =SCSD.当点S 在α,β之间时,有89=CS 34-CS ,即CS =16;当点S 在α,β之外时,有89-8=SC34,即SC =272. 答案 16 27215.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面AC ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值X 围是________.解析 由题意知:PA ⊥DE , 又PE ⊥DE ,PA ∩PE =P , 所以DE ⊥面PAE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则AB CE =BE CD, 即3a -x =x 3.∴x 2-ax +9=0,由Δ>0,解得a >6. 答案 a >616.在正方体ABCD -A ′B ′C ′D ′中,E 为A ′D ′中点,则异面直线EC 与BC ′所成角的余弦值为________,二面角A ′-BC ′-D 的平面角的正切值为________.解析 如图,取BC ,CC ′中点F ,H ,连A ′F ,FH ,A ′H .∵A ′F ∥EC ,FH ∥BC ′,∴∠A ′FH 即为异面直线EC 与BC ′所成的角. 设正方体的棱长为2,FH =2,A ′F =3,A ′H =3, cos ∠A ′FH =223=26,取BC ′的中点O ,连A ′O ,DO ,则A ′O ⊥BC ′,DO ⊥BC ′,∠A ′OD 即为二面角A ′-BC ′-D 的平面角, A ′O =DO =6,A ′D =22,cos ∠A ′OD =6+6-826×6=13,tan ∠A ′OD =2 2.答案262 2 17.已知四棱锥P -ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号) 解析 由条件可得AB ⊥平面PAD , ∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而PA ∥PB ,这是不可能的,故②错;S △PCD =12CD ·PD ,S △PAB =12AB ·PA ,由AB =CD ,PD >PA 知③正确; 由E 、F 分别是棱PC 、PD 的中点, 可得EF ∥CD ,又AB ∥CD ,∴EF∥AB,故AE与BF共面,④错.答案①③三、解答题18.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D 是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.证明(1)∵C1C⊥平面ABC,AC⊂平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于O点,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M 为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.(1)证明 如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin 60°= 3.∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,PE ⊂平面PCD , ∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM .∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形. 由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,而PM ⊂平面PEM ,∴AM ⊥PM . (2)解 由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PE EM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.20.(2016·全国Ⅲ)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ; (2)求四面体N -BCM 的体积.(1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 因为PA ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12PA .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积 V N -BCM =13×S △BCM ×PA 2=453.21.(2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92. 五边形ABCFE 的面积S =12×6×8-12×92×3=694. 所以五棱锥D ′-ABCFE 的体积 V =13×694×22=2322. 22.(2016·某某高考)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD . (1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD .(1)解取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM . 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面PAB .CM ⊄平面PAB .所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交, 所以PA ⊥平面ABCD .从而PA ⊥BD .因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .。

第二章点、直线、平面之间的位置关系练习题及答案

第二章点、直线、平面之间的位置关系练习题及答案

第二章 《点、直线、平面之间的位置关系》一、选择题1. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂ 其中为假命题的是A .①B .②C .③D .④2.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||;③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则m ||其中真命题的个数是A .1B .2C .3D .43.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂。

其中真命题是A .①和②B .①和③C .③和④D .①和④4.已知直线n m l 、、及平面α,下列命题中的假命题是A .若//l m ,//m n ,则//l n .B .若l α⊥,//n α,则l n ⊥.C .若l m ⊥,//m n ,则l n ⊥.D .若//l α,//n α,则//l n .5.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是 A .BC ∥平面PDF B .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC 6.有如下三个命题:①分别在两个平面内的两条直线一定是异面直线; ②垂直于同一个平面的两条直线是平行直线;③过平面α的一条斜线有一个平面与平面α垂直. 其中正确命题的个数为A .0B .1C .2D .3 7.下列命题中,正确的是 A .经过不同的三点有且只有一个平面 B .分别在两个平面内的两条直线一定是异面直线 C .垂直于同一个平面的两条直线是平行直线D .垂直于同一个平面的两个平面平行8.已知直线m 、n 与平面βα,,给出下列三个命题:①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m其中真命题的个数是 A .0 B .1 C .2 D .3 9.已知a 、b 、c 是直线,β是平面,给出下列命题: ①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 A .1 B .2 C .3 D .4 10.过三棱柱任意两个顶点的直线共15条,其中异面直线有A .18对B .24对C .30对D .36对 11.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C的中点.那么,正方体的过P 、Q 、R 的截面图形是A .三角形B .四边形C .五边形D .六边形 12.不共面的四个定点到平面α的距离都相等,这样的平面α共有A .3个B .4个C .6个D .7个 13.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是A .l m l ⊥=⋂⊥,,βαβαB .γβγαγα⊥⊥=⋂,,mC . αγβγα⊥⊥⊥m ,,D .αβα⊥⊥⊥m n n ,,14.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么A .①是真命题,②是假命题B . ①是假命题,②是真命题C . ①②都是真命题D .①②都是假命题 15.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有A .1个B .2个C .3个D .4个二、填空题1.已知平面βα,和直线m ,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m (填所选条件的序号)2.在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号) 3.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥. ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是____________.(写出所有真命题的编号)4.已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:①若//,,,m n αβαβ⊂⊂则//m n②若,,//,//,m n m n αββ⊂则//αβ③若,,//m n m n αβ⊥⊥,则//αβ④m 、n 是两条异面直线,若//,//,//,//,m m n n αβαβ则//αβ上面命题中,真命题的序号是____________(写出所有真命题的序号)5. 已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:① 若//m α,则m 平行于平面α内的任意一条直线② 若//,,,m n αβαβ⊂⊂则//m n③若,,//m n m n αβ⊥⊥,则//αβ④若//,m αβα⊂,则//m β上面命题中,真命题的序号是____________(写出所有真命题的序号)6.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号) ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形三、计算题1. 如图1所示,在四面体P —ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB=342.F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且EF ⊥PB. (Ⅰ)证明:PB ⊥平面CEF ; (Ⅱ)求二面角B —CE —F 的大小.2. 已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60。

