0809下8年级数学期中卷
人教版2019学年八年级数学下册期中试卷附其答案(共10套)
人教版2019学年八年级数学下期期中试卷(一)一、选择题(每小题4分,共32分)1.下列运算正确的是()A. B. C.D.2.在实数范围内,若有意义,则x的取值范围是()A.x≤﹣1 B.x<﹣1 C.x>﹣1 D.x≥﹣13.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直4.若(x+1)2+=0,则(x+y)2012的值为()A.1 B.﹣1 C.2012 D.﹣20125.在平行四边形ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,则∠D=()A.36°B.108°C.72°D.60°6.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.ab2B.2ab C.ab D.a2b7.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.178.直角三角形两直角边和为7,面积为6,则斜边长为()A.5 B.C.7 D.二、填空题(每小题4分,共计32分)9.化简:=.10.当x=2时,=.11.如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为.12.如图,在平行四边形ABCD中,AC平分∠DAB,AB=4,则平行四边形ABCD 的周长为.13.最简二次根式与是同类二次根式,则a=.14.连结矩形四边中点所得四边形是.15.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为cm.16.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.三、解答题(共计86分)17.计算:(1)(2).18.计算:2×﹣3.19.如果直角三角形的两条直角边长分别为2和,求斜边c的长.20.求证:两组对角分别相等的四边形是平行四边形.21.先化简,再求值.已知:a=,求2﹣的值.22.如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E、F,连接ED,BF.求证:∠1=∠2.23.如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AE=CG;(2)AE⊥CG.24.已知在△ABC中,∠A、∠B、∠C的对边分别是a,b,c,满足a2+b2+c2+338=10a+24b+26c,试判断三角形ABC的形状.25.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点E,边结CE、DE(1)求证:四边形CEDF是平行四边形;(2)当AE=cm时,四边形CEDF是菱形.人教版2019学年八年级数学下期期中试卷(二)一、(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形2.下列各组数中,互为相反数的是()A.﹣2与B.|﹣|与C.与D.与3.不等式组的解集在数轴上表示为()A.B.C.D.4.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.175.若,则(a+2)2的平方根是()A.16 B.±16 C.2 D.±26.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤87.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.8 B.6 C.4 D.38.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+B.2+C.2﹣1 D.2+19.若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤710.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里11.如图,平行四边形ABCD中,对角线AC、BD相交于点O,E、F是AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.∠ADE=∠CBF B.∠ABE=∠CDF C.DE=BF D.OE=OF12.水果店进了某种水果1吨,进价7元/千克,出售价为11元/千克,销去一半后为尽快销完,准备打折出售,如果要使总利润不低于3450元,那么余下水果可按原定价打()折出售.A.7折B.8折C.8.5折D.9折二、填空题(共6小题,每小题4分,满分24分)13.一个正数x的平方根为2a﹣3和5﹣a,则x=.14.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)15.已知|x﹣3|+=0,以x,y为两边长的等腰三角形的周长是.16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.18.对于整数a、b、c、d规定符号=ac﹣bd,若,则b+d=.三、解答题(共6小题,满分60分,解答题应写出文字说明、计算过程或推演步骤)19.(1)解不等式﹣<1(2)解不等式组,并把解集在数轴上表示出来.20.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.21.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.22.A、B两个村庄在笔直的小河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建一水厂向A、B两村输送自来水,铺设管道的工程费用为每千米2万元.请你在CD上选择水厂的位置并作出点O,使铺设水管的费用最节省,并求出铺设水管的总费用.23.某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.24.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.(1)求EF的长;(2)求梯形ABCE的面积.人教版2019学年八年级数学下期期中试卷(三)一、填空题(本题共8个小题,每小题3分,共24分)1.在Rt△ABC中,∠C=90°,AB=10cm,BC=5cm,则∠A=.2.如图,在▱ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF=.3.如果一个多边形的内角和是其外角和的一半,那么这个多边形是边形.4.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.5.点(﹣2,﹣1)在平面坐标系中所在的象限是.6.若Rt△ABC的两边长分别为3cm,4cm,则第三边长为.7.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是.8.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.二、选择题(本题共8个小题,每小题3分,共24分)9.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,610.以下图形既是轴对称图形,又是中心对称图形的是()A.等腰三角形 B.平行四边形 C.矩形D.等腰梯形11.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC=()A.30°B.40°C.45°D.60°12.平行四边形、矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等 D.对角线互相垂直平分且相等13.将一张长方形纸片ABCD按如图所示折叠,使顶点C落在点F处,已知AB=2,∠DEF=30°,则折痕DE的长度为()A.1 B.2 C.3 D.414.在四边形ABCD中,AB=DC,AD=BC,请再添加一个条件,使四边形ABCD 是矩形.添加的条件不能是()A.AB∥DC B.∠A=90°C.∠B=90°D.AC=BD15.下列属于正多边形的特征的有()①各边相等;②各个内角相等;③各个外角相等;④各条对角线相等;⑤从一个顶点引出的对角线将n边形分成面积相等的(n﹣2)个三角形.A.2个B.3个C.4个D.5个16.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则n个这样的正方形重叠部分的面积和为()A.cm2B.cm2C.cm2D.()n cm2三、解答题(本题共7个小题,共52分)17.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PD=2,求PC的长.18.如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:BM∥DN.19.如图,在正方形ABCD外侧,作等边△ADE,AC、BE相交于点F,求∠BFC.20.如图,AE是位于公路边的电线杆,高为10米,为了使电线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起电线.已知两杆之间的距离是8米,电线DE的长度为10米,求水泥撑杆BD的高度(电线杆、水泥杆的粗细忽略不计).21.如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证:四边形AEDF是菱形.22.如图,平行四边形ABCD中,AC、BD为对角线且相交于点O,BC=8,BC边上的高为4,求阴影部分的面积.23.如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.人教版2019学年八年级数学下期期中试卷(四)一.选择题1.二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥32.下列二次根式中属于最简二次根式的是()A.B.C. D.3.下列各等式成立的是()A.()2=5 B.=﹣3 C.=4 D.=x4.下列计算正确的是()A.×=B. +=C.=4D.﹣=5.已知三组数据:①2,3,4;②3,4,5;③1,,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.②B.①②C.①③D.②③6.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是()A.2 B.4 C.2D.47.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为()A.2cm B.7cm C.5cm D.6cm8.如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①②③9.对角线互相垂直平分的四边形是()A.平行四边形 B.菱形C.矩形D.任意四边形10.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是()A.6 B.C.2πD.12二.填空题11.计算=.12.若直角三角形的两直角边长分别为5和12,则斜边上的中线长为.13.菱形的两条对角线长度分别为8cm和6cm,则菱形的一边长为cm.14.如图,在矩形ABCD中,O是对角线的交点,AE⊥BD于E,若OE:OD=1:2,AC=18cm,则AB=cm.15.命题“对顶角相等”的逆命题是.16.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是.三.解答题(一):17.计算:.18.设a、b为实数,且=0,求a2﹣2的值.19.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,AE∥CD,CE∥AB,判断四边形ADCE的形状,并证明你的结论.四.解答题(二):(本大题共3小题,第20、21题各6分,第22题7分,共19分)20.小明将一副三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其它各边的长,若已知CD=2,求AC的长.21.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.(1)三角形三边长为4,3,;(2)平行四边形有一锐角为45°,且面积为6.22.观察下列等式:①==;②==;③==﹣;…回答下列问题:(1)化简:=;(2)化简:=;(n为正整数);(3)利用上面所揭示的规律计算:+…++.五.解答题(三):23.如图,A市气象站测得台风中心在A市正东方向300千米的B处,以10千米/时的速度向北偏西60°的BF方向移动,距台风中心200千米范围内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A市受这次台风影响,那么受台风影响的时间有多长?24.在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.(1)如图①,当点H与点C重合时,可得FG FD.(大小关系)(2)如图②,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.(3)在图②中,当AB=8,BE=3时,利用探究的结论,求CF的长.25.已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D 不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:BD⊥CF.BD=CF.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,第(1)问结论还成立吗?并说明理由.(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.人教版2019学年八年级数学下期期中试卷(五)一、选择题1.下列各式是最简二次根式的是()A.B.C.D.2.已知:最简二次根式与能合并,则a的值是()A.2 B.﹣2 C.3 D.4.53.直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定4.下列各组数中,以a、b、c为边长的三角形不是直角三角形的是()A.a=3,b=4,c=5 B.a=5,b=12,c=13C.a=1,b=3,c=D.a=,b=,c=5.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AC⊥BD6.平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.4:3:3:4 B.7:5:5:7 C.4:3:2:1 D.7:5:7:57.下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个8.在数学活动课上,老师让同学判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟定方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量一组对角是否为直角D.测量两组对边是否相等,再测量对角线是否相等9.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A.70°B.65°C.50°D.25°10.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46二、填空题11.当x 时,式子有意义.12.命题“对顶角相等”的逆命题是.13.矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为.14.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为厘米.15.已知:在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,则斜边AB= ,斜边AB上的高线长为.16.观察下列各式2×=3×=4×=则依次第四个式子是.用n(n>1)表示你观察得到的规律是.三、解答题(本大题满分66分)17.在数轴上作出表示﹣及的点.18.计算题(1)2﹣6+3(2).19.如图,在Rt△ABC中,∠C=90°,a、b、c分别表示∠A、∠B、∠C的对边.(1)已知c=25,a:b=4:3,求a、b;(2)已知a=,∠A=60°,求b、c.20.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.21.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD 的面积.22.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.23.如图,在矩形ABCD中,AB=24厘米,BC=10厘米,点P从A开始沿AB边以4厘米/秒的速度运动,点Q从C开始沿CD边2厘米/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t秒.(1)当t=2秒时,求P、Q两点之间的距离;(2)t为何值时,线段AQ与DP互相平分?(3)t为何值时,四边形APQD的面积为矩形面积的?人教版2019学年八年级数学下期期中试卷(六)(满分:120分;考试时间:120分钟)一、选择题(每小题3分,共30分)x 的取值范围是( )A .x >1B .1≥xC .x <1D .x ≤12. △ABC 中,如果其三边满足关系BC 2=AB 2+AC 2,则△ABC 的直角是( )A .∠CB .∠BC .∠AD .不能确定3.如图,直线l 1∥l 2,过l 1上两点A,C 分别作AB ⊥l 2,CD ⊥l 2,则下列说法正确的是()A.AB>CDB.AB<CDC.AB=CDD.都有可能 4. 在Rt △ABC 中,∠C=90°,点D 是斜边AB 的中点,则下列结论正确的是( )A.CD=21ABB. CD=2ABC.BC=21ABD.AC=21AB5. 下列二次根式中,与能合并的是( ) A .B .C .D .6. 一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是( ) A .88°,108°,88° B.88°,104°,108° C.88°,92°,92° D.88°,92°,88°7.估计21-5介于( ) A.0.4与0.5之间 B.0.5与0.6之间 C.0.6与0.7之间 D.0.7与0.8之间8. 正方形具备而菱形不具备的性质是( )A .四条边都相等 B.四个角都是直角C .对角线互相垂直平分 D.每条对角线平分一组对角9. 如图,是台阶的示意图.已知每个台阶的宽度都是30cm ,每个台阶的高度都是15cm ,连接AB ,则AB 等于( ) A . 195cm B . 200cm C . 205cm D .210cm第3题图 第9题图 第10题图10.如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 等于( ) A.75 B .125 C .135 D .145 二、填空题(每小题3分,共30分)11.在△ABC 中,D 、E 分别是BC,AC 边的中点,若AB=4cm ,则DE=__ _cm.l 2B D 1 A D BC E FP12.计算:31×27= . 13.相邻两边长分别是2+与2﹣的平行四边形的周长是. 14.如图,在菱形ABCD 中,点P 是对角线AC 上的一点,PE ⊥AB 于点E ,若PE =3,则点P 到AD 的距离为 .15.命题“对角线相等的四边形是矩形”是 命题(填“真”或“假”).第14题图 第16题图16. 如图,正方形ABCD 的边长为10,M N ∥BC 分别交AB,CD 于点M,N ,在MN 上任取两点P,Q ,那么图中阴影部分的面积是 .17. 化简:3x -= .18. 在平面直角坐标系中,□ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是 . 19. 如图,菱形ABCD 中,∠BAD=60°,M 是AB 的中点,P 是对角线上的一AC 个动点,若PM+PB 的最小值是3,则AB 长为 .第18题图 第19题图 第20题图20.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2016次,点P 依次落在点P 1,P 2,P 3,…,P 2016的位置,则P 2016的横坐标x 2016= . 三、解答题(共60分) 21.(12分)计算:(1))227(328--+; (2)5232232⨯÷; (3) )3223)(3223(-+.A BPQ22.(6分)一种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?第22题图23.(6分)已知x=2-3,则代数式(7+43)x 2+(2+3)x+3的值.24.(7分)如图,□ABCD 中,DE 平分∠ADC 交AB 于点E ,BF 平分∠ABC ,交CD 于点F .求证DE=BF.第24题图25. (8分) 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形OBB 1C ,对角线相交于点A 1,再以A 1B 1、A 1 C 为邻边作第2个平行四边形A 1B 1C 1C ,对角线相交于点O 1;再以O 1B 1、O 1C 1为邻边作第3个平行四边形O 1B 1B 2C 1…依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形OBB 1C 、第2个平行四边形A 1B 1C 1C 和第6个平行四边形的面积.第25题图FEDCBAA 1O 1A 2B 2 B 1C 1 B C 2A O DC26.(9分)小明家准备建造长为28米的蔬菜大棚,示意图如图(1).它的横截面为如图(2)所示的四边形ABCD ,已知AB=3米,BC=6米,∠BCD=45°,AB ⊥BC ,D 到BC 的距离DE 为1米.矩形棚顶ADD A ''及矩形DCC D ''由钢架及塑料薄膜制作,造价为每平方米120元,其它部分(保温墙体等)造价共9250元,则这个大棚的总造价为多少元?(精确到1元)(下列数据可供参考1.732.24 5.39 5.83=====)第26题图27. (12分) 如图,在Rt △ABC 中,∠B=90°,BC=53,∠C=30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE 、EF . (1)求AB,AC 的长; (2)求证:AE=DF ;(3)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.(4)当t 为何值时,△DEF 为直角三角形?请说明理由.第27题图A BCD EC 'D 'A '(1ABEDC(2人教版2019学年八年级数学下期期中模拟试卷(七)一、填空题.1.若分式的值为零,则x的值为.2.写出一个图象在二、四象限的反比例函数.3.约分:=.4.分式与的最简公分母是.5.计算:÷•=.6.某种细菌的直径为0.000123,用科学记数法表示为.7.方程=﹣1的解为.8.已知一个直角三角形的一条直角边长为,斜边长为,它的面积是.9.如果反比例函数图象经过点(3,﹣2),那么该反比例函数的解析式为.10.当m=时,y=2x m﹣3是反比例函数,且在同一象限y随x的增大而.11.若,则=.12.等腰三角形的腰长为5cm,底边长为6cm,则它的底边上的高是.二、选择题.13.计算x2y3÷(xy)﹣2的结果为()A.xy B.x C.x4y5D.y14.化简的结果是()A.0 B.C.D.15.下列关系中,是反比例函数的是()A.y=B.y=C.y=D.y=﹣116.计算0.25×所得的结果是()A.2 B.C.0 D.17.若y=的图象在第二、四象限,则y=kx+1的图象所在象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四18.甲乙两工程队完成一项过程,甲队独做m天完成,乙队独做n天完成.若两队合做则所需天数是()A.B. C.D.三、计算题.19.计算题(1)(2ab2c﹣3)﹣2÷(a﹣2b)3(2)+(3)﹣(4)(+)×÷(﹣).四、解答题20.写出三种你学过的是轴对称图形的四边形,并画出简图(画出所有的对称轴).21.已知:如图,E,F是▱ABCD的对角线AC上两点,且AE=CF.求证:BE=DF.22.k为何值时,关于x的方程﹣=k无解.六、解答题.(第23、24题各10分,25小题12分,共32分)23.