第十八章隐函数定理及其应用.
第十八章隐函数定理及其应用共92页
§8-5 隐函数的 微分法
每与一一个元方函程数都的能情形类x2似,y2多1元函0
也有隐函数。确定一个隐函数吗?
如果在方程式 F(x,y,z)0中, (x此,y外) , 隐 函R数2时不,一相定应都地能总显有化满。足 该方程的唯一的 z 值存在 , 则称该方 程在 内确定隐函数 zf(x, y)。
dGz dz dxz d x
G x0
当 (F,G) 0 时,方程组有唯一解:
(y, z)
dy
dx
(F ,G) (x, z)
(F ,G) ( y, z)
dz
dx
(F ,G) ( y, x)
(F ,G) ( y, z)
这样我们实际上已找到了求方程组确 定的隐函数的偏导数的公式(之一)。
F F
二、由一个方程确定
的隐函数的求导法
定理 2 (隐函数存在定理)
设 1. F (x ,y ,z) C 1 (U x 0 ,y 0 (,z0 );)
2. F(x0,y0,z0)0;
3. F z(x0,y0,z0)0,
则方程 F(x,y,z)0在 U(x(0, y0))内唯一 确定一个函数 zf(x,y) C 1(U x0,y (0)) 且 z0f(x0,y0),F(x,y,f(x,y))0。
xn
Fn x1
F n
Fn
x2
xn
当所出现的函数均有一阶连续偏导数 时,雅可比行列式有以下两个常用的性质:
1. (u1,u2,,un)(x1,x2,,xn)1. (x1,x2,,xn)(u1,u2,,un)
2. (u1,u2,,un) (t1,t2, ,tn) (u1,u2,,un) (x1,x2,,xn). (x1,x2,,xn) (t1,t2,,tn)
第十八章 隐函数定理及其应用
∂z f ′ + yz ⋅ f2′ = 1 ∂x 1 − f1′ − xy ⋅ f 2′
x3 + y 3 + z 3 = 3 xyz
x , 所确定的隐函数,求 u ′ . x 解:在方程两端对 求导,其中视 z 为 x, y 的函数,
′ 3 x 2 + 3 z 2 ⋅ z′ x = 3 yz + 3 xy ⋅ z x ,
z′ x =
由此得
x 2 − yz xy − z 2 .
⎞ ⎟ ⎠.
− a 2 − y 2 (a + a 2 − y 2 )
a − y2
2
,
d2 y = d x2 从而
− a2 − y2 ⋅
dy y2 dy + ⋅ 2 2 dx a − y dx a2 y = a2 − y2 (a 2 − y 2 )2
- 2 -
∂z ∂z (5) x + y + z − 2x + 2 y − 4z − 5 = 0 ,求 ∂x , ∂y ; 2 2 2 解:设 F ( x, y, z) = x + y + z − 2x + 2 y − 4z − 5 ,则
=
y a 2 − y 2 (a + a 2 − y 2 )
−ay 2 − a 2 a 2 − y 2 − a (a 2 − y 2 ) + ay 2 + y 2 a 2 − y 2
第十八章 隐函数定理及其应用
同理可得
(F ,G ) (u , x ) (F ,G ) ( y, v) (F ,G ) (u , y )
2u 1 0 1 2u 1
1 0 1 2v 0 1
v
1
x u 1
1
1
4 uv 1
2u
2u 4 uv 1
F z G z
(F ,G ) F y G ( y, z) y F z G z
F (F ,G ) y G ( y, x) y
F x G x
问题2
依葫芦画瓢哦 !
将 x 或 y 看成常数 G ( x, y, u , v) 0 F ( x, y, u , v) 0
将 yx看成常数 将 看成常数
FF G ) ) (( , ,G
FF G ) ) (( , ,G
u u y x
( y v v ) ( x, , )
v v y x
( F, G ) ) (F ,G uu v v ) (( , , )
设 F (x z
y z , xyz ) 0 确定 z z ( x , y ), F1 yz F 2
F y
F1 xz F 2 ,
z y
F1 xz F 2
F1 xy F 2
定理
(隐函数存在定理)
1
X 设 1. F ( F, u ) C (U( X 0 , u 0 )) ; 请同学们自己将上面的隐函数存在
则方程 F ( x , 且 z0
y, z) 0
在 U((
x 0 , y 0 )) 内唯一
1
高等数学第18章第1节隐函数(精品文档)
第十八章 隐函数定理及其应用§1 隐函数一 、 隐函数概念(P144)在这之前我们所接触的函数,其表达式大多是自变量的某个算式,如 12+=x y ,).sin sin (sin zx yz xy eu xyz++=这种形式的函数称为显函数。
但在不少场合常会遇到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式或方程组所确定。
这种形式的函数我们称为隐函数。
☆ 本节将介绍由一个方程0),,(=z y x F 所确定的隐函数求导法;☆ 下一节将介绍由方程组⎩⎨⎧==0),,,,(0),,,,(v u z y x G v u z y x F 所确定的隐函数求导法。
设R X ⊂,R Y ⊂,函数.:R Y X F →⨯注.:1)定义中的)(x f y = ,,J y I x ∈∈仅表示定义域为I,值域为J 的函数,而y 未必能 用x 的显式表示2)隐函数是表达函数的又一种方法. 是用隐形关系式表示函数关系的一种。
结论..:若由..0),(=y x F 确定..的隐函数为.....)(x f y = .,J y I x ∈∈则成立恒等式.......,0))(,(I x x F x F ∈≡例: 方程 01=-+y xy ,当x 定义在),1()1,(+∞---∞ 上时,可得隐函数)(x f y =。
其显函数形式为:.11xy +=例: 圆方程122=+y x 能确定一个定义在[]1,1+-上,函数值不小于0的隐函数21x y -=;又能确定另一个定义在[]1,1+-上,函数值不大于0的隐函数21x y --=。
注.:1)隐函数必须在指出确定它的方程以及y x ,的取值范围后才有意义。
2)当然在不至于产生误解的情况下,其取值范围也可不必一一指明。
3)并不是任一方程都能确定出隐函数,如方程.022=++c y x当0>c 时,就不能确定任何函数()x f ,使得[].0)(22≡++c x f x而只有当0≤c 时,才能确定隐函数。
§18.1隐函数
注1 定理 18.1 的条件 (i) ~ (iv) 既是充分条件, 又
是一组十分重要的条件. 例如: ① F ( x , y ) y 3 x 3 0, Fy (0,0) 0, 在点 (0, 0) 虽 不满足条件 (iv),但仍能确定惟一的隐函数 y x . ② F ( x , y ) ( x 2 y 2 )2 x 2 y 2 0 (双纽线), 在 点 (0, 0) 同样不满足 条件 (iv); 如图18-3
且当 x ( x , x ) 时,有
F ( x , y ) 0, F ( x , y ) 0.
类似于前面 (d) ,由于隐函数惟一,故有
y f ( x) y , x ( x , x ) ,
因此 f ( x ) 在 x 连续. 由 x 的任意性, 便证得 f ( x ) 在 ( x0 , x0 ) 上处处连续.
y0
0 _ _ _
_
O x0
x0 x0 x
O x0
x0 x0 x
(a) 一点正,一片正
(b) 正、负上下分
y0
y
++++
y0
y
++++
y0 y0
O
y0
U ( P0 )
----
x0
x0
x0
x
y0
O x x0 x x 0 0
y
所示, 在该点无论多 么小的邻域内, 确实 不能确定惟一的隐函数.