高一数学点直线平面之间的位置关系试题答案及解析

高一数学点直线平面之间的位置关系试题答案及解析

高一数学点直线平面之间的位置关系试题答案及解析1.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为()A.B.C.D.【答案】C【解析】设BC的中点为D,连接易知即为异面直线与所成的角,设三棱柱的侧棱与底面边长为1,则,由余弦定理可以求得【考点】本小题主要考查空间两条异面直线所成的角的求法,考查学生的空间想象能力和运算求解能力.点评:求空间两条异面直线所成的角,关键是先做出空间两条异面直线所成的角,另外需要注意空间两条异面直线所成的角的取值范围.2.在正方体中,E是棱的中点,F是侧面上的动点,且平面,则与平面所成角的正切值构成的集合是()A.B.C.D.【答案】D【解析】设分别为边上的中点,则四点共面,且平面平面,又因为平面,所以点落在线段上,设的中点为,则当与重合时,与平面所成角的正切值有最大值为,当与或重合时,与平面所成角的正切值有最小值为2,故与平面所成角的正切值构成的集合是【考点】本小题主要考查点是直线与平面所成的角,其中分析出F落在线段HI上,是解答本题的关键.点评:求线面角,关键是先作出所成的角.3.四棱锥中,底面是边长为的正方形,其他四个侧面都是侧棱长为的等腰三角形,则二面角的平面角为_____________。

【答案】【解析】如图:E、F分别是AB,CD中点,连VE,EF,VF;则就是二面角的平面角;又所以三角形VEF为正三角形,所以4.直角△ABC的斜边BC在平面a内,顶点A在平面a外,则△ABC的两条直角边在平面a内的射影与斜边BC组成的图形只能是()A.一条线段B.一个锐角三角形C.一个钝角三角形D.一条线段或一个钝角三角形【答案】D【解析】当面ABC⊥α时,射影为一条线段,当面ABC不垂于α时,射影为钝角三角形.5.如果△ABC的三个顶点到平面的距离相等且不为零,那么△ABC的()A.三边均与平面平行B.三边中至少有一边与平面平行C.三边中至多有一边与平面平行D.三边中至多有两边与平面平行【答案】B【解析】三个顶点正在平面同一侧,则三边都平行平面;两个顶点在同一侧,一个顶点在另一侧,则在同一侧的两个顶点所在的边平行平面.故选B6.过直线外一点作直线的垂线有条;垂面有个;平行线有条;平行平面有个.【答案】无数,一,一,无数【解析】过直线外一点作直线的垂线与该直线相交的只有一条,而与该直线异面的有无数条,所以过直线外一点作直线的垂线有无数条。

高一数学空间点、直线、平面之间位置关系测试题

高一数学空间点、直线、平面之间位置关系测试题

第1题. 下列命题正确的是( ) A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面 C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面答案:D.第2题. 如图,空间四边形ABCD 中,E ,F ,G ,H 分别 是AB ,BC ,CD ,DA 的中点. 求证:四边形EFGH 是平行四边形.答案:证明:连接BD .因为EH 是ABD △的中位线,所以EH BD ∥,且12EH BD =. 同理,FG BD ∥,且12FG BD =.因为EH FG ∥,且EH FG =. 所以四边形EFGH 为平行四边形.试题号:4658 知识点:空间平行线的传递性——公理4。