在Rt△ABC中,∠C=90°,D是BC边上一点,且BD=AD=10,∠ADC=60°,求△ABC的面积.24.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度行驶,一小时后加速为原来速度的1.5倍,并比原计划提前40分钟到达目的地,求前一小时的平均行驶速度.25.如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.(1)问:B处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物?(供选用数据:≈1.4,≈1.7)人教版2019学年八年级数学下期期中试卷(八)一、选择题(共6小题,每小题3分,满分18分)1.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.3.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.54.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)5.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°6.如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A.3种B.6种C.8种D.12种二、填空题(共8小题,每小题3分,满分24分)7.用不等式表示:a+3大于﹣2:.8.如果等腰三角形的一个底角是80°,那么顶角是度.9.不等式2x﹣4≥0的解集是.10.若直角三角形的一个锐角为50°,则另一个锐角的度数是度.11.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=°.12.如图是4×4的正方形网格,请选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.13.一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是.14.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=度.三、解答题(共8小题,满分58分)15.解不等式5x+15>0,并将解集在数轴上表示出来.16.解不等式组.17.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).(1)写出A、B两点的坐标:A(,)、B(,);(2)画出△ABC绕点C旋转180°后得到的△A1B1C1;(3)写出A1、B1两点的坐标:A1(,)、B1(,).19.如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC 的平分线于点D,求证:MD=MA.20.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算.例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,求a的取值范围.21.如图,△ABC中,AB=AC,∠A=50°,DE是腰AB的垂直平分线,求∠DBC的度数.22.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?HCDAB人教版2019学年八年级数学下期期中试卷(九)一、选择题(40分)1、下列各数中,没有平方根的是( )A 、()22- B 、64 C 、21 D 、22-2、下列二次根式有意义的范围为x ≥2的是( )A 、21-x B 、2-x C 、21+x D 、2+x 3、下列运算正确的是( )A 、235=-B 、312914= C 、()52522-=- D 、32321+=-4、由线段a 、b 、c 组成的三角形不是直角三角形的是( )A 、a=7,b=24,c=25;B 、a=13,b=14,c=15;C 、a=54,b=1,c=34; D 、b=4,c=5;5、若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是( ) A 、30° B 、45° C 、60° D 、75°6、已知n 12是整数,则满足条件的最小正整数n 为( )A 、2B 、3C 、4D 、57、如图四边形ABCD 是菱形,对角线AC=8,BD=6,DH ⊥AB 于点H ,则DH 的长度是( )A 、125B 、165C 、245D .485 8、如图,过平行四边形ABCD 对角线交点O 的直线交AD 于E ,交BC 于F ,若AB =4,BC =6,OE =2,那么四边形EFCD 周长是( )A 、16B 、15C 、14D 、137题图 8题图 9题图 9、将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1,A 2,…,An 分别是正方形对角线的交点,则n 个正方形重叠形成的重叠部分的面积和为( ).A 、14 cm 2B 、214n cm -C 、4n cm 2D 、214ncm ⎛⎫⎪⎝⎭10、如图,正方形ABCD 中,点E 在BC 上,且CE=14BC ,点F 是CD 延长AF 与BC 的延长线交于点M 。
8—19学年下学期八年级期中考试数学试题(附答案)
2018-2019学年第二学期初二数学期中考试试卷时间:120分钟 总分 :120分一、选择题(本题共10小题,每小题3分,共30分) 1.下列几种图案中,既是中心对称图形又是轴对称图形的是( )A B C D2.下列调查方式,你认为最合适的是 ( ) A .调查市场上某种白酒的塑化剂的含量,采用普查方式 B .调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式 C .旅客上飞机前的安检,采用抽样调查方式 D .了解我市每天的流动人口数,采用抽样调查方式3. 下列各式中,是分式的为( ) A .1m B .x -2y 3 C .12x -13y D .754. 对于函数y =1x ,下列说法错误的是 ( )A .它的图像分布在第一、三象限B .它的图像与直线y =-x 无交点C .当x>0时,y 的值随x 的增大而增大D .当x<0时,y 的值随x 的增大而减小 5. 如图,在平行四边形ABCD 中,BD 为对角线,E 、F 分别是AD 、BD 的中点,连结EF .若EF=3,则CD 的长为( ) A .2 B .3C .4D .66. 为了早日实现 “绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( ) A .4000x -4000x -10=2 B .21040004000=+-x x C .24000104000=-+x x D . 24000104000=--xx 7.如果把分式2xx y-中的x 和y 都扩大为原来的5倍,那么分式的值 ( ) A. 扩大为原来的5倍 B. 扩大为原来的10倍 C. 不变 D. 缩小为原来的15倍 8.如图,在△ABC 中,∠ABC=90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG=BD ,连接BG 、DF .若CF=6,AC=AF+2,则四边形BDFG 的周长为( )A. 9.5B. 10C. 12.5D. 209.如图,把 6 张长为 a 、宽为 b (a >b )的小长方形纸片不重叠地放在长方形 ABCD 内,未被覆 盖的部分(两个长方形)用阴影表示,设这两个长方形的面积的差为 S .当 BC 的长度变化时, 按照同样的放置方式,S 始终保持不变,则 a 、b 满足 ( )A .a =1.5bB .a =2.5bC .a =3bD .a =2b10. 如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为100cm 2,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形ABDC 的面积是 ( ) A .40 cm 2 B . 60 cm 2 C .70 cm 2 D . 80 cm 2第5题 第8题二、填空题(本大题共8小题,每空3分,共24分) 11. 当x 时,分式11-+x x 的值为0. 12. 已知分式有意义,则x 的取值范围是 .13.已知双曲线y=xk经过点(﹣2,1),则k 的值等于 . 14.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是 .15.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是 .(第10题)16. 若关于x 的分式方程131=---xx a x 有增根,则a = .第15题 第17题17.如图,在Rt △ABC 中,∠C=90°,BC=5,AC=12,M 为斜边AB 上一动点,过M 作MD ⊥AC ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .18.在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),若一次函数y =mx -6m +2(m ≠0)的图像将四边形ABCD 的面积分成1:3两部分,则m 的值为___________. 三、解答:(共66分)19.计算:(每小题3分,共6分)(1)2422m m m +-- (2) 22()a b a ba b b a a b++÷---20. (本题满分5分)先化简42122)231(-+-÷+-a a a a ,再从-2、2、0 、1四个数中选一个恰当的数作为a 的值代入求值.21.解方程:(每小题4分,共8分) (1)2102x x -=- (2)12112-=--x x x22.(本题满分6分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标___________.23.(本题满分8分)我市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是;(2)补全条形统计图;(3)在扇形统计图中,求表示A组(t≤10分)的扇形圆心角的度数;(4)如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.24.(本题满分5分))已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.25. (本题满分8分)如图,已知()n A ,4-,()4,2-B 是一次函数b kx y +=1的图象和反比例函数xmy =2的图象的两个交点. (1) 求一次函数、反比例函数的关系式; (2) 求△AOB 的面积.(3) 当自变量x 满足什么条件时,y 1>y 2 .(直接写出答案) (4)将反比例函数xmy =2的图象向右平移p (n >0)个单位,得到的新图象经过点(3,-4),求对应的函数关系式y 3.(直接写出答案)26、(本题满分10分)如图1,四边形ABCD 是菱形,AD=10,过点D 作AB 的垂线DH ,垂足为H ,交对角线AC 于M ,连接BM ,且AH=6.(1)求证:DM=BM ;(2)求MH 的长;(3)如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式;(4)在(3)的条件下,当点P 在边AB 上运动时是否存在这样的 t 值,使∠MPB 与∠BCD 互为余角,若存在,则求出t 值,若不存,在请说明理由.27.(本题满分10分)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.。
八年级 下册期中数学试卷(有答案)
八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.若分式有意义,则x的取值范围是()A.x≠2B.x=2C.x>2D.x<22.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为()A.7.3×10﹣5B.7.3×10﹣4C.7.3×10﹣6D.73×10﹣63.函数y=﹣x的图象经过点A(2,m),则m的值是()A.2B.﹣2C.D.﹣4.如图,在▱ABCD中,∠A=3∠B,则∠C的大小是()A.100°B.120°C.135°D.150°5.化简的结果是()A.x+1B.x﹣1C.﹣x D.x6.若分式:的值为0,则()A.x=1B.x=﹣1C.x=±1D.x≠17.已知点M(1﹣2m,m﹣1)在第四象限内,那么m的取值范围是()A.m>1B.m<C.<m<1D.m<或m>18.下列函数的图象中,不经过第一象限的是()A.y=x+3B.y=x﹣3C.y=﹣x+1D.y=﹣x﹣19.如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y=(k为常数)在第一象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()A.逐渐减小B.逐渐增大C.先增大后减小D.不变10.如图,一次函数y=kx+b的图象经过(2,0)和(0,4)两点,下列说法正确的是()A.函数值y随自变量x的增大而增大B.当x<2时,y<4C.k=﹣2D.点(5,﹣5)在直线y=kx+b上二、填空题(每小题3分,共15分)11.化简:=.12.当x=时,分式的值为﹣1.13.在函数(k>0的常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为.14.如图所示,平行四边形ABCD,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.15.如图,已知正比例函数y=kx经过点P,将该函数的图象向上平移3个单位后所得图象的函数解析式为.三、解答题(8+9+9+9+9+10+10+11=75分)16.计算:.17.解方程:﹣=1.18.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.19.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象相交于A、B两点.(1)根据图象写出A点的坐标为,B点的坐标为.(2)k=;b=;m=.(3)根据图象写出:当x时,kx+b.20.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示:(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式;(2)估计小明一年租书时间在120天以上,通过计算说明小明采用哪种租书方式更合算?21.某足球特色学校在商场购买甲、乙两种品牌的足球.已知乙种足球比甲种足球每只贵20元,该校分别花费2000元、1400元购买甲、乙两种足球,这样购得甲种足球的数量是购得乙种足球数量的2倍,求甲、乙两种足球的单价各是多少元?22.平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC交CD于点E、F,AE、BF交于点G.(1)求证:AE⊥BF;(2)判断DE和CF的大小关系,并说明理由23.如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(﹣1,0)、(2,0).(1)求直线AB的函数表达式;(2)直线AB上有一点P,使得△PBC的面积等于9,求点P的坐标;(3)设点D与A、B、C点构成平行四边形,直接写出所有符合条件的点D的坐标.八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若分式有意义,则x的取值范围是()A.x≠2B.x=2C.x>2D.x<2【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为()A.7.3×10﹣5B.7.3×10﹣4C.7.3×10﹣6D.73×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000073=7.3×10﹣5,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.函数y=﹣x的图象经过点A(2,m),则m的值是()A.2B.﹣2C.D.﹣【分析】把点A(2,m)代入函数y=﹣x,即可得出m的值.【解答】解:∵函数y=﹣x的图象经过点A(2,m),∴m=﹣2,故选:B.【点评】本题考查了正比例函数图象上点的坐标特征,直线经过点,即点的坐标满足函数的解析式.4.如图,在▱ABCD中,∠A=3∠B,则∠C的大小是()A.100°B.120°C.135°D.150°【分析】平行四边形中,利用邻角互补可求得∠A的度数,利用对角相等,即可得∠C的值.【解答】解:如图所示,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=3∠B,∴∠A=∠C=135°.故选:C.【点评】此题主要考查了平行四边形的性质,利用邻角互补的结论求四边形内角度数是解题关键.5.化简的结果是()A.x+1B.x﹣1C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.6.若分式:的值为0,则()A.x=1B.x=﹣1C.x=±1D.x≠1【分析】要使分式的值为0,一定要分子的值为0并且分母的值不为0.【解答】解:由x2﹣1=0解得:x=±1,又∵x﹣1≠0即x≠1,∴x=﹣1,故选:B.【点评】要注意使分子的值为0时,同时要分母的值不能为0,否则就属于没有意义了.7.已知点M(1﹣2m,m﹣1)在第四象限内,那么m的取值范围是()A.m>1B.m<C.<m<1D.m<或m>1【分析】根据坐标系内点的横纵坐标符号特点列出关于m的不等式组求解可得.【解答】解:根据题意,可得:,解不等式①,得:m<,解不等式②,得:m<1,∴m<,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.下列函数的图象中,不经过第一象限的是()A.y=x+3B.y=x﹣3C.y=﹣x+1D.y=﹣x﹣1【分析】根据k,b的取值范围确定图象在坐标平面内的位置,从而求解.【解答】解:A、y=x+3经过第一、二、三象限,A不正确;B、y=x﹣3经过第一、三、四象限,B不正确;C、y=﹣x+1经过第一、二、四象限,C不正确;D、y=﹣x﹣1经过第二、三、四象限,D正确;故选:D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9.如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y=(k为常数)在第一象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()A.逐渐减小B.逐渐增大C.先增大后减小D.不变【分析】先根据函数图象判断出函数的增减性,再由三角形的面积公式即可得出结论.【解答】解:∵反比例函数y=(k为常数)的图象在第一象限,∴y随x的增大而减小.∵点A是y轴正半轴上的一个定点,∴OA是定值.∵点B的纵坐标逐渐增大,∴其横坐标逐渐减小,即△OAB的底边OA一定,高逐渐减小,∴△OAB的面积逐渐减小.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.如图,一次函数y=kx+b的图象经过(2,0)和(0,4)两点,下列说法正确的是()A.函数值y随自变量x的增大而增大B.当x<2时,y<4C.k=﹣2D.点(5,﹣5)在直线y=kx+b上【分析】根据一次函数的性质对A进行判断;根据函数图象得到当x<2时,函数图象都在x轴下方,则可对B进行判断;利用待定系数法求出一次函数解析式,则可对C、D进行判断.【解答】解:A、由于一次函数经过第二、四象限,则y随x的增大而减小,所以A选项错误;B、当x<2时,y>0,所以B选项错误;C、把(2,0)和(0,4)代入y=kx+b得,解得,所以C选项正确;D、一次函数解析式为y=﹣2x+4,当x=5时,y=﹣10+4=﹣6,则点(5,﹣5)不在直线y=kx+b上,所以D选项错误.故选:C.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y 随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.二、填空题(每小题3分,共15分)11.化简:=1.【分析】先将第二项变形,使之分母与第一项分母相同,然后再进行计算.【解答】解:原式=.故答案为1.【点评】本题考查了分式的加减运算,要注意将结果化为最简分式.12.当x=0时,分式的值为﹣1.【分析】根据题意得出关于x的方程,解分式方程可得.【解答】解:根据题意知=﹣1,则x﹣1=﹣x﹣1,解得:x=0,检验:x=0时,x+1≠0,所以x=0时,分式的值为﹣1,故答案为:0.【点评】本题主要考查分式的值,解题的关键是熟练掌握解分式方程的步骤.13.在函数(k>0的常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为y3>y1>y2.【分析】先根据函数y=(k>0的常数)判断出函数图象所在的象限,再根据三点坐标判断出各点所在的象限,根据函数图象的特点进行解答即可.【解答】解:∵函数y=(k>0的常数),∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵﹣2<0,﹣1<0,>0,∴(﹣2,y1),(﹣1,y2)在第三象限,(,y3)在第一象限,∵﹣2<﹣1,∴0>y1>y2,y3>0,故答案为:y3>y1>y2.【点评】本题考查的是反比例函数的图象上点的坐标特点,熟知反比例函数图象在每一象限内的增减性是解答此题的关键.14.如图所示,平行四边形ABCD,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【分析】先求OD,则点C纵坐标可知,再运用平行四边形的性质,平行四边形的对边相等,即可求得点C的横坐标.【解答】解:在直角三角形AOD中,AO=3,AD=5,由勾股定理得OD=4.∵DC=AB=9,∴C(9,4).【点评】本题结合平面直角坐标系考查了平行四边形的性质,形数结合,将点的坐标转化为有关相等的长度是解题的关键.15.如图,已知正比例函数y=kx经过点P,将该函数的图象向上平移3个单位后所得图象的函数解析式为y=﹣x+3.【分析】先将P(﹣2,3)代入y=kx,利用待定系数法求出这个正比例函数的解析式,再根据“上加下减”的平移规律即可求解.【解答】解:将P(﹣2,3)代入y=kx,得﹣2k=3,解得k=﹣,则这个正比例函数的解析式为y=﹣x;将直线y=﹣x向上平移3个单位,得直线y=﹣x+3.故答案为【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.三、解答题(8+9+9+9+9+10+10+11=75分)16.计算:.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•c4÷=【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.解方程:﹣=1.【分析】方程两边都乘以最简公分母2(x+2)把分式方程化为整式方程,求解,然后进行检验即可得解.【解答】解:去分母,得2(2x+5)﹣1=2x+4,去括号,得4x+10﹣1=2x+4,移项,合并同类项得2x=﹣5,系数化为1,得.经检验,是原方程的解.【点评】本题主要考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根18.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.【分析】首先利用分式的混合运算法则将原式化简,然后解不等式,选择使得分式有意义的值代入求解即可求得答案.【解答】解:原式====∵不等式x≤2的非负整数解是0,1,2∵(x+1)(x﹣1)≠0,x+2≠0,∴x≠±1,x≠﹣2,∴把x=0代入.【点评】此题考查了分式的化简求值问题.注意掌握分式有意义的条件是解此题的关键.19.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象相交于A、B两点.(1)根据图象写出A点的坐标为(2,),B点的坐标为(﹣1,1).(2)k=;b=﹣;m=﹣1.(3)根据图象写出:当x>2或﹣1<x<0时,kx+b.【分析】(1)根据图象可得A、B两点坐标;(2)把B点坐标代入反比例函数y=(m≠0)可得m的值,再利用待定系数法把A、B两点坐标代入y=kx+b(k≠0)可得k、b的值;(3)利用图象可得kx+b的解集.