集成运算放大器实验报告

合集下载

集成运算放大器实验报告

集成运算放大器实验报告

集成运算放大器实验报告集成运算放大器实验报告引言集成运算放大器(Integrated Operational Amplifier)是一种常见的电子器件,广泛应用于各个领域,如通信、医疗、工业控制等。

本实验旨在通过实际操作和测量,了解集成运算放大器的基本原理和特性,并探讨其在电路设计中的应用。

一、实验目的本实验的主要目的如下:1. 理解集成运算放大器的基本原理和特性;2. 掌握集成运算放大器的基本参数测量方法;3. 探索集成运算放大器在电路设计中的应用。

二、实验仪器与器件1. 实验仪器:示波器、函数发生器、直流电源、万用表等;2. 实验器件:集成运算放大器、电阻、电容等。

三、实验步骤1. 搭建基本的集成运算放大器电路,并连接相应的仪器;2. 调节函数发生器,输入不同的信号波形,观察输出信号的变化;3. 测量并记录集成运算放大器的增益、输入阻抗、输出阻抗等参数;4. 尝试改变电路中的电阻和电容数值,观察输出信号的变化;5. 根据实验结果,分析集成运算放大器的应用场景和电路设计方法。

四、实验结果与分析1. 在实验中,我们观察到集成运算放大器具有很高的增益,可以将输入信号放大到几十倍甚至几百倍的程度。

这使得它在信号放大和放大器设计中发挥着重要的作用。

2. 通过测量,我们还发现集成运算放大器具有很高的输入阻抗和很低的输出阻抗。

这使得它可以有效地隔离输入和输出电路,提高信号传输的质量。

3. 在实验中,我们改变了电路中的电阻和电容数值,观察到输出信号的变化。

这进一步验证了集成运算放大器的灵活性和可调性,可以根据实际需求进行电路设计和调整。

五、实验总结通过本次实验,我们深入了解了集成运算放大器的基本原理和特性,并掌握了相关的测量方法。

我们还通过实际操作,探索了集成运算放大器在电路设计中的应用。

实验结果表明,集成运算放大器在信号放大、隔离和调节方面具有重要作用,可以在各个领域中发挥重要的作用。

六、参考文献[1] 张三, 李四. 集成运算放大器原理与应用[M]. 北京:电子工业出版社,2018.[2] 王五, 赵六. 集成运算放大器电路设计与实验[M]. 上海:上海科学技术出版社,2019.以上即为本次集成运算放大器实验报告的全部内容。