试题类型:解答题 试题难度:容易 考查目标:基础知识 录入时间:2006-1-6第3题. 如图,已知长方体ABCD A B C D ''''-中,23AB =,23AD =,2AA '=. (1)BC 和A C ''所成的角是多少度? (2)AA '和BC '所成的角是多少度?A D BC D 'C 'B 'A ' AEBHGCFD答案:(1)45þ;(2)60þ.第4题. 下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则lα∥.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A.0B.1 C.2 D.3答案:B.第5题. 若直线a不平行于平面α,且aα⊄,则下列结论成立的是()A.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交答案:B.第6题. 已知a,b,c是三条直线,角a b∥,且a与c的夹角为θ,那么b与c夹角为.答案:θ.第7题. 如图,AA'是长方体的一条棱,这个长方体中与AA'垂直的棱共条.ADBC D'C'B'A'答案:8条.第8题. 如果a ,b 是异面直线,直线c 与a ,b 都相交,那么这三条直线中的两条所确定的平面共有 个.答案:2个.第9题. 已知两条相交直线a ,b ,a α平面∥则b 与α的位置关系是 .答案:b a ∥,或b 与a 相交.第10题. 如图,三条直线两两平行且不共面,每两条确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?答案:3个,3个.第11题. 如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行. ②CN 与BE 是异面直线.A N DC BM E③CN 与BM 成60˚角. ④DM 与BN 垂直.以上四个命题中,正确命题的序号是( ) A.①,②,③B.②,④ C.③,④D.②,③,④答案:C.第12题. 下列命题中,正确的个数为( )①两条直线和第三条直线成等角,则这两条直线平行;②平行移动两条异面直线中的任何一条,它们所成的角不变;③过空间四边形ABCD 的顶点A 引CD 的平行线段AE ,则BAE ∠是异面直线AB 与CD 所成的角;④四边相等,且四个角也相等的四边形是正方形 A.0 B.1 C.2 D.3 答案:B.第13题. 在空间四边形ABCD 中,N ,M 分别是BC ,AD 的中点,则2MN 与AB CD +的大小关系是 . 答案:2MN AB CD <+.第14题. 已知a b ,是一对异面直线,且a b ,成70角,P 为空间一定点,则在过P 点的直线中与a b ,所成的角都为70的直线有 条.答案:4.第15题. 已知平面αβ//,P 是平面αβ,外的一点,过点P 的直线m 与平面αβ,分别交于A C ,两点,过点P 的直线n 与平面αβ,分别交于B D ,两点,若698PA AC PD ===,,, 则BD 的长为 .答案:24245或.第16题. 空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若AC BD a ==,且AC 与BD 所成的角为90,则四边形EFGH 的面积是 . 答案:214a .第17题. 已知正方体1111ABCD A B C D -中,E ,F 分别为11D C ,11C B 的中点,A CB D P =,11AC EF Q =.求证:(1)D ,B ,F ,E 四点共面;(2)若1AC 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 答案:证明:如图. (1)EF 是111D B C △的中位线,11EF B D ∴∥.在正方体1AC 中,11B D BD ∥,∴EF BD ∥.EF ∴确定一个平面,即D ,B ,F ,E 四点共面.(2)正方体1AC 中,设11A ACC 确定的平面为α,又设平面BDEF 为β. 11Q AC ∈,Q α∴∈.又Q EF ∈,Q β∴∈.则Q 是α与β的公共点,PQ αβ∴=.又1AC R β=,1R AC ∴∈.R α∴∈,R β∈且,则R PQ ∈.故P ,Q ,R 三点共线.第18题. 已知下列四个命题: ① 很平的桌面是一个平面; ② 一个平面的面积可以是4m 2; ③ 平面是矩形或平行四边形;1A ADE1CQ 1B RPBCF④ 两个平面叠在一起比一个平面厚. 其中正确的命题有( ) A.0个 B.1个 C.2个 D.3个 答案:A.第19题. 给出下列命题:和直线a 都相交的两条直线在同一个平面内; 三条两两相交的直线在同一平面内; 有三个不同公共点的两个平面重合; 两两平行的三条直线确定三个平面. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3 答案:A.第20题. 直线12l l ∥,在1l 上取3点,2l 上取2点,由这5点能确定的平面有( ) A.9个 B.6个 C.3个D.1个答案:D.第21题. 三条直线相交于一点,可能确定的平面有( ) A.1个 B.2个 C.3个 D.1个或3个 答案:D.第22题. 下列命题中,不正确的是( )①一条直线和两条平行直线都相交,那么这三条直线共面; ②每两条都相交但不共点的四条直线一定共面; ③两条相交直线上的三个点确定一个平面; ④两条互相垂直的直线共面. A.①与② B.③与④ C.①与③ D.②与④ 答案:B.第23题. 分别和两条异面直线都相交的两条直线一定是( ) A.异面直线 B.相交直线 C.不相交直线 D.不平行直线答案:D.第24题. 在长方体1111ABCD A B C D 中,点O ,1O 分别是四边形ABCD ,1111A B C D 的对角线的交点,点E ,F 分别是四边形11AA D D ,11BB C C 的对角线的交点,点G ,H 分别是四边形11A ABB ,11C CDD 的对角线的交点. 求证:1OEG O FH △≌△.答案:证明:如图,连结1AD ,AC ,1CD ,11C A ,1C B ,1BA .由三角形中位线定理可知OE ∥ 112CD ,1O F ∥112BA . 又1BA ∥1CD ,OE ∴ ∥1O F .同理可证EG ∥FH . 由等角定理可得1OEG O FH ∠=∠.∴1OEG O FH △≌△.第25题. 若a ,b 是异面直线,b ,c 也是异面直线,则a 与c 的位置关系是( ) A.异面 B.相交或平行 C.平行或异面 D.相交或平行或异面 答案:D.第26题. a ,b 是异面直线,A ,B 是a 上两点,C ,D 是b 上的两点,M ,N 分别是线段AC 和BD 的中点,则MN 和a 的位置关系是( ) A.异面直线 B.平行直线 C.相交直线 D.平行、相交或异面 答案:A.第27题. 如下图是正方体的平面展开图,在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60þ角; ④DM 与BN 垂直.以上四个命题中,正确命题的序号是( )A.①②③ B.②④ C.③④ D.②③④答案:C.第28题. 直线与平面平行的条件是这条直线与平面内的( ) A.一条直线不相交1DAB1A 1C1B EDOG H1OFCN DC E A BF MB.两条直线不相交C.任意一条直线不相交D.无数条直线不相交答案:C.第29题. 如果直线a平行于平面α,则()A.平面α内有且只有一直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a平行的直线D.平面α内的任意直线与直线a都平行答案:B.第30题. 已知直线的倾斜角为α,若3sin5α=,则此直线的斜率为()A.34B.43C.34±D.43±答案:C.。