【解答】解:(1)点A的坐标为,点B的坐标为(﹣1,﹣1),故答案为:(2,);(﹣1,1);(2)∵反比例函数y=(m≠0)的图象过点B(﹣1,1),∴m=﹣1×1=﹣1,∵一次函数y=kx+b的图象经过点A(2,),B(﹣1,1),∴,解得:,故答案为:;﹣;﹣1;(3)由图象可得当x>2或﹣1<x<0时,kx+b.故答案为:>2或﹣1<x<0.【点评】此题主要考查了反比例函数和一次函数的交点问题,关键是掌握待定系数法求反比例函数和一次函数解析式的方法.20.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示:(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式;(2)估计小明一年租书时间在120天以上,通过计算说明小明采用哪种租书方式更合算?【分析】(1)观察函数图象,找出点的坐标,利用待定系数法即可求出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式;(2)令0.3x+20<0.5x,解之可得出x>100,结合小明一年租书的时间在120天以上,即可得出采用会员卡的方式租书合算.【解答】解:(1)设使用会员卡的租书金额y(元)与租书时间x(天)之间的函数关系式为y=kx+b,根据题意,得:,解得:,∴y=0.3x+20.使用租书卡的租书金额y(元)与租书时间x(天)之间的函数关系式为y1=k1x,根据题意,得:50=100k1,解得:k1=0.5,∴y1=0.5x.答:使用会员卡的函数关系式为y=0.3x+20,使用租书卡的函数关系式为y1=0.5x.(2)令0.3x+20<0.5x,解得:x>100.∵小明一年租书时间在120天以上,∴采用会员卡的方式租书合算.【点评】本题考查了待定系数法求一次函数解析式以及一元一次不等式的应用,解题的关键是:(1)根据图象中点的坐标,利用待定系数法求出一次函数关系式;(2)通过解不等式找出更合算的租书方式.21.某足球特色学校在商场购买甲、乙两种品牌的足球.已知乙种足球比甲种足球每只贵20元,该校分别花费2000元、1400元购买甲、乙两种足球,这样购得甲种足球的数量是购得乙种足球数量的2倍,求甲、乙两种足球的单价各是多少元?【分析】设购买一个甲品牌的足球需x元,则购买一个乙品牌的足球需(x+20)元,根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可.【解答】解:(1)设购买一个甲种足球需要x元,=×2,解得,x=50,经检验,x=50是原分式方程的解,所以x+20=70(元),答:购买一个甲种足球需50元,一个乙种足球需70元.【点评】本题考查分式方程的应用,关键是根据数量作为等量关系列出方程.22.平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC交CD于点E、F,AE、BF交于点G.(1)求证:AE⊥BF;(2)判断DE和CF的大小关系,并说明理由【分析】(1)想办法证明∠BAE+∠ABF=90°,即可推出∠AGB=90°即AE⊥BF;(2)想办法证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,即可解决问题;【解答】(1)证明:如图,∵在平行四边形ABCD中,AD∥BC,∴∠DAB+∠ABC=180°,∵AE、BF分别平分∠DAB和∠ABC,∴∠DAB=2∠BAE,∠ABC=2∠ABF,∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=90°,∴∠AGB=90°,∴AE⊥BF;(2)解:结论:线段DF与CE是相等关系,即DF=CE,∵在在平行四边形ABCD中,CD∥AB,∴∠DEA=∠EAB,又∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DEA=∠DAE,∴DE=AD,同理可得,CF=BC,又∵在在平行四边形ABCD中,AD=BC,∴DE=CF.【点评】本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(﹣1,0)、(2,0).(1)求直线AB的函数表达式;(2)直线AB上有一点P,使得△PBC的面积等于9,求点P的坐标;(3)设点D与A、B、C点构成平行四边形,直接写出所有符合条件的点D的坐标.【分析】(1)根据待定系数法,可得函数解析式;(2)根据三角形的面积公式,可得方程,根据解一元一次方程,可得答案;(3)根据两组对边分别相等的四边形是平行四边形,可得答案.【解答】解:(1)设直线AB的函数解析式为y=kx+b,∵直线AB经过点A(0,2)、B(﹣1,0),得,解得.∴直线AB的函数解析式为y=2x+2;(2)由题意,设点P的坐标为(x,2x+2),S=×BC×|p y|=×3×|2x+2|=9.△POA解得x=2或x=﹣4.故点P的坐标是(2,6)或(﹣4,﹣6);(3)当AD=BC,AB=DC时,AD=BC=3,D(3,2);当AD=BC,BD=AC时,AD=BC=3,D(﹣3,2)当AC=BD,AB=DC时,D(1,﹣2);综上所述:点D与A、B、C点构成平行四边形,点D的坐标为(3,2)、(﹣3,2)、(1,﹣2).【点评】本题考查了一次函数的综合题,利用了待定系数法求函数解析式,三角形的面积公式,平行四边形的判定.。
八年级下学期期中考试数学试卷(值得收藏)
八年级数学下期中试卷 一、选择题(本大题6小题,每小题3分,共18分.) 1.下列式子中,属于最简二次根式的是( )1A. 9 B.7 .20 .3C D2.菱形具有而矩形不具有的性质是( )A .对角线互相平分B .四条边都相等C .对角相等D .邻角互补3.若12x -1在实数范围内有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x >12 D .x ≠124.下列运算正确的是( )A .()2=4B . =﹣4C . =×D .﹣=5.下列四组线段中,可以构成直角三角形的是( )A.4、5、6B. 3 1 2、、 C.2、3、4 D. 3 4 5、、 6.将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1,A 2,…,An 分别是正方形对角线的交点,则n 个正方形重叠形成的重叠部分的面积和为( )A . cm 2B . cm 2C . cm 2D .()n cm 2二、填空题(本题共6小题,每小题3分,共18分)7.如图,△ABC 中,D 、E 分别是AB 、AC 边的中点,且DE=7cm ,则BC= cm .8.写出命题“对顶角相等”的逆命题 .9.比较大小:32 23 .(填“>、<、或=”)10.若实数a 、b 满足,则= .11.矩形的两条对角线的夹角为60°,较短的边长为12cm ,则对角线长为 cm .12.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 。
三、解答题((本大题共5小题,每小题6分,共30分)13.(6分)①②23312)32(2⨯+-14. 先化简,再求值:,2124422+--+÷++x x x x x x x 其中。
15.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.若一只小鸟从一棵树的树梢A 飞到另一棵树的树梢B ,小鸟至少需飞行多少米?16.已知:O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .试判断四边形OCED 的形状,并说明理由.17. 如图,是由两个全等的矩形拼在一起的图形,请仅用无刻度...直尺,直接在图中用连线的方式按要求画出图形,并用字母...表示所画图形....... (1)在图1中画出一个平行四边形(要求不与原矩形重合);(2)在图2中画出一个菱形.四、本大题共四小题(每小题8分,共32分)18.已知a ,b ,c 在数轴上的位置如图所示.请化简:22||()a a b c a -++-.19.如图,在平行四边形ABCD 中,BE,CE 分别平分∠ABC ,∠BCD 点E 在AD 上,BE=12cm ,CE=5cm,求平行四边形ABCD的周长和面积。
八年级下学期期中考试数学试卷(共3套,最新人教版,含答案)
八年级第二学期期中考试数学试卷本试卷分卷和卷两部分:卷为选择题,卷为非选择题。
本试卷满分120分,考试时间为120分钟。
卷(选择题,共41分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
答在试卷上无效。
3.卷学生自己保存。
一、选择题.(本大题共个16小题,1-7题每小题2分,8-16题每小题3分,共41分,在每小题给出的四个选项中,只有一个选项符合题意)1、下图中是中心对称图形的是()2、已知a<b,则下列不等式一定成立的是()A.a+3>b+3B.2a>2bC.-a<-bD.a-b<03、等腰三角形的一边为3,另一边为8,则这个三角形的周长为()A.11B.14C.19D.14或194、如图,用不等式表示数轴上所示的解集,正确的是()-10123A.x<-1或x≥3B.x≤-1或x>3C.-1≤x<3D.-1<x≤35、下列四组线段中,可以构成直角三角形的是()A.6,7,8B.1,2,5C.6,8,10D.5,23,156、已知三角形三边长分别为3,1-2a,8,则a的取值范围是()A.5<a<11B.4<a<10C.-5<a<-2D.-2<a<-57、在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点a a -1 0 1 3 x2.58、如果不等式(1+a )x >1+a 的解集为 x <1,那么 a 的取值范围是( )A. a >0B. <0C. >-1D. a <-19、不等式组x4x m的解集是 x 4 ,那么 m 的取值范围是 ( )A.m ≥4B.m ≤4C. 3≤x <4D. 3< x ≤410、已知,如图,在△ABC 中,OB 和 OC 分别平分∠ABC 和∠ACB ,过 O 作 DE ∥BC ,分别交 AB 、AC 于点 D 、E ,若 BD+CE =5,则线段 DE 的长为()A . 5B . 6C .7D .810 题图y-3 2 411、如图,已知一次函数 y =kx+b ,观察图象回答问题: 当 kx+b>0,x 的取值范围是()A. x >2.5B .x <2.5C. x >-5D. x <-51-1 -2 -3 -4 -511 题图12、小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,楼梯宽2 米,其侧面如图所示 (单位: 米),则小明至少要买( )平方米的地毯。
八年级数学下册期中测试卷题及答案精选全文完整版
八年级(下)期中数学试卷一.选择题(共10小题,每题3分,共30分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=5,b=12,c=134.(3分)若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13或B.13或15C.13D.155.(3分)若平行四边形两个内角的度数比为1:2,则其中较大内角的度数为()A.100°B.120°C.135°D.150°6.(3分)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2B.4C.6D.88.(3分)等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.39.(3分)如果最简二次根式与能够合并,那么a的值为()A.2B.3C.4D.510.(3分)将实数按如图方式进行有规律排列,则第19行的第37个数是()A.19B.﹣19C.D.﹣二.填空题(共7小题,每题4分,共28分)11.(4分)若在实数范围内有意义,则x的取值范围是.12.(4分)计算:=.13.(4分)如图,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是.14.(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.15.(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.16.(4分)规定运算:a☆b=﹣,a※b=+,其中a,b为实数,则(3☆5)(3※5)=.17.(4分)如图,四边形ABCD是菱形,AC=8,DB=6,P、Q分别为AC、AD上的动点,连接DP、PQ,则DP+PQ的最小值为.三.解答题(一)(共3小题,每题6分,共18分)18.(6分)(2﹣3)×19.(6分)在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.20.(6分)如图,在平行四边形ABCD中,E、F是对角线AC所在直线上的两点,且AE =CF.求证:四边形EBFD是平行四边形.四、解答题(二)(共3小题,每题8分,共24分)21.(8分)已知:x=,y=,求+的值.22.(8分)如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.23.(8分)如图,在矩形纸片ABCD中,AB=6,BC=8将矩形纸片ABCD沿对角线BD 折叠,点C落在点E处,BE交AD于点F,连接AE.(1)证明:BF=DF;(2)求AF的值;(3)求△DBF的面积.五、解答题(三)(共2小题,每题10分,共20分)24.(10分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)25.(10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F 同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,请判断△CEF的形状并说明理由;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=3cm,连接EF,当EF与GH 的夹角为45°,求t的值.参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.【分析】根据最简二次根式的概念判断即可.【解答】解:A、12=3×22,即被开方数中含有能开得尽方的因数,它不是最简二次根式,故本选项不符合题意.B、48=3×42,即被开方数中含有能开得尽方的因数,它不是最简二次根式,故本选项不符合题意.C、符合最简二次根式的定义,故本选项符合题意.D、被开方数中含有分母,它不是最简二次根式,故本选项不符合题意.故选:C.【点评】本题考查的是最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2.【分析】根据=|a|,×=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.【点评】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、除法及加减法运算法则.3.【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【解答】解:A、∵a2+b2=c2,∴此三角形是直角三角形,故本选项不符合题意;B、∵∠A+∠B+∠C=180°,∠A=∠B+∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;C、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;D、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;故选:C.【点评】本题考查的是勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.4.【分析】根据在直角三角形中,两个直角边的平方和等于斜边的平方,然后开方即可得出答案.【解答】解:∵一个直角三角形的两直角边的长为12和5,∴第三边的长为=13.故选:C.【点评】此题主要考查了勾股定理,掌握在直角三角形中,两个直角边的平方和等于斜边的平方是解题的关键.5.【分析】设较大内角的度数为2x,较小内角的度数为x,由平行四边形的性质列出等式可求解.【解答】解:∵平行四边形两个内角的度数比为1:2,∴设较大内角的度数为2x,较小内角的度数为x,∵平行四边形的邻角互补,∴2x+x=180°,∴x=60°,∴2x=120°.故选:B.【点评】本题考查了平行四边形的性质,掌握平行四边形的对角相等、邻角互补是解题的关键.6.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.∴可添加:AB=AD或AC⊥BD.【解答】解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.【点评】本题考查菱形的判定,答案不唯一.有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.7.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选:B.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,解题的关键是熟练掌握矩形的性质,属于中考常考题型.8.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【解答】解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选:B.【点评】本题考查的是等边三角形的性质,熟知等腰三角形“三线合一”的性质是解题的关键.9.【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,3a﹣8=17﹣2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.10.【分析】观察发现,第n行有(2n﹣1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,据此可求得答案.【解答】解:观察发现,第n行有(2n﹣1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,∴第19行有2×19﹣1=37个数,∴第19行的第37个数是19.故选:A.【点评】本题考查了找规律在平方根中的应用,找到题目中数字的排列规律是解题的关键.二.填空题(共7小题,每题4分,共28分)11.【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【解答】解:∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.【点评】此题主要考查了二次根式中被开方数的取值范围,关键把握二次根式中的被开方数是非负数.12.【分析】根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=﹣+=+3.故答案为+3.【点评】本题主要考查二次根式的加减运算,计算时先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.13.【分析】三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍.【解答】解:∵M,N分别是AC,BC的中点,∴MN是△ABC的中位线,∴MN=AB,∴AB=2MN=2×20=40(m).故答案为:40m.【点评】本题考查三角形中位线等于第三边的一半的性质,熟记性质是应用性质解决实际问题的关键.14.【分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为24【点评】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.15.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】本题考查勾股定理,熟练运用勾股定理进行面积的转换是解题关键.16.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=(﹣)×(+)=3﹣5=﹣2,故答案为:﹣2【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.17.【分析】如图作DM⊥AB于M.首先利用面积法求出DM的值,作点Q关于直线AC的对称点Q′,则PQ=PQ′,推出PD+PQ=PD+PQ′,推出当D、P、Q′共线时,且垂直AB时,DP+PQ′的值最小,最小值=DM;【解答】解:如图作DM⊥AB于M.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=4,OB=OD=3,∴AB==5,∵•AB•DM=•BD•AO,∴DM==,作点Q关于直线AC的对称点Q′,则PQ=PQ′,∴PD+PQ=PD+PQ′,∴当D、P、Q′共线时,且垂直AB时,DP+PQ′的值最小,最小值=DM=,故答案为.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会利用垂线段最短解决最短问题,学会利用面积法求高,属于中考常考题型.三.解答题(一)(共3小题,每题6分,共18分)18.【分析】观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:原式=(4×=3×=9.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.19.【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【解答】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.【点评】本题主要考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD⊥BC.20.【分析】连接BD交AC于点O,根据对角线互相平分的四边形是平行四边形,可证四边形EBFD是平行四边形.【解答】证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形EBFD是平行四边形.【点评】此题主要考查平行四边形的判定,熟练掌握平行四边形的判定是解题的关键.四、解答题(二)(共3小题,每题8分,共24分)21.【分析】利用分母有理化法则分别求出、,计算即可.【解答】解:∵x=,∴===﹣1,∵y=,∴===+1,∴+=﹣1++1=2.【点评】本题考查的是二次根式的化简求值,掌握分母有理化法则是解题的关键.22.【分析】(1)由四边形ABCD是菱形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.(2)利用平行四边形的判定和性质解答即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AO=CO,AB∥CD,∴∠EAO=∠FCO,∠AEO=∠CFO.在△OAE和△OCF中,,∴△AOE≌△COF,∴AE=CF;(2)∵E是AB中点,∴BE=AE=CF.∵BE∥CF,∴四边形BEFC是平行四边形,∵AB=2,∴EF=BC=AB=2.【点评】此题考查了菱形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.【分析】(1)由折叠的性质可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF;(2)根据折叠的性质我们可得出AB=ED,∠A=∠E=90°,又有一组对应角,因此就构成了全等三角形判定中的AAS的条件.两三角形就全等,从而设BF为x,解直角三角形ABF可得出答案;(3)由(1)知BF=DF,由(2)知BF的长,再由三角形的面积公式即可得出结论.【解答】证明:(1)由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠BAD=90°,∴AB=DE,BE=AD,在△ABD与△EDB中,,∴△ABD≌△EDB(SSS),∴∠EBD=∠ADB,∴BF=DF;(2)(2)在△ABD与△EDB中,,∴△ABF≌△EDF(AAS).∴AF=EF,设BF=x,则AF=FE=8﹣x,在Rt△AFB中,可得:BF2=AB2+AF2,即x2=62+(8﹣x)2,解得:x=,∴AF=8﹣=;(3)∵由(1)知BF=DF,由(2)知BF=,∴DF=,∴S△DBF=DF•AB=××6=.【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.五、解答题(三)(共2小题,每题10分,共20分)24.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)当∠A=45°,四边形BECD是正方形.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.【点评】本题考查了平行四边形的性质和判定,菱形的判定,正方形的判定、直角三角形的性质的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【分析】(1)通过证明△CDE≌△CBF得到CF=CE,∠DCE=∠BCF,则易推知△CEF 是等腰直角三角形;(2)过点E作EN∥AB,交BD于点N,∠END=∠ABD=∠EDN=45°,EN=ED=BF.可证△EMN≌△FMB,则其对应边相等:EM=FM.所以在Rt△AEF中,由勾股定理求得EF的长度,则AM=EF;(3)如图3,连接CE,CF,EF与GH交于P.根据四边形GFCH是平行四边形,则其对边相等:CF=GH=3.所以在Rt△CBF中,由勾股定理得到:BF=3,故t=3.【解答】解:(1)等腰直角三角形.理由如下:如图1,在正方形ABCD中,DC=BC,∠D=∠ABC=90°.依题意得:DE=BF=t.在△CDE与△CBF中,,∴△CDE≌△CBF(SAS),∴CF=CE,∠DCE=∠BCF,∴∠ECF=∠BCF+∠BCE=∠DCE+∠BCE=∠BCD=90°,∴△CEF是等腰直角三角形.(2)如图2,过点E作EN∥AB,交BD于点N,则∠NEM=∠BFM.∴∠END=∠ABD=∠EDN=45°,∴EN=ED=BF.在△EMN与△FMB中,,∴△EMN≌△FMB(AAS),∴EM=FM.∵Rt△AEF中,AE=4,AF=8,∴EF===4,∴AM=EF=2;(3)如图3,连接CE,CF,EF与GH交于P,CE与GH交于点Q.由(1)得∠CFE=45°,又∵∠EPQ=45°,∴GH∥CF,又∵AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=3,在Rt△CBF中,得BF===3,∴t=3.【点评】本题考查了四边形综合题.解题过程中,涉及到了平行四边形的判定与性质,全等三角形的判定与性质以及勾股定理的应用.解答该类题目时,要巧妙的作出辅助线,构建几何模型,利用特殊的四边形的性质(或者全等三角形的性质)得到相关线段间的数量关系,从而解决问题.。