1
O
1
x
图 18-3
注 2 条件 (iii) 、 (iv) 在证明中只是用来保证在邻
第十八章隐函数及几何应用
一、一个方程的情形
二、方程组的情形
三、小结 思考题
x y 1
2 2
可解出
或
y 1 x2
y 1 x2
隐函数
dy 如何求方程 F ( x, y ) 0所确定的隐函数 y y( x )的导数 ? dx
设y f ( x )
F [ x , f ( x )] 0
u F v F v x x x u G v G u x x x
这是关于 u , v 的 x x 二元线性方程组。
Fu Fv J 0, D Gu Gv
函数行列式(或称雅可比式) F F (F , G ) J u v ( u, v ) G G u v
在点 P ( x0 , y0 , u0 , v0 ) 不等于零,则方程组 F ( x , y , u, v ) 0 、 G ( x , y , u, v ) 0 在点 P ( x0 , y0 , u0 , v0 ) 的某一邻域内恒能唯一确定一 组单值连续且具有连续偏导数的函数 u u( x , y ) ,
w 二阶偏导数, 求 x w f 1 1 f 2 yz 解 x
例4 设z f ( x y z , xyz ),
解
z 求 x
z z z f1 (1 ) f 2 ( yz xy ) x x x
例5
u v u x x y x 0 解 方程两侧同时关于x 求导得 , y u v x v 0 v u x x x y u x x 即 , y u x v v x x
F ( x , y , u, v ) 0 现 G ( x , y , u, v ) 0
第十八章 隐函数定理及其应用
第十八章 隐函数定值及其应用§1 隐函数教学目的 掌握隐函数概念,理解隐函数定理,学会隐函数求导法. 教学要求(1)掌握隐函数存在的条件,理解隐函数定理的证明要点;学会隐函数求导法. (2)掌握隐函数定理的证明. 教学建议(1) 本节的重点是隐函数定理,学会隐函数求导法.要求学生必须熟记隐函数定理的条件与结论,了解隐函数定理的证明要点.(2) 本节的难点是隐函数定理的严格证明,对较好学生在这方面提出要求. 教学程序一、 隐函数概念:隐函数是表达函数的又一种方法. (一)、隐函数及其几何意义: 以0),(=y x F 为例作介绍.(二)、隐函数的两个问题: 1 隐函数的存在性; 2 隐函数的解析性质. 二、 隐函数存在条件的直观意义: 三、 隐函数定理:定理: ( 隐函数存在唯一性定理 ) 若满足下列条件:1 函数),(y x F 在以),(000y x P 为内点的某一区域D 2R ⊂上连续 ;2 ),(00y x F 0=; ( 通常称这一条件为初始条件 )3 在D 内存在连续的偏导数),(y x F y ;4 ),(00y x F y 0=/.则在点0P 的某邻域Y (0P )⊂D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间) , (00αα+-x x 内的隐函数)(x f y =, 使得1 )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x Y (0P )且()0)( , ≡x f x F .2 函数)(x f 在区间) , (00αα+-x x 内连续 .例1 设vw x =2,uw y =2,uv z =2 及 ),,(),,(w v u F z y x f =,证明w v u z y x wF vF uF zf yf xf ++=++证 方程组 ⎪⎩⎪⎨⎧===uvz uw y vw x 222 确定了函数组 ⎪⎩⎪⎨⎧===),,(),,(),,(w v u z z w v u y y w v u x x ,先求这个函数组对各变元的偏导数,为此,对方程组求微分得⎪⎩⎪⎨⎧+=+=+=udv vdu zdz udw wdu ydy vdw wdv xdx 222, 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=dv zu du z v dz dw y u du y w dy dw x v dv x w dx 222222 故 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂w z v z u z w y v y u y w x v x u x ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0 2 2 2 0 2 2 2 0 z uz v y u yw x v x w 将函数组代入方程),,(),,(w v u F z y x f =,得关于变元w v u ,,的方程),,()),,(),,,(),,,((w v u F w v u z w v u y w v u x f =,在这方程两边分别对w v u ,,求偏导,得 u z y xF u z f u y f u x f =∂∂+∂∂+∂∂, v z y x F v z f v y f v x f =∂∂+∂∂+∂∂, w z y x F wz f w y f w x f =∂∂+∂∂+∂∂, 将上面三式分别乘以w v u ,,后再相加,得 ++z uv f y uw f z y22zuvf x vw f z x 22+y uw f x vw f y x 22++,w v u wF vF uF ++=.将vw x =2,uw y =2,uv z =2代入即得w v u z y x wF vF uF zf yf xf ++=++.例2 若),(y x f z =有连续二阶偏导数,满足方程222222)(y x z yz x z ∂∂∂=∂∂∂∂,证明:若把),(y x f z =中y 看成z x ,的函数,则它满足同样形状的方程 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 证 由),(y x f z =确定y 是z x ,的函数,则有)),(,(z x y x f z =,方程两边分别对z x ,求偏导,得xyy f x f ∂∂∂∂+∂∂=0, (1) zyy f ∂∂∂∂=1 , (2) (1)式再分别对z x ,求偏导,得22222222)(20x yy f x y y f x y y x f xf ∂∂∂∂+∂∂∂∂+∂∂∂∂∂+∂∂= , (3) z x yy f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=22220, (4) (2)式再对z 求偏导,得22222)(0z yy f z y y f ∂∂∂∂+∂∂∂∂= , (5) 由(3)(5)式22222)(z y y f x f ∂∂∂∂∂∂])(2[22222222x yy f x y y f x y y x f z y y f ∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂∂∂∂= ])(2[)(22222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂= ])(2[)()(222222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂= (由(5)式)]2[)(2222222222z yx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂=, 由(4)式222222)()(zx y y f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂=∂∂∂∂∂z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=222222222)()( ]2[)(2222222z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=,因为222222)(y x z yz x z ∂∂∂=∂∂∂∂,则]2[)(2222222222zyx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂ ]2[)(2222222z x y y f zy x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=, 结合(4)式得22222)(y f z y x y ∂∂∂∂∂∂][2)(22222222z x yy f z y x y y f z y y x f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂= 22)(zx y y f ∂∂∂∂∂=. 即 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 例3 设 ⎪⎩⎪⎨⎧===0),(0),,(),,,(t z h t z y g t z y x f u ,问什么条件下u 是y x ,的函数啊?求y u x u ∂∂∂∂,。
隐函数定理及其应用
隐函数定理及其应用
隐函数定理是微积分学中的一个重要定理,也是微分几何和微分拓扑等数学分支的基础。
隐函数定理的基本内容是:给定一个多元函数方程组
$f(x_1,x_2,...,x_m,y_1,y_2,...,y_n)=0$,如果在某点
$(x_0,y_0)$处,该方程组满足一定的条件,则在该点附近存在一个函数$y=f(x)$,使得$f(x,f(x))=0$。
这个函数$f(x)$称为隐函数。
隐函数定理的应用非常广泛。
以下是几个常见的应用:
1. 曲线的参数化:对于一个曲线方程$f(x,y)=0$,如果存在一个函数$x=g(t)$和$y=h(t)$,满足$f(g(t),h(t))=0$,则可以用该函数表示原曲线。
这一方法在计算曲线的弧长、曲率等物理量时非常有用。
2. 求解方程:有时候某个方程的显式解法非常困难,可以用隐函数定理将方程转化成隐函数的形式,然后再求解。
3. 函数的导数和高阶导数:由于隐函数和其自变量之间没有显式的表达式,因此难以直接求其导数,但是隐函数定理可以提供求导的一般方法。
在求高阶导数的时候,隐函数定理更是非常重要的工具。
数学分析18.4隐函数定理及其应用之条件极值
第十八章 隐函数定理及其定理4条件极值引例:设计一个容量为V, 而表面积最小的长方形开口水箱. 设水箱的长、宽、高分别为x,y,z ,则表面积为S(x,y,z)=2(xz+yz)+xy. 即面积函数的自变量要符合定义域的要求(x>0,y>0,z>0),且须满足 xyz=V, 这类附有约束条件的极值问题称为条件极值问题.一般形式:在条件组φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 目标函数y=( x 1,…,x n )的极值.解法:1、消元法,如引例中的条件可化为z=xyV,代入函数S 得: F(x,y)=S(x,y,xy V)=2V(x 1+y1)+xy. 由(F x ,F y )=(0,0)求得稳定点(32V ,32V ), 可求得最小面积S=3324V .2、拉格朗日乘数法:欲求函数z=f(x,y)的极值,限制条件为C: φ(x,y)=0. 把C 看作(x,y)的曲线方程,设C 上一点P 0(x 0,y 0)为f 满足条件的极值点, 且在点P 0的某邻域上φ(x,y)=0能惟一确定可微的隐函数y=g(x), 则 x=x 0必为z=f(x,g(x))=h(x)的极值点. 由f 在P 0可微, g 在x 0可微, 可得 h ’(x 0)=f x (x 0,y 0)+f y (x 0,y 0)g ’(x 0)=0, 且当φ满足隐函数定理条件时,有 g ’(x 0)=-),(),(0000y x y x y x ϕϕ, 代入上式得:f x (P 0)φy (P 0)-f y (P 0)φx (P 0)=0. 几何意义上,上式表示曲面z=f(x,y)的等高线f(x,y)=f(P 0)与曲线C 在P 0有公共切线.从而存在某常数λ0, 使得在P 0处满足:⎪⎭⎪⎬⎫==+=+0)(0)()(0)()(0000000P P P f P P f y y x x ϕϕλϕλ,引入辅助变量λ和辅助函数L(x,y,λ)=f(x,y)+ λφ(x,y), 可得⎪⎭⎪⎬⎫===+==+=0)(),,(0)()(),,(0)()(),,(0000000000000000P y x L P P f y x L P P f y x L y y y x x x ϕλϕλλϕλλλ, 即将条件极值问题转化为L 的无条件极值问题,称为拉格朗日乘数法, 其中函数L 称为拉格朗日函数,辅助变量λ称为拉格朗日乘数.