高中数学《点、直线、平面之间的位置关系》单元测试题(含答案)

高中数学《点、直线、平面之间的位置关系》单元测试题(含答案)

高中数学《点、直线、平面之间的位置关系》单元测试题(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b是异面直线,直线c∥a,则c与b的位置关系是( )A.相交B.异面C.平行D.异面或相交2.下列命题正确的是( )A.一直线与一个平面内的无数条直线垂直,则此直线与平面垂直B.两条异面直线不能同时垂直于一个平面C.直线与平面所成的角的取值范围是:0°<θ≤180°D.两异面直线所成的角的取值范围是:0°<θ<90°3.棱柱的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是( )A.平行B.相交词C.平行或相交D.不相交4.设a,b是空间两条垂直的直线,且b∥平面α,则在“a∥α”“a α”“a∩α”这三种情况中,能够出现的情况有( )A.0个B.1个C.2个D.3个5.已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是( )A.平行B.垂直C.斜交D.不能确定6.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥β[来C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l7.BC是Rt△ABC的斜边,PA⊥平面ABC,PD⊥BC于D点,则图中共有直角三角形的个数是( )A.8个B.7个C.6个D.5个8.以下说法中,正确的个数为( )①已知直线a,b和平面α.若a∥b,a∥α,则b∥α;②已知直线a,b,c和平面α.a是斜线,与平面α相交,b是射影所在直线,c α,且c⊥b,则c⊥a;③三个平面两两相交,且它们的交线各不相同,则这三条交线互相平行;④已知平面α,β,若α∩β=a,b⊥a,则b⊥α或b⊥β.A.1个B.2个C.3个D.4个9.已知点O为正方体ABCD -A1B1C1D1的底面ABCD的中心,则下列结论正确的是( )A.直线OA1⊥平面AB1C1B.直线OA1∥平面CB1D1C.直线OA1⊥直线ADD.直线OA1∥直线BD110.某四棱台的三视图如图所示,则该四棱台的体积是( )A.4B.C.D.611.已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD= ( )A.2B.C.D.112.如图所示,在正四棱锥S-ABCD(顶点S在底面ABCD上的射影是正方形ABCD的中心)中,E是BC的中点,P点在侧面△SCD内及其边界上运动,并且总是保持PE ⊥AC.则动点P的轨迹与△SCD组成的相关图形最有可能是图中的( )二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.如图,直四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧棱长AA1=,则异面直线A1B1与BD1所成的角大小等于.14.如图,AB是☉O的直径,C是圆周上不同于A,B的点,PA垂直于☉O所在的平面,AE⊥PB于E,AF⊥PC于F,因此, ⊥平面PBC.(填图中的一条直线)15.四棱锥S-ABCD的底面ABCD是正方形,AC与BD相交于点O,且SO⊥平面ABCD,若四棱锥S-ABCD的体积为12,底面对角线的长为2,则侧面与底面所成的二面角等于.16.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是(写出所有正确命题的编号).①当0<CQ<时,S为四边形;②当CQ=时,S为等腰梯形;③当CQ=时,S与C1D1的交点R满足C1R=;④当<CQ<1时,S为六边形;⑤当CQ=1时,S的面积为.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)在长方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点,求证:CE,D1F,DA三线交于一点.18.(12分)如图,圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点.(1)求证:SA∥平面PCD.(2)求异面直线SA与PD所成角的正切值.19.(12分)如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆上的点.(1)求证:平面PAC⊥平面PBC.(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.20.