2019-2020学年八年级数学下学期期中达标检测卷(北师大版)含答案
2019-2020学年八年级数学下学期期中达标检测卷(一)【北师大版】考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•鲤城区校级期中)若x<y,则下列式子中错误的是()A.x﹣3<y﹣3B.2x+3<2y+3C.<D.﹣3x<﹣3y2.(3分)(2020•宝安区校级期中)下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.3.(3分)(2019春•夏津县期中)设“●■▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“●■▲”这三种物体质量从大到小顺序排列应为()A.●■▲B.▲■●C.■●▲D.■▲●4.(3分)(2019春•平和县期中)三角形内有一点,它到三角形三边的距离都相等,同时与三角形三顶点的距离也都相等,则这个三角形是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形5.(3分)(2020•武汉校级期中)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2B.3C.4D.56.(3分)(2018秋•醴陵市期中)如图,是一个5×5的正方形网格,网格中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.点C也在小正方形的顶点上.若△ABC为等腰三角形,满足条件的C点的个数为()A.6B.7C.8D.97.(3分)(2019春•平和县期中)如图,AB∥CD,AC的垂直平分线分别交AC,BD于E,F,若∠C=56°,则∠BAF的度数是()A.28°B.34°C.56°D.68°8.(3分)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°9.(3分)(2020•深圳校级期中)不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1B.a≤3C.a<1或a>3D.1<a≤310.(3分)(2019秋•广陵区校级期中)如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD ⊥OA,M是OP的中点,DM=6cm,如果点C是OB上一个动点,则PC的最小值为()A.3B.3C.6D.6第Ⅱ卷(非选择题)评卷人得分二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019春•包河区期中)不等式组的解集为.12.(3分)(2019秋•福清市期中)等腰三角形的两边长分别为3cm和4cm,则它的周长是cm.13.(3分)(2019秋•阳江期中)如图,在△ABC中,∠BAC=70°,在同一平面内将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=.14.(3分)(2018秋•沁阳市期中)如图,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=2,则△ABC的面积是.15.(3分)(2019秋•市中区校级期中)如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,4),则关于x的不等式kx+b+2x>0的解集为.16.(3分)(2019春•平和县期中)甲从一个鱼摊买三条鱼,平均每条a元,又从另一个鱼摊买了两条鱼,平均每条b元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是(填a>b或a<b或a=b)评卷人得分三.解答题(共6小题,满分52分)17.(8分)(2019春•五华区校级期中)解不等式(组)(1)解不等式;(2)解不等式组:,并写出它的所有整数解.18.(8分)(2018•瑶海区校级期中)如图,已知A(﹣1,﹣1),B(﹣3,3),C(﹣4,1).(1)画出△ABC关于y轴对称的△A1B1C1.(2)画出△ABC绕点O按逆时针方向旋转90°后的△A2B2C2.(3)判断△A1B1C1和△A2B2C2是不是成轴对称?如果是,在图中作出它们的对称轴.19.(8分)(2019春•福田区校级期中)如图,在四边形ABCD中,M,N分别是CD,BC的中点,且AM ⊥CD,AN⊥BC.(1)求证:∠BAD=2∠MAN;(2)连接BD,若∠MAN=70°,∠DBC=40°,求∠ADC.20.(8分)(2019春•平和县期中)已知关于x、y的方程组的解满足x≤0,y<0.(1)用含m的代数式分别表示x和y;(2)求m的取值范围;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1?21.(10分)(2019春•成都期中)为了全面推进素质教育,增强学生体质,丰富校园文化生活,高新区某校将举行春季特色运动会,需购买A,B两种奖品,经市场调查,若购买A种奖品3件和B种奖品2件,共需60元:若购买A种奖品1件和B种奖品3件,共需55元.(1)求A、B两种奖品的单价各是多少元;(2)运动会组委会计划购买A、B两种奖品共100件,购买费用不超过1160元,且A种奖品的数量不大于B种奖品数量的3倍,运动会组委会共有几种购买方案?(3)在第(2)问的条件下,设计出购买奖品总费用最少的方案,并求出最小总费用.22.(10分)(2019春•平和县期中)阅读下面材料,并解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.2019-2020学年八年级数学下学期期中达标检测卷(一)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•鲤城区校级期中)若x<y,则下列式子中错误的是()A.x﹣3<y﹣3B.2x+3<2y+3C.<D.﹣3x<﹣3y【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【答案】解:A、在原不等式两边都减3可得x﹣3<y﹣3,此选项正确;B、在原不等式的两边都乘以2,再加3可得2x+3<2y+3,此选项正确;C、在原不等式两边都除以2得<,此选项正确;D、在原不等式两边都乘以﹣3得﹣3x>﹣3y,此选项错误;故选:D.【点睛】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质3.2.(3分)(2020•宝安区校级期中)下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【答案】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.3.(3分)(2019春•夏津县期中)设“●■▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“●■▲”这三种物体质量从大到小顺序排列应为()A.●■▲B.▲■●C.■●▲D.■▲●【分析】根据第一个不等式,可得■与▲的关系,根据第二个不等式,可得●与■的关系,根据不等式的传递性,可得答案.【答案】解:第一个不等式,■质量<▲质量,根据第二个不等式,●质量<■质量,故选:B.【点睛】本题考查了不等式的性质,不等式当传递性是解题关键.4.(3分)(2019春•平和县期中)三角形内有一点,它到三角形三边的距离都相等,同时与三角形三顶点的距离也都相等,则这个三角形是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形【分析】由三角形内有一点,它到三角形三边的距离都相等,同时与三角形三顶点的距离也都相等,可得此点是三角形的角平分线的交点,也是三边的垂直平分线的交点,继而可判定这个三角形一定是等边三角形.【答案】解:∵三角形内有一点,它到三角形三边的距离都相等,同时与三角形三顶点的距离也都相等,∴此点是三角形的角平分线的交点,也是三边的垂直平分线的交点,∵这个三角形一定是等边三角形.故选:D.【点睛】此题考查了线段垂直平分线的性质以及角平分线的性质.此题难度不大,注意掌握定理的应用.5.(3分)(2020•武汉校级期中)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5【分析】先利用点A平移都A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【答案】解:∵点A(2,0)先向上平移1个单位,再向右平移1个单位得到点A1(3,1),∴线段AB先向上平移1个单位,再向右平移1个单位得到线段A1B1,∴点B(0,1)先向上平移1个单位,再向右平移1个单位得到点B1,∴a=0+1=1,1+1=b,∴a+b=1+2=3.故选:B.【点睛】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)6.(3分)(2018秋•醴陵市期中)如图,是一个5×5的正方形网格,网格中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.点C也在小正方形的顶点上.若△ABC为等腰三角形,满足条件的C点的个数为()A.6B.7C.8D.9【分析】分为两种情况:①以AB为腰时,符合条件的有点CDEFGH;②以AB为底时,符合条件的有点IJ;相加即可得出答案.【答案】解:①以AB为腰时,符合条件的有点CDEFGH;②以AB为底时,符合条件的有点IJ;共6+2=8,故选:C.【点睛】本题考查了等腰三角形的判定,注意:有两边相等的三角形是等腰三角形.7.(3分)(2019春•平和县期中)如图,AB∥CD,AC的垂直平分线分别交AC,BD于E,F,若∠C=56°,则∠BAF的度数是()A.28°B.34°C.56°D.68°【分析】根据线段垂直平分线的性质得到FA=FC,求出∠FAC的度数,根据三角形内角和定理求出∠AFC,根据平行线的性质解答即可.【答案】解:∵EF是AC的垂直平分线,∴FA=FC,∴∠FAC=∠C=56°,∴∠AFC=180°﹣56°﹣56°=68°,∵AB∥CD,∴∠BAF=∠AFC=68°,故选:D.【点睛】本题考查的是线段垂直平分线的性质、平行线的性质、三角形内角和定理的应用,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.(3分)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°【分析】根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.【答案】解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.【点睛】根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.9.(3分)(2020•深圳校级期中)不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1B.a≤3C.a<1或a>3D.1<a≤3【分析】根据题中所给条件,结合口诀,可得a﹣1与3之间、5和a+2之间都存在一定的不等关系,解这两个不等式即可.【答案】解:根据题意可知a﹣1≤3且a+2≤5所以a≤3又因为3<x<a+2即a+2>3所以a>1所以1<a≤3故选:D.【点睛】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10.(3分)(2019秋•广陵区校级期中)如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD ⊥OA,M是OP的中点,DM=6cm,如果点C是OB上一个动点,则PC的最小值为()A.3B.3C.6D.6【分析】作PC′⊥OB于C′,根据直角三角形的性质求出PD,根据角平分线的性质解答.【答案】解:作PC′⊥OB于C′,则PC′为PC的最小值,∵PD⊥OA,M是OP的中点,∴OP=2DM=12cm,∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠DOP=30°,∴PD=OP=6cm,∵P是∠AOB角平分线上的一点,PD⊥OA,PC′⊥OB,∴PC′=PD=6cm,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019春•包河区期中)不等式组的解集为﹣9<x<﹣3.【分析】根据每个不等式的解集,求出不等式组的解集即可.【答案】解:不等式组的解集为﹣9<x<﹣3.故答案为:﹣9<x<﹣3.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.12.(3分)(2019秋•福清市期中)等腰三角形的两边长分别为3cm和4cm,则它的周长是10或11cm.【分析】因为腰长没有明确,所以分①3cm是腰长,②4cm是腰长两种情况求解.【答案】解:①3cm是腰长时,能组成三角形,周长=3+3+4=10cm,②4cm是腰长时,能组成三角形,周长=4+4+3=11cm,所以,它的周长是10或11cm.故答案为:10或11.【点睛】本题考查了等腰三角形的性质,易错点为要分情况讨论求解.13.(3分)(2019秋•阳江期中)如图,在△ABC中,∠BAC=70°,在同一平面内将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=40°.【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=40°即可解决问题.【答案】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=70°,∴∠ACC′=∠AC′C=∠BAC=70°,∴∠CAC′=180°﹣2×70°=40°;由题意知:∠BAB′=∠CAC′=40°,故答案为40°.【点睛】该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.14.(3分)(2018秋•沁阳市期中)如图,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=2,则△ABC的面积是18.【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质分别求出OE,OF,根据三角形的面积公式计算.【答案】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=2,同理,OF=OD=2,∴△ABC的面积=△OBC的面积+△OAB的面积+△OAC的面积=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×2=18,故答案为:18.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.(3分)(2019秋•市中区校级期中)如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,4),则关于x的不等式kx+b+2x>0的解集为x>﹣2.【分析】首先将点A的坐标代入正比例函数中求得m的值,然后结合图象直接写出不等式的解集即可.【答案】解:∵函数y=﹣2x经过点A(m,4),∴﹣2m=4,解得:m=﹣2,则关于x的不等式kx+b+2x>0可以变形为kx+b>﹣2x,由图象得:kx+b>﹣2x的解集为x>﹣2,故答案为:x>﹣2.【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是求得m的值,然后利用数形结合的方法确定不等式的解集.16.(3分)(2019春•平和县期中)甲从一个鱼摊买三条鱼,平均每条a元,又从另一个鱼摊买了两条鱼,平均每条b元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是a>b(填a>b或a<b或a=b)【分析】首先表示出5条鱼的平均价格为元,分析当a=b,a>b,a<b时三种情况,与进行比较,得出正确的结果.【答案】解:∵5条鱼的平均价格为元,分析当a=b,==a,当a>b,=0.6a+0.4b,=0.5a+0.5b,∴0.6a+0.4b﹣(0.5a+0.5b)=0.1a﹣0.1b∵a>b,∴0.1a﹣0.1b>0∴>,把鱼全部卖给了乙,一定赔钱.当a<b时,<,故答案为:a>b.【点睛】此题主要考查了如何比较代数式的大小关系,得出买价与卖价的大小关系是解决问题的关键.三.解答题(共6小题,满分52分)17.(8分)(2019春•五华区校级期中)解不等式(组)(1)解不等式;(2)解不等式组:,并写出它的所有整数解.【分析】(1)不等式去分母、去括号、移项合并、系数化为1即可求出不等式的解集;(2)先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找”来求不等式组的解集.【答案】解:(1),3(2+x)≥3(2x+1)﹣12,6+3x≥6x+3﹣12,3x﹣6x≥3﹣12﹣6,﹣3x≥﹣15,x≤5;(2),由①得x≥1,由②得x<4,故原不等式组的解集为1≤x<4,所以它的整数解有:1,2,3.【点睛】主要考查了一元一次不等式(组)解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(8分)(2018•瑶海区校级期中)如图,已知A(﹣1,﹣1),B(﹣3,3),C(﹣4,1).(1)画出△ABC关于y轴对称的△A1B1C1.(2)画出△ABC绕点O按逆时针方向旋转90°后的△A2B2C2.(3)判断△A1B1C1和△A2B2C2是不是成轴对称?如果是,在图中作出它们的对称轴.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据旋转的性质画出△ABC绕点O按逆时针方向旋转90°后的△A2B2C2;(3)依据轴对称的性质,即可得到△A1B1C1和△A2B2C2成轴对称.【答案】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)△A1B1C1和△A2B2C2成轴对称,对称轴为直线A1B.【点睛】本题考查的是作图﹣轴对称变换及旋转变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.作旋转图形时,先确定旋转中心、旋转方向和旋转角,旋转前后的两个图形是全等的.19.(8分)(2019春•福田区校级期中)如图,在四边形ABCD中,M,N分别是CD,BC的中点,且AM ⊥CD,AN⊥BC.(1)求证:∠BAD=2∠MAN;(2)连接BD,若∠MAN=70°,∠DBC=40°,求∠ADC.【分析】(1)连接AC,根据线段垂直平分线的性质得到AC=AD,根据等腰三角形的三线合一得到∠3=∠4,同理得到∠1=∠2,证明结论;(2)根据四边形的内角和等于360°求出∠BCD,根据三角形内角和定理、等腰三角形的性质计算,得到答案.【答案】(1)证明:连接AC,∵M是CD的中点,AM⊥CD,∴AM是线段CD的垂直平分线,∴AC=AD,又AM⊥CD,∴∠3=∠4,同理,∠1=∠2,∴∠2+∠3=∠BAD,即BAD=2∠MAN;(2)∵AM⊥CD,AN⊥BC.∠MAN=70°,∴∠BCD=360°﹣90°﹣90°﹣70°=110°,∴∠BDC=180°﹣∠DBC﹣∠BCD=30°,∠BAD=2∠MAN=140°,∵AB=AC,AD=AC,∴AB=AD,∴∠ADB=∠ABD=20°,∴∠ADC=∠ADB+∠BDC=50°.【点睛】本题考查的是线段垂直平分线的判定和性质、三角形内角和定理、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.(8分)(2019春•平和县期中)已知关于x、y的方程组的解满足x≤0,y<0.(1)用含m的代数式分别表示x和y;(2)求m的取值范围;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1?【分析】(1)首先对方程组进行化简即可求得含m的表示x和y得代数式;(2)根据方程的解满足的解满足x≤0,y<0得到不等式组,解不等式组就可以得出m的范围,然后求得m的值;(3)根据不等式2mx+x<2m+1的解为x>1,求出m的取值范围,即可解答.【答案】解:(1),①+②得2x=2m﹣6,所以,x=m﹣3;①﹣②得2y=﹣4m﹣8,所以,y=﹣2m﹣4,故含m的代数式分别表示x和y为;(2)∵x≤0,y<0∴,解,得﹣2<m≤3;(3)(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴,又∵﹣2<m≤3∴﹣2<m<﹣,∵m为整数,∴m=﹣1.【点睛】本题考查了解二元一次方程组和一元一次不等式,解决本题的关键是求出方程组的解集.21.(10分)(2019春•成都期中)为了全面推进素质教育,增强学生体质,丰富校园文化生活,高新区某校将举行春季特色运动会,需购买A,B两种奖品,经市场调查,若购买A种奖品3件和B种奖品2件,共需60元:若购买A种奖品1件和B种奖品3件,共需55元.(1)求A、B两种奖品的单价各是多少元;(2)运动会组委会计划购买A、B两种奖品共100件,购买费用不超过1160元,且A种奖品的数量不大于B种奖品数量的3倍,运动会组委会共有几种购买方案?(3)在第(2)问的条件下,设计出购买奖品总费用最少的方案,并求出最小总费用.【分析】(1)设A种奖品的单价为x元,B种奖品的单价为y元,根据“若购买A种奖品3件和B种奖品2件,共需60元:若购买A种奖品1件和B种奖品3件,共需55元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设运动会组委会购进m件A种奖品,则购进(100﹣m)件B种奖品,根据购买费用不超过1160元且A种奖品的数量不大于B种奖品数量的3倍,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出购买方案的个数;(3)由A,B两种奖品单价间的关系,可找出购买奖品总费用最少的方案,再利用总价=单价×数量可求出最小总费用.【答案】解:(1)设A种奖品的单价为x元,B种奖品的单价为y元,依题意,得:,解得:.答:A种奖品的单价为10元,B种奖品的单价为15元.(2)设运动会组委会购进m件A种奖品,则购进(100﹣m)件B种奖品,依题意,得:,解得:68≤m≤75,75﹣68+1=8(种).