注:一般条件极值问题的拉格朗日函数:(λ1,…,λn 为拉格朗日乘数) L(x 1,…,x n ,λ1,…,λm )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ.定理18.6:设在条件φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 函数y=( x 1,…,x n )的极值问题, 其中f 与φk 在区域D 上有连续的一阶偏导数.若D 的内点P 0(01x ,…,0.n x )是上述问题的极值点,且雅可比矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂⋯∂∂⋯⋯∂∂⋯∂∂n mm n x x x x ϕϕϕϕ1111的秩为m, 则存在m 个常数01λ,…,0.m λ,使得 (01x ,…,0.n x ,01λ,…,0.m λ)为拉格朗日函数L(x 1,…,x n ,λ1,…,λn )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ的稳定点, 即(01x ,…,0.n x ,01λ,…,0.m λ)为n+m 个方程⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋯=⋯⋯=⋯==∂∂+∂∂⋯⋯=∂∂+∂∂∑∑==0),,(0),,(011111111111n m n mk n k k nx mk k k x x x L x x L x x f L x x f L m n ϕϕϕλϕλλλ的解.例1:用拉格朗日乘数法重新求本节开头提到的水箱设计问题. 解:所求问题的拉格朗日函数为L(x,y,z,λ)=2(xz+yz)+xy+λ(V-xyz),列方程组得:⎪⎪⎩⎪⎪⎨⎧=-==-+==-+==-+=00220202xyz V L xy y x L xz x z L yz y z L z yx λλλλ,解得:x=y=2z=32V ,λ=324V .∴水箱表面积最小值为:23333)2()22(222V V V V ++=3324V .注:由例1可得不等式:2(xz+yz)+xy ≥3324V =32)(4xyz , x>0,y>0,z>0.例2:抛物面x 2+y 2=z 被平面x+y+z=1截成一个椭圆. 求这个椭圆到原点的最长与最短距离.解:实质为求f(x,y,z)=x 2+y 2+z 2在条件x 2+y 2-z=0及x+y+z-1=0下的最值. 令L(x,y,z,λ,μ)=x 2+y 2+z 2+λ(x 2+y 2-z)+μ(x+y+z-1), 列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++==-+==+-==++==++=0100202202222z y x L z y x L z L y y L x x L z y x μλμλμλμλ, 解得:λ=-3±35,μ=-7±311,x=y=231±-,z=2∓3.又f(231±-,231±-,z=2∓3)=9∓53. ∴椭圆到原点的最长距离为39+, 最短距离39-.例3:求f(x,y,z)=xyz 在条件x 1+y 1+z 1=r1,(x>0, y>0, z>0, r>0)下的极小值,并证明不等式3(a 1+b 1+c1)-1≤3abc , 其中a,b,c 为任意正实数. 解:令L(x,y,z,λ)=xyz+λ(x 1+y 1+z 1-r1), 列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==-==-==-=01111000222r z y x L zxy L y xz L xyz L z y x λλλλ,解得:x=y=z=3r, λ=(3r)4.把x 1+y1+z 1=r1看作隐函数z=z(x,y) (满足隐函数定理条件), 记F(x,y)=xyz(x,y)=f(x,y,z), 它是f 与z=z(x,y)的复合函数. 则有z x =-21x -/21z -=-22x z , z y =-22yz ; F x =yz+xyz x =yz-x yz 2, F y =xz-y xz 2; F xx =yz x +yz x +xyz xx =332x yz , F yy =332yxz , F xy =z+yz y +xz x +xyz xy =z-y z 2-x z 2+xy z 32;∵(F xx F yy -F xy 2)(3r,3r,3r)=27r 2>0, ∴f(3r,3r,3r)=(3r)3极小值, 也是最小值. 即有xyz ≥(3r)3, (x>0, y>0, z>0, 且x1+y1+z 1=r1).令x=a,y=b,x=c, 则r=(a 1+b 1+c 1)-1, 即有abc ≥[3(a 1+b 1+c 1)-1]3,或3(a 1+b 1+c1)-1≤3abc (a>0, b>0, c>0).习题1、应用拉格朗日乘数法,求下列函数的条件极值: (1)f(x,y)=x 2+y 2, 若x+y-1=0;(2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0); (3)f(x,y,z)=xyz, 若x 2+y 2+z 2=1, x+y+z=0.解:(1)令L(x,y,λ)=x 2+y 2+λ(x+y-1), 列方程组:⎪⎩⎪⎨⎧=-+==+==+=010202y x L y L x L y x λλλ,解得:λ=-1, x=y=21. 又当x →∞, y →∞时,f →∞, ∴函数在唯一的稳定点取得极小值f(21,21)=21. (2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0);令L(x,y,z,t,λ)=x+y+z+t+λ(xyzt-c 4), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+==+==+==+=0010101014c xyzt L xyz L xyt L xzt L yzt L tz y x λλλλλ, 解得:x=y=z=t=c.又当n 个正数的积一定时,其和必有最小值,∴函数在唯一的稳定点取得最小值也是极小值f(c,c,c,c)=4c.(3)令L(x,y,z,λ,μ)=xyz+λ(x 2+y 2+z 2-1)+μ(x+y+z), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=++==-++==++==++==++=001020202222z y x L z y x L z xy L y xz L x yz L zy x μλμλμλμλ, 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==616261z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=616261z y x . ∵f 在有界集{(x,y,y)|x 2+y 2+z 2=1, x+y+z=0}上连续,∴存在最值.又f(61,61,-62)=f(-62,-61,61)=f(61,-62,61)=-631,f(-61,-61,62)=f(62,-61,-61)=f(-61,62,-61)=631, ∴f 在(61,61,-62),(-62,-61,61),(61,-62,61)取得极小值-631,在(-61,-61,62),(62,-61,-61),(-61,62,-61)取得极大值631.2、(1)求表面积一定而体积最大的长方体; (2)求体积一定而表面积最小的长方体.解:设长、宽、高分别为x,y,z ,则体积V=xyz, 表面积S=2xy+2yz+2zx,(1)记L(x,y,z,λ)=xyz+λ(2xy+2yz+2zx-S), 有⎪⎪⎩⎪⎪⎨⎧=-++==++==++==++=02220)(20)(20)(2S zx yz xy L y x xy L z x xz L z y yz L z yxλλλλ,解得:x=y=z=6S, ∴体积最大的长方体必在唯一的稳定点取得,即 表面积一定的长方体为正方体时,V=36⎪⎪⎭⎫ ⎝⎛S =66SS最大. (2)记L(x,y,z,λ)=2xy+2yz+2zx+λ(xyz-V), 有⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=0022022022V xyz L xy y x L xz z x L yz z y L z yx λλλλ,解得:x=y=z=3V , ∴表面积最小的长方体必在唯一的稳定点取得,即 体积一定的长方体为正方体时,表面积S=632V 最小.3、求空间一点(x 0,y 0,z 0)到平面Ax+By+Cz+D=0的最短距离.解:由题意,相当于求f(x,y,z)=d 2=(x-x 0)2+(y-y 0)2+(z-z 0)2在条件 Ax+By+Cz+D=0下的最小值问题.由几何学知,空间定点到平面的最短距离存在,可设L(x,y,z,λ)=(x-x 0)2+(y-y 0)2+(z-z 0)2+λ( Ax+By+Cz+D), 列方程组有⎪⎪⎩⎪⎪⎨⎧=+++==+-==+-==+-=00)(20)(20)(2000D Cz By Ax L C z z L B y y L A x x L z y x λλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=-+++++=-+++++=-222000022200002220000)()()(C B A D Cz By Ax C z z C B A D Cz By Ax B y y C B A D Cz By Ax A x x , ∴f 的最小值必在惟一的稳定点取得,即 d=202020)()()(z z y y x x -+-+-=222000||CB A D Cz By Ax +++++为所求最短距离.4、证明:在n 个正数的和为定值条件x 1+x 2+…+x n =a 下,这n 个正数的乘积x 1x 2…x n 的最大值为n nna . 并由此结果推出n 个正数的几何平均值不大于算术平均值n n x x x ⋯21≤nx x x n+⋯++21.证:记L(x 1,x 2,…,x n ,λ)=x 1x 2…x n +λ(x 1+x 2+…+x n -a), (x 1,x 2,…,x n >0)列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-+⋯++==+⋯=⋯⋯=+⋯⋯=⋯⋯=+⋯==+⋯=-+-000002112111214313221a x x x L x x x L x x x x x L x x x x L x x x L n n x nk k x n x n x n k λλλλλ, 解得:x 1=x 2=…=x n =n a. ∴最大值必在惟一的稳定点取得,即f(n a ,n a ,…,n a )=n nna 最大.又x 1x 2…x n ≤n n n a ,∴n n x x x ⋯21≤na =n x x x n+⋯++21.5、设a 1,a 2,…,a n 为已知的n 个正数,求f(x 1,x 2,…,x n )=∑=nk k k x a 1在限制条件x 12+x 22+…+x n 2≤1下的最大值. 解:记x 12+x 22+…+x n 2=r ≤1, L(x 1,x 2,…,x n ,λ)=∑=nk k k x a 1+λ(x 12+x 22+…+x n 2-r),列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+⋯++==+=⋯⋯=+==+=rx x x L x a L x a L x a L n nn x x x n22221221102020221λλλλ, 解得:x i =∑=±nk kiaa r 12, (i=1,2,…,n)可知,当x i =∑=±nk kiaa r 12, 且r=1时,取得最大值f M =∑=nk ka12.6、求函数f(x 1,x 2,…,x n )=x 12+x 22+…+x n 2在条件∑=nk k kx a1=1(a k >0,k=1,2,…,n)下的最小值. 解:记L(x 1,x 2,…,x n ,λ)=x 12+x 22+…+x n 2+λ(∑=nk k kx a1-1),列方程组有⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+=⋯⋯=+==+=∑=10202021221121n k k k n n x x x x a L a x L a x L a x L n λλλλ, 解得:x i =∑=n k k i a a 12, (i=1,2,…,n),∴函数在唯一的稳定点取得最小值F m =∑=nk ka121.7、利用条件极值方法证明不等式xy 2z 3≤10866⎪⎭⎫⎝⎛++z y x , x,y,z>0.证 :记L(x,y,z,λ)=xy 2z 3+λ(x+y+z-a), (x,y,z>0, a>0),列方程组有⎪⎪⎩⎪⎪⎨⎧=-++==+==+==+=00302022332a z y x L z xy L xyz L z y L z yxλλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧===236a z a y a x , 又当n 个正数的和一定时,其积必有最大值,∴xy 2z 3≤32236⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a a =6633322⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯a =10866⎪⎭⎫⎝⎛++z y x .。