(12分)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点.(1)求证:EF∥平面ABC1D1 .(2)求证:EF⊥B1C.(3)求三棱锥B1-EFC的体积.21.(12分)(能力挑战题)在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC1⊥B1D.求证:(1)平面A1EC∥平面AB1D.(2)平面A1BC1⊥平面AB1D.22.(12分)(能力挑战题)如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论.(2)求平面EBD与平面ABC所成的锐二面角θ的余弦值.高中数学《点、直线、平面之间的位置关系》单元测试题参考答案1.【解析】选D.根据空间两条直线的位置关系和公理4可知c与b异面或相交,但不可能平行.2.【解析】选B.A.错误.一直线与一个平面内的无数条直线垂直,并不意味着和平面内的任意直线垂直,所以此直线与平面不一定垂直.B.正确.由线面垂直的性质定理可知,两条异面直线不能同时垂直于一个平面.C.错误.直线与平面所成的角的取值范围是:0°≤θ≤90°.D.错误.两异面直线所成的角的取值范围是:0°<θ≤90°.3.【解析】选A.因为棱柱的侧棱是互相平行的,所以由直线与平面平行的判定定理可知,侧棱所在的直线与不含这条侧棱的侧面所在的平面平行.4.【解析】选D.如图正方体中,b∥平面α,直线a是在直线b的垂面内的任意直线(与b异面).由图可知,“a∥α”“a α”“a∩α”三种情况都有可能.5.【解析】选B.根据线面平行的性质,在已知平面内可以作出两条相交直线与已知两条异面直线分别平行.因此,一直线与两异面直线都垂直,一定与这个平面垂直.6.【解析】选D.因为m,n为异面直线,所以过空间内一点P,作m′∥m,n′∥n,则l⊥m′,l⊥n′,即l垂直于m′与n′确定的平面γ,又m⊥平面α,n⊥平面β,所以m′⊥平面α,n′⊥平面β,所以平面γ既垂直于平面α,又垂直于平面β,所以α与β相交,且交线垂直于平面γ,故交线平行于l,故选D.7.【解析】选A.因为PA⊥平面ABC,所以PA⊥BC,因为PD⊥BC,PA∩PD=P,所以BC⊥平面PAD,所以AD⊥BC,图中直角三角形有△PAC,△PAD,△PAB,△ABC,△PDC,△PDB,△ADC,△ADB,共8个.8.【解析】选A.①错误.直线b的位置不确定,直线b可以在α内,也可以平行于α.②正确.c同时垂直于斜线和射影.③错误.例如,长方体同一顶点的三个面.④错误.没有说明b是否在平面α或β内,则b可以在这两个平面外.9.【解析】选B.可证平面A1BD∥平面CB1D1.10.【解析】选B.四棱台的上下底面均为正方形,两底面边长和高分别为1,2,2, V棱台=(S上+S下+)h=(1+4+)×2=.11.【解析】选C.根据题意,直二面角α-l-β,点A∈α,AC⊥l,可得AC⊥平面β,则AC⊥CB,△ACB为直角三角形,且AB=2,AC=1,由勾股定理可得,BC=;在Rt△BCD中,BC=,BD=1,由勾股定理可得,CD=.12.【解析】选A.如图所示,连接BD与AC相交于点O,连接SO,取SC的中点F,取CD的中点G,连接EF,EG,FG,因为E,F分别是BC,SC的中点,所以EF∥SB,EF⊄平面SBD,SB 平面SBD,所以EF∥平面SBD,同理可证EG∥平面SBD,又EF∩EG=E,所以平面EFG∥平面SBD,由题意得SO⊥平面ABCD,AC⊥SO,因为AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD,所以AC⊥平面EFG,所以AC⊥GF,所以点P在直线GF上.【变式备选】如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的结论的个数是( )A.1个B.2个C.3个D.4个【解析】选C.①正确.易证BC 1∥平面ACD 1,所以点P 在正方体ABCD-A 1B 1C 1D 1的面对角线BC 1上运动时,点P 到平面ACD 1的距离不变.又因为11A D PC P ACD V V ,--=所以三棱锥A-D 1PC 的体积不变.②正确.易证平面A 1BC 1∥平面ACD 1,所以A 1P ∥平面ACD 1;③错误.因为DB=DC 1,所以当点P 是BC 1的中点时,DP ⊥BC 1;④正确.因为B 1D ⊥平面ACD 1,所以平面PDB 1⊥平面ACD 113.【解析】因为A 1B 1∥AB,所以∠ABD 1是异面直线A 1B 1与BD 1所成的角,在Rt △ABD 1中,∠BAD 1=90°,AB=1,AD 1===, 所以tan ∠ABD 1==,所以∠ABD 1=60°.