答:运动会组委会共有8种购买方案.(3)∵10<15,∴A种奖品的单价较低,∴当m=75时,购买奖品总费用最少,最少费用为10×75+15×(100﹣75)=1125(元).答:购买75件A种奖品,25件B种奖品时,购买奖品总费用最少,最少费用为1125元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据两种奖品单价间的关系,找出购买奖品总费用最少的方案.22.(10分)(2019春•平和县期中)阅读下面材料,并解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=150°;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.【分析】(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;(2)把△ABE绕点A逆时针旋转90°得到△ACE′,根据旋转的性质可得AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出∠E′AF=45°,从而得到∠EAF=∠E′AF,然后利用“边角边”证明△EAF和△E′AF全等,根据全等三角形对应边相等可得E′F=EF,再利用勾股定理列式即可得证.(3)将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A ′C.【答案】解:(1)∵△ACP′≌△ABP,∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,由题意知旋转角∠PA P′=60°,∴△AP P′为等边三角形,P P′=AP=3,∠A P′P=60°,易证△P P′C为直角三角形,且∠P P′C=90°,∴∠APB=∠AP′C=∠A P′P+∠P P′C=60°+90°=150°;故答案为:150°;(2)如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,∵∠EAF=45°,∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠E′AF,在△EAF和△E′AF中,∴△EAF≌△E′AF(SAS),∴E′F=EF,∵∠CAB=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2.(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴BC=,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=,∴OA+OB+OC=A′O′+OO′+OC=A′C=.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,读懂题目信息,理解利用旋转构造出全等三角形和等边三角形以及直角三角形是解题的关键.2019-2020学年八年级数学下学期期中达标检测卷(二)【北师大版】考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2019春•南阳期中)给出变形:①若a<b,则2﹣a>2﹣b;②若|a|=|b|,则a=b;③若x=y,则=;④若a>b,则a(c2+1)>b(c2+1).其中一定正确的个数是()A.1个B.2个C.3个D.4个2.(3分)(2020•深圳校级期中)下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个3.(3分)(2019•定远县校级期中)关于x的不等式的解集在数轴上表示如图所示,则a的值是()A.﹣6B.﹣12C.6D.124.(3分)(2019春•龙岗区期中)在△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()A.8cm B.6cm C.cm D.5cm5.(3分)(2019秋•朝阳区期中)如图,在正方形网格中,△MPN绕某一点旋转某一角度得到△M′P′N ′,则旋转中心可能是()A.点A B.点B C.点C D.点D6.(3分)(2019•从化市校级期中)如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE =3,AB=6,则AC长是()A.7B.6C.5D.47.(3分)(2019春•高邑县期中)如图,线段AB两端点的坐标分别为A(﹣1,0),B(1,1),把线段AB 平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为()A.7B.6C.5D.48.(3分)(2019•东营校级期中)一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道9.(3分)(2019•阜新校级期中)如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0B.x<0C.x>1D.x<110.(3分)(2018春•沭阳县期中)关于x,y的二元一次方程组的解满足x<y,则a的取值范围是()A.a>B.a<C.a<D.a>11.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)12.(3分)(2019•永嘉县校级期中)如图,在平面直角坐标系中,点A,B的坐标分别为(0,4)和(1,3)△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与O′间的距离为()A.3B.4C.5D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共4小题,满分12分,每小题3分)13.(3分)(2019春•龙岗区期中)不等式3(x﹣1)≤5﹣x的非负整数是.14.(3分)(2019春•顺德区期中)如图,等腰△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,∠DBC=15°,则∠A的度数是度.15.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.16.(3分)如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB ′C′的位置,连接C′B,则C′B=.评卷人得分三.解答题(共7小题,满分52分)17.(6分)(2019春•龙岗区期中)解不等式(组),并把解集在数轴上表示出来.(1)4x+5≤2(x+1)(2)18.(6分)(2019春•电白区期中)如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC 于F.线段AB上一点E,且DE=DC.证明:BE=CF.19.(6分)(2019春•龙岗区期中)某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3要多xm3,交纳水费y元.(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?20.(8分)(2019秋•路北区期中)如图,已知:AD平分∠CAE,AD∥BC.(1)求证:△ABC是等腰三角形.(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.21.(8分)(2019秋•平房区期中)某公司保安部去商店购买同一品牌的应急灯和手电筒,查看定价后发现,购买一个应急灯和5个手电筒共需50元,购买3个应急灯和2个手电筒共需85元.(1)求出该品牌应急灯、手电筒的定价分别是多少元?。
八年级数学(下)期中测试卷含答案
八年级数学(下)期中测试卷(考试时间:120分钟满分:120分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分.请在答题卡上作答,在本试卷上作答无效.2. 答题前,请认真阅读答题卡上的注意事项.3.不能使用计算器,考试结束时,将本试卷和答题卡一并交回.第I卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1有意义,字母x的取值必须满足A.x≥0 B.x≤0 C.x≥1 D.x≥-1 2.下列二次根式中,最简二次根式是A B C D3.下列计算中,正确的是A.32+23=55B.33×32= C.27÷3=3 D.2)3(-=-34.方程的解是A.4x=B.2x=C.124,0x x==D.0x= 5.用配方法将方程2x+6x-11﹦0变形,正确的是A.2320x-=()B.232x-=()C.232x+=()D.2320x+=()6.已知关于x的方程(a-1)x2-2x+1﹦0有实数根,则a的取值范围是A.a≤2B.a>2C.a≤2且a≠1D.a<-2 7.已知一个直角三角形的两边长分别3和4,则第三边长是A.5 B C.25 D.58.已知方程2x2+6x-1﹦0的两个实数根为1x,2x,则1211x x+的值为240x x-=A .-3B .3C .6D .-69.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是 A . B .100+100(1+x )+1002x +(1)=364C .D .10.如图,在Rt △ABC 中,∠ACB =90°,AE 为△A BC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长 A .2 B .3 C .4D .511.直线n x m y l +--=2)3(:(m ,n 为常数)的图象如图所示,化简︱3-m ︱-442+-n n 得A .n m --5B .1+-m nC .1--n mD .5-+n m12.△ABC 的三边分别为a ,b ,c ,下列条件能推出△ABC 是直角三角形的有① 222a c b -= ②20a b a b c -++=()() ③ ∠A =∠B -∠C ④∠A ∶∠B ∶∠C =1∶2∶3 ⑤51,41,31===c b a ⑥10a =, 24b =,26=c A .2个 B .3个 C .4个 D .5个第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每题3分,共18分) 13.计算4812-结果得 ▲ .14.如图,在一个高为5 m ,长为13 m 的楼梯表面铺地毯,则地毯的长度至少是 ▲ m .15.27与最简二次根式1m +是同类二次根式,则m = ▲ . 16.等腰三角形的顶角为120°,底边上的高为2,则它的周长为 ▲ .17.若关于x 的一元二次方程2215360m x x m m -+++-=()的常数项为-2,则m 的值为 ▲ . 18.若关于x 的方程ax 2+2(ab ) + (ba ) x =0有两个相等的实数根,则a :b = ▲ .三、解答题(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤.) 19.(本题共2小题,每小题4分,满分8分)计算:x 2100(1)364x +=2100(12)364x +=2100100(1)(12)364x x ++++=(1)11842432-+÷ (2)28182122--⎪⎭⎫ ⎝⎛+⨯20.(本题共2小题,每小题4分,满分8分)解下列方程:(1)2943x x -=-()(2)231x x -=21.(本题满分7分)已知: , 求:(1)a -b 的值; (2)ab 的值; (3)a bb a-的值 22.(本题满分8分)如图,在4×4的正方形网格中,每个小正方形的边长都为1.求: (1)△ABC 的周长; (2)∠ABC 度数;23.(本题满分7分)已知关于x 的方程22210x kx k ++-=.(1)试说明:无论k 取何值时,方程总有两个不相等的实数根; (2)如果方程有一个根为-3, 试求2k 2+12k +2019的值.24. (本题满分8分)一架梯子AB 长25米,如图斜靠在一面墙上,梯子底端B 离墙7米. (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?21a =-21b =25.(本题满分10分)已知a ,b ,c 是△ABC 的三边长,关于x 的一元二次方程有两个相等的实数根,关于x 的方程3cx +2b ﹦2a 的根为x ﹦0.(1)试判断△ABC 的形状;(2)若a ,b 是关于x 的一元二次方程x 2+mx -3m =0的两个实数根,求m 的值.26.(本题满分10分)某商场计划购进一批书包,经市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?220x c a ++-=数学试题参考答案及评分标准一、选择题(本大题共12小题,每小题3分,共36分)二、填空题(每小题3分,共18分)13.14. 17 15.2 16.8+17. -4 18.17-或1 三.解答题(本大题共8个小题,共66分)19.(1解:原式=……………………3分 =……………………4分(2)28182122--⎪⎭⎫⎝⎛+⨯解:原式=2+1-(3-2)……………………3分=3……………………4分20. (1)x2-9=4(x-3)解:整理得:x2-4x+3=0,……………………1分分解因式得:(x-1)(x-3)=0,……………………2分可得x-1=0或x-3=0,……………………3分解得:x1=1,x2=3;……………………4分(2)23=1x x-解:原方程可化为2310x x--=∵a=3,b=-1,c=-1,……………………1分∴△=43-⨯⨯2(-1)(-1)=13,……………………2分x=. ……………………3分4-+∴11136x +=,21136x -= . ……………………4分21.解:(1)a -b =21-()-2+1()=2121--- ……………………1分 =-2 ……………………2分(2) ab = 21-()2+1()=2221-() ……………………3分=1 ……………………4分 (3)∵a+b =21+21--=22 , a -b =-2,ab =1 ……………………5分∴ =a b a b ab+-()()……………………6分=22⨯(-2)=42- ……………………7分22.解:(1)AB = = , ……………………1分BC = = , ……………………2分AC = =5, ……………………3分△ABC 的周长=25+5+5=35+5; ……………………4分(2)∵AC 2=25,AB 2=20,BC 2=5, ……………………5分∴AC 2=AB 2+BC 2, ……………………6分 ∴∠ABC =90°. ……………………7分 (3)△ABC 的面积为2×÷2=5.……………………8分23.解:(1)∵△= (2k )2-4(k 2-1)22a b a bb a ab--=252242+2221+2234+5=4k2-4k2+4=4>0……………………2分∴无论k取何值时,方程总有两个不相等的实数根. ……………………3分(2)把x=-3代入原方程得(-3)2-6k+k2-1=0k2-6k+8=0(k-2)(k-4)=0k=2或k=4 ……………………5分当k=2时,2k2+12k+2019=2051 ……………………6分当k=4时,2k2+12k+2019=2099 ……………………7分24. 解:(1)梯子距离地面的高度AO=AB2-OB2=22257-=24(米).……………………2分答:这个梯子的顶端距地面有24米高.……………………3分(2)不是梯子下滑了4米即梯子距离地面的高度OA′=24-4=20(米),……………………4分根据勾股定理,得OB′=A′B′2-OA′2=222520-=15(米),…………………6分∴BB′=OB′-OB=15-7=8米.…………………7分答:当梯子的顶端下滑4米时,梯子的底端在水平方向移动了8米.…………………8分25.解:(1)∵关于x的一元二次方程x2+2b x+2c-a=0有两个相等的实数根,∴Δ=(2b)2-4×1×(2c-a)=0,……………………1分∴a+b=2c.……………………2分又∵关于x的方程3cx+2b=2a的根为x=0,∴a=b,……………………3分∴a=b=c,即△ABC是等边三角形.……………………4分(2)∵a,b是关于x的一元二次方程x2+mx-3m=0的两个实数根,又由(1)知a=b,∴方程x2+mx-3m=0有两个相等的实数根,……………………5分∴Δ=m2+4×3m=0,解得m=0或m=-12.……………………6分当m=0时,方程x2+mx-3m=0可化为x2=0,解得x1=x2=0. ……………………7分又由a,b,c是△ABC的三边长,得a>0,b>0,c>0,故m=0不符合题意:…………8分当m=-12时,方程x2+mx-3m=0可化为x2-12x+36=0,解得x1=x2=6,……………………9分可知m=-12符合题意.故m的值为-12.……………………10分解法二:利用根与系数的关系说明m的值26.解:(1)当售价为42元时,每月可以售出的个数为600-10×(42-40)=580(个)……………………2分(2)当书包的月销售量为300个时,每个书包的价格为:40+(600-300)÷10=70(元);……………………4分解法二:此题也可列方程解:每个书包的定价为a元,则月销售量为600-10(a-40)=-10a+1000由题意得,-10a+1000=300解得,a=70答:每个书包的定价为70元.(3)设销售价格应定为x元,则…………………5分(x-30)[600-10(x-40)]=10000,…………………7分解得x1=50,x2=80,当x=50时,销售量为500个;当x=80时,销售量为200个. …………………9分答:为体现“薄利多销”的销售原则,销售价格应定为50元.…………………10分。
2019-2020学年初中八年级(下)数学期中考试试卷(含答案)
是这个台阶两个相对的端点,A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台
阶面爬到 B 点的最短路程是_________.
16.△ABC 中,AB=2 3 ,AC=2,BC 边上的高 AD= 3 ,则 BC=__________.
三、解答题(共 72 分) 17.(20 分)计算:
(1) 3 3 8 2 27
.
13.三角形的两边长分别为 3 和 5,要使这个三角形是直角三角形,则第三边长是
.
14 . 在 数 轴 上 表 示 实 数 a 的 点 如 图 所 示 , 化 简 (a 5)2 a 2 的 结 果
为
.
0 2 a5
15.如图,是一个三级台阶,它的每一级的长、宽、高分别为 20dm、3dm、2dm,A 和 B
(2) (4 2 3 6) 2 2
(3) 46 0.5) ( 8 6 1 )
2
32
3
18.(8分)已知等式 | a 2019 | a 2020 a 成立,求 a 20192 的值.
19、(10 分)如图,在四边形 ABCD 中,∠B=90°,AB=BC=2,AD=1,CD=3. (1)求∠DAB 的度数. (2)求四边形 ABCD 的面积.
A.16 B.8 C.4 D.2
6.甲、乙两艘客轮同时离开港口,航行的速度都是 40m/min,甲客轮用 15min 到达点 A,
乙客轮用 20min 到达点 B,若 A,B 两点的直线距离为 1000m,甲客轮沿着北偏东 30°的方
向航行,则乙客轮的航行方向可能是( )
A.北偏西 30°
B.南偏西 30°
D. 6
A. 8 2 10 B. 2 2 2 2 C. 2 3 6 D. 12 2 6
初二年级数学期中测试试卷[下学期]
初二年级数学期中测试试卷姓名班级分数:老师寄语:同学们,准备好了吗?让我们一起对学过的课程做一次小结回顾吧!请同学们认真审题,仔细解答。
预祝各位同学本次考试中取得好成绩!(总分100分,100分钟完卷)一、用心选一选(每题2分,共20分)1、一元一次不等式组)A、 B、C、D、2.下列代数式中,不是分式的是( )A、mnB、yx-2C、πh2D、yx+153、如果把分式baba22-+中的a、b都扩大3倍,那么分式的值一定( )A、是原来的3倍B、是原来的5倍C、是原来的31D、不变4、下列由左到右变形,属于因式分解的是( )A、94)32)(32(2-=-+xxx B、)3)(3(9)(2--+-=--bababaC、22244)2(yxyxyx+-=- D、1)2(411842-+=-+xxxx5、若y1=-x+2 , y2=3x ,则()A、 x21<时,21yy> B、 x21>时,21yy>C、 x2>时,21yy> D、 x2<时,21yy>_2_1_0_-1_-2_-36、设“●”、“▲”、“■”表示三种不同的物体.现用天平称两次,情况如图所示,那么●、▲、■这三种物体质量从大到小的顺序排列正确的是( )A 、■、▲、●B 、 ▲、■、●C 、▲、●、■D 、 ■、●、▲7、下列各组图形中一定相似的图形是( )A 、有一个角相等的两个等腰三角形B 、两邻边之比相等的两个平行四边形C 、有一个角为60º的两个菱形D 、两个矩形8、如图,铁路口栏杆短臂长1米,长臂长12米,当短臂端点下降0.5米时,长臂端点升高( )A 、6米B 、8米C 、9米D 、11.25米 9、某商品的原售价为a 元,按此价的8折出售,仍可获利b%,则此商品的进价为( )A 、0.8a ×b%B 、0.8a (1+b%)C 、0.8a b%D 、0.8a 1+b%10、如图, 梯形ABCD 中,AD ∥BC ,对角线的交点为O ,CE ∥AB 交BD 的延长线于E ,若OB =6,OD =4,则DE =( )A 、12B 、9C 、8D 、5二、细心填一填(每题3分,共30分)11、当x_____________时,分式21+-x x 有意义。
2019八年级下数学期中试题及
2021-2021 年八年级下数学期中试题及答案12— 2021 学年度下学期八年级期中数学试题一、选择题〔每题 3 分,共 24 分〕1、以下各式中,分式的个数有〔〕x 1 、 b 2、 2 xy 、1 、1a 、 (xy) 2 、 2 1 、 5 3a 1m 2 2 (x y) 2 x 11A 、 2 个B 、3 个C 、 4 个D 、 5 个2、成人体内成熟的红细胞的平均直径一般为 0.000007245m ,保存三个有效数字的近似 数,可以用科学记数法表示为〔 〕A 、× 10 -5B 、 × 6C 、× -6-6m 10 m10 mD 、× 10 m3、在分式x 中的 x 、 y 值都扩大为原来的 2 倍,那么分式的值〔〕yxA 、扩大为原来的 2 倍B 、扩大为原来的4 倍 C 、缩小为原来的1 D 、不变2k4、反比例函数 yy=kx+2 的图像一定不经过经过点〔- 1, 2〕,那么一次函数x〔 〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限5、点 (x ,1),( x ,25),( x , 25) 在函数 y1 的图像上,那么以下关系式正确的选项是124 3x〔 〕A 、 x 3x 2 x 1 B 、 x 1 x 2 x 3 C 、 x 1 x 3 x 2 D 、 x 2x 3 x 16、在以下以线段 a 、b 、 c 的长为边,能够成直角三角形的是〔〕A 、 a = 32, b = 4 2,c = 52 C 、a = 9, b = 40, c = 41 7、 m 1<0<m 2,那么函数yB 、a = 11, b = 12, c = 13 D 、 a : b : c = 1: 1: 2 m 1和 y m 2 x 的图像大致是〔〕x8、如图,有一张直角三角形纸片,两直角边 D AC=6cm ,A B CBC=8cm ,将 △ A B C 折叠,使点 B 与点 A 重合, 折痕为 DE ,那么 CD 等于〔 〕.25 B 、22 7 5A 、3C 、D 、443二、填空题〔每题 3 分,共 24 分〕9、当 x时,分式3有意义;当 x时,分式 x24的值是 0。
山东潍坊高密初中学段0809学年初二下期中考试试卷数学
山东潍坊高密初中学段0809学年初二下期中考试试卷数学时刻:90分钟,总分:120分一、选择题(每题3分,共36分)请把正确答案的序号填入下表中 1.把分式cb a+的a 、b 、c 的值都扩大为原先的3倍,则分式的值 A .不变 B .变为原先的3倍 C .变为原先的31 D .变为原先的612.下列说法正确的是A .假命题不是命题B .真命题是定理C .公理是真命题D .“画一条线段”那个句子是命题3.已知点P (9,-2)关于原点对称的点是Q ,Q 关于y 轴对称的点是R ,则点R 的坐标是A .(2,-9)B .(-9,2)C .(9,2)D .(-9,-2)4.下列各式中,分式的个数为3122212131123+=-++-+--x x y x y x b a x x a y x ,,,,,,π A .5个B .4个C .3个D .2个5.李明骑自行车内学,最初以某一匀速行进,中途停下修车耽搁了几分钟,为了按时到校,李明加快了速度,仍保持匀速行进,结果按时到校。