高等数学第18章第1节隐函数
第十八章 隐函数定理及其应用§1 隐函数一 、 隐函数概念(P144)在这之前我们所接触的函数,其表达式大多是自变量的某个算式,如 12+=x y ,).sin sin (sin zx yz xy eu xyz++=这种形式的函数称为显函数。
但在不少场合常会遇到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式或方程组所确定。
这种形式的函数我们称为隐函数。
☆ 本节将介绍由一个方程0),,(=z y x F 所确定的隐函数求导法;☆ 下一节将介绍由方程组⎩⎨⎧==0),,,,(0),,,,(v u z y x G v u z y x F 所确定的隐函数求导法。
设R X ⊂,R Y ⊂,函数.:R Y X F →⨯注.:1)定义中的)(x f y = ,,J y I x ∈∈仅表示定义域为I,值域为J 的函数,而y 未必能 用x 的显式表示2)隐函数是表达函数的又一种方法. 是用隐形关系式表示函数关系的一种。
结论..:若由..0),(=y x F 确定..的隐函数为.....)(x f y =.,J y I x ∈∈则成立恒等式.......,0))(,(I x x F x F ∈≡例: 方程 01=-+y xy ,当x 定义在),1()1,(+∞---∞ 上时,可得隐函数)(x f y =。
其显函数形式为:.11xy +=例: 圆方程122=+y x 能确定一个定义在[]1,1+-上,函数值不小于0的隐函数21x y -=;又能确定另一个定义在[]1,1+-上,函数值不大于0的隐函数21x y --=。
注.:1)隐函数必须在指出确定它的方程以及y x ,的取值范围后才有意义。
2)当然在不至于产生误解的情况下,其取值范围也可不必一一指明。
3)并不是任一方程都能确定出隐函数,如方程.022=++c y x当0>c 时,就不能确定任何函数()x f ,使得[].0)(22≡++c x f x而只有当0≤c 时,才能确定隐函数。
隐函数定理附其应用
第十八章 隐函数定理及其应用一、证明题1.证明:设方程F(x,y)=0所确定的隐函数y=f(x)具有二阶导数,则当 时,有2.设tgxy u =,x sin y v =.证明:当2x 0π<<,y>0时,u,v 可以用来作为曲线坐标;解出x,y 作为u,v 的函数;画出xy 平面上u=1,v=2所对应的坐标曲线;计算()()y ,x v ,u ∂∂和()()v ,u y ,x ∂∂并验证它们互为倒数. 3.将以下式子中的(x,y,z)变换成球面从标()ϕθ,,r 的形式:2221z u y u x u u ⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∆, 2222222zu y u x u u ∂∂+∂∂+∂∂=∆. 4.证明对任意常数ρ,ϕ,球面2222z y x ρ=++与锥面2222z tg y x ⋅ϕ=+是正交的.5.试证明:函数()y ,x F 在点()000y ,x P 的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数).6.证明:在n 个正数的和为定值条件x 1+x 2+x 3+…+x n =a 下,这n 个正数的乘积x 1x 2x 3…x n 的最大值为n nha .并由此结果推出n 个正数的几何中值不大于算术中值.≤⋅⋅⋅⋅n n 21x x x nx x x n 21+⋅⋅⋅++二、计算题1.方程 能否在原点的某邻域内确定隐函数 或 .2.方程 在点(0,1,1)的某邻域内能否确定出一个变量为另外两个变量的函数.3.求下列方程所确定的隐函数的偏导数:(1)x+y+z= ,求Z 对x,y 的一阶与二阶偏导数;(2)F(x,x+y,x+y+z)=0,求 , 和 .4.设f 是一元函数,试问应对f 提出什么条件,方程2f(xy)= f(x)+f(x)在点(1,1)的邻域内就能确定出唯一的y 为x 的函数?1.试讨论方程组⎪⎩⎪⎨⎧=++=+2z y x 2z y x 22y 在点(1,-1,2)的附近能否确定形如x=f(z),y=g(z)的隐函数组.5.求下列方程组所确定的隐函数组的导数:(1)⎪⎩⎪⎨⎧=+=++axy x a z y x 222222, 求x y ∂∂,x z ∂∂; (2)⎪⎩⎪⎨⎧=--=--0xu v y 0yv u x 2222, 求x u ∂∂,x v ∂∂,y u ∂∂,y v ∂∂. (3)()()⎩⎨⎧-=+=y v ,x u g v y v .ux f u 2, 求x u ∂∂,x v ∂∂. 6.求下列函数组所确定的反函数组的偏导数:(1)⎪⎩⎪⎨⎧-=+=,v cos u e y ,v sin u e x u u 求y x y x v ,v ,u ,u ; (2)⎪⎩⎪⎨⎧+==+=3322v u z v u y ,v u x ,求x z .7.设函数z=z(x,y)由方程组v u e x +=,v u e y -=,uv z =(u,v 为参量)所定义的函数,求当u=0,v=0时的dz.8.设u,v 为新的自变量变换下列方程:(1)()()0yz y x x z y x =∂∂--∂∂+,设22y x ln u +=, x y arctg v =; (2)0y z y x z x 222222=∂∂-∂∂,设xy u =,y x v =. 9.设函数u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0所确定,求x u ∂∂和yu ∂∂. 10.设2r x u =,2r y v =,2rz w =,其中222z y x r ++=, (1)试求以u,v,w 为自变量的反函数组;(2)计算()()z ,y ,x w ,v ,u ∂∂. 11.求平面曲线323232a y x =+()0a >上任何一点处的切线方程,并证明这些切线被坐标轴所截取的线段等长.12.求下列曲线在所示点处的切线方程与法平面:(1)t sin a x 2=,t cos sin b y =,t cos c z 2=在点4t π=; (2)9z y 3x 2222=++.222y x 3z +=,在点(1,-1,2).13.求下列曲线在所示点处的切平面与切线:(1)0e y z x 2==-,在点(1,1,2); (2)1c z b y a x 222222=++,在点(3a ,3b 3c ). 14.求曲面上过点21z 3y 2x 222=++的切平面,使它平行于平面0z 6y 4x =++.15.在曲线x=t,2t y =,3t z =上求出一点,使曲线在此点处的切线平行于平面x+2y+z=4.16.求函数222z y x x u ++=在点M(1,2,-2)处沿曲线x=t,2t 2y =,4t 2z -=在该点切线方向上的方向导数. 17.确定正数λ,使曲面λ=xyz 与椭球面++2222b y a x 1cz 22=在某一点相切. 18.求曲面x z y x 222=++的切平面,使其垂直于平面2z 21y x =--和2z y x =--. 19.求两曲面F(x,y,z)=0,G(x,y,z)=0的交线在xy 平面上的投影曲线的切线方程.20.应用拉格朗日乘数法,求下列函数的条件极值:(1)f(x,y)=22y x +,若x+y-1=0(2)f(x,y,z,t)=x+y+z+t,若xyzt=c 4(其中x,y,z,t>0,c>0);(3)f(x,y,z)=xyz,若222z y x ++=1,x+y+z=0.21.(1)求表面积一定而体积最大的长方体.(2)求体积一定而表面积最小的长方体.22.(1)求空间一点()000z ,y ,x 到平面Ax+By+Cz+D=0的最短距离.(2)求原点到二平面1111d z c y b x a =++, ++y b x a 22 22d z c =的交线的最短距离.23.设a 1,a 2,…,a n 为已知的n 个正数,求()n 21x ,,x ,x f ⋅⋅⋅=∑=n1k k k x a 在限制条件1x x x 2n 2221≤+⋅⋅⋅++ 下的最大值.24.求函数 ()n 21x ,,x ,x f ⋅⋅⋅=2n 2221x x x +⋅⋅⋅++在条件∑==n1k k k 1x a,()n ,,2,1k ,0a k ⋅⋅⋅=> 下的最小值.三、考研复习题1.方程()222x 1x y --=0在那些点的邻域内可唯一地确定连续可导的隐函数y=()x f ?2.设函数f(x)在区间(a,b)内连续,函数()y ϕ在区间(c,d)内连续,而()0y >ϕ'.问在怎样的条件下,方程()()x f y =ϕ能确定函数y=()()x f 1-ϕ.并研究例子:(Ⅰ)siny+shy=x;(Ⅱ)x sin e 2y -=-. 3.设f(x,y,z)=0,z=g(x,y),试求dx dy ,dxdz . 4.已知G 1(x,y,z),G 2(x,y,z),f(x,y)都是可微的, g i (x,y)= G i (x,y, f (x,y)),(i=1,2) 证明: ()()y ,x g ,g 21∂∂=2z2y 2x 1z 1y 1x y x G G G G G G 1 f ,f --. 5.设x=f(u,v,w),y=g(u,v,w),z=h(u,v,w).求x u ∂∂,y u ∂∂,zu ∂∂.6.试求下列方程所确定的函数的偏导数x u ∂∂,yu ∂∂: (1)x 2+u 2=f(x,u)+g(x,y,u)(2)u=f(x+u,yu)7.据理说明:在点(0,1)近傍是否存在连续可微的f(x,y)和g(x,y).满足f(0,1)=1,g(0,1)=-1,且()[]3y ,x f +xg(x,y)-y=0, ()[]3y ,x g +yf(x,y)-x=0.8.设()0000u ,z ,y ,x 满足方程组()()()()u F z f y f x f =++()()()()u G z g y g x g =++()()()()u H z h y h x h =++这里所有的函数假定有连续的导数.(1)说出一个能在该点邻域内确定x,y,z 作为u 的函数的充分条件;(2)在f(x)=x.,g(x)=x 2,h(x)=x 3的情形下,上述条件相当于什么?9.求下列由方程所确定的陷函数的极值:(1)1y 2xy 2x 22=++(2)()()222222y x a y x -=+,(a>0) 10.设f=F(x)和一组函数()v ,u x ϕ=,()v ,u y φ=,那么由方程()()()v ,u F v ,u ϕ=ϕ可以确定函数v=v(u).试用u,v ,du dv ,22du v d 表示dx dy ,22dx y d . 11.试证明:二次型()z ,y ,x f =Fxy 2Ezx 2Dyz 2Cz By Ax 222+++++在单位球面 1z y x 222=+上的最大值和最小值恰好是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ΦC D E D B F E F A 的最大特征值和最小特征值.12.设n 为自然数,0y ,x ≥,用条件极值方法证明:2y x n n + ()2y x n+≥ 13.求出椭球22a x +22b y +22cz =1在第一卦限中的切平面与三个坐标面所成四面体的最小体积. 14.设()0000z ,y ,x P 是曲面F(x,y,z)=1的非奇异点,F 在U(p 0)可微,且为n 次齐次函数.证明:此曲面在P 0处的切平面方程为()0x P XF +()0y P yF +()0z P ZF =n.。
第 十 八 章 隐 函 数 定 理 及 其 应 用 - 河南教育学院
2o f ( x ) 在 ( x0 − α , x0 + α ) 上连续. 上连续.