答案:60°14.【解析】因为AB是☉O的直径,C是圆周上不同于A,B的点,所以BC⊥AC,因为PA垂直于☉O所在的平面,所以BC⊥PA,又PA∩AC=A,所以BC⊥平面PAC,又AF 平面PAC,所以AF⊥BC,又AF⊥PC,BC∩PC=C,所以AF⊥平面PBC.答案:AF15.【解析】取BC的中点E,连接OE,SE,因为OB=OC,所以OE⊥BC,因为SO⊥平面ABCD,所以SO⊥BC,所以BC⊥平面SOE,所以∠SEO是侧面SBC与底面ABCD所成的二面角,因为正方形ABCD的对角线长为2,所以正方形ABCD的边长为2,OE=,由题意得×(2)2×SO=12,所以SO=3,所以tan∠SEO===,所以∠SEO=60°.答案:60°16.【解析】(1)当0<CQ<时,截面如图1所示,截面是四边形APQM,故①正确.(2)当CQ=时,截面如图2所示,易知PQ∥AD1且PQ=AD1,S是等腰梯形,故②正确.(3)当CQ=时,截面如图3所示,易得C1R=,截面是五边形,故③正确.(4)当<CQ<1时,如图4是五边形,故④不正确.(5)当CQ=1时,截面是边长相等的菱形如图5所示,由勾股定理易求得AC1=,MP=,故其面积为S=×AC1×MP=,故⑤正确.答案:①②③⑤17.【解题指南】可证D1F与CE的交点P在直线AD上.【证明】连接EF,D1C,A1B,因为E为AB的中点,F为AA1的中点,所以EF∥A1B,EF=A1B,又因为A1B∥D1C,所以EF∥D1C,所以E,F,D1,C四点共面,且EF=D1C,设D1F与CE相交于点P.又D1F⊂平面A1D1DA,CE⊂平面ABCD,所以P为平面A1D1DA与平面ABCD的公共点, 又平面A1D1DA∩平面ABCD=DA,根据公理3可得P∈DA,即CE,D1F,DA三线交于一点.18.【解析】(1)连接PO,因为P,O分别为SB,AB的中点,所以PO∥SA, 因为PO⊂平面PCD,SA⊄平面PCD,所以SA∥平面PCD.(2)因为PO∥SA,所以∠DPO为异面直线SA与PD所成的角,因为AB⊥CD,SO⊥CD,AB∩SO=O,所以CD⊥平面SOB.因为PO⊂平面SOB,所以OD⊥PO,在Rt△DOP中,OD=2,O P=SA=SB=,所以tan∠DPO===,所以异面直线SA与PD所成角的正切值为.19.【证明】(1)由AB是圆的直径,得AC⊥BC;由PA垂直于圆所在的平面,得PA⊥平面ABC.又BC⊂平面ABC,得PA⊥BC. 又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.又BC⊂平面PBC,所以平面PAC⊥平面PBC.(2)连接OG并延长交AC于M,连接QM,QO.由G为△AOC的重心,知M为AC的中点,由Q为PA的中点,得QM∥PC,又因为QM⊄平面PBC,PC⊂平面PBC,所以QM∥平面PBC.又由O为AB的中点,得OM∥BC.同理可证,OM∥平面PBC.因为QM∩OM=M,QM⊂平面QMO,OM⊂平面QMO,所以,据面面平行的判定定理得,平面QMO∥平面PBC.又QG⊂平面QMO,故QG∥平面PBC.20.【解析】(1)连接BD1,在△DD1B中,E,F分别为D1D,DB的中点,则EF∥D1B,因为EF∥D1B,D1B⊂平面ABC1D1,EF⊄平面ABC1D1,所以EF∥平面ABC1D1.(2)因为B1C⊥AB,B1C⊥BC1,AB,BC1⊂平面ABC1D1,AB∩BC1=B,所以B1C⊥平面ABC1D1,又B D1⊂平面ABC1D1,所以B1C⊥BD1,又因为EF∥BD1,所以EF⊥B1C.(3)因为CF⊥平面BDD1B1,所以CF⊥平面EFB1且CF=BF=,因为EF=BD1=,B 1F===,B 1E===3,所以EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, 所以111B EFC C B EF B EF 1V V S CF 3--===×·EF ·B 1F ·CF=××××=1. 21.【证明】(1)因为点D,E 分别是BC,B 1C 1的中点,所以A 1E ∥AD,EC ∥B 1D,故A 1E ∥平面AB 1D,EC ∥平面AB 1D,又A 1E ∩EC=E,所以平面A 1EC ∥平面AB 1D.(2)因为△ABC 是正三角形,点D 是BC 的中点,所以AD ⊥BC,又因为平面ABC ⊥平面BCC 1B 1,所以AD ⊥平面BCC 1B 1,所以AD ⊥BC 1,又BC 1⊥B 1D,AD ∩B 1D=D,从而BC 1⊥平面AB 1D.又BC 1⊂平面A 1BC 1,所以平面A 1BC 1⊥平面AB 1D.22.【解题指南】(1)通过线面平行的判定定理,利用平行四边形的性质作辅助线来证明.。