表示李明所走的路程s (千米)与所用时刻t (小时)之间的函数的图象大致是A .B .C .D .6.如下图,已知∠A=∠D ,∠1=∠2,那么要得到△ABC ≌△DEF ,还应给出的条件是A .∠B=∠EB .BC=EDC .AB=EFD .CD=AF7.已知甲、乙两弹簧的长度y (cm )与所挂物体x (kg )之间的函数解析式分别是b k y x 111+=,b ky x 222+=,图像如下图所示,当所挂物体质量均为2kg 时,甲、乙两弹簧的长度y 1与y 2的大小关系为A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定8.下列四个条件,能够证明两个直角三角形全等的是A .两条边分别对应相等B .一条边、一个锐角分别对应相等C .两个锐角分别对应相等D .两条直角边分别对应相等9.定义一种运算☆,其规则为a ☆b=b a 11-,依照那个规则:()1-x ☆()321=-x 的解为 A .x =4B .x =1C .无解D .-110.如下图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE ,交对角线BD 于点F ,连接CF ,则图中全等三角形共有A .1对B .2对C .3对D .4对11.当k<0,反比例函数xky =和一次函数k kx y +=的图象大致是ABCD12.甲、乙两人分别从两地同时动身,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的( )倍。
八年级下学期数学期中考试试卷第9套真题
八年级下学期数学期中考试试卷一、单选题1. 下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .2. 下列事件是必然事件的为()A . 袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球B . 打开电视机,任选一个频道,屏幕上正在播放广告C . 三角形的内角和为180°D . 抛掷一枚硬币两次,第一次正面向上,第二次反面向上3. 下列各式中是分式为()A .B .C .D .4. 若A(x1,y1),B(x2,y2)都在函数的图象上,且x1<0<x2,则()A . y1<y2B . y1=y2C . y1>y2D . 无法确定5. 在体育考试中,某班体育委员对本班50名同学参加球类自选项目做了统计,制作出扇形统计图(如图),则该班选考乒乓球人数比羽毛球人数多()A . 5人B . 10人C . 15人D . 20人6. 如图,在平行四边形中,、是上两点,,连接、、、,添加一个条件,使四边形是矩形,这个条件是A .B .C .D .二、填空题7. 若分式的值为零,则________.8. 调查“墨子号”量子通讯卫星各部件功能是否符合要求,这种调查适合用________.(填“普查”或“抽样调查”)9. 若点A(,3)在反比例函数的图象上,则=________.10. 已知平行四边形ABCD中,∠B+∠D=260°,则∠C=________.11. 一组数据共有50个,分成5组后其中前四组的频数分别是3、17、15、5, 则第5组数据的频率为________.12. 已知反比例函数(是常数)的图象,在同一象限,y随x的增大而增大,那么a的取值范围是________.13. 在平面直角坐标系中,点P(2,3)绕点M(4,0)旋转180°后得到点P’,则点P’的坐标是________.14. 已知,且,则________.15. 如图,矩形的边与x轴平行,顶点A的坐标为(2,1),点B,D都在反比例函数的图象上,则矩形ABCD的面积为________.16. 在矩形ABCD中,AB=6,AD=4,点E是DC的中点,点F在AD上,连接BF,EF,若FE恰好平分∠BFD,则FD=________.三、解答题17. 计算、解方程:(1)计算:(2)解方程:18. 先化简,再从中选一个适合的整数代入求值.19. 随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择,某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论,为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并通过计算补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生1800人,请你估计该校对在线阅读最感兴趣的学生人数.20. 在一个不透明的袋子中装有除颜色外都相同的红球和黄球,两种颜色的球一共有10个,每次摸出其中一个球,记下颜色后,放回搅匀.一个同学进行了反复试验,下面是做该试验获得的数据.(1)a=________,画出摸到红球的频率的折线统计图;________(2)从这个袋子中任意摸一个球,摸到黄球的概率估计值是多少?(精确到0.1)(3)怎样改变袋中红球或黄球的个数,可以使得任意摸一次,摸到两种颜色球的概率相等?(写出一种方案即可)21. 已知一个函数y与自变量x的部分对应值如下表:(1)从我们已学过的函数判断:y是x的________函数,y与x的函数关系式为________;(2)根据函数图象,当-20)的图象交于点A与点B(a,-4).(1)求反比例函数的表达式;(2)若点P(m,6)是双曲线上的一点,连接OP,过点P作y轴的平行线交直线AB于点C,连接OC,求△POC的面积.24. 某超市计划购进甲、乙两种商品,已知甲的进价比乙多20元/件,用2000元购进甲种商品的件数与用1600元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价各是多少元?(2)小丽用950元只购买乙种商品,她购买乙种商品件数y(件),该商品的销售单价x(元),列出y与x函数关系式?若超市销售乙种商品,至少要获得20%的利润,那么小丽最多可以购买多少件乙种商品?25. 如图,在□ABCD中,点E是边AD上一点,且AE=AB.(1)作∠BCD的角平分线CF,交AD于F点,交BE于G点;(尺规作图,保留痕迹,不写画法)(2)在(1)的条件下,①求∠BGC的度数;②设AB=a,BC=b,则线段EF的长(用含a,b的式子表示);③若AB=10,CF=12,求BE的长.26. 在平面直角坐标系中,点A,B,C是x轴的正半轴上从左向右依次排列的三点,过点A,B,C分别作与轴平行的直线,, .(1)如图1,若直线与直线,,分别交于点D,E,F三点,设D(,),E(,),F(,).①若,,,则________ (填“=”,“>”或“<”);②若,,(),求证:AB=BC;(2)如图2,点A,B,C的横坐标分别为,n,(),直线,,与反比例函数()的图像分别交于点D,E,F,根据以上探究的经验,探索与之间的大小关系,并说明理由.。
八年级下册期中数学试卷及答案 (9)
八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分.)1.完成下列任务,宜用抽样调查的是()A.调查八年级(下)数学书的排版正确率B.了解你所在学校男、女生人数C.调查学生对校足球队的喜欢情况D.奥运会上对获奖运动员进行的尿样检查2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个3.下列说法正确的是()A.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.在367人中至少有两个人的生日相同4.下列运算中,错误的是()A.B.C.D.5.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的频率为()A.0.20 B.0.15 C.0.01 D.0.256.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=22°,则∠PFE的度数是()A.15°B.20°C.22°D.44°7.如图,▱ABCD的对角线BD=6cm,若将▱ABCD绕其对称中心O旋转180°,则点D在旋转过程中所经过的路径长为()A.3π cm B.6π cm C.π cm D.2π cm8.如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….四边形A2nB2nC2nD2n的周长是()A.B.C. D.二、填空题(本大题共10小题,每小题2分,共20分.)9.若一个分式含有字母m,且当m=5时,它的值为1,则这个分式可以是.(写出一个..即可)10.某饮料销售公司对今年前三个月每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用统计图来描述数据.11.已知x=﹣2时,分式无意义;x=4时,分式的值为0,则a+b= .12.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是事件.(填“随机”或者“确定”)13.已知a,b可以取﹣2,﹣1,1,2中任意一个值(a≠b),则直线y=ax+b的图象经过第四象限的概率是.14.如图,在Rt△ABC中,∠ACB=90°,∠A=24°,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,旋转角为°.15.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=40°,∠F=130°,则∠DAE的度数为.16.如图,矩形OBCD的顶点C的坐标为(2,3),则BD= .17.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的取值范围是.18.四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为.三、解答题(本大题共9小题,共64分.请在答题纸指定区域内作答,解答时应根据需要,写出文字说明、证明过程或演算步骤.)19.将下列分式约分(1)(2)(3)(4).20.先化简,再求值:,其中x=﹣1,y=.21.学校开展课外体育活动,决定开设A:篮球、B:足球、C:跳绳、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如图(1)、图(2)所示的统计图,请你结合图中信息解答下列问题.(1)这次被调查的学生共有人;(2)请把条形统计图补充完整;(3)若该校有学生1200人,请根据样本估计全校最喜欢跳绳的学生人数约是多少?22.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n100203040501000落在“书画作品”区域的次数m 6012218298a604落在“书画作品”区域的频率0.60.610.6b0.590.604(1)完成上述表格:a= ;b= ;(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“书画作品”的概率约是;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?23.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.24.如图,在平行四边形DEBF中,对角线EF、BD 相较于点O,若A、C是直线EF上的两个动点,分别从点E、F出发以1cm/s的相同速度向远离点O的方向运动.(1)在运动过程中,四边形DABC是平行四边形吗?说明理由;(2)若BD=16cm,EF=12cm,再过几秒,以点D、A、B、C为顶点的四边形是矩形?25.如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E 点,DF∥AB交AC于F点.(1)下列条件中:①AB=AC;②AD是△ABC的中线;③AD是△ABC的角平分线;④AD是△ABC的高,请选择一个△ABC满足的条件,使得四边形AEDF为菱形,并证明;答:我选择.(填序号)(2)在(1)选择的条件下,△ABC再满足条件:,四边形AEDF即成为正方形.26.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则,等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如: ==+=1+;==+=2+(﹣).(1)下列分式中,属于真分式的是:(填序号);①②③④(2)将假分式化成整式与真分式的和的形式为: = + ,若假分式的值为正整数,则整数a的值为;(3)将假分式化成整式与真分式的和的形式: = .27.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.)1.完成下列任务,宜用抽样调查的是()A.调查八年级(下)数学书的排版正确率B.了解你所在学校男、女生人数C.调查学生对校足球队的喜欢情况D.奥运会上对获奖运动员进行的尿样检查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查八年级(下)数学书的排版正确率是事关重大的调查适合普查,故A 不符合题意;B、了解你所在学校男、女生人数适合普查,故B不符合题意;C、调查学生对校足球队的喜欢情况适合抽样调查,故C符合题意;D、奥运会上对获奖运动员进行的尿样检查适合普查,故D不符合题意;故选:C.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个是中心对称图形,也是轴对称图形;第二个不是中心对称图形,是轴对称图形;第三个不是中心对称图形,是轴对称图形;第四个既是中心对称图形又是轴对称图形.综上可得,共有2个符合题意.故选C.3.下列说法正确的是()A.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.在367人中至少有两个人的生日相同【考点】概率公式.【分析】根据概率的意义和随机事件的定义对各选项分析判断后利用排除法求解.【解答】解:A、一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是,故本选项错误;B、一次摸奖活动的中奖率是1%,摸100次奖也不一定会中奖,故本选项错误;C、一副扑克牌中,随意抽取一张是红桃K,这是随机事件,故本选项错误;D、一年有365天或366天,所以在367人中至少有两个人的生日相同正确,故本选项正确;故选D.4.下列运算中,错误的是()A.B.C.D.【考点】分式的基本性质.【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.据此作答.【解答】解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、=,故D错误.故选D.5.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的频率为()A.0.20 B.0.15 C.0.01 D.0.25【考点】频数与频率.【分析】根据频率、频数的关系:频率=,即可解决.【解答】解:这个小组的频率为=0.20.故选A.6.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=22°,则∠PFE的度数是()A.15°B.20°C.22°D.44°【考点】多边形内角与外角;等腰三角形的性质.【分析】根据中位线定理和已知,证明△EPF是等腰三角形,由等腰三角形的性质即可得出答案.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=22°,∴∠PEF=∠PFE=22°.故选:C.7.如图,▱ABCD的对角线BD=6cm,若将▱ABCD绕其对称中心O旋转180°,则点D在旋转过程中所经过的路径长为()A.3π cm B.6π cm C.π cm D.2π cm【考点】轨迹;平行四边形的性质;旋转的性质.【分析】利用平行四边形的性质得到OB=OD=3,再利用旋转的性质得到点D在旋转过程中所经过的路径为以O点为圆心,OD为半径,圆心角为180的弧,然后根据弧长公式计算即可.【解答】解:∵四边形ABCD为平行四边形,∴OB=OD=3,∵▱ABCD绕其对称中心O旋转180°,∴点D在旋转过程中所经过的路径为以O点为圆心,OD为半径,圆心角为180的弧,∴点D在旋转过程中所经过的路径长==3π(cm).故选A.8.如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….四边形A2nB2nC2nD2n的周长是()A.B.C.D.【考点】中点四边形.【分析】根据题意求出菱形ABCD的周长,根据中点四边形的性质得到A2n B2nC2nD2n是菱形,根据题意总结规律得到答案.【解答】解:根据中点四边形的性质可知,A1B1C1D1、A3B3C3D3…是矩形,A2B2C2D2、A4B4C4D4…是菱形,∵菱形ABCD的周长是10×4=40,∴菱形A2B2C2D2的周长是40×,菱形A4B4C4D4的周长是40×,…则四边形A2n B2nC2nD2n的周长是40×=,故选:B.二、填空题(本大题共10小题,每小题2分,共20分.)9.若一个分式含有字母m,且当m=5时,它的值为1,则这个分式可以是.(写出一个..即可)【考点】分式的值.【分析】根据分式的定义写出一个符合条件的分式即可,答案不唯一.【解答】解:一个分式含有字母m,且当m=5时,它的值为1,则这个分式可以是,故答案为.10.某饮料销售公司对今年前三个月每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用折线统计图来描述数据.【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:为了更清楚地看出销售总量的总趋势是上升还是下降,应选用折线统计图来描述数据,故答案为:折线.11.已知x=﹣2时,分式无意义;x=4时,分式的值为0,则a+b= 6 .【考点】分式的值为零的条件;分式有意义的条件.【分析】根据分母为零分式无意义,分子为零且分母不等于零分式的值为零,可得答案.【解答】解:由题意,得﹣2+a=0,4﹣b=0,解得a=2,b=4.a+b=2+4=6,故答案为:6.12.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是随机事件.(填“随机”或者“确定”)【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是随机事件,故答案为:随机.13.已知a,b可以取﹣2,﹣1,1,2中任意一个值(a≠b),则直线y=ax+b的图象经过第四象限的概率是.【考点】概率公式;一次函数图象与系数的关系.【分析】列表得出所有等可能的结果数,找出a为正数与b为负数,即为直线y=ax+b经过第四象限的情况数,即可求出所求的概率.【解答】解:列表如下:﹣2﹣112﹣2(﹣1,﹣2)(1,﹣2)(2,﹣2)﹣1(﹣2,﹣1)(1,﹣1)(2,﹣1)1(﹣2,1)(﹣1,1)(2,1)2(﹣2,2)(﹣1,2)(1,2)所有等可能的情况数有12种,其中直线y=ax+b经过第四象限情况数有4种,∴直线y=ax+b的图象经过第四象限的概率是=,故答案为:.14.如图,在Rt△ABC中,∠ACB=90°,∠A=24°,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,旋转角为48 °.【考点】旋转的性质.【分析】根据直角三角形两锐角互余求出∠B,再根据旋转的性质可得BC=CD,然后根据等腰三角形两底角相等求出∠BCD,然后根据对应边BC、CD的夹角即为旋转角解答.【解答】解:∵∠ACB=90°,∠A=24°,∴∠B=90°﹣24°=66°,∵△ABC绕点C按顺时针方向旋转后得到△EDC,点D在AB边上,∴BC=CD,∠BCD=180°﹣66°×2=48°,∴旋转角为48°.故答案为:48.15.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=40°,∠F=130°,则∠DAE的度数为45°.【考点】平行四边形的性质.【分析】由▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=40°,∠F=130°,即可求出∠DAE的度数.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=40°,∠F=130°,∴∠ADC=140°,∠CDE═∠F=130°,∴∠ADE=360°﹣140°﹣130°=90°,∴∠DAE=÷2=45°,故答案为:45°.16.如图,矩形OBCD的顶点C的坐标为(2,3),则BD= .【考点】矩形的性质;坐标与图形性质.【分析】连接OC,因为四边形OBCD是矩形,所以OC=BD,C的坐标为(2,3),就可求出OC 的长度,那么就可求出BD的长度.【解答】解:连接OC,如图所示:根据勾股定理得:OC==,∵四边形OBCD是矩形,∴BD=OC=;故答案为:.17.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的取值范围是≤AB≤2 .【考点】正方形的性质.【分析】先证明△AOE≌△DOF,进而得到OE=OF,此为解决该题的关键性结论;求出OE的范围,借助勾股定理即可解决问题.【解答】解:如图所示:∵四边形CDEF是正方形,∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,∵AO⊥OB,∴∠AOB=90°,∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°,∴∠COA=∠DOB,在△COA和△DOB中,,∴△COA≌△DOB(ASA),∴OA=OB,设OA=OB=a,∵∠AOB=90°,∴△AOB是等腰直角三角形,由勾股定理得:AB2=OA2+OB2=2a2,由题意可得:1≤a≤,∴≤AB≤2,故答案为≤AB≤2.18.四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为22.5°或45°.【考点】正方形的性质;等腰三角形的性质.【分析】由于没有说明△AEC的顶点,所以分情况进行讨论.【解答】解:当AC=AE时,此时点E在BA的延长线上,∴∠EAC=135°,∴∠B EC=22.5°,当AC=CE时,此时点E在AB的延长线上,∴∠EAC=∠CEA=45°,∴∠BCE=45°,故答案为:22.5°或45°三、解答题(本大题共9小题,共64分.请在答题纸指定区域内作答,解答时应根据需要,写出文字说明、证明过程或演算步骤.)19.将下列分式约分(1)(2)(3)(4).【考点】约分.【分析】(1)直接找出分子与分母中公共因式约分即可;(2)首先将分子分解因式,进而约分即可;(3)首先将分子与分母分解因式,进而约分即可;(4)首先将分母分解因式,进而约分即可.【解答】解:(1)原式=﹣=﹣;(2)原式==2b;(3)原式==;(4)原式==﹣.20.先化简,再求值:,其中x=﹣1,y=.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:====﹣,当x=﹣1,y=时,原式=.21.学校开展课外体育活动,决定开设A:篮球、B:足球、C:跳绳、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如图(1)、图(2)所示的统计图,请你结合图中信息解答下列问题.(1)这次被调查的学生共有200 人;(2)请把条形统计图补充完整;(3)若该校有学生1200人,请根据样本估计全校最喜欢跳绳的学生人数约是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)设次被调查的学生共有x人,根据A活动项目可知,×100%=,解方程即可.(2)C活动项目人数=200﹣20﹣80﹣40=60人,补充条形图即可.(3)用样本估计总体的思想解决问题即可.【解答】解:(1)设次被调查的学生共有x人,根据A活动项目可知,×100%=,解得x=200,故答案为200.(2)C活动项目人数=200﹣20﹣80﹣40=60人,所以补充的条形图如图所示,(3)样本中喜欢跳绳的学生人数占=30%,∴全校最喜欢跳绳的学生人数约是1200×30%=360.答:估计该校最喜欢跳绳的学生约360人.22.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n100203040501000落在“书画作品”区域的次数m 6012218298a604落在“书画作品”区域的频率0.60.610.6b0.590.604(1)完成上述表格:a= 295 ;b= 0.745 ;(2)请估计当n很大时,频率将会接近0.6 ,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6 ;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?