集成运算放大器的基本应用实验数据

集成运算放大器的基本应用实验数据

文章标题:深度解析集成运算放大器的基本应用实验数据在电子电路领域中,集成运算放大器(简称运放)是一种非常重要的器件。

它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、积分等电路中。

本文将结合实验数据,深入探讨集成运算放大器的基本应用,并分析其在电子电路中的重要性。

1. 实验数据搜集与整理在进行深度分析之前,我们首先需要收集和整理一些集成运算放大器的基本应用实验数据。

通过搭建不同的电路实验,我们可以得到运放在不同工作条件下的输入输出特性、增益、频率响应等数据。

这些实验数据将为我们进一步的分析提供有力的支持。

2. 电压跟随器实验数据分析我们进行了电压跟随器实验,并记录了不同输入电压条件下的输出电压。

通过分析这些实验数据,我们可以得到电压跟随器的输入输出特性曲线,了解其在不同输入条件下的响应情况。

从实验数据中我们可以发现,电压跟随器在一定范围内能够有效地跟随输入电压变化,从而实现信号放大和跟随的功能。

3. 反相放大器实验数据分析接下来,我们进行了反相放大器的实验,并记录了其在不同输入信号下的输出情况。

通过对实验数据的分析,我们可以得到反相放大器在不同增益下的输出特性曲线,以及其在不同频率下的响应情况。

实验数据表明,反相放大器具有良好的线性放大特性,并且在一定频率范围内能够实现稳定的放大功能。

4. 比较器实验数据分析除了常见的放大功能外,运放还可以被应用于比较器电路中。

我们进行了比较器实验,并记录了不同输入信号下的输出情况。

通过对比实验数据,我们可以得到比较器的阈值电压、输出翻转情况以及在不同工作条件下的响应特性。

实验数据显示,比较器能够快速、准确地对输入信号进行比较,并输出相应的逻辑信号。

5. 总结与个人观点通过对集成运算放大器的基本应用实验数据进行深入分析,我们可以更好地理解其在电子电路中的重要作用。

实验数据的分析为我们提供了直观、具体的数据支持,帮助我们更全面、深入地了解运放的工作特性。

集成运算放大器的基本应用实验数据

集成运算放大器的基本应用实验数据

集成运算放大器的基本应用实验数据集成运算放大器(OP-AMP)是当今电子技术领域中应用最广泛的一种基本器件。

在电子电路设计和实验中,OP-AMP的应用是非常普遍的。

本文将深入探讨集成运算放大器的基本应用实验数据,以便读者能够更全面、深刻地理解这一主题。

1. 理论基础在开始实验之前,我们首先需要了解集成运算放大器的基本理论知识。

集成运算放大器是一种电压增益非常高的差分放大器,具有开环增益和输入阻抗非常大的特点。

在实际应用中,我们通常将集成运算放大器配置为反馈放大电路,以实现各种电路功能,如放大、滤波、积分、微分等。

2. 实验准备在进行集成运算放大器的基本应用实验之前,我们需要准备一些基本的电子器件和实验仪器,例如集成运算放大器芯片、电阻、电容、信号发生器、示波器等。

另外,我们还需要准备一些基本的实验电路板和连接线,以便进行电路连接和测量。

3. 实验一:集成运算放大器的非反相放大电路我们首先将集成运算放大器配置为非反相放大电路,并使用信号发生器输入一个正弦波信号。

通过调节输入信号的幅值和频率,我们可以测量输出信号的幅值和相位。

通过实验数据的测量和分析,我们可以验证非反相放大电路的放大倍数和相位特性。

4. 实验二:集成运算放大器的反相放大电路接下来,我们将集成运算放大器配置为反相放大电路,并使用信号发生器输入一个正弦波信号。

同样地,通过调节输入信号的幅值和频率,我们可以测量输出信号的幅值和相位。

通过实验数据的测量和分析,我们可以验证反相放大电路的放大倍数和相位特性。

5. 实验三:集成运算放大器的积分电路我们将集成运算放大器配置为积分电路,并输入一个方波信号。

通过测量输入和输出信号的波形,我们可以验证积分电路的积分特性。

通过实验数据的测量和分析,我们可以验证积分电路的频率特性和相位特性。

通过以上实验数据的测量和分析,我们可以得出结论:集成运算放大器在非反相放大、反相放大和积分电路中的性能和特性。

我们还可以深入讨论集成运算放大器的应用范围和设计技巧,以便读者能够更全面、深刻地理解集成运算放大器的基本应用实验数据。

实验六 集成运算放大器 实验报告

实验六 集成运算放大器 实验报告
11000
33000
实际值(mV)
331
1100
3290
10980
11230
误差
1
0
10
20
21770
表6.2
3.电压跟随电路
实验电路如图6.3所示。
图6.3电压跟随电路
按表6.3内容实验并测量记录。
表6.3
Vi(V)
-2
-0.5
0
+0.5
1
VO(V)
RL=∞
-2
-0.5
0
0.5
1
RL=5KΩ
-2
-0.5
0
0.5
1
4.反相求和放大电路。
实验电路如图6.4所示。பைடு நூலகம்
按表6.4内容进行实验测量,并与预习计算比较。
图6.4反相求和放大电路
表6.4
Vi1(V)
0.3
-0.3
Vi2(V)
0.2
0.2
VO(V)
-5.07
1.07
5.双端输入求和放大电路
实验电路为图6.5所示。
按表6.5要求实验并测量记录。
图6.5双端输入求和电路
2.同相比例放大电路
图6.2同相比例放大电路
三、实验内容和数据记录
1.反相比例放大电路
实验电路如图6.1所示。
图6.1反相比例放大电路
(1)按表6.1内容实验并测量记录。
直流输入电压Vi(mV)
30
100
300
1000
3000
输出电压VO
理论估算(mV)
-300
-1000
-3000
-10000
-30000
实际值(mV)

集成运算放大器实验报告

集成运算放大器实验报告

集成运算放大器实验报告2.4.1 比例、加减运算电路设计与实验由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。

一、实验目的1.掌握常用集成运放组成的比例放大电路的基本设计方法; 2.掌握各种求和电路的设计方法;3.熟悉比例放大电路、求和电路的调试及测量方法。

二、实验仪器及备用元器件 (1)实验仪器(2)实验备用器件三、电路原理集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。

图2.4.3(a )示出了典型的反相比例运算电路。

依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为 1f o i i R A R υυυυ==-2.4.1式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。

当1f R R =时,o i υυ=-,电路成为反相器。

合理选择1f R R 、的比值,可以获得不同比例的放大功能。

反相比例运算电路的共模输入电压很小,带负载能力很强,不足之处是它的输入电阻为1i R R =,其值不够高。

为了保证电路的运算精度,除了设计时要选择高精度运放外,还要选择稳定性好的电阻器,而且电阻的取值既不能太大、也不能太小,一般在几十千欧到几百千欧。

为了使电路的结构对称,运放的反相等效输入电阻应等于同相等效输入电阻,R R +-=,图2.4.3(a )中,应为1//P f R R R =,电阻称之为平衡电阻。

(a) 反相比例运算电路 (b) 同相比例运算电路图2.4.3 典型的比例运算电路图2.4.3(b )示出了典型的同相比例运算电路。

其输出输入电压之间的关系为 1(1)f o i i R A R υυυυ==+2.4.2由该式知,当0f R =时,o i υυ=,电路构成了同相电压跟随器。

同相比例运算电路的最大特点是输入电阻很大、输出电阻很小,常被作为系统电路的缓冲级或隔离级。

集成运算放大器应用实验报告

集成运算放大器应用实验报告

I1=1mA I2=0.6mA I=1.6mA If=1.6mA V1=5V V2=3V V0=-8V 2.根据电路元件值,计算 I 1 , I 2 , I 及 I f 。 I1=V1/R3=1mA I2=V2/R4=0.6mA I=I1+I2=1.6mA If=I=1.6mA 3.根据步骤 2 的电流计算值,计算输出电压 V0。另外,用 V1 和 V2 计算 V0。 V0=-IfRf=-8V V0=-(V1+V2)=-8V 4.在 EWB 平台上建立如图 7-3 所示的实验电路,仪器按图设置。单击仿真开关运行动 态分析。在坐标纸上画出输入及输出波形,并记录直流输出偏移电压。
V1 R1பைடு நூலகம்
由于运放反相输入端虚地,因此加法器的输出电压 Vo 为反馈电阻 Rf 两端电压的负值, 即 对于图 7-3 和图 7-4 所示的电路,输出电压为
四、实验步骤
1.在 EWB 平台上建立如图 7-2 所示的实验电路,万用表按图设置。单击仿真开关运行 电路分析。记录 I1 , I 2 , I , I f ,V1 ,V2 及 V0 。
9.根据电路元件值,用 V1 和 V2 计算输出电压 V0。V0=-V1=-1V
五、思考与分析
1.在步骤 1 中电流 I1,I2,I 及 If 的测量值与计算值比较,情况如何? 完全一样 2.在步骤 1 中输出电压 V0 的测量值与计算值比较,情况如何?为什么 V0 为负值? 完全一样,运放接入的是负极 3.在步骤 1,3 中,输出电压与输入电压之间有何关系? 输出是所有输入电压和的相反数 4.在步骤 5 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 5.在步骤 7 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 6.在步骤 8 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数

运算放大器实验报告

运算放大器实验报告

竭诚为您提供优质文档/双击可除运算放大器实验报告篇一:5集成运放电路实验报告实验报告姓名:学号:日期:成绩:一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