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题1.若,是异面直线,直线∥,则与的位置关系是()A.相交B.异面C.异面或相交D.平行【答案】C【解析】空间中直线与直线有三种位置关系:相交,平行,异面;当直线与直线在同一个平面内,则相交,不在任何一个平面内,则是异面直线;要是,由平行公理得,这与为异面直线相矛盾,故位置关系是相交或异面.【考点】空间中直线和直线的位置关系.2.若、、是互不相同的直线,是不重合的平面,则下列命题中为真命题的是()A.若∥,,,则∥B.若,则C.若,∥,则D.若,则∥【答案】C【解析】对于,直线可能平行,可能异面;对于没有说明直线垂直交线;对于由平面与平面垂直的性质得正确;对于,垂直于同一条直线的两条直线可能平行、相交、异面.【考点】空间中点、线、面的位置关系.3.如图,已知在侧棱垂直于底面三棱柱中,,,,,点是的中点.(1)求证:;(2)求证:(3)求三棱锥的体积.【答案】(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,;(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面;(3).【解析】(1)由勾股定理得,由面得到,从而得到面,故;(2)连接交于点,则为的中位线,得到∥,从而得到∥面;(3)过作垂足为,面,面积法求,求出三角形的面积,代入体积公式进行运算.试题解析:(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,.(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面.(3)在中过作垂足为,由面⊥面知,面,.而,,.【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积.4.已知m,n是两条不同直线,是三个不同平面,下列命题中正确的是()A.若m,n,则m n B.若C.若D.若【答案】D【解析】A选项中m,n可以相交;B选项中可能相交,不同于平面中的垂直于同一直线的两直线平行;C选项中m有可能与的相交线平行,同时也与平行,但平面不平行;综合选D.【考点】直线与平面的位置关系.5.已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EF AB,则EF与CD所成的角为().A.B.C.D.【答案】D【解析】设为的中点,连接,由三角形中位线定理可得,则即为与所成的角,结合,在中,利用三角函数即可得到答案.【考点】异面直线及其所成的角.三角形中位线定理.6.下列命题中正确的是()A.空间三点可以确定一个平面B.三角形一定是平面图形C.若既在平面内,又在平面内,则平面和平面重合.D.四条边都相等的四边形是平面图形【答案】B【解析】对于A,当三个点在同一直线上时,不能确定一个平面,故A不正确;对于B,三角形三条直线两两相交,有不共线的三点,因此一定是平面图形,故B正确;对于C,当在一条直线上时,平面和平面也可能相交,故C不正确;对于D,当四边形的对边所在直线是异面直线时,四边形不是平面图形,故D不正确,故选B.【考点】平面的基本性质.7.已知△中,,,平面,,、分别是、上的动点,且.(1)求证:不论为何值,总有平面平面;(2)当为何值时,平面平面?【答案】(1)见解析;(2)见解析.【解析】(1)通过证明⊥平面,说明平面平面;(2)将平面平面作为条件,利用三角形关系求解.试题解析:(1)∵⊥平面,∴⊥.∵⊥且,∴⊥平面,又∵,∴不论为何值,恒有,∴⊥平面.又平面,∴不论为何值,总有平面⊥平面.(2)由(1)知,⊥,又平面⊥平面,∴⊥平面,∴⊥.∵,,,∴,,∴,由,得,∴,故当时,平面平面.【考点】两平面的位置关系的证明.8.下列四个结论:⑴两条不同的直线都和同一个平面平行,则这两条直线平行.⑵两条不同的直线没有公共点,则这两条直线平行.⑶两条不同直线都和第三条直线垂直,则这两条直线平行.⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行.其中正确的个数为()A.B.C.D.【答案】A【解析】两条不同的直线都和同一个平面平行,则这两条直线平行、相交或异面的位置关系.所以(1)不正确;两条不同的直线没有公共点,则这两条直线平行,或异面,所以(2)不正确;两条不同直线都和第三条直线垂直,则这两条直线平行、相交或异面,所以(3)不正确;一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行或直线在平面内,所以(4)不正确.故选A.【考点】1.直线与平面的位置关系.2.直线与直线的位置关系.3.相关的判断定理.9.在正四面体(所有棱长都相等)中,分别是的中点,下面四个结论中不成立的是()A.平面平面B.平面C.平面平面D.平面平面【答案】C【解析】由AF⊥BC,PE⊥BC,可得BC⊥平面PAE,而DF//BC,所以,DF⊥平面PAE,故A正确.若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE,故DF⊥平面PAE,故B正确.由DF⊥平面PAE可得,平面PAE⊥平面ABC,故D正确.故选C.【考点】正四面体的几何特征,平行、垂直关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AB AC 6 , OE // AD 。
(I)求二面角 B AD F 的大小; (II)求直线 BD 与 EF 所成的角. 【解】 (I)∵AD 与两圆所在的平面均垂直, ∴AD⊥AB,AD⊥AF,故∠BAF 是二面角 B—AD—F 的平面角, 依题意可知,ABFC 是正方形,所以∠BAF=450. 即二面角 B—AD—F 的大小为 450; (II)以 O 为原点,BC、AF、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示) ,则 , B3 O(0,0,0) , A(0, 3 2,0) ) (2 0 ,0 ,) ,
m, n m n
B.若 AC 与 BD 是异面直线,则 AD 与 BC 是异面直线 D.若 AB=AC,DB=DC,则 AD BC
9.若 l 为一条直线, ,, 为三个互不重合的平面,给出下面三个命题: ①
, ;② , ∥ ;③ l ∥,l .
PR MD.
因此, AMD 为所求二面角的平面角。在正六边形 ABCDEF 中, BD BF
2OB 3, AD 2.
3 . 2
在 Rt AOP中,PA 1, OA
1 , 2
PO PA2 OA2 6 1 6 ,则 BM PB , 2 2 4
在 Rt BOP中,PB
平面
, 所成的角分别为
A , B , AB 与两平面 、
别作两平面交线的垂线,垂足为 (A)4 二、填空题 (B)6 (C)8
4