【考点】利用频率估计概率;扇形统计图;可能性的大小.【分析】(1)根据表格中的数据可以求得a和b的值;(2)根据表格中的数据可以估计频率是多少以及转动该转盘一次,获得“书画作品”的概率;(3)根据扇形统计图和表格中的数据可以估计表示“手工作品”区域的扇形的圆心角至少还要增加的度数.【解答】解:(1)由题意可得,a=500×0.59=295,b=298÷400=0.745,故答案为:295,0.745;(2)由表格中的数据可得,当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6,故答案为:0.6,0.6;(3)由题意可得,要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加:360°×0.5﹣360°×0.4=36°,即要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加36度.23.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次平移变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点 A (填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.【考点】几何变换的类型;旋转的性质.【分析】(1)根据平移的定义可知图①向右上平移可以得到图②;(2)将图形②绕着点A旋转后能与图形③重合,可知旋转中心;(3)以A为旋转中心,顺时针旋转90°得到关键顶点的对应点连接即可.【解答】解:(1)图①经过一次平移变换可以得到图②;(2)图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A;(3)如图.24.如图,在平行四边形DEBF中,对角线EF、BD 相较于点O,若A、C是直线EF上的两个动点,分别从点E、F出发以1cm/s的相同速度向远离点O的方向运动.(1)在运动过程中,四边形DABC是平行四边形吗?说明理由;(2)若BD=16cm,EF=12cm,再过几秒,以点D、A、B、C为顶点的四边形是矩形?【考点】矩形的判定;平行四边形的判定与性质.【分析】(1)结论:四边形DABC是平行四边形.只要证明OB=OD,OA=OC即可.(2)当BD=AC时,平行四边形ABCD是矩形,由此求出时间即可.【解答】解:(1)结论:四边形DABC是平行四边形.理由:根据题意得AE=CF∵四边形DEBF是平行四边形∴OD=OB,OE=OF,又∵AE=CF,∴OA=OC,∴四边形DABC是平行四边形.(2)∵(16﹣12)÷(1+1)=2s,∴AC=12+4=16=BD,又∵四边形DABC是平行四边形,∴四边形DABC是矩形.∴再过2秒,以点D、A、B、C为顶点的四边形是矩形.25.如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E 点,DF∥AB交AC于F点.(1)下列条件中:①AB=AC;②AD是△ABC的中线;③AD是△ABC的角平分线;④AD是△ABC 的高,请选择一个△ABC满足的条件,使得四边形AEDF为菱形,并证明;答:我选择③.(填序号)(2)在(1)选择的条件下,△ABC再满足条件:∠BAD=90°,四边形AEDF即成为正方【考点】正方形的判定;菱形的判定.【分析】(1)根据题意和图形和容易判断题目中的哪个条件满足条件,然后针对选择的条件给出证明即可;(2)根据有一个角是直角的菱形是正方形,即可解答本题.【解答】解:(1)我选择:③,故答案为:③,证明:∵DE∥AC,DF∥AB∴四边形AEDF为平行四边形,∵AD是△ABC的角平分线∴∠BAD=∠DAC,∵DE∥AC,∴∠DAC=∠ADE,∴∠BAD=∠ADE,∴EA=ED,∴平行四边形AEDF是菱形;(2)在(1)选择的条件下,△ABC再满足条件∠BAD=90°,故答案:∠BAD=90°,理由:由(1)知,四边形AEDF为菱形,∴当∠BAD=90°,四边形AEDF即成为正方形(有一个角是直角的菱形是正方形).26.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则,等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如: ==+=1+;==+=2+(﹣).(1)下列分式中,属于真分式的是:③(填序号);①②③④(2)将假分式化成整式与真分式的和的形式为: = 2 + ,若假分式的值为正整数,则整数a的值为﹣2、1或3 ;(3)将假分式化成整式与真分式的和的形式: = a+1+ .【考点】分式的混合运算.【分析】(1)根据题意可以判断题目中的式子哪些是真分式,哪些是假分式;(2)根据题意可以将题目中的式子写出整式与真分式的和的形式;(3)根据题意可以将题目中的式子化简变为整式与真分式的和的形式.【解答】解:(1)根据题意可得,、、都是假分式,是真分式,故答案为:③;(2)由题意可得,=,若假分式的值为正整数,则或2a﹣1=1或2a﹣1=5,解得,a=﹣2或a=1或a=3,故答案为:2、,﹣2、1或3;(3)=,故答案为:a+1+.27.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.【考点】矩形的性质;全等三角形的判定与性质;等腰三角形的性质;正方形的性质.【分析】(1)要证明CH=EF+EG,首先要想到能否把线段CH分成两条线段而加以证明,就自然的想到添加辅助线,若作CE⊥NH于N,可得矩形EFHN,很明显只需证明EG=CN,最后根据AAS可求证△EGC≌△CNE得出结论.(2)过C点作CO⊥EF于O,可得矩形HCOF,因为HC=FO,所以只需证明EO=EG,最后根据AAS可求证△COE≌△CGE得出猜想.(3)连接AC,过E作EG作EH⊥AC于H,交BD于O,可得矩形FOHE,很明显只需证明EG=CH,最后根据AAS可求证△CHE≌△EGC得出猜想.(4)点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高,很显然过C作CE⊥PF于E,可得矩形GCEF,而且AAS可求证△CEP≌△CNP,故CG=PF﹣PN.【解答】(1)证明:过E点作EN⊥CH于N.∵EF⊥BD,CH⊥BD,∴四边形EFHN是矩形.∴EF=NH,FH∥EN.∴∠DBC=∠NEC.∵四边形ABCD是矩形,∴AC=BD,且互相平分∴∠DBC=∠ACB∴∠NEC=∠ACB∵EG⊥AC,EN⊥CH,∴∠EGC=∠CNE=90°,又∵EC=CE,∴△EGC≌△CNE.∴EG=CN∴CH=CN+NH=EG+EF;(2)解:猜想CH=EF﹣EG;(3)解:EF+EG=BD;(4)解:点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高.如图①,有CG=PF﹣PN.。
09【人教版】八年级下册期中数学试卷(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第二学期八年级数学期中测试试卷一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.)A.B.C.D.2.下列图案中,可以看作是轴对称图形的是()A. B. C. D.3.由下列长度组成各组线段中,不能组成直角三角形的是()2cmB. 1cm,C. 4cm,3cm,6cm4.下列计算正确的是()=B. 2+=C. -=6=5. 下列命题中,真命题是()A. 对角线相等四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形6.如图,点(4,4)A-,点(3,1)B-,则AB的长度为()A.C.7.如图,平行四边形ABCD的对角线,AC BD相交于点O,则下列判断错误的是()的的A. ABO ADO@△△ B. ABC CDA @V V C. ABO V 和CDO V 面积相等 D. ABC V 和ABD △的面积相等8.若,,a b c 为直角三角形的三边,则下列判断错误的是( )A. 2,2,2a b c 能组成直角三角形B. 10,10,10a b c 能组成直角三角形C. ,,333a b c 能组成直角三角形9.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD 的内角BCD Ð的大小为( )A. 100°B. 120°C. 135°D. 150°10.如图,在由10个完全相同的正三角形构成的网格图中,连接,,AB AC BC .有下列结论:①BC =;②ABC V 是直角三角形;③45BAC Ð=°.其中,正确结论的个数为( )A. 0B. 1C. 2D. 3二、填空题:(本大题共6小题)11.的结果为_________________12.边长为a 的正方形的对角线的长度为______________.13.若平行四边形中两个内角度数比为1:2,则其中较小的内角为____________.14.如图,每个小正方形的边长都为1,则ABC V 的周长为_________的的15.如图,有一四边形空地ABCD ,AB ⊥AD ,AB =3,AD =4,BC =12,CD =13,则四边形ABCD 的面积为_______.16.如图,ACB △和ECD V 都是等腰直角三角形,CA CB =,CE CD =,ABC V 的顶点A 在ECD V 的斜边上.若AE =AD =,则AC 的长为_________三、解答题:(本大题共7小题,解答应写出文字说明、演算步骤或证明过程)17.计算:(1)+(2)¸18.已知x=2,求代数式(7+x 2+(2)x 19.已知:四边形ABCD ,A B C D Ð=Ð=Ð=Ð.求证:四边形ABCD 是矩形.20.如图,菱形花坛ABCD 的一边长AB 为20m ,60ABC °Ð=,沿着该菱形的对角线修建两条小路AC 和BD .(1)求AC 和BD 的长;(2)求菱形花坛ABCD 的面积.21.如图,在ABC V 中,90ACB Ð=°,CD AB ^于D ,M 是斜边的中点.(1)若1BC =,3AC =,求CM 的长;(2)若3ACD BCD Ð=Ð,求MCD Ð的度数.22.如图,已知四边形ABCD 中,,,,E F G H 分别为,,,AB BC CD DA 上的点(不与端点重合).(1)若,,,E F G H 分别为,,,AB BC CD DA 的中点.求证:四边形EFGH 是平行四边形;(2)在(1)条件下,根据题意填空:若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是矩形;若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是菱形;若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是正方形.(3)判断对错:①若已知的四边形ABCD 是任意矩形,则存在无数个四边形EFGH 是菱形;( )②若已知的四边形ABCD 是任意矩形,则至少存在一个四边形EFGH 是正方形.( )23.如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点(0,6)A ,(6,0)B .动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A ,C 重合),点B 落在点N 处,MN 与BC 交于点P .(1)求点C 的坐标;(2)当点M 落在AC 的中点时,求点E的坐标;的(3)当点M在边AC上移动时,设AM t=,求点E的坐标(用t表示).解析卷一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1. )A. B. C. D. 【答案】B【解析】【分析】根据二次根式的乘法运算,即可得到答案.==;故选:B .【点睛】本题考查了二次根式的乘法运算,解题的关键是掌握运算法则进行解题.2.下列图案中,可以看作是轴对称图形的是( ) A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的定义判断即可.【详解】A.不是轴对称图形,不满足题意;B.是轴对称图形,满足题意;C.不是轴对称图形,不满足题意;D.不是轴对称图形,不满足题意;故选B .【点睛】本题考查识别轴对称图形,关键在于熟记定义.3.由下列长度组成的各组线段中,不能组成直角三角形的是( )2cm B. 1cm, C. 4cm,3cm,6cm 【答案】C 【解析】【分析】本题利用勾股定理的逆定理便可很快判断所给定的三角形是否为直角三角形,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.【详解】解:A 选项:∵222=2,∴这三条线段可组成直角三角形,B 选项:∵222=2,∴这三条线段可组成直角三角形,C 选项:∵2223+46¹,∴这三条线段不可组成直角三角形,D 选项:∵222,∴这三条线段可组成直角三角形,故选:C .【点睛】本题主要考察了勾股定理的逆定理,判断三边能否构成直角三角形,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.4.下列计算正确的是( )= B. 2+= C. -=6=【答案】C【解析】【分析】根据合并同类二次根式法则、二次根式化简判断即可.【详解】A 不是同类二次根式,不能合并,故此选项错误;B .2C .-=,故此选项正确;D ==,故此选项错误,故选:C .【点睛】本题考查二次根式的加减法、二次根式的化简,熟练掌握二次根式的加减法法则是解答的关键.5. 下列命题中,真命题是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形【答案】C【解析】试题分析:A 、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B 、对角线互相垂直的平行四边形是菱形;故本选项错误;C 、对角线互相平分的四边形是平行四边形;故本选项正确;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C .6.如图,点(4,4)A -,点(3,1)B -,则AB 的长度为( )A. C. 【答案】B【解析】【分析】利用两点间的距离公式求出AB 的长即可.【详解】解:∵(4,4)A -,(3,1)B -,∴AB ==,故选:B .【点睛】此题考查了两点间的距离公式,熟练掌握两点间的距离公式是解本题的关键.7.如图,平行四边形ABCD 的对角线,AC BD 相交于点O ,则下列判断错误的是( )A. ABO ADO @△△B. ABC CDA@V VC. ABO V 和CDO V 的面积相等D. ABC V 和ABD △的面积相等【答案】A【解析】【分析】根据平行四边形的性质,可以分别证明ABC CDA @V V ,ABO CDO @△△;根据ABO CDO @△△可以判断ABO V 和CDO V 的面积相等;在ABC V 和ABD △中,AB 为两个三角形的公共底,根据平行线的性质可以判断两个三角形的高相等,故可判断ABO V 和CDO V 的面积相等;根据平行四边形的性质无法判断邻边相等,故可做出选择.【详解】∵四边形ABCD 为平行四边形,∴AD=BC ,AB=DC ,AD ∥BC ,∠ABC=∠CDA ,在ABC V 和CDA V 中,BC DA ABC CDAAB CD =ìïÐ=Ðíï=îABC CDA @V V ,故B 正确;同理根据平行四边形对边平行且相等,对角线互相平分,可证ABO CDO @△△,又∵ABO CDO @△△,故根据全等三角形的性质可以判断ABO V 和CDO V 的面积相等.故C 正确;在ABC V 和ABD △中,AB 为两个三角形的公共底,根据平行线间的距离处处相等,可知两个三角形的高相等,所以ABC V 和ABD △的面积相等.故D 正确;∵四边形ABCD 为平行四边形,∴只能得到对边平行且相等,无法论证AB=AD ,无法得出邻边相等的结论,∴无法证明ABO ADO @△△,故A 错误.故选择A .【点睛】本题主要考查平行四边形的性质、全等三角形的判定和性质、三角形面积的求解方法及平行线的性质,掌握平行四边形的性质,全等三角形的判定方法和性质、求解三角形面积的方法及平行线的性质是解答本题的关键.8.若,,a b c 为直角三角形的三边,则下列判断错误的是( )A. 2,2,2a b c 能组成直角三角形B. 10,10,10a b c 能组成直角三角形C. ,,333a b c 能组成直角三角形【答案】D【解析】【分析】本题是运用勾股定理的逆定理,判断所给定的三角形是否为直角三角形,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.【详解】解:假设原三角形中a 、b 为直角边,c 为斜边,则满足勾股定理222a +b =c ,选项A :∵222(2a)+(2b)=(2c),∴该三条线段能组成直角三角形,选项B :∵222(10a)+(10b)=(10c),∴该三条线段能组成直角三角形,选项C :∵222a b c ()+()=()333,∴该三条线段能组成直角三角形,选项D :∵22=a b c +¹,∴该三条线段不能组成直角三角形,故选:D .【点睛】本题可以有两种解题思路,第一种是用勾股定理的逆定理,运用以上两个定理均可判断三角形是否可构成直角三角形,第二种思路是采用相似三角形的原理,三条边互成比例的两个三角形相似,也可解出该题答案.9.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD 的内角BCD Ð的大小为( )A. 100°B. 120°C. 135°D. 150°【答案】D【解析】【分析】作AE ⊥BC 于E ,根据平行四边形的面积=矩形面积的一半,得出AE=12AB ,再由三角函数即可求出∠ABC 的度数,即可得到答案.【详解】解:作AE ⊥BC 于E ,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=12BC•AB ,∴AE=12AB ,∴sinB=12AE AB =,∴∠ABC=30°,∴∠BCD=150°.故选:D .【点睛】本题考查了平行四边形的性质、矩形的性质、面积的计算以及三角函数;熟练掌握平行四边形和矩形的性质,并能进行推理计算是解决问题的关键.10.如图,在由10个完全相同的正三角形构成的网格图中,连接,,AB AC BC .有下列结论:①BC =;②ABC V 是直角三角形;③45BAC Ð=°.其中,正确结论的个数为( )A. 0B. 1C. 2D. 3【答案】C【解析】【分析】设正三角形的边长为a ,分别求出BC 、AC 和AB 的长,即可判断出① 、②正确,③错误.【详解】解:过A 作AF ⊥DM 于E ,过B 作BF ⊥CN 交CN 延长线于F ,如图,的设正三角形的边长为a,则DE=12 a,∵AD=a,∴AE a===,∴BE=BM+ME=52a,在Rt△ABE中,AB===,同理可得,NF=12a,,Rt△BCF中,BC====又AC=2a,∵2222(2))7)a a+==∴222AC BC AC+=∴△ABC是直角三角形;∵AC≠BC,∴∠CAB≠∠ABC=45°;所以,正确的结论是①②;错误的是③,故选:C.【点睛】此题主要考查了正三角形的性质以及勾股定理,熟练掌握它们的性质是解答此题的关键.二、填空题:(本大题共6小题)11.的结果为_________________【答案】【解析】在【分析】根据二次根式的性质即可求出答案.=故答案为:【点睛】本题考查了二次根式的化简计算,熟练掌握二次根式的性质是解题的关键.12.边长为a 的正方形的对角线的长度为______________.【解析】【分析】根据正方形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:设正方形的对角线长为x ,由题意得,2212x a =,解得x =,.【点睛】本题考查了正方形的性质,熟记利用对角线求面积的方法是解题的关键.13.若平行四边形中两个内角的度数比为1:2,则其中较小的内角为____________.【答案】60°【解析】【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠B+∠C=180°,∵∠B :∠C=1:2,∴∠B=13×180°=60°故答案为:60°.【点睛】本题考查平行四边形的性质;平行线的性质.14.如图,每个小正方形的边长都为1,则ABC V 的周长为_________【答案】+【解析】【分析】根据勾股定理求出AB 、BC 、AC 的长,再求出周长即可;【详解】解:根据题意,由勾股定理,得BC AB ===AC ==,∴ABC V 的周长为:AB BC AC ++=;故答案为:+【点睛】本题考查了勾股定理与网格问题,解题的关键是利用勾股定理正确求出各边的长度.15.如图,有一四边形空地ABCD ,AB ⊥AD ,AB =3,AD =4,BC =12,CD =13,则四边形ABCD 的面积为_______.【答案】36【解析】【分析】先根据勾股定理求出BD ,进而判断出△BCD 是直角三角形,最后用面积的和即可求出四边形ABCD 的面积.【详解】如图,连接BD ,在Rt △ABD 中,AB=3,DA=4,根据勾股定理得,BD=5,在△BCD 中,BC=12,CD=13,BD=5,∴BC 2+BD 2=122+52=132=CD 2,∴△BCD 为直角三角形,∴S 四边形ABCD =S △ABD +S △BCD =12AB∙AD+12BC∙BD =12×3×4+12×12×5=36故答案为:36.【点睛】此题主要考查了勾股定理及逆定理,三角形的面积公式,解本题的关键是判断出△BCD 是直角三角形.16.如图,ACB △和ECD V 都是等腰直角三角形,CA CB =,CE CD =,ABC V 的顶点A 在ECD V 的斜边上.若AE =AD =,则AC 的长为_________【解析】【分析】由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =∠BCD 可证△ACE ≌△BCD ,可得AE =BD ,∠ADB =90°,由勾股定理求出AB 即可得到AC 的长.【详解】解:如图所示,连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD ,在V ACE 和V BCD 中,AC=BC ACE=BCDCE=CD ìïÐÐíïî∴△ACE ≌△BCD (SAS ),∴AE =BD,∠E =∠BDC =45°,∴∠ADB =∠ADC+∠BDC =45°+45°=90°,∴AB,∵,∴BC【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.三、解答题:(本大题共7小题,解答应写出文字说明、演算步骤或证明过程)17.计算:(1)+(2)¸【答案】(1);(2【解析】分析】(1)去括号,同时把根式化成最简二次根式,再合并即可.(2)根据乘法和除法运算法则计算即可.【详解】解:(1)+=+=+【的(2)¸==.【点睛】本题考查了二次根式的混合运算的应用,熟悉相关性质是解题的关键.18.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(22=7﹣,则原式=()(7﹣)+(2=49﹣19.已知:四边形ABCD ,A B C D Ð=Ð=Ð=Ð.求证:四边形ABCD 是矩形.【答案】见解析【解析】【分析】直接利用三个角是直角的四边形是矩形进行证明即可.【详解】证:在四边形ABCD 中, 360A B C D °Ð+Ð+Ð+Ð=,A B C D Ð=Ð=Ð=ÐQ ,90A B C D \Ð=Ð=Ð=Ð=°,∴四边形ABCD 是矩形.【点睛】本题主要考查了矩形的判定,正确把握矩形的判定方法是解题关键.20.如图,菱形花坛ABCD 的一边长AB 为20m ,60ABC °Ð=,沿着该菱形的对角线修建两条小路AC 和BD .(1)求AC 和BD 的长;(2)求菱形花坛ABCD 的面积.【答案】(1)20m ,;(2)2【解析】【分析】(1)根据菱形对角线互相垂直平分的性质,在Rt ABO △中解直角三角形即可;(2)在(1)的基础上,利用菱形面积等于对角线乘积一半则问题可解.【详解】解:(I)∵.花坛ABCD 是菱形,AC BD \^,2AC AO =,2BD BO =,11603022\Ð=Ð=´°=°ABO ABC ,在Rt ABO △中, 112010m 22AO AB ==´=,220mAC AO \==BO ===2BD BO \==.(2)ABCD S 菱 2112022AC BD =×=´´=答:AC 长20m , BD 长, 菱形花坛ABCD 面积 2.