开环电压增益Aud=∞输入阻抗ri=∞输出阻抗ro=0带宽fbw=∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:(1)输出电压uo与输入电压之间满足关系式uo=Aud(u+-u-)由于Aud=∞,而uo为有限值,因此,u+-u-≈0。

即u+≈u-,称为“虚短”。

(2)由于ri=∞,故流进运放两个输入端的电流可视为零,即IIb=0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

基本运算电路1)反相比例运算电路电路如图6-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为uo??RFuiR1为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1//RF。

图6-1反相比例运算电路图6-2反相加法运算电路2)反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为uo??(RFRui1?Fui2)R3=R1//R2//RFR1R23)同相比例运算电路图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为uo?(1?RF)uiR2=R1//RFR1当R1→∞时,uo=ui,即得到如图6-3(b)所示的电压跟随器。

模电自主实验 - 集成运放参数的测试

模电自主实验 - 集成运放参数的测试

姓名 班级 学号实验日期 节次 教师签字 成绩实验名称:集成运放参数测试1.实验目的1.通过对集成运算放大器uA741参数的测试,了解集成运算放大器的主要参数及意义 2.掌握运算放大器主要参数的简易测试方法。

2.总体设计方案或技术路线1.输入失调电压:理想运算放大器,当输入信号为零时其输出也为零。

但在真实的集成电路器件中,由于输入级的差动放大电路总会存在一些不对称的现象,使得输入为零时,输出不为零。

这种输入为零而输出不为零的现象称为失调,为讨论方便,人们将由于器件内部的不对称所造成的失调现象,看成是由于外部存在一个误差电压而造成,这个外部的误差电压叫做输入失调电压,记作U IO 。

输入失调电压在数值上等于输入为零时的输出电压除以运算放大器的开环电压放大倍数:udOOIO A U U =式中:U IO — 输入失调电压 U oo — 输入为零时的输出电压值A ud — 运算放大器的开环电压放大倍数本次实验采用的失调电压测试电路如图1所示。

测量此时的输出电压U O1即为输出失调电压,则输入失调电压1O F11IO U R R R U +=实际测出的U O1可能为正,也可能为负,高质量的运算放大器U IO 一般在1mV 以下。

测试中应注意: ① 将运放调零端开路;② 要求电阻R 1和R 2,R 3和R F 的阻值精确配对。

2.输入失调电流I IO当输入信号为的零时,运放两个输入端的输入偏置电流之差称为输入失调电流,记为I IO 。

21B B IO I I I -=式中:I B1,I B2分别是运算放大器两个输入端的输入偏置电流。

输入失调电流的大小反映了运放内部差动输入级的两个晶体管的失配度,由于I B1,I B2本身的数值已很小(uA 或nA 级),因此它们的差值通常不是直接测量的,测试电路如图2所示。

在图1基础上将输入电阻R B 接入两个输入端的输入电路中,由于R B 阻值较大,流经它们的输入电流的差异,将变成输入电压的差异,因此,也会影响输出电压的大小,因此,测出两个电阻R B 接入时的输出电压U O2,从中扣除输入失调电压U IO 的影响(即U O1),则输入失调电流I IO 为:BF 112O 1O 2B 1B IO R 1R R R U U I I I ⋅+⋅-=-=一般,I IO 在100nA 以下。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告引言集成运算放大器(Operational Amplifier,简称Op Amp)是一种常用的电子元器件,广泛应用于各种电路中。

本实验主要目的是通过实践操作,掌握Op Amp的基本原理、特性以及应用。

本文档将详细记录实验过程、结果分析以及心得体会。

实验设备与材料1.集成运算放大器芯片2.电源(直流电源和信号发生器)3.示波器4.电阻、电容等基本元件5.连接线和面包板6.多用途实验电路板实验目标1.了解集成运算放大器的基本原理和特性。

2.熟悉使用Op Amp进行电压放大、非反相放大、反相放大等基本运算。

3.掌握Op Amp的应用范围和适用条件。

4.实验结果的数据测量和分析。

5.总结实验心得,进一步巩固理论知识。

实验原理集成运算放大器的基本原理集成运算放大器是一种具有高增益、输入阻抗大、输出阻抗小的电子放大器。

它通常由差动放大器和输出级组成。

集成运算放大器的输入端有两个,分别为非反相输入端(+)和反相输入端(-)。

输出端的电压和电源电压之间的差值称为放大倍数,通常表示为A。

集成运算放大器的主要特点有以下几个方面:1.无穷大的增益:理论上,集成运放的增益可以达到无穷大。

2.高输入阻抗:集成运放的输入电阻非常大。

3.低输出阻抗:集成运放的输出电阻非常小。

4.大信号频率响应范围宽:集成运放的频带宽度一般为几十到上百MHz。

Op Amp的应用电压放大器电压放大器利用Op Amp的高增益特性,将输入信号进行放大。

输入信号经过放大后,输出信号可以达到较高的幅度。

电压放大器通常采用非反相放大电路,输出信号与输入信号的相位关系相同。

非反相放大器非反相放大器是一种常见的Op Amp应用电路。

它实际上是电压放大器的一种特殊形式。

非反相放大器的特点是输出信号与输入信号具有相同的相位关系,通过选择合适的电阻比例,可以实现不同的电压放大倍数。

反相放大器反相放大器也是一种常用的Op Amp应用电路。

集成运算放大器实验报告

集成运算放大器实验报告

集成运算放大器一、实验目的和要求1、了解集成运算放大器的工作原理;2、熟练运用模拟集成电路进行基本电路的仿真设计;3、独立完成运算放大器的加法、减法运算,并设计出y=X1+2X2及y=2X1-X2的运算电路。

二、主要仪器电脑、模拟电路软件三、实验原理1、反相加法运算1)原理如图1,可列出以下等式I I1=u i1/R11,I i2=u I2/R12,I i3=u i3/R13,I F=I I1+I i2+I i3,I=-u O/R F,由上式可知,当时,则上式为当时,则由上列三式可见,加法运算放大电路与运算放大器电路本身无关,只要电阻阻值足够精确,可保证加法运算的精度和稳定性。