前页 后页 返回
既是充分条件, 注1 定理 18.1 的条件 (i) ~ (iv) 既是充分条件 又 是一组十分重要的条件. 例如: 是一组十分重要的条件 例如: ① F ( x , y ) = y 3 − x 3 = 0 , F y ( 0,0 ) = 0 , 在点 ( 0 , 0 ) 虽 不满足条件 (iv),但仍能确定惟一的隐函数 y = x . , 双纽线), ② F ( x , y ) = ( x 2 + y 2 ) 2 − x 2 + y 2 = 0 (双纽线 在 双纽线 点 ( 0 , 0 ) 同样不满足 如图18- 条件 (iv); 如图 -3
x 2 + y 2 + 1 = 0 显然不能确定任何隐函数. 例如 显然不能确定任何隐函数.
注3 隐函数一般需要同时指出自变量与因变量的
x 2 + y 2 = 1 可确定如下两 取值范围. 取值范围.例如由方程
个函数: 个函数:
前页 后页 返回
y = f1 ( x ) ( =
1 − x2 ),
x ∈ [−1 , 1 ], y ∈ [ 0 , 1 ] ;
Fx ( x , y ) f ′( x ) = − , ( x, y) ∈ I × J . Fy ( x , y )
( 注: 其中
I = ( x0 − α , x0 + α ) 与 J = ( y0 − β , y0 + β )
(2)
示于定理18.1 的证明 (d) ). 示于定理
前页 后页 返回
存在二阶连续偏导数时, 注1 当 F ( x , y ) 存在二阶连续偏导数时,所得隐函 数也二阶可导.应用两次复合求导法, 数也二阶可导.应用两次复合求导法,得
数学分析18.3隐函数定理及其应用之几何应用
第十八章 隐函数定理及其定理3几何应用一、平面曲线的切线与法线设平面曲线由方程F(x,y)=0给出,它在点P 0(x 0,y 0)的某邻域上满足隐函数定理条件,于是在点P 0附近所确定的连续可微隐函数y=f(x)(或x=g(y))和F(x,y)=0在点P 0附近表示同一曲线,从而该曲线在P 0存在切线和法线,其方程分别为:y-y 0=f ’(x 0)(x-x 0) 或(x-x 0=g ’(y 0)(y-y 0)) 与y-y 0=-)(x f 10'(x-x 0) 或(x-x 0=-)(y g 10'(y-y 0)). ∵f ’(x)=-y x F F (或g ’(y)=-xy F F ),∴F(x,y)=0在点P 0的切线与法线方程为:F x (x 0,y 0)(x-x 0)+F y (x 0,y 0)(y-y 0)=0与F y (x 0,y 0)(x-x 0)-F x (x 0,y 0)(y-y 0)=0.例1:求笛卡儿叶形线2(x 3+y 3)-9xy=0在点(2,1)的切线与法线. 解:记F=2(x 3+y 3)-9xy, 则F x =6x 2-9y, F y =6y 2-9x 在R 2连续,且 F x (2,1)=15≠0, F y (2,1)=-12≠0, ∴曲线在(2,1)的切线与法线分别为: 15(x-2)-12(y-1)=0, 即5x-4y-6=0,与-12(x-2)-15(y-1)=0, 即4x+5y-13=0.二、空间曲线的切线与法平面由参数方程x=x(t), y=y(t), z=z(t), α≤t ≤β确定的空间曲线L 上一点P 0(x 0,y 0,z 0),有x 0=x(t 0),y 0=y(t 0),z 0=z(t 0), α≤t 0≤β,假定它们都在t 0处可导,且[x ’(t 0)]2+[y ’(t 0)]2+[z ’(t 0)]2≠0. 在L 上点P 0附近选取一点 P(x,y,z)=P(x 0+△x,y 0+△y,z 0+△z), 割线P 0P 为:x x -x 0∆=y y -y 0∆=zz -z 0∆,其中△x=x(t 0+△t)-x(t 0), △y=y(t 0+△t)-y(t 0), △z=z(t 0+△t)-y(t 0), 又t x/x -x 0∆∆=t y/y -y 0∆∆=t z/z -z 0∆∆,当△t →0时, P →P 0,且t x ∆∆→x ’(t 0), ty∆∆→y ’(t 0), tz∆∆→z ’(t 0), 即得曲线L 在P 0处的切线方程为:)t (x x -x 00'=)t (y y -y 00'=)t (z z -z 00'.可知,当x ’(t 0), y ’(t 0), z ’(t 0)不全为0时,它们组成了该切线的方向数. 过P 0与切线l 垂直的平面称为曲线L 在点P 0的法平面, 其方程为: x ’(t 0)(x-x 0)+y ’(t 0)(y-y 0)+z ’(t 0)(z-z 0)=0.当空间曲线L 由方程组⎩⎨⎧==0z)y,G(x,0z)y,F(x,给出时,若它在点P 0(x 0,y 0,z 0)的某邻域上满足隐函数组定理的条件(不妨设条件(4)为P y),x ()G (F,∂∂≠0),则该方程组在点P 0附近能确定惟一连续可微的隐函数组x=φ(z),y=ψ(z),使 x 0=φ(z 0),y 0=ψ(z 0),且zx ∂∂=-y),z ()G (F,∂∂/y),x ()G (F,∂∂, z y ∂∂=-z),x ()G (F,∂∂/y),x ()G (F,∂∂. 又在点P 0附近,原方程组和由其确定的隐函数组表示同一空间曲线, ∴以z 为参量时,可得点P 0附近曲线L 的参量方程:x=φ(z),y=ψ(z),z=z. ∴曲线L 在P 0处的切线方程为:)P (x x -x 0z 0=)P (y y -y 0z 0=1z -z 0,即0P 0z),y ()G (F,x -x ∂∂=0P 0x),z ()G (F,y -y ∂∂=0P 0y),x ()G (F,z -z ∂∂.曲线L 在P 0处的法平面方程为:0P z),y ()G (F,∂∂(x-x 0)+0P x),z ()G (F,∂∂(y-y 0)+0P y),x ()G (F,∂∂(z-z 0)=0.同理可推得,当0P z),y ()G (F,∂∂≠0或0P x),z ()G (F,∂∂≠0时,结论相同.可见,当0P y),x ()G (F,∂∂,0P z),y ()G (F,∂∂,0P x),z ()G (F,∂∂不全为0时,它们是L 在P 0处的切线的方向数.例2:求球面x 2+y 2+z 2=50与锥面x 2+y 2=z 2所截出的曲线在(3,4,5)处的切线与法平面方程.解:记F=x 2+y 2+z 2-50, G=x 2+y 2-z 2,∵F x =G x =2x, F y =G y =2y, F z =2z, G z =-2z 在(3,4,5)都连续, 又y),x ()G (F,∂∂=0, 0P z),y ()G (F,∂∂=-160, 0P x),z ()G (F,∂∂=120, ∴曲线在P 0处的切线方程为:1603-x -=1204-y =05-z , 即⎩⎨⎧==+5z 04)-4(y 3)-3(x ;法平面方程为:-4(x-3)+3(y-4)+0(z-5)=0, 即4x-3y=0.三、曲面的切平面与法线设曲面由方程F(x,y,z)=0给出,它在点以P 0(x 0,y 0,z 0)的某邻域内满足隐函数定理条件(不妨设F z (x 0,y 0,z 0)≠0),则该方程在点P 0附近确定惟一连续可微的隐函数z=f(x,y),使得z 0=f(x 0,y 0), 且z x ∂∂=-)z y,(x ,F )z y,(x ,F zx , z y ∂∂=-)z y,(x,F )z y,(x,F z y .由于在点P 0附近F(x,y,z)=0与z=f(x,y)表示同一曲面, 从而该曲面在P 0处有切平面方程为:z-z 0=-)z ,y ,(x F )z ,y ,(x F 000z 000x (x-x 0)-)z ,y ,(x F )z ,y ,(x F 000z 000y (y-y 0)或F x (x 0,y 0,z 0)(x-x 0)+F y (x 0,y 0,z 0)(y-y 0)+F z (x 0,y 0,z 0)(z-z 0)=0. 法线方程为:)z ,y ,(x F )z ,y ,(x F x -x 000z 000x 0-=)z ,y ,(x F )z ,y ,(x F y -y 000z 000y 0-=1z -z 0- 或)z ,y ,(x F x -x 000x 0=)z ,y ,(x F y -y 000y 0=)z ,y ,(x F z -z 000z 0.其中,两方程的第二种形式对F x (x 0,y 0,z 0)≠0或F y (x 0,y 0,z 0)≠0也适合.注:1、函数F(x,y,z)在点P(x,y,z)的梯度gradF(P)就是等值面F(x,y,z)=c 在点P 的法向量n=(F x (P),F y (P),F z (P)). 2、将曲线L :⎩⎨⎧==0z)y,G(x,0z)y,F(x,看成两个曲面F(x,y,z)=0和G(x,y,z)=0的交线,则L 在点P 0的切线与两个曲面在P 0的法线都垂直,这两个法向量为n 1=(F x ,F y ,F z )|0P 与n 2=(G x ,G y ,G z )|0P ,即 L 在P 0的切向量可取n 1与n 2的向量积τ=n 1×n 2=)()()()()()(000000P G P G P G P F P F P F kj i z y x z y x =i P 0)z (y,)G (F,∂∂+j P 0)x (z,)G (F,∂∂+k P 0)y (x,)G (F,∂∂.例3:求椭球面x 2+2y 2+3z 2=6在(1,1,1)处的切平面方程与法线方程. 解:设F(x,y,z)=x 2+2y 2+3z 2-6, F x =2x, F y =4y, F z =6z 在全空间上处处连续, 在(1,1,1)处,F x =2, F y =4, F z =6,∴切平面方程为2(x-1)+4(y-1)+6(z-1)=0, 法线方程为:11-x =21-y =31-z .