6
B'
B
。过 A、B 分
A'
A ' 、 B ,若 AB=12,则 A ' B '
(D)
1.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个 顶点 A 在平面 内, 其余顶点在 的同侧, 正方体上与顶点 A 相邻的三个顶点到 的距离分别为 1, 2 和 4,P 是正方体的其余四个顶点中的一个,则 P 到平面 的距离可能是: ①3; ②4; ③5; ④6; ⑤7 以上结论正确的为______________。 (写出所有正确结论的编号 ) .. 2.平行四边形的一个顶点 A 在平面 内,其余顶点在 的同侧,已知其中 亿库教育网
//
,则 m // n ;② 若 m ,则 m
,n


,则 m
n;
, n // 且 //
B.③④
n ;④
若 m // , n 且
,则 m // n 。
其中真命题的序号式 A.①② C.①④ D.②③ 16.给出下列四个命题: ①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行 ③若直线 l1 , l2 与同一平面所成的角相等,则 l1 , l2 互相平行 ④若直线 l1 , l2 是异面直线,则与 l1 , l2 都相交的两条直线是异面直线 其中假命题 的个数是 ... (A)1 17.如图,平面 (B)2 (C)3 (D)4
斜线 PB 在平面 ABC 内的射影为 OB, BF AD 。
亿库教育网
免费下载
由三垂线定理得PB AD.
又 AM
AD A,
PB 平面AMD. MD 平面AMD,
的射影构成的图形面积的取值范围是____________。 8.若一条直线与一个正四棱柱各个面所成的角都为 ,则 cos =_____。 9.已知正四棱椎的体积为 12,地面的对角线为 2 ① m ,n ,
7. (如图,在 6 题上)正四面体 ABCD 的棱长为 l,棱 AB∥平面 ,则正四面体上的所有点在平面α 内
7
12.若 P 是平面 外一点,则下列命题正确的是 (A)过 P 只能作一条直线与平面 相交 (C)过 P 只能作一条直线与平面 平行
13.对于任意的直线 l 与平面 ,在平面 内必有直线 m ,使 m 与 l (A)平行 (B)相交 (C)垂直 (D)互为异面直线 14.对于平面 和共面的直线 m 、 n, 下列命题中真命题是 (A)若 m , m n, 则 n∥ (C)若 m , n∥ ,则 m∥ n
APB 与面 DPB 所成二面角的大小。
【解】本小题主要考察直线与平面的位置关系、二面角及其 平面角等有关知识,考察思维能力和空间想象能力;考查应 用向量知识解决立体几何问题的能力。满分 12 分。 方法一:连结 AD,则易知 AD 与 BF 的交点为 O。 ( I ) 证 法 1 :
AB AF , O为BF的中点,

百万教学资源免费下载
亿库教育网

百万教学资源免费下载
有两个顶点到 的距离分别为 1 和 2 ,那么剩下的一个顶点到平面 的距离可能是: ①1; ②2; ③3; ④4; 以上结论正确的为______________。 (写出所有正确结论的编号 ) ..
z
D O1 E
D(0, 3 2,8) , E (0, 0,8) , F (0,3 2,0)
所以, BD (3
2,3 2,8), FE (0,3 2,8)
C

BD FE 0 18 64 82 cos BD, EF | BD || FE | 100 82 10
2 4
亿库教育网

百万教学资源免费下载
亿库教育网

百万教学资源免费下载
11.如图,正三棱柱 ABC A 1B 1C1 的各棱长都为 2, E、F 分别为 AB、A1C1 的中点,则 EF 的长是 (A)2 (B)
3
(C)
5
(D)
0
ABC 必平行于 平面 ABC 必不垂直于
ABC 必与 相交 存在 ABC 的一条中位线平行于 或在 内
(D)36
4. 已知二面角
0
l 的大小为 60 , m、n 为异面直线,且 m ,n ,则 m、n 所成的角为
0 0
(A) 30 (B) 60 (C) 90 (D) 120 5.已知球 O 半径为 1,A、B、C 三点都在球面上,A、B 两点和 A、C 两点的球面距离都是 ,B、C 两点的球面距离是 ,则二面角 B OA C 的大小是 3 4 (A)
亿库教育网

百万教学资源免费下载
高一数学点直线平面之间的位置关系练习题 一、选择题 1.已知平面 外不共线的三点 A. 平面
A, B, C 到 的距离都相等,则正确的结论是
B. 平面
C. D. 2.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 (A)充分非必要条件; (B)必要非充分条件; (C)充要条件; (D)非充分非必要条件. 3.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两 个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 (A)48 (B)18 (C)24
C D B

A1
3.如图,在正三棱柱 的距离为 4.已知
A
ABC A1B1C1 中,所有棱长均为 1,则点 B1 到平面 ABC1

A, B, C 三点在球心为 O ,半径为 R 的球面上, AC BC ,且 AB R ,那么 A, B 两点的
,球心到平面 ABC 的距离为______________。
② m n,
(写出所有真命题的编
O1 的直径,AD 1. 如图所示,AF 、DE 分别是 O 、
亿库教育网

百万教学资源免费下载
亿库教育网

百万教学资源免费下载
与两圆所在的平面均垂直, AD 8 . BC 是 O 的直径,
(D)过 P 可作无数条直线与平面 平行
(B)过 P 可作无数条直线与平面 垂直
(B)若 m∥ ,n∥ ,则 m∥ n (D)若 m 、 n 与 所成的角相等,则 m∥ n
15.关于直线 m 、 n 与平面 、 ,有下列四个命题: ① 若 m // , n // 且 ③ 若m
异面直线 BD 与 EF 所成角为 , 则 cos
A X B
O
F
y
| cos BD, EF |
82 82 。直线 BD 与 EF 所成的角为 arccos 。 10 10
2.如图,P 是边长为 1 的正六边形 ABCDEF 所在平面外一点, PA 1 ,P 在平面 ABC 内的射影为 BF 的中点 O。 (Ⅰ)证明 PA ⊥ BF ; (Ⅱ)求面
6 ,则侧面与底面所成的二面角为____________。
10. m、n 是空间两条不同直线, 、 是空间两条不同平面,下面有四个命题:
m n ; ; ③ m n, , m n
其中真命题的编号是 号) 。 三、计算题
,m n ; ; ④ m , m n, n
B.1 个 C.2 个 D.3 个
其中正确的命题有 A.0 个
10. 如图, O 是半径为 1 的球心, 点 A、 B、 C 在球面上, OA、 OB、 OC 两两垂直, E、 F 分别是大圆弧 与
AB
AC 的中点,则点 E、F 在该球面上的球面距离是
(A)
4
(B)
3
(C)
2
(D)

AO BF .
PO 平面ABC,
由三垂线定理得PA BF .
证 法 2:
BF PO, BF AO, PO AO O,
BF 平面AOP, PA 平面AOP, PA BF.
相关文档
最新文档