平衡电阻2)反相加法运算的特点:输入电阻低,共模电压低,改变某一输入电阻时,对其他电路无影响2、减法运算如果两个输入端都有信号输入,则为差分输入。

差分运算电路如图2所示。

由图可列出:因为u-≈u+,则当R1=R2和R F=R3时,则上式为当R F=R1时,则得由上式可见,输出电压与两个输入电压的差值成正比,可进行减法运算。

电压放大倍数在图2中,如将R3断开,则即为同相比例运算和反相比例运算输出电压之和。

由于电路存在共模电压,为保证运算精度,应当选用共模抑制比较高的运算放大器或选用阻值合适的电阻。

四、实验内容1、设计y=X1+2X2运算电路,在电脑中用仿真软件绘图,保证电路在运行状态。

R2R F R6R1R4R3R5注:R2等于R1、R F并联2、设计y=2X1-X2运算电路,在电脑中用仿真软件绘图,保证电路在运行状态。

注:R F/R1=R3/R2五、总结1、了解了集成运算放大器的工作原理;2、可以熟练运用模拟集成电路进行基本电路的仿真设计;3、输出端和输入端都需要接地;4、虽说是仿真电路,但还是要注意接入元件的正负接口,如电压表;5、进行电脑操作前,先熟悉如何接入元件,并连接各元件,再进行下一步操作。

实验7集成运算放大器及应用

实验7集成运算放大器及应用

它通常由差分输入级、中间放大级、输出级以及偏置电路等 部分组成,广泛应用于信号放大、运算、滤波、测量等领域 。
பைடு நூலகம்
集成运算放大器的基本结构
差分输入级
中间放大级
由两个对称的晶体管组 成,能够抑制共模信号,
放大差分信号。
对差分输入信号进行进 一步放大,增加增益。
输出级
提供足够的输出电流, 驱动负载,并实现电压
数据记录与处理
表格1:输入信号参数记录表
| 序号 | 信号幅度(V) | 信 号频率(Hz) |
| --- | --- | --- |
数据记录与处理
| 1 | ... | ... | | 2 | ... | ... |
| ... | ... | ... |
数据记录与处理
表格2:输出信号参数记录表 | 序号 | 输出幅度(V) | 相位偏移(度) | | --- | --- | --- |
放大。
偏置电路
为各级提供合适的静态 工作点。
集成运算放大器的特点与分类
高增益
集成运放的增益一般都在80dB以上, 能够实现高精度的信号放大。
02
高输入阻抗
集成运放的输入阻抗极高,可以等效 为无穷大,减小了信号源的负担。
01
03
低噪声
集成运放的内部噪声较低,对信号的 干扰较小。
分类
根据用途和性能指标,集成运放可以 分为通用型、高精度型、高速型、低 功耗型等多种类型。
05
04
良好的线性度
集成运放在一定范围内具有良好的线 性度,可以实现模拟运算功能。
02 集成运算放大器的工作原 理
差分输入和输出电压
差分输入电压
集成运算放大器采用差分输入电压,即将两个输入信号的差值作为放大器的输 入信号,这样可以有效地抑制共模干扰,提高放大器的抗干扰能力。

集成运放及应用实验报告

集成运放及应用实验报告

一、实验目的1. 理解集成运算放大器(运放)的基本原理和特性。

2. 掌握集成运放的基本线性应用电路的设计方法。

3. 通过实验验证运放在实际电路中的应用效果。

4. 了解实验中可能出现的误差及分析方法。

二、实验原理集成运算放大器是一种高增益、低噪声、高输入阻抗、低输出阻抗的直接耦合多级放大电路。

它广泛应用于各种模拟信号处理和产生电路中。

本实验主要研究运放的基本线性应用电路,包括比例、加法、减法、积分、微分等运算电路。

三、实验仪器与器材1. 集成运放(如LM741)2. 模拟信号发生器3. 示波器4. 数字多用表5. 电阻、电容等电子元件6. 面包板四、实验内容1. 反相比例运算电路(1) 设计电路:根据实验要求,搭建一个反相比例运算电路,其中输入电阻R1和反馈电阻Rf的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

2. 同相比例运算电路(1) 设计电路:搭建一个同相比例运算电路,其中输入电阻R1和反馈电阻Rf 的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

3. 加法运算电路(1) 设计电路:搭建一个加法运算电路,实现两个输入信号的求和。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 验证输出波形为两个输入信号的相加。

4. 减法运算电路(1) 设计电路:搭建一个减法运算电路,实现两个输入信号的相减。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

实验三集成运算放大器的基本应用

实验三集成运算放大器的基本应用

实验三 集成运算放大器的基本应用—— 模拟运算电路一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2. 了解运算放大器在实际应用时应考虑的一些问题。

二、实验仪器 1.双踪示波器 2.万用表3.交流毫伏表三、实验原理在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。

1)反相比例运算电路电路如图11-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为i FO U R R U 1-= (11-1)图11-1 反相比例运算电路为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1∥R F 。

2)反相加法电路图11-2 反相加法运算电路电路如图11-2所示,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-= R 3=R 1∥R 2∥R F (11-2) 3)同相比例运算电路图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为i FO U R R U )1(1+= R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。

图中R 2=R F ,用以减小漂移和起保护作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

图11-3 同相比例运算电路4)差动放大电路(减法器)对于图11-4所示的减法运算电路,当R1=R2,R3=RF 时,有如下关系式:)(1120i i U U R RFU -=(11-4)图11-4 减法运算电路5)积分运算电路反相积分电路如图11-5所示。

在理想化条件下,输出电压U 0等于⎰+-=tCiUdt U RCt U 00)0(1)( (11-5)式中U C (0)是t=0时刻电容C 两端的电压值,即初始值。

图11-5 积分运算电路如果Ui(t)是幅值为E 的阶跃电压,并设UC(0)=0,则⎰-=-=tt RCEEdt RCt U 001)( (11-6) 此时显然RC 的数值越大,达到给定的U0值所需的时间就越长,改变R 或C 的值积分波形也不同。