例4:证明:曲面f ⎪⎭⎫⎝⎛c -z b -y ,c -z a -x =0的任一切平面都过某个定点,其中f 是连续可微函数. 解:令F(x,y,z)=f ⎪⎭⎫⎝⎛c -z b -y ,c -z a -x ,∵(F x ,F y ,F z )=⎪⎪⎭⎫⎝⎛+-22121c)-(z b)f -(y a)f -(x ,c -z f ,c -z f , ∴曲面在其上任意一点P 0(x 0,y 0,z 0)的法向量可取为: n=⎪⎪⎭⎫⎝⎛+-c -z )(b)f -(y )(a)f -(x ),(f ),(f 00200100201P P P P , 由此可得切平面方程: f 1(P 0)(x-x 0)+f 2(P 0)(y-y 0)-c-z )(b)f -(y )(a)f -(x 0020010P P +(z-z 0)=0.以(x,y,z)=(a,b,c)代入切平面方程,可得:f 1(P 0)(a-x 0)+f 2(P 0)(b-y 0)-c-z )(b)f -(y )(a)f -(x 0020010P P +(c-z 0)≡0,即定点(a,b,c)在曲面的任一切平面上.习题1、求平面曲线32x +32y =32a (a>0)上任一点处的切线方程,并证明这些切线被坐标轴所截取的线段等长. 解:记F(x,y)=32x +32y -32a , 则F x =3x32, F y =3y32,∴曲线上任一点(x 0,y 0)处的切线方程为:3x 1(x-x 0)+3y 1(y-y 0)=0, 即3x x+3y y=32a . 切线与在坐标轴上的截距分别为320a x 与320a y ,∴切线被坐标轴所截取的线段为()()23202320a y a x +=a, 得证!2、求下列曲线在所示点处的切线与法平面: (1)x=asin 2t, y=bsintcost, z=ccos 2t, 在点t=4π; (2)2x 2+3y 2+z 2=9,z 2=3x 2+y 2, 在点(1,-1,2). 解:(1)∵x ’(4π)=a, y ’(4π)=0, z ’(4π)=-c,∴切线方程为:a 2a -x =02b -y =c 2c -z -, 即⎪⎩⎪⎨⎧==+2b y 1c z a x .法平面方程为:a(2a -x )-c(2c -z )=0, 即ax-cz=21(a 2-c 2).(2)记F(x,y,z)=2x 2+3y 2+z 2-9, G(x,y,z)=3x 2+y 2-z 2, 则 F x =4x,F y =6y,F z =2z; G x =6x,G y =2y,G z =-2z; ∴(1,-1,2)y),x ()G (F,∂∂=28; (1,-1,2)z),y ()G (F,∂∂=32;(1,-1,2)x),z ()G (F,∂∂=40;∴切线方程为:81-x =101y +=72-z . 法平面方程为:8(x-1)+10(y+1)+7(z-2)=0.3、求下列曲面在所示点处的切平面与法线: (1)y-e2x-z=0, 在点(1,1,2);(2)222222c z b y a x ++=1, 在点⎪⎪⎭⎫⎝⎛3c ,3b ,3a . 解:(1)记F=y-e 2x-z , 则F x (1,1,2)=-2, F y (1,1,2)=1, F z (1,1,2)=1, ∴切平面方程为:-2(x-1)+(y-1)+(z-2)=0; 法线方程为:2-1-x =y-1=z-2. (2)记F=222222c z b y a x ++-1, 则在点⎪⎪⎭⎫⎝⎛3c ,3b ,3a , F x =a 32, F y =b 32, F z =c 32. ∴切平面方程为:a1(x-3a )+b 1(y-3b )+c 1(z-3c )=0, 即a x +b y +c z=3;法线方程为:a(x-3a )=b(y-3b )=c(z-3c ).4、证明对任意常数ρ,φ,球面x 2+y 2+z 2=ρ2与锥面x 2+y 2=z 2tan 2φ正交. 证:设(x,y,z)是球面与锥面交线上的任一点,则 球面上该点的法向量为1n =(2x,2y,2z), 锥面上该点的法向量为2n =(2x,2y,-2ztan 2φ),∵21n n =4x 2+4y 2-4z 2tan 2φ=0, ∴对任意常数ρ,φ,球面与锥面正交.5、求曲面x 2+2y 2+3z 2=21的切平面,使它平行于平面x+4y+6z=0. 解:记F(x,y,z)=x 2+2y 2+3z 2-21, 在曲面上的任一点(x 0,y 0,z 0)有, F x (x 0,y 0,z 0)=2x 0, F y (x 0,y 0,z 0)=4y 0, F z (x 0,y 0,z 0)=6z 0,∴曲面在该点的切平面方程为:2x 0(x-x 0)+4y 0(y-y 0)+6z 0(z-z 0)=0, 即 x 0x+2y 0y+3z 0z-21=0. ∵2x 0=y 0=z 0, 代入曲面方程得:x 02+8x 02+4x 02=21, 解得:x 0=±1,∴曲平面在(1,2,2)和(-1,-2,-2)处有符合条件的切平面:x+4y+6z=±21.6、在曲线x=t, y=t 2, z=t 3上求出一点,使曲线在此点的切线平行于平面x+2y+z=4.解:∵x t =1, y t =2t, z=3t 2, 设在t=t 0处切线平行于平面x+2y+z=4, 则(1,2t 0,3t 02)(1,2,1)=0, 即1+4t 0+3t 02=0,解得t 0=-1或t 0=-31. ∴所求的点为(-1,1,-1)或(-31,91,-271).7、求函数u=222z y x x ++在点M(1,2,-2)沿曲线x=t, y=2t 2, z=-2t 4在该点切线的方向导数.解 :∵曲线过点(1,2,-2), ∴t 0=1; ∵x t (t 0)=1, y t (t 0)=4, z t (t 0)=-8. ∴曲线在点M 的切线的方向余弦为:91, 94, -98. 又 u x (M)=278, u y (M)=-272, u z (M)=272; ∴所f 求方向导数为: 91278⋅+94272⋅⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⋅98272=-24316.8、试证明:函数F(x,y)在点P 0(x 0,y 0)的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数).证: F 的等值线为F(x,y)=c, 它在点P 0的切线方程为: F x (x 0,y 0)(x-x 0)+F y (x 0,y 0)(y-x 0)=0. ∴等值线在点P 0的法向量为: (F x (x 0,y 0),F y (x 0,y 0)), 恰为函数F 在点P 0梯度,得证!9、确定正数λ, 使曲面xyz=λ与椭球面22a x +22b y +22cz =1在某一点相切(即在该点有公共切平面).解:设两曲面在点P 0(x 0,y 0,z 0)相切,则曲面xyz=λ在点P 0的切平面: y 0z 0(x-x 0)+x 0z 0(y-y 0)+x 0y 0(z-z 0)=0与椭球面在点P 0的切平面:20a x (x-x 0)+20b y (y-y 0)+2c z (z-z 0)=0是同一平面,∴0020z y a x =0020z x b y =0020y x c z , 即220a x =220b y =220c z , 又220a x +220b y +220c z =1, ∴220a x =220b y =220cz =31,∴x 02y 02z 02=271a 2b 2c 2,∴λ=x 0y 0z 0=33|abc |.10、求x 2+y 2+z 2=x 的切平面, 使其垂直于平面x-y-21z=2和x-y-z=2. 解:设曲面在点P 0(x 0,y 0,z 0)处的切平面垂直于所给两平面,由 曲面在P 0处切平面方程:(2x 0-1)(x-x 0)+2y 0(y-y 0)+2z 0(z-z 0)=0知P 0应满足:⎪⎪⎩⎪⎪⎨⎧=++=--⋅-=--⋅-0202020000000xz y x 0)1,1,1()z 2,y 2,1x 2(0)21,1,1()z 2,y 2,1x 2(, 解得:x 0=422±, y 0=42±, z 0=0, ∴所求切平面为:x+y=221±.11、求双曲面F(x,y,z)=0, G(x,y,z)=0的交线在xy 平面上的投影曲线的切线方程.解:对方程组F(x,y,z)=0, G(x,y,z)=0关于z 求导得:⎪⎩⎪⎨⎧=++=++00z y x z y x G dz dy G dzdx G F dz dy F dz dx F , 解得:dz dx =),(),(z y G F ∂∂/),(),(y x G F ∂∂,dz dy =),(),(x z G F ∂∂/),(),(y x G F ∂∂, ∴交线在xy 平面上的投影曲线的切线方程为: (x-x 0)/0P dz dx =(y-y 0)/0P dzdy ,即(x-x 0)/),(),(P z y G F ∂∂=(y-y 0)/),(),(P x z G F ∂∂.。
数学分析华东师大第四版18章_隐函数的定理及应用
F 当 0(即x y )时, y 根据隐函数的求导公式 可得 Fx x y dy . dx Fy x y
例题
求由方程F ( x, y ) x y 3xy 0
3 3
所确定的隐函数 y f ( x)的导数. 解答 : F F 2 2 3 x 3 y, 3 y 3x. x y F 当 0时, 根据隐函数的求导公式 可得 y Fx dy 3x 2 3 y x2 y 2 2 . dx Fy 3 y 3x y x