【点睛】本题考查了菱形的性质,解答关键是根据题意找到直角三角形,再利用解直角三角形的知识解题.21.如图,在ABC V 中,90ACB Ð=°,CD AB ^于D ,M 是斜边的中点.(1)若1BC =,3AC =,求CM 的长;(2)若3ACD BCD Ð=Ð,求MCD Ð的度数.【答案】(12)45°【解析】【分析】(1)利用勾股定理求出AB ,再利用斜边上中线等于斜边一半,求出CM 即可;(2)根据已知条件,求出67.5ACD °Ð=,在利用直角三角形锐角互余求出22.5A °Ð=,再由等边对等角,则问题可解.【详解】解:(1)在ABC V 中,90ACB °Ð=,AB \===M Q 是AB 中点,12CM AB \==(2) 3ACD BCD Ð=ÐQ ,390ACB ACD BCD °Ð=Ð+Ð=,67.5ACD °\Ð=,CD AB ^Q ,90A ACD °\Ð+Ð=,22.5A °\Ð=,12CM AB AM ==Q 22.5A ACM \Ð=Ð=°45DMC A CM Ð=Ð+ÐL =°Q 9045MCD DMC \Ð=-Ð=°°.【点睛】本题考查了勾股定理、直角三角形斜边上中线等于斜边一半、以及三角形内角和的知识,解答关键是根据题意利用三角形的外角性质求解.22.如图,已知四边形ABCD 中,,,,E F G H 分别为,,,AB BC CD DA 上的点(不与端点重合).(1)若,,,E F G H 分别为,,,AB BC CD DA 的中点.求证:四边形EFGH 是平行四边形;(2)在(1)的条件下,根据题意填空:若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是矩形;若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是菱形;若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是正方形.(3)判断对错:①若已知的四边形ABCD 是任意矩形,则存在无数个四边形EFGH 是菱形;( )②若已知的四边形ABCD 是任意矩形,则至少存在一个四边形EFGH 是正方形.( )【答案】(1)见解析;(2)AC ⊥BD ;AC =BD ;AC ⊥BD 且AC =BD ;(3)①对,②错【解析】【分析】(1)连接BD 、AC ,如图,根据三角形的中位线定理可得//EH FG ,EH FG =,进一步即可证得结论;(2)易得EF ∥AC ,//EH BD ,故AC 和BD 只要满足AC ⊥BD ,即可判定四边形EFGH 是矩形;由于12EF AC =,12EH BD =,故AC 和BD 只要满足AC =BD ,即可判定四边形EFGH 是菱形;由前面的结论以及由正方形既是矩形又是菱形即可得出AC 和BD 满足的条件;(3)①如图,连接矩形ABCD 的对角线AC ,BD 交于O ,过点O 直线EG 和FH ,分别交AB ,BC ,CD ,AD 于E ,F ,G ,H ,易证四边形EFGH 是平行四边形,故只要EG ⊥HF ,则四边形EFGH 即为菱形,于是可判断①;若四边形EFGH 是正方形,根据矩形的性质和正方形的性质可得△AEH ≌△DHG ,进而可推出AB =AD,于是四边形ABCD 是正方形,从而可判断②.【详解】解:(1)证明:连接BD 、AC ,如图,,,,E F G H Q 分别为,,,AB BC CD AD 的中点,∴在△ABD 中,//EH BD ,12EH BD =,在△CBD 中,//BD GF ,12FG BD =, //EH FG \,EH FG =,∴四边形EFGH 是平行四边形;(2)当四边形ABCD 的对角线AC 和BD 满足AC ⊥BD 时,四边形EFGH 是矩形;证明:∵E 、F 分别是AB 、BC 的中点,∴EF ∥AC ,12EF AC =,∵//EH BD ,AC ⊥BD ,∴EH ⊥EF ,∴平行四边形EFGH 是矩形;当四边形ABCD 的对角线AC 和BD 满足AC =BD 时,四边形EFGH 是菱形;证明:∵12EF AC =,12EH BD =,AC =BD ,∴EF =EH ,∴平行四边形EFGH 是菱形;∵当四边形ABCD 的对角线AC 和BD 满足AC ⊥BD 时,四边形EFGH 是矩形;当四边形ABCD 的对角线AC 和BD 满足AC =BD 时,四边形EFGH 是菱形;∴当四边形ABCD 的对角线AC 、BD 满足AC ⊥BD 且AC =BD 时,四边形EFGH 是正方形.故答案为:AC ⊥BD ;AC =BD ;AC ⊥BD 且AC =BD ;(3)①如图,四边形ABCD 是矩形,连接AC ,BD 交于O ,过点O 直线EG 和FH ,分别交AB ,BC ,CD ,AD 于E ,F ,G ,H ,∵四边形ABCD 是矩形,∴AD ∥BC ,AO =OC ,∴∠DAO =∠BCO ,∠AHO =∠CFO ,∴△AHO ≌△CFO ,∴OH =OF ,同理可得:OE =OG ,∴四边形EFGH 是平行四边形,∴当EG ⊥HF 时,存在无数个四边形EFGH 是菱形;故①对;②若四边形EFGH 是正方形,则EH =HG ,∵∠A =∠D =90°,∠EHG =90°,∴∠AEH +∠AHE =90°,∠DHG +∠AHE =90°,∴∠AEH=∠DHG ,∴△AEH ≌△DHG ,∴AE =DH ,同理可得:BE=AH ,∴AB =AD ,∴矩形ABCD 是正方形,∴当四边形ABCD 为任意矩形时,不存在四边形EFGH 是正方形;故②错.【点睛】本题是四边形的综合题,主要考查了特殊四边形的判定和性质以及三角形的中位线定理等知识,属于常考题型,熟练掌握三角形的中位线定理和中点四边形的知识是解题的关键.23.如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点(0,6)A ,(6,0)B .动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A ,C 重合),点B 落在点N 处,MN 与BC 交于点P .(1)求点C 的坐标;(2)当点M 落在AC 的中点时,求点E 的坐标;(3)当点M 在边AC 上移动时,设AM t =,求点E 的坐标(用t 表示).【答案】(1)(6,6);(2)150,4E æöç÷èø;(3)2360,12t æö+ç÷èø【解析】【分析】(1)因为C 点为正方形的端点,且正方形的边长及坐标轴中的位置已知,所以可以很快确定出C 点的坐标,(2)运用图形的翻折,设OE=x 可以将边长AE 、AM 、EM 用x 表示出来,再运用勾股定理,即可求出x 的值,E 点的坐标便可知,(3)将OE 的长设为a ,AM 的长设为t ,将边长AE 、AM 、EM 用a 、x 表示出来,再运用勾股定理,便可求出a 与t 的关系式,则E 点坐标便可求得.【详解】解:(1)证明:∵正方形AOBC ,A(06),,B(6,0),∴OA=AC=CB=OB=6,且每个内角都是90°,即AC OA ^,CB OB ^,∴点C 的坐标为(6)6,.(2)∵M 为AC 中点,∴1AM=AC=32,设OE=x ,则EM=OE=x ,AE=6-x ,在Rt AEM △中,222EM =AM +AE ,即222x =(6-x)+3,求得15x=4,∴15E(0)4,.(3)设点E 的坐标为(0,a),由题意可知:OE=EM=a ,AE=6-a ,AM=t ,在Rt AEM △中,222EM =AM +AE ,即222a =(6-a)+t ,整理得236+t a=12,∴点E 的坐标为236+t (0,)12.【点睛】本题主要考察了写出直角坐标系中点坐标、折叠问题与勾股定理的结合、正方形中的动点问题,做题的关键在于通过折叠的图形其边长一一对应相等,所以可以将未知的边长用已知量来表示,之后再运用计算公式进行求解,便可得出答案.的。
八年级数学下学期期中综合考试卷(含答案解析)
2019八年级数学下学期期中综合考试卷(含答案解析)2019八年级数学下学期期中综合考试卷(含答案解析)一、选择题(本大题共12小题,每题4分,共48分)1、式子在实数范围内有意义,则x的取值范围是()A、 B、 C、 D、2、把根号外的因数移到根号内,结果是()A、 B、 C、 D、3、下列根式,,,,中是最简二次根式的有()个。
A、1B、2C、3D、44、已知是整数,正整数n的最小值为()A、0B、1C、6D、365、直角三角形的二边长分别为3和4,则第三边是()A、5B、C、D、5或6、如图摆放的三个正方形,S表示面积,求S=()A、10B、500C、300D、307、若,,则代数式的值等于()A、 B、 C、 D、28、下列命题中,其中正确命题的个数为()个①Rt△ABC中,已知两边长分别为3和4,则第三边为5;②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a,b,c若,则∠C=90°④在△ABC中,∠A:∠B:∠C=1:5:6,则△ABC为直角三角形。
A、1B、2C、3D、49、设,,则, , 之间的大小关系是()A、 B、 C、 D、10、在平面直角生标家中,四边形0ABC是正方形,点A的坐标为(4.0).点P 为边AB上一点,∠CPB=60°沿CP折叠正方形后,点B落在平面内点B处,则B'点坐标为()A、 B、 C、(2,1) D、11. 如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A、 B、 C、 D 、812、如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A. 20 B. 27 C. 35 D. 40二、填空题(本大题共6小题,每题4分,共24分)13、若则x的取值范围是___________。
八年级数学下学期期中考试试卷含答案(人教版)
人教版八年级下学期期中质量检测数 学 试 题(满分120分,考试用时120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分。
2.答卷前务必将自己的姓名、座号和准考证号按要求填写在答题卡上的相应位置。
3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。
4.第Ⅱ卷必需用0.5毫米黑色签字笔书写到答题卡题号所指示的答题区域,不得超出预留范围。
5.在草稿纸、试卷上答题均无效。
第Ⅰ卷(选择题 36分)一、选择题(本大题共12小题,每小题3分,满分36分.请将正确选项的字母代号填涂在答题卡相应位置上)1.用两个全等的等边三角形可以拼成下列哪种图形( ). A.矩形B .菱形C .正方形D .等腰梯形2.在□ABCD 中,∠A :∠B =7:2,则∠C 、∠D 的度数分别为( ). A .70°和20° B .280°和80° C .140°和40° D .105°和30°3.函数y =2x ﹣5的图象经过( ). A .第一、三、四象限; B .第一、二、四象限; C .第二、三、四象限;D .第一、二、三象限.4.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =4x -1 图象上的两个点,且x 1<0<x 2,则y 1与y 2的大小关系是( ) .A . 1y >2yB .1y >2y >0C .1y <2yD .1y =2y5.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S 甲2=1.2,S 乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定描述正确的是( ).A .甲比乙稳定;B .乙比甲稳定 ;C .甲和乙一样稳定;D .甲、乙稳定性没法对比.6.一次函数y =﹣2x +4的图象是由y =﹣2x -2的图象平移得到的,则移动方法为( ) . A .向右平移4个单位; B .向左平移4个单位; C .向上平移6个单位; D .向下平移6个单位.7.顺次连接矩形的各边中点,所得的四边形一定是( ) .A .正方形B .菱形C .矩形D .无法判断8.若实数a 、b 、c 满足a +b +c =0,且a <b <c ,则函数y =ax +c 的图象可能是 ( ) .9.如图,D 、 E 、 F 分别是△ABC 各边的中点,AH 是高,如果ED =5cm ,那么HF 的长为( ).A .6cmB .5cmC .4cmD .不能确定10. 已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( ) . A .24 B .47 C .48 D .9611.如图,直线y =kx +b 经过点A (3,1)和点B (6,0),则不等式0<kx +b <x 31的解集为( ).A .x <0B .0<x <3C .x >6D .3<x <612.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ,以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1,以AB 、AO 1为邻边做平行四边形AO 1C 2B ……依此类推,则平行四边形AO 2019C 2020B 的面积为( )cm 2. A .201625 B .201725 C .201825 D .201925第Ⅱ卷(非选择题 84分)二、填空题(本大题共4小题;每小题4分,共16分.把答案写在题中横线上) 13.一组数据3,5,10,6,x 的众数是5,则这组数据的中位数是 .14.若已知方程组⎩⎨⎧=-=+ay x by x 2的解是⎩⎨⎧=-=31y x ,则直线y =-2x +b 与直线y =x -a 的交点坐标是__________.15.已知直线33+-=x y 与x 轴、y 轴分别交于点A 、B ,在坐标轴上找点P ,使△ABP 为等腰三角形,则点P 的个数为 个 .16.如图,在△ABC 中,AB =6,AC =8, BC =10,P 为边BC 上一动点(且点P 不与12题图16题图11题图9题图点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F . 则EF 的最小值为_________.三、解答题:本大题共6小题,满分68分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知()823--=k xk y 是关于x 的正比例函数,(1)写出y 与x 之间的函数解析式; (2)求当x = - 4时,y 的值.18.(本题满分8分)在□A BCD 中,点E 、F 分别在BC 、AD 上,且BE = DF . 求证:四边形AECF 是平行四边形.19.(本题满分12分)某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示. (1)根据图示填空:项目 平均数(分)中位数(分)众数(分)初中部 85 高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.19题图18题图20.(本题满分12分)如图,直线1l 的解析式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l 、2l 交于点C . (1)求直线2l 的解析表达式; (2)求△ADC 的面积;(3)在直线2l 上存在异于点C 的另一点P ,使得△ADC 与△ADP 的面积相等,请直接..写出点P 的坐标.21.(本题满分12分)材料阅读:小明偶然发现线段AB 的端点A 的坐标为(1 ,2),端点B 的坐标为(3 ,4),则线段AB 中点的坐标为(2 ,3),通过进一步的探究发现在平面直角坐标系中,以任意两点P ( x 1 ,y 1)、Q (x 2 ,y 2)为端点的线段中点坐标为⎪⎭⎫⎝⎛++2,22121y y x x .知识运用:如图,矩形ONEF 的对角线相交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为_________.21题图20题图 A l 1l 2xy DO3B C 32-(4,0) y能力拓展:在直角坐标系中,有A(−1,2)、B(3 ,1)、C(1 ,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.22.(本题满分14分)现有正方形ABCD和一个以O为直角顶点....的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是___________;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论(不必说理).MC图1 图2 图3 图422题图数学试题评分标准(满分120分,考试用时120分钟)一、选择题(本大题共12小题,每小题3分,满分36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1~5 BCACA; 6~10 CBABD; 11~12 DC.二、填空题(本大题共4小题,每小题4分,满分16分.不需写出解答过程,请将答案直接写在答题卡相应位置上.)13. 5; 14. (-1,3) ; 15. 6个; 16. 4.8.三、解答题(本大题共6小题,满分68分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本题满分10分)解:(1)∵y是x的正比例函数.∴2k-8=1,且k-3≠0,…………………3分∴解得k=-3∴y=-6x. …………………6分(2)当x=-4时,y=-6×(-4)=24 . ……………10分18.(本题满分8分)证明: ∵ABCD是平行四边形,∴AD = BC,AD∥BC.…………………2分又∵BE = DF,∴AD-DF = BC-BE,即AF = CE,注意到AF∥CE,…………………6分因此四边形AECF是平行四边形.…………………8分或通过证明AE = CF(由△ABE≌△CDF)而得或其他方法也可。
初二年级下学期数学期中试题(带答案)
初二年级下学期数学期中试题(带答案)2019初二年级下学期数学期中试题(带答案)我们经常听见这样的问题:你的数学怎么那么好啊?教教我诀窍吧?其实学习这门课没有什么窍门。
只要你多练习总会有收获的,希望下文的这篇初二年级下学期数学期中试题,能够帮助到您!一、选择题(本大题共10小题,每小题3分,满分30分,将答案填入表格)1.下列图形中,既是轴对称图形,又是中心对称图形的有 ( )A.1个B.2个C.3个D.4个2.为了解某校八年级500名学生的体重情况,从中抽查了60名学生的体重进行统计分析,在这个问题中,总体是指 ( ) A. 500名学生 B. 被抽取的60名学生C. 500名学生的体重D. 被抽取的60名学生的体重3.下列分式是最简分式的是( )A. B. C. D.4.已知O是口ABCD对角线的交点,△ABC的面积是3,则口ABCD的面积是( )A.3B.6C.9D.125.下列事件是随机事件的是 ( )A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是30米/秒13.下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.必然事件是,随机事件是 .(将事件的序号填上即可)14.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD 是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是_________________(将命题的序号填上即可).15.若、满足,则分式的值为 .16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是 _________ .17.若口ABCD中一内角平分线和某边相交把这条边分成1cm、2cm的两条线段,则口ABCD的周长是 .18.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B 和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_______s后,四边形ABPQ成为矩形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新锐中学2009 ~ 2010学年度第二学期期中考试
八年级数学试题
命题教师: 得分:
一、选择题(10小题,共30分)
1. 以下列各组线段的长为边,能够组成直角三角形的是( )
A.6 8 10
B. 15 31 39
C. 12 35 37
D. 12 18 32 2. 下列计算正确的是( )
A. =-2
B. 2)2(2=-
C.
=±3
2
D. =3. 下列二次根式中,是最简二次根式的是( ) A.
a 16 B.
b 3 C.
a
b
D. 4. 如果(x 2+y 2)2+3(x 2+y 2)- 4=0,那么x 2+y 2的值为( )
A. 1
B. -4
C. 1 或-4
D. -1或3 5. 方程x x 22530--=根的情况是( )
A. 方程有两个不相等的实根
B. 方程有两个相等的实根
C. 方程没有实根
D. 无法判断
6. 某型号的手机连续两次降价,每台售价由原来的1185元降到580元,设平均每次的降价的百分率x ,则列出的方程正确的是( )
A. (x)258011185+=
B. (
x)211851580+= C. (x)258011185-= D. (
x)211851580-= 7. 在△ABC 中,AB ,AC 1513==,BC 上的高AD 长为12,则△ABC 的面积为( ) A. 84 B. 24 C. 24或84 D. 42或84 8. 如果x 0≤
,则化简x 1- ) A. x 12- B. x 21- C. 1- D. 1
9. 若方程ax bx c (a )200++=≠,满足a b c 0++=,则方程必有一根为( )、 A. 0 B. 1 C. 1- D. 1± 10.
). A. 6到7之间 B. 7到8之间
C. 8到9之间
D. 9到10之间
二、耐心填一填(6小题,共18分)
11.。
12. 在Rt ABC ∆中,a=3,b=4 ,则边c 的长为____________。
13. 如果代数式
1
-x x
有意义,那么x 的取值范围是______________。
14. 若关于x 的一元二次方程(m -1)x 2 + 5x + m 2-3m+2=0的一个根是0,则m 的值是______________。
15. 一元二次方程01322=-+x x 和x 2-5x+7=0所有实数根的和为___________。
16. 如图一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移___________。
D
C
B
A 八年级数学期中试题答题卡
一、单项选择(每小题3分,共30分)
二、填空(每小题3分,共18分)
11. _____________________ 12. _____________ 13. _____________________ 14. _______________________ 15. _____________________ 16. _______________________
三、解答题(72分)
17. 化简:(每题5分,共10分)
(1) )273
1818(12+- (2)+2
333))
18. 解下列方程(第(1)题5分,第(2)题7分,共12分)
(1)
(x )(x )++=1315 (2) 01322=-+x x (用配方法)
19. (9分)如图、四边形ABCD 中,6AB AD ==, 60A ︒∠=, 150ADC ︒∠=,已知四边形的周长为30,求ABCD S 四边形
20. (8分)若最简二次根式1522+x 与-172
-x 是同类二次根式,求x 的值。
21. (9分)如果关于x的方程kx2+(2k-1)x+k-1=0只有整数解,试探索整数k的值。
22. (12分).某商场销售海尔电器,市场调研表明:当赢利为每台44元时,平均每天
能销售20台;而当售价每降低1元时,平均每天能多销售5台,商场经理要想销售利润平均每天达到1600元,每台电器的降价应为多少?23.(12分)某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的
函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图
(2)。
若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7 5000
万元毛利润?(毛利润= 销售额-费用)
1 000 年产量/t
O 1 000 年产量/t
O
20
30
(1) (2)
答案:1.A 2.B 3.B 4.A 5.A 6.D 7.C 8.D 9.B 10.A 11.4
12.5或√7 13.x≥0且x≠1 14.2 15.-3/2 16. 0.8
17.~23.略。