实验三 集成运算放大器的基本应用实验

实验三 集成运算放大器的基本应用实验

实验三集成运算放大器的基本应用实验一、实验目的加深理解和掌握比例放大器、电压跟随器与求和电路的性能、特点及输出电压与输入电压的函数关系。

二、仪器与设备GAG—809型信号发生器数字万用表TPE—A5II模拟试验箱运算放大器实验板三、实验内容及步骤一、反相比例放大器1.按图3-1接线。

Vi LM324引脚图 Vo图3-1将反相输入端接直流信号源的输出端,调节直流信号源的输出电压,使Vi分别为表3-1中所列各值,并测出相应的Vo值填入表3-1。

2.预习要求(1)分析图3-1反相比例放大器的主要特点(包括反馈类型)。

(2)求出表3-1中理论估算值。

表3-1二、同相比例放大器1.按图3-2接线。

使Vi分别为表3-2中所列各值,并测出相应的Vo值填入表3-2。

Vo2.预习要求图3-2 (1)分析图3-2 同相比例放大器的主要特点。

(2)求出表3-2中的理论估算值。

三、电压跟随器1.按图3-3接线。

使Vi分别为表3-3中所列各值,并测出相应的Vo值填入表3-3。

图3-32.预习要求Vo(1)分析图3-3 电压跟随器的特点。

(2)求出表3-3中的理论估算值。

四、反相求和电路1.按图3-4接线。

Vi1Vi2 Vo图3-4测出当Vi1=1000mV、Vi2= -2000mV时的输出电压Vo值,并与理论估算值比较。

Vo= 2.预习要求(1)分析图3-4 反相求和电路的特点。

(2)按静态时运放两输入端外接电阻应对称的要求估算R′的电阻值。

(3)求出Vo的理论估算值。

四、思考题试说明比例、求和等运算电路中运放两输入端的外接电阻为什么要对称?。

实验九 集成运算放大器(I)

实验九  集成运算放大器(I)

实验九 集成运算放大器(Ⅰ)—信号运算电路一、实验目的1. 掌握由集成运算放大器组成的基本运算电路的功能。

2. 了解运算放大器在实际应用时应考虑的问题。

3. 进一步掌握正确使用电子仪器的方法。

二、实验原理集成运算放大器是一种具有高增益、高输入阻抗的直接耦合多级放大电路。

当外部接入不同的线性或非线性元、器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

集成运放电路由四部分组成,即输入级、中间级、输出级和偏置电路。

集成运放的主要性能指标:1. 开环差模增益A Od ,是在集成运放无外加反馈时的差模放大倍数称为开环差模增益, A Od =Δuo/Δ(u p -u N ),常用分贝(dB )表示,其分贝数为20lg|A Od |。

2. 共模抑制比K CMR ,共模抑制比等于差模放大倍数与共模放大倍数之比的绝对值,即K CMR =|A Od /A OC |,用分贝表示其数值为20 lgK CMR 。

3. 差模输入电阻r id ,是集成运放在输入差模信号时的输入电阻。

r id 越大,从信号源索取的电流越小。

4. 输入失调电压U IO ,是使输入电压为零时在输入端所加的补偿电压,其数值时当u I =0时,输出电压折合到输入端电压的负值,即U IO = -OdI O A 0u u =。

5. 输入失调电流I IO ,它反映了输入级差放管输入电流的不对称程度。

1.反相比例运算电路电路如图9-1所示,对于理想运放,该电路的输出电压与输入电压之间的关系为:u O =-1FR R u i R 2=R 1//R F 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2,而R 2=R 1//R F 。

2.同相比例运算电路图9-2是一个同相比例运算电路,它的输出电压与输入电压之间的关系为:u O =(1FR R 1+)u i R 2=R 1//R F 3.反相加法电路电路如图9-3所示,该电路的输出电压与输入电压之间的关系为:u O = -(1FR R u i1+2F R R u i2) R 3=R 1//R 2//R F 4.减法运算电路(差分放大电路)电路如图9-4所示,当R 1=R 2,R 3=R F 时,其输出与输入的关系如下:u O =1FR R (u i2 -u i 1) 5.电压跟随器电路如图9-5所示,图中R 2=R F ,用以减小漂移和起保护作用。

电子技术实验报告—实验10集成运算放大器构成的电压比较器5篇

电子技术实验报告—实验10集成运算放大器构成的电压比较器5篇

电子技术实验报告—实验10集成运算放大器构成的电压比较器5篇第一篇:电子技术实验报告—实验10集成运算放大器构成的电压比较器电子技术实验报告实验名称:集成运算放大器构成的电压比较器系别:班号:实验者姓名:学号:实验日期:实验报告完成日期:目录一、实验目的 (3)二、实验原理 (3)1.集成运算放大器构成的单限电压比较器...........................3 2.集成运算放大器构成的施密特电压比较器. (4)三、实验仪器 (4)四、实验内容 (5)1.单限电压比较器...............................................5 2.施密特电压比较器.. (10)五、实验小结与疑问 (1)3一、实验目的1.掌握电压比较器的模型及工作原理2.掌握电压比较器的应用二、实验原理电压比较器主要用于信号幅度检测——鉴幅器;根据输入信号幅度决定输出信号为高电平或低电平;或波形变换;将缓慢变化的输入信号转换为边沿陡峭的矩形波信号。

常用的电压比较器为:单限电压比较器;施密特电压比较器窗口电压比较器;台阶电压比较器。

下面以集成运放为例,说明构成各种电压比较器的原理。

1.集成运算放大器构成的单限电压比较器集成运算放大器构成的单限电压比较器电路如图1(a)所示。

由于理想集成运放在开环应用时,AV→∞、Ri→∞、Ro→0;则当ViER 时,VO=VOL;由于输出与输入反相,故称之为反相单限电压比较器;通过改变ER值,即可改变转换电平VT(VT≈ER);当ER=0时,电路称为“过零比较器”。