方程F ( x, y ) x 2 y 2 1 0 无法确定隐函数 y f ( x), 使得F ( x, f ( x)) 0. 所以我们讨论隐函数时 , 必须指出确定它的方程 F ( x, y ) 0 以及x, y的取值范围 (即函数的定义域和值域 )
隐函数的求导法
对于一个方程 F ( x, y ) 0, 假设由此方程确定了一 个隐函数y f ( x)且可导, 将它代入到方程之中则 得到恒等式 F ( x, f ( x)) 0. 再假设F ( x, y )具有连续的偏导数, 则对上式F ( x, f ( x)) 0两端关于自变量 x求导, 根据复合函数求偏导数 的链式法则可知 Fx Fy dy 0. dx
隐函数的二阶求导法
dy 然后对上式Fx Fy 0两端 dx 关于自变量x再求导, 再次根据复合函数求偏 导数的链式法则可知 dy dy dy d2y (Fxx Fxy dx) (Fyx Fyy0时, y' ' Fxx 2 Fxy y ' Fyy ( y ' ) 2 Fy (隐函数的二阶求导公式 ),
例题
设方程F ( x y, y z, x z ) 0 所确定的隐函数为 z f ( x, y ). z z 求偏导数 和 . x y
第十八章 隐函数定理及其应用
图 18-1
(a) “一点正, 一片正 ” 由条件 (iv), 不妨设
Fy ( x0 , y0 ) 0. 因为 Fy( x, y) 连续,所以根据
保号性, 0, 使得
y
y0
y0
y0
S +
+ +
+ + +
+++++++++++++•+++++++++++++++++++++
O x0 x0 x0 x
(a) 把上述 y f ( x) 看作曲面 z F( x, y) 与坐标 平面 z 0 的交线,故至少要求该交集非空,即 P0( x0 , y0 ),满足 F ( x0 , y0 ) 0 , y0 f ( x0 ) . (b) 为使 y f ( x) 在 x0 连续,故要求 F ( x, y) 在点 P0 连续是合理的.
(c) 为使 y f ( x) 在 x0 可导,即曲线 y f ( x) 在 点 P0 存在切线,而此切线是曲面 z F ( x, y) 在点 P0 的切平面与 z 0 的交线,故应要求 F ( x, y) 在 点 P0 可微,且 (Fx ( x0 , y0 ), Fy ( x0 , y0 )) (0, 0).
注1 隐函数一般不易化为显函数,也不一定需要 化为显函数.上面把隐函数仍记为 y f (x),这 与它能否用显函数表示无关.
注2 不是任一方程 F(x, y) 0 都能确定隐函数, 例如 x2 y2 1 0 显然不能确定任何隐函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章 隐函数定理及其应用§1 隐函数教学目的与要求:(1) 掌握隐函数存在的条件,理解隐函数定理的证明要点;(2) 掌握隐函数定理的证明(3) 学会隐函数求导法教学重点,难点:重点:隐函数定理;学会隐函数求导法,隐函数组存在定理难点:隐函数定理的严格证明;隐函数求导法教学内容:一、 隐函数概念隐函数是表达函数的又一种方法.显函数:表达式大多是自变量的某个算式,例如21y x =+,(sin sin sin )xyz u e xy yz zx =++等等.但还有另外一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式所确定,我们把这种函数称为隐函数.定义:设X R ⊂,Y R ⊂,函数:F X Y R ⨯→. 对于方程(,)0F x y =, (1)若存在集合I X ⊂,J Y ⊂,使得对于任何x I ∈,恒有唯一确定的y J ∈,它与x 一起满足方程(1). 则称由方程(1)确定一个定义在I 上,值域含于J 的隐函数. 若把它记为()y f x =, x I ∈,y J ∈则成立恒等式 (,())0F x f x =,x I ∈.注1 显函数与隐函数没有明显的界限. 如21y x =+是显函数, 但210y x --=是隐函数.例1 方程10xy y +-=能确定一个定义在(,1)(1,)-∞-∞上的隐函数()y f x =. 如果从方程中把y 解出,这个函数也可表示为显函数形式:11y x =+. 例 2 圆方程221x y +=能确定一个定义在[1,1]-上,函数值不小于0的函数y =[1,1]-上,函数值不大于0的函数y =.注2 确定隐函数必须三个基本条件:确定它的方程,变量x 的取值范围,变量y 的取值范围.问:是否所有的方程都可以确定隐函数?是否隐函数都可以有显函数形式?例3 方程 22x y c +=,当0c >时,不能确定任何函数()f x ,使得22[()]x f x c +≡,只有当0c <时,才能确定隐函数.例 4 方程1s i n 02y x y --=能确定定义在(,)-∞+∞上的函数()f x ,使得1()s i n ()02f x x f x --≡. 但这个函数()f x 却无法用x 的算式来表达. 注3 一个方程可能确定隐函数,如例1、2、4,也可能不确定隐函数,如例3;一个方程可能确定一个隐函数,如例1、4,也可能确定二个(或多个)隐函数,如例2;一个方程确定的隐函数可能是初等函数,如例1、2,也可能不是初等函数,例4说明隐函数包含非初等函数,从而给出了表示函数的新方法,扩大了研究函数的范围.问:在什么条件下,方程(,)0F x y =能确定出隐函数?唯一?隐函数有什么解析性质? 换言之,对于隐函数,主要研究两个问题: (1)隐函数的存在性; (2)隐函数的解析性质.二、 隐函数存在性条件的分析(i )由于满足方程(,)0F x y =的点集可看作曲面(,)z F x y =与坐标平面0z =的交集, 所以方程(1)能确定一个函数, 至少要求该交集非空, 即存在点),(000y x P , 使0),(00=y x F .(ii) 方程(1)能在点0P 附近确定一个连续函数,表现为上述交集是一条通过点0P 的连续曲线段,但有交点, 未必有交线. 例如, 曲面22y x z +=与xy 平面有一个交点)0,0(, 但没有一条相交的直线. 对此看出, 之所以曲面22y x z +=在点)0,0(与xy 平面相交但没有相交的直线, 其主要原因是曲面22y x z +=在点)0,0(的切平面恰好是xy 平面. 由此, 容易猜想到, 如果曲面),(y x F z =在xy 平面上的点),(000y x P 相交且曲面在这点的切平面与xy 平面有一定的角度(即切平面不与xy 平面平行), 从而曲面),(y x F z =在点),(000y x P 的某邻域内穿过xy 平面, 于是有交线)(x f y =或)(y g x =. 根据全微分的集合意义,要是曲面的切平面不与xy 平面平行, 只需)0,0())(),((00≠P F P F y x . (2)(iii) 要求隐函数)(x f y =(或)(y g x =)在点0P 可微, 则在F 为可微的假设下, 通过对(1)在点0P 处对x 求导, 依链式法则, 有0|)()(000=+=x x y x dx dy P F P F , 当0)(0≠P F y 时, )()(|000P F P F dx dy y x x x -==, 当0)(0≠P F x 时, )()(|000P F P F dy dx x y y y -==, 由此, 条件(2)不仅对于隐函数的存在性, 对于隐函数的求导同样重要.三、 隐函数定理定理18.1 ( 隐函数存在唯一性定理 ) 若满足下列条件:(i) 函数),(y x F 在以),(000y x P 为内点的某一区域D 2R ⊂上连续 ;(ii) ),(00y x F 0= ( 通常称这一条件为初始条件 );(iii) 在D 内存在连续的偏导数),(y x F y ;(iv) ),(00y x F y 0=/.则在点0P 的某邻域U (0P )⊂D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间) , (00αα+-x x 内的隐函数)(x f y =, 使得01 )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x U (0P )且()0)( , ≡x f x F . 02 函数)(x f 在区间) , (00αα+-x x 内连续 .证明: 先证隐函数的存在性与唯一性.由条件(iv),不妨设0),(00>y x F y (若0),(00<y x F y , 则可讨论0),(=-y x F ). 由条件(ii )y F 在D 内连续, 由连续函数的局部保号性, 存在点0P 的某一闭的方邻域D y y x x ⊂+-⨯+-],[],[0000ββββ, 使得在其上每一点处都有0),(>y x F y . 因而,对每个固定的],[00ββ+-∈x x x , ),(y x F 作为y 的一元函数, 必定在],[00ββ+-y y 上严格增且连续. 由初始条件(ii)可知0),(00<-βy x F , 0),(00>+βy x F .再由F 的连续性条件(i), 又可知道),(00β-y x F 与),(00β+y x F 在],[00ββ+-x x 上也是连续的. 由此由保号性存在)(0βαα≤>, 当),(00αα+-∈x x x 时恒有0),(0<-βy x F , 0),(0>+βy x F , 在矩形A B AB ''的AB 边上F 取负值, 在B A ''边上F 取正值. 因此对),(00αα+-x x 内每个固定值x , 同样有0),(0<-βy x F , 0),(0>+βy x F . 