同理,将Vi与ER对调连接,则电路为同相单限电压比较器。

2.集成运算放大器构成的施密特电压比较器集成运算放大器构成的施密特电压比较器电路如图2(a)所示。

当VO=VOH时,V+1=VT+=R当VO=VOL时,V+2=VT−=R回差电平:△VT=VT+−VT−R22+R3VOH+RVOL+RR32+R3ER;VT+称为上触发电平;R22+R3R32+R3ER;VT-称为下触发电平;当Vi从足够低往上升,若Vi>VT+时,则Vo由VOH翻转为VOL;当Vi从足够高往下降,若Vi三、实验仪器1.示波器1台2.函数信号发生器1台3.数字万用表1台4.多功能电路实验箱1台四、实验内容1.单限电压比较器(1)按图1(a)搭接电路,其中R1=R2=10kΩ,ER由实验箱提供;(2)观察图1(a)电路的电压传输特性曲线;电压传输特性曲线的测量方法:用缓慢变化信号(正弦、三角)作Vi(Vip-p=15V、f=200Hz),将Vi=接示波器X(CH1)输入,VO 接示波器Y(CH2)输入,令示波器工作在外扫描方式(X-Y);观察电压传输特性曲线。

电子实验报告二 集成运算放大器的基本应用

电子实验报告二 集成运算放大器的基本应用
反相加法运算电路如下图2-1:(R1改为1kΏ,Rf改为10kΏ)
图2-1
Ui1(V)
0.06711
0.10119
0.13474
Ui2(V)
0.05752
0.08658
0.11522
Uo(V)
0.62904
0.94948
1.26519
误差
2.1%
1.8%
1.6%
表2-1
C.减法运算电路
1、关闭系统电源。按图3-1正确连接实验电路。采用直流输入信号。
1、关闭系统电源。按微分电路如图5-1所示正确连接。连接信号源输出和Ui。
2、打开系统电源。调节信号源输出率约为100Hz,峰峰值为2V的方波作为输入信号Ui,打开直流开关,输出端接示波器,可观察到尖顶波波形输出并记录之。
微分运算电路如图5-1:
图5-1
观察到的输出波形见图5-2:
图5-2
1、关闭系统电源。按积分电路如图4-1所示正确连接。连接信号源输出和Ui。
2、打开系统电源。调节信号源输出率约为100Hz,峰峰值为2V的方波作为输入信号Ui,打开直流开关,输出端接示波器,可观察到三角波波形输出并记录之。
积分Байду номын сангаас算电路如图4-1:
图4-1
观察到的输出波形见图4-2:
图4-2
E.微分运算电路
电路实验报告二
《集成运算放大器的基本应用》
实验内容:
A.反相比例运算电路
1、关闭系统电源。按图1-1正确连线。连接信号源的输出和Ui。
2、打开直流开关。调节信号源输出f=100Hz,Ui=0.5V(峰峰值)的正弦交流信号,用毫伏表测量Ui、UO值,并用示波器观察UO和Ui的相位关系,记入表1-1。

集成运算放大器应用电路设计实验总结 -回复

集成运算放大器应用电路设计实验总结 -回复

集成运算放大器应用电路设计实验总结 -回复集成运算放大器(Operational Amplifier,简称Op-Amp)是集成电路中的一种常用器件,具有输入阻抗高、增益稳定、输出能力强等特点,广泛应用于各种电路设计中。

本次实验通过设计不同的Op-Amp应用电路,主要包括反相放大电路、非反相放大电路、比较器电路等,对Op-Amp的工作原理和特性进行了深入了解。

实验一:反相放大电路反相放大电路是Op-Amp应用中最基本的一种电路,由一个Op-Amp和两个电阻构成,其输入和输出信号之间的关系为负反馈放大。

实验中设计了一个反相放大电路,电路图如下:(图片)实验中使用了LM741型Op-Amp,R1取了470Ω,R2取了10kΩ,输入信号为5V的正弦波。

在实验过程中,通过调节R2的电阻值,观察输出电压的变化情况。

实验结果显示,当R2增大时,输出电压的幅值减小,说明负反馈对于输出信号有稳定的控制作用。

实验二:非反相放大电路非反相放大电路与反相放大电路相比,其输入信号与输出信号之间的相位关系没有改变,但幅度增大。

实验中设计了一个非反相放大电路,电路图如下:(图片)实验中同样使用了LM741型Op-Amp,R1取了470Ω,R2取了10kΩ,输入信号为5V的正弦波。

在实验过程中,通过调节R2的电阻值,观察输出电压的变化情况。

实验结果显示,当R2增大时,输出电压的幅值也随之增大,同时相位保持不变。

实验三:比较器电路比较器电路是Op-Amp应用中的另一种常见电路,通过Op-Amp的比较功能,将输入信号与参考电压进行比较,并输出高电平或低电平。

实验中设计了一个比较器电路,电路图如下:(图片)实验中同样使用了LM741型Op-Amp,Vin取了0-5V范围内的变化信号,Vref取了2.5V的参考电压。

在实验过程中,通过调节Vin的信号幅值,观察输出电平变化情况。

实验结果显示,当Vin大于Vref时,输出电平为高电平;当Vin小于Vref时,输出电平为低电平。

集成运算放大电路实验报告

集成运算放大电路实验报告

集成运算放大电路实验报告浙大电工电子学实验报告实验十二集成运算放大器及应用(一)模拟信号运算电路课程名称:指导老师:实验名称:集成运算放大器及应用(一)实验报告一、实验目的1.了解集成运算放大器的基本使用方法和三种输入方式。

2.掌握集成运算放大器构成的比例、加法、减法、积分等运算电路。

二、主要仪器设备1.MDZ-2型模拟电子技术实验箱2.实验板及元器件3.直流稳压电源4.万用表三、实验内容在实验中,各实验电路的输入电压均为直流电压,并要求大小和极性可调。

因此在实验箱中安放了电位器,并与由集成运算放大器构成的电压跟随其联结,如图12-7所示。

当在电位器两端分别加+5V和-5V电源电压时,调节电位器就可在集成运算放大器构成的跟随器的输出端得到稳定而可调的正、负直流电压,此电压即作为各实验电路的输入电压。

图12-7 1.同相输入比例运算图12-1按图12-1接线,输入端加直流电压信号Ui,适当改变Ui,分别测量相应的Uo值,记入表12-1中,并2.加法运算图12-2按图12-2电路接线,适当调节输入直流信号Ui1和Ui2的大小和极性,册书Uo,计入表12-2。

表12-23.减法运算图12-4按图12-4电路完成减法运算,并将结果记入表12-4。

表12-44.积分运算图12-5按图12-5电路连接(注意:电路中的电容C是有极性的电解电容,当Ui为负值时,Uo为正值,电容C的正极应接至输出端;如Ui为正值时,则接法相反)。

将Ui预先调到-0.5V,开关S合上(可用导线短接)时,电容短接,保证电容器五初始电压,Uo=0。

当开关S断开时开始计时,每隔10秒钟读一次Uo,记入表12-5,直到Uo不继续明显增大为止。

表12-5(Ui=-0.5V)四、实验总结1.画出各实验电路图并整理相应的实验数据及结果。

实验电路图已在上文中画出,下面处理实验数据。

(1).同相输入比例运算作Ui-Uo图如下:(2).加法运算作Ui1-Ui2-Uo图如下:(3).减法运算作Ui1-Ui2-Uo图如下:(4).积分运算作T-Uo图如下:2.总结集成运放构成的各种运算电路的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集成运算放大器实验报告2.4.1 比例、加减运算电路设计与实验由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。

一、实验目的1.掌握常用集成运放组成的比例放大电路的基本设计方法; 2.掌握各种求和电路的设计方法;3.熟悉比例放大电路、求和电路的调试及测量方法。

二、实验仪器及备用元器件 (1)实验仪器(2)实验备用器件三、电路原理集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。

图2.4.3(a )示出了典型的反相比例运算电路。

依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为 1f o i i R A R υυυυ==-2.4.1式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。

当1f R R =时,o i υυ=-,电路成为反相器。

合理选择1f R R 、的比值,可以获得不同比例的放大功能。

反相比例运算电路的共模输入电压很小,带负载能力很强,不足之处是它的输入电阻为1i R R =,其值不够高。

为了保证电路的运算精度,除了设计时要选择高精度运放外,还要选择稳定性好的电阻器,而且电阻的取值既不能太大、也不能太小,一般在几十千欧到几百千欧。

为了使电路的结构对称,运放的反相等效输入电阻应等于同相等效输入电阻,R R +-=,图2.4.3(a )中,应为1//P f R R R =,电阻称之为平衡电阻。

(a) 反相比例运算电路 (b) 同相比例运算电路图2.4.3 典型的比例运算电路图2.4.3(b )示出了典型的同相比例运算电路。

其输出输入电压之间的关系为 1(1)f o i i R A R υυυυ==+2.4.2由该式知,当0f R =时,o i υυ=,电路构成了同相电压跟随器。

同相比例运算电路的最大特点是输入电阻很大、输出电阻很小,常被作为系统电路的缓冲级或隔离级。

同样,为了保证电路的运算精度,要选择高精度运放和稳定性好的电阻器,而且电阻的取值一般在几十千欧到几百千欧。

为了使电路的结构对称,同样应满足1//P f R R R =。

图2.4.4(a )为典型的反相求和电路,利用叠加原理和线性运放电路“虚短”、“虚断”的概念可以求得1212()f f o i i R R R R υυυ=-+2.4.3当满足12R R R ==时,输出电压为 12()f o i i R Rυυυ=-+ 2.4.4实现比例求和功能。

当满足12f R R R ==时,,输出电压为12()o i i υυυ=-+ 2.4.5实现了两个信号的相加运算。

电路同样要求12////P f R R R R =。

该电路的性能特点与反相运算电路相同。

(a) 反相求和运算电路 (b) 同相求和运算电路图2.4.4 典型的求和运算电路同理,对于图2.4.4(b )所示的同相求和电路,当电路满足12////f R R R R =的条件下,可以得到输出电压为1212f f o i i R R R R υυυ=+2.4.6当12f R R R ==时12o i i υυυ=+ 2.4.7 同相求和电路的特点、设计思路与同相比例运算电路类似。

图2.4.5(a )为单运放减法电路,利用叠加原理和线性运放电路“虚短”、“虚断”的概念,且12////f R R R R =时,可以求得1212f f o i i R R R R υυυ=-+2.4.8(a) 单运放减法运算电路 (b) 双运放减法运算电路图2.4.5 典型的减法运算电路当12f R R R ==时21o i i υυυ=- 2.4.9实现了两个信号的减法运算。

图2.4.5(b )为双运放减法电路。

大家可以自行分析,电路应该满足什么条件,才能够实现12o i i υυυ=-的功能。

四、设计任务【v1、v2参考输入信号】1、设计一个反相比例放大电路,要求放大倍数为-10倍;2、设计一个放大倍数为11的同相比例放大电路;3、设计一个反相求和电路,实现1210()o υυυ=-+功能;4、设计一个求和电路,完成1210()o υυυ=+;5、设计一个求和电路,要求124o υυυ=-;6、设计能够实现0.5o i υυ=的电路。

五、实验要求 1、实验前的准备 (1)电路设计根据理论和上述任务要求,自行设计实现电路,计算出电路中各个元件的参数。

(2)用Multisim 仿真软件进行仿真。

选择一组输入电压。

用虚拟仪器测量:输入电压、输出电压的幅值,填入自行设计的表格内。

验证上述理论设计的正确性,并与理论计算结果进行比较。

(3)测试方案的设计 自拟实验步骤、方法。

2、实验任务(1)检查实验仪器;检测器件和导线; (2)根据自行设计的电路图选择实验器件; (3)根据自行设计的电路图插接电路; (4)根据自行设计的测试方案; 选择仿真时的一组输入电压值。

在输入端加输入信号,测量输入、输出信号的幅值并记录,并与仿真结果、估算结果比较;U1ALM324N321141R168kΩR210kΩR310kΩR468kΩR510kΩV1100mVrms100Hz 0°VCC 12VVEE -12VV2100mVrms 100Hz 0°XSC1ABCDG T3、实验后的总结(1)根据设计技术指标及实验记录总结实验体会。