根据前已指出的),(y x F 在],[00ββ+-y y 上严格增且连续, 由介值性保证存在唯一的∈y ),(00ββ+-y y ,使得0),(=y x F . 由x 在),(00αα+-x x 中的任意性,这就确定了一个隐函数)(x f y =, 它的定义域为),(00αα+-x x , 值域含于),(00ββ+-y y . 若记=)(0P U ⨯+-),(00ααx x ),(00ββ+-y y ,则)(x f y =满足结论01的各项要求. 若还存在另一个隐函数)(ˆx fy =, 使得()0)(ˆ , ≡x f x F , 又()0)( , ≡x f x F , 由),(y x F 对固定的x 关于y 严格递增知)(ˆ)(x f x f =,),(00αα+-∈x x x . 再证明f 的连续性.对于),(00αα+-x x 内的任意点x , )(x f y =则由上述结论可知ββ+<<-00y y y . 任给0>ε, 且设},min{00ββε+--+<y y y y , 使得βεεβ+≤+<-≤-00y y y y ,从而 0),(<-εy x F , 0),(>+εy x F . 由保号性存在x 的某邻域⊂+-),(δδx x ),(00αα+-x x , 使得当x 属于该邻域时同样有0),(<-εy x F , 0),(>+εy x F因此存在惟一的y , 使得0),(=y x F ,ε<-||0y y . 由于y 的惟一性, 推知)(x f y =. 这就证得: 当δ<-||x x 时ε<-|)()(|x f x f , 即)(x f 在x 连续. 由x 的任意性, 证得)(x f 在),(00αα+-x x 内处处连续.注4 定理中, 条件(i)和(iii )表明曲面),(y x F z =是光滑的; 条件(ii )表明曲面和坐标平面0=z 有一个交点;条件(iv)表明在点),(00y x 的附近对固定的x , 沿y 的正向,曲面是严格单调的. 定理的结论表明在点)0,,(00y x 的附近曲面和坐标平面0=z 有惟一一条连续曲线.注5 定理的条件是充分的. 例如方程033=-x y 在)0,0(不满足(iv), 但仍能确定惟一的连续函数x y =. 但不满足(iv), 往往使结论不成立. 例如: 0)(),(22222=+-+=y x y x y x F , 由于0)0,0(=F ,F 与y y x y F y 2)(422++=连续故满足(i) (ii )(iii ), 但因0)0,0(=y F , 致使在)0,0(的无论怎样小的邻域内都不可能存在惟一隐函数.注 6 定理证明过程中主要利用了连续函数的局部保号性,单调性及介值性定理等.由证明过程可知,条件(iii )(iv)只是用来保证存在0P 的某一邻域, 在此邻域内F 关于变量y 是严格单调的, 因此如果只要定理的结论成立,条件可减弱为F 在0P 的某一邻域内关于变量y 是严格单调的.注7 若把条件(iii )(iv)改为: x F 连续, 且0),(00≠y x F x , 则结论是存在惟一的连续函数)(y g x =.注8 定理的结论是局部性的,即在点),(00y x 的某邻域内由方程0),(=y x F 可以唯一确定一个连续函数. 定理的局部性还反映在下面一点: 如果上述邻域不足够小的话,隐函数定理可能不成立.问: 由方程0),(=y x F 确定的隐函数在什么条件下是可微的呢?定理18.2 设函数),(y x F 满足隐函数存在唯一性定理的条件 , 又设在D 内),(y x F x 存在且连续, 则隐函数)(x f y =在区间) , (00αα+-x x 内可导,且 ),(),()(y x F y x F x f y x -='. 证 设x 与x x ∆+都属于) , (00αα+-x x ,它们所对应的函数值)(x f y =与)(x x f y ∆+=都含于内),(00ββ+-y y . 由于0),(=y x F , 0),(=∆+∆+y y x x F因此由x F 、y F 的连续性以及二元函数中值定理,有),(0y y x x F ∆+∆+=),(y x F -x y y x x F x ∆∆+∆+=),(θθy y y x x F y ∆∆+∆++),(θθ 其中10<<θ. 因而=∆∆x y ),(),(y y x x F y y x x F y x θθθθ++∆+∆+- 注意到上式右端是连续函数),(y x F x 、),(y x F y 与)(x f 的复合函数, 而且),(y x F y 在)(0P U 内不等于零, 故有=∆∆='→∆x y x f x 0lim )(),(),(y x F y x F y x - 且)(x f '在) , (00αα+-x x 内连续.注9 定理18.2告诉我们隐函数的导数可以用公式来求. 通过隐函数存在条件的分析我们还可以知道隐函数的导数的另一种求法:若已知方程0),(=y x F 确实存在连续可微的隐函数, 则可用复合函数求导法则对方程求导:0),(),(='+y y x F y x F y x (*)得到.还可以用一阶微分形式不变性来求: 对0),(=y x F 微分:0=∂∂+∂∂dy yF x F . 问: 隐函数的高阶导数该如何求?对于隐函数的高阶导数可以用上面同样的方法来求, 只是必须注意)(x f y =即),(y x F 及各阶导数是复合函数. 对(*)求导0),(]),(),([),(),(=''+'++'+y y x F y y x F y x F y y x F y x F y yy yx xy xx可解出隐函数的二阶导数32222)2(1yyy x xx y xy y x yy xy xx y F F F F F F F F y F y F F F y --='+'+-=''. 更高阶的类似.例1 验证方程0sin 21),(=--=y x y y x F 在点) 0 , 0 (满足隐函数存在唯一性定理的条件 , 并求隐函数的导数 .解 因为(i) ),(y x F 在全平面上连续; (ii) 0)0,0(=F ;(iii)y F y cos 211-=, 1-=x F 在全平面上连续 ;(iv) 21)0,0(=y F , 所以0),(=y x F 在) 0 , 0 (附近可以确定隐函数)(x f y =,且其导数: y y y x F y x F y y x cos 22cos 2111),(),(-=-=-='. 例2 2221x y z -=. 其中)(x f y =为由方程0333=-+axy y x 所确定的隐函数 . 求dxdz . 分析: 要求dxdz , 根据复合函数的求导法则可得x y y dx dz -'=2, 而对于y '是由方程0333=-+axy y x 所确定的隐函数的一阶导数, 因此对方程直接关于x 求导:022='--'+y ax ay y y x 即)0(222≠---='ax y ax y x ay y 将上式代入即可.例 3 ( 反函数存在性及其导数 ) 设函数)(x f y =在点0x 的某邻域内有连续的导函数)(x f ', 且00)(y x f =, 0)(0≠'x f . 用隐函数定理验证存在反函数 , 并求反函数的导数.解 考察方程0)(),(=-=x f y y x F ,由于(i) ),(y x F 连续; (ii) 0),(00=y x F ;(iii)1=y F , )(x f F x '-=连续 ;(iv) 0)(),(000≠'-=x f y x F x , 所以0),(=y x F 在),(00y x 附近可以确定隐函数)(y g x =,且其导数:)(1)(1)(x f x f F F y g x y'='--=-='. 四 n 元隐函数的存在性定理定理18.3 若(i) 函数),,,,(21y x x x F n 在以),,,,(0002010y x x x P n 为内点的某一区域D 1+⊂n R 上连续 ;(ii) 0),,,,(000021=y x x x F n; (iii) 偏导数n x x x F F F ,,21 ,y F 在D 内存在且连续;(iv) ),,,,(000201y x x x F n y 0=/.则在点0P 的某邻域U (0P )⊂D 内 , 方程0),,,,(21=y x x x F n 惟一地确定一个定义在),,,(002010n x x x Q 的某邻域U (0Q )⊂n R 内的n 元连续函数(隐函数)),,,(21n x x x f y =, 使得01 当),,,(21n x x x U ∈(0Q )时 )()),,,(,,,,(02121P U x x x f x x x n n ∈且 0)),,,(,,,,(2121≡n n x x x f x x x F ,),,,(002010n x x x f y =.02 ),,,(21n x x x f y =在U (0Q )内有连续偏导数, 而且 y x x F F f 11-=,y x x F F f 22-= ,…,y x x F F f n n 11-=. 例4 设0),,(323=-++=z y x xyz z y x F . 验证在点) 0 , 0 , 0 (存在z 是),(y x的隐函数 , 并求偏导数 .解 由于0)0,0,0(=F , 01)0,0,0(≠-=z F , z y x F F F F ,,,处处连续, 根据隐函数定理18.3, 在原点) 0,0,0 (附近能确定惟一连续可微的隐函数),(y x f z =,且可求的它的偏导数如下: 23312xyz x yz F F x z z x -+=-=∂∂, 223313xyz y xz F F y z z y -+=-=∂∂复习思考题、作业题:思考题: 由方程0),( y x F 确定的隐函数在什么条件下是可微的呢? 1,2,3(2)(4)(6),4。