(2)分析误差产生的原因。

六、思考题1、反相求和电路与反相比例放大电路在电路结构和函数运算式上有何异同之处?2、同相求和电路和同相比例放大电路在电路结构和比例系数上有何异同?3、估算值、仿真值、测量值三者相同吗?若不相同分析产生误差的原因。

七、实验报告要求1、画出实验电路,整理实验数据;2、将实验结果与理论计算值比较,分析产生误差的原因。

2.4.2 积分、微分电路的设计与实验一、实验目的1. 了解由集成运放组成的积分运算、微分运算电路的基本运算关系;2. 掌握积分运算、微分运算电路的设计方法;3. 熟悉积分运算、微分运算电路的调试及测量方法。

二、实验仪器及备用元器件(1)实验仪器序号名称型号备注1 函数信号发生器(2)实验备用器件三、电路原理积分运算的典型形式为 o iKdt υυ=⎰ 2.4.10利用电容两端的电压和流过电容的电流关系,可以得到如图2.4.6(a )所示积分电路。

图中1(0)toio dt RC υυυ=-+⎰ 2.4.11式中(0)o υ为0t =时电容上的初始电压。

根据式(2.4.11)知,当i υ为不同形式的信号时,就会得到不同形式的输出电压o υ。

如:当输入信号i V υ=,即为直流恒压的情况下,输出电压为1o V t RCυ=-⨯ 2.4.12 工作波形如图(b )所示。

(a ) (b ) (c )图2.4.6 积分运算电路及其工作波形当输入信号i υ是幅度为V 的方波时,则在运放为非饱和的情况下,输出电压将变为三角波,见图(c )所示。

大家可以自行分析输出电压的振幅值om V 。

同理,当输入信号正弦信号时,在正弦稳态情况下,输出信号将为同频率的余弦波,即实现了超前相移90o的功能。

由于微分运算与积分运算呈现对偶关系,所以将积分电路中的电阻、电容对调,既可以实现微分功能。

微分电路如图2.4.7所示。

输出、输入的关系为2 数字示波器3 数字万用表4 交流毫伏表序号名称说明 备注 1 模拟集成运放块 LM324 2 电阻 见附件 3 电容见附件iodRCdtυυ=- 2.4.12图2.4.7 微分电路图 2.4.8 实际微分电路对于微分电路,通常应该满足2TRC的条件,其中T为输入信号的周期。

在实际电路中,为了解决直流漂移和高频噪声等问题,通常情况下在C支路中串接一个电阻R1,在R支路两端并接一个电容C1。

如图2.4.8所示。

四、设计任务1、设计能够将1kHz、峰—峰值为4V正负半周对称的方波转换为三角波的积分运算电路;2、设计能够将1kHz的矩形波转换为尖峰脉冲波的电路;五、实验要求1、实验前的准备(1)电路设计根据理论和上述设计任务要求,自行设计实现电路,计算出电路中各个元件的参数。

(2)用Multisim仿真软件进行仿真。

A)当输入信号的幅度为2V、频率为500Hz且正负半周对称的方波的情况下,用虚拟示波器观察积分运算电路的输入、输出信号波形,并记录其峰值和相位,填入自行设计的表格内。

B)当输入信号的峰峰值为4V、频率分别为200Hz、500Hz、1000Hz正弦波的情况下,用虚拟示波器观察积分运算电路的输入、输出信号波形,并记录其峰值和相位,填入自行设计的表格内。

C)当输入信号的幅度为5V、频率为200Hz矩形波的情况下,用虚拟示波器观察微分运算电路输入、输出信号XFG1U1ALM324N32114112VVEE-12VR110kΩR210kΩC11µFXSC1A BExt Trig++__+_波形,并记录其峰值和相位,填入自行设计的表格内。

D)当输入信号的幅度为5V、频率分别为100Hz、200Hz、500Hz正弦波的情况下,用虚拟示波器观察微分运算电路输入、输出信号波形,并记录其峰值和相位,填入自行设计的表格内。

(3)测试方案的设计自拟实验步骤、方法及测试表格。

2、实验任务(1)检查实验仪器;检测器件和导线;(2)根据自行设计的电路图选择实验器件;(3)根据自行设计的电路图插接电路;(4)根据自行设计的测试方案,完成下述实验任务:【加入表格】A)当输入信号的幅度为2V、频率为500Hz且正负半周对称的方波的情况下,用示波器观察积分运算电路的输入、输出信号波形,并记录其峰值和相位,填入自行设计的表格内,并与仿真结果、估算结果进行比较。

B)当输入信号的峰峰值为4V、频率分别为200Hz、500Hz、1000Hz正弦波的情况下,用示波器观察积分运算电路的输入、输出信号波形,并记录其峰值和相位,填入自行设计的表格内,并与仿真结果、估算结果进行比较。

C)当输入信号的幅度为5V、频率为200Hz矩形波的情况下,用示波器观察微分运算电路输入、输出信号波形,并记录其峰值和相位,填入自行设计的表格内,并与仿真结果、估算结果进行比较。

D)当输入信号的幅度为5V、频率分别为100Hz、200Hz、500Hz正弦波的情况下,用示波器观察微分运算电路输入、输出信号波形,并记录其峰值和相位,填入自行设计的表格内,并与仿真结果、估算结果进行比较。

3、实验后的总结(1)根据设计技术指标及实验记录总结实验体会。

(2)分析误差产生的原因。

六、思考题1、有源积分电路和无源积分电路的主要区别?2、积分电路可以将方波转换为三角波,那么当改变方波的频率时,三角波会发生何种变化?当改变方波的峰值时,三角波又有何种变化?3、在向积分器输入正弦波时,若逐渐增加输入信号的频率,输出信号将如何变化?4、在向微分器输入正弦波时,若逐渐增加输入信号的频率,输出信号将如何变化?七、实验报告要求1. 画出自行设计的实验电路,整理实验数据;2. 将实验结果与理论计算值比较,分析产生误差的原因。

相关文档
最新文档