坐标系与参数方程一轮复习专题练习(一)附答案新人教版高中数学名师一点通
坐标系与参数方程单元过关检测卷(二)含答案新人教版高中数学名师一点通
,所以圆心 ,半径为 ,……3分
因为直线 的极坐标方程为 ,化为普通方程为 ,………6分
圆心 到直线 的距离为 ,……………………8分
又因为圆 上的点到直线 的最大距离为3,即 ,所以 .…10分
8.消去参数 ,得直线 的直角坐标方程为 ;……………2分
6.在平面直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立坐标系.已知点 的极坐标为 ,直线的极坐标方程为 ,且点 在直线上.
(1)求 的值及直线的直角坐标方程;
(2)圆c的参数方程为 ,( 为参数),试判断直线与圆的位置关系.(汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))坐标系与参数方程:
7.在平面直角坐标系 中,圆 的参数方程为 为参数, ,以 为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 若圆 上的点到直线 的最大距离为 ,求 的值.
8.在极坐标系中,圆 的方程为 ,以极点为坐标原点,极轴为 轴的正半轴建立平面直角坐标系,直线 的参数方程为 ( 为参数),判断直线 和圆 的位置关系.
.…………………………………………10分
评述:本题重点考查参数方程与普通方程的互化,考查等价转化的能力.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.
3.
评卷人
得分
三、解答题
4.解:(Ⅰ)消去参数 ,得直线 的普通方程为 ………………2分
,即 ,两边同乘以 得
,
得⊙ 的直角坐标方程为 ………………………5分
(Ⅱ)圆心 到直线 的距离 ,所以直线 和⊙ 相交…程化为直角坐标方程;
高考数学(理科)第一轮专题复习针对训练《坐标系与参数方程》word含答案解析
高考数学(理科)第一轮专题复习针对训练坐标系与参数方程一、选择题1.在极坐标系中,点()1,0与点()2,π的距离为 ( )A.1B.3C.21π+ D.29π+ 2.下列极坐标方程中,对应的曲线为如图的是( ).(A )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=-3.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为( )A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤D.cos sin ,04πρθθθ=+≤≤4.在极坐标系中,关于曲线:4sin 3C πρθ⎛⎫=- ⎪⎝⎭的下列判断中正确的是 A 、曲线C 关于直线56πθ=对称 B 、曲线C 关于直线3πθ=对称 C 、曲线C 关于点2,3π⎛⎫⎪⎝⎭对称 D 、曲线C 关于极点()0,0对称 5.在平面直角坐标系xOy 中,圆C 的参数方程为cos sin x a y θθ=+⎧⎨=⎩(θ为参数).以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为2sin()4πρθ-=若直线l 与圆C 相切,则实数a 的取值个数为( )A .0 B.1 C.2 D.36.在极坐标系中,设曲线12sin C ρθ=:与22cos C ρθ=:的交点分别为A ,B ,则线段AB 的垂直平分线的极坐标方程为( )A .1sin cos ρθθ=+B .1sin cos ρθθ=-C .()4R πθρ=∈D .3()4R πθρ=∈7.直线2x ty at a =⎧⎨=+⎩(t 为参数)与曲线ρ=1的位置关系是( )A .相离B .相交C .相切D .不确定8.若曲线002sin 301sin 30x t y t ⎧=-⎪⎨=-+⎪⎩ (t 为参数)与曲线22ρ=相交于B ,C 两点,则||BC 的值为( ).A .72B .60C .27D .309.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是 ( )A .一条射线B .两条射线C .一条直线D .两条直线 10.若直线l 的参数方程为13()24x tt y t=+⎧⎨=-⎩为参数,则直线l 倾斜角的余弦值为( )A .45-B .35-C .35D .4511.直线l 的参数方程是2242x t y t ⎧=⎪⎨=+⎪⎩(其中t 为参数),圆C 的极坐标方程)4cos(2πθρ+=,过直线上的点向圆引切线,则切线长的最小值是( )A .2 B.2 C .3 D .26 12. 已知实数满足,则的最大值为( )A. 6B. 12C. 13D. 14第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分。
坐标系与参数方程单元过关检测卷(一)带答案人教版高中数学高考真题汇编辅导班专用
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.直线323y x=+与圆心为D的圆33cos,([0,2))13sinxyθθπθ⎧=+⎪∈⎨=+⎪⎩交于A、B两点,则直线AD与BD的倾斜角之和为()(A)76π(B)54π(C)43π(D)53π(汇编重庆理)第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.直线2,34x lty t=-+⎧⎨=+⎩(t为参数,l为常数)恒过定点▲.3.(理)已知圆的极坐标方程为:242cos 604πρρθ⎛⎫--+= ⎪⎝⎭,若点P(x ,y)在该圆上,则x +y 的最大值为____________.11、(文)已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则=-m M ____________. 评卷人得分 三、解答题4.在极坐标系中,已知直线2cos sin 0(0)a a ρθρθ=>++被圆4sin ρθ=截得的弦长为2,求a 的值.5.已知曲线1C 的极坐标方程为cos 13πρθ⎛⎫-=- ⎪⎝⎭,曲线2C 的极坐标方程为22cos 4πρθ⎛⎫=-⎪⎝⎭,判断两曲线的位置关系.6.已知12O O 和的极坐标方程分别是2cos 2sin a ρθρθ==和(a 是常数).(1)分别将两个圆的极坐标方程化为直角坐标方程;(2)若两个圆的圆心距为5,a 求的值。
7.已知曲线:C 3cos 2sin x y θθ=⎧⎨=⎩,直线:l (cos 2sin )12ρθθ-=. (Ⅰ)将直线l 的极坐标方程化为直角坐标方程;(Ⅱ)设点P 在曲线C 上,求P 点到直线l 距离的最小值.8.已知A 是曲线12sin ρθ=上的动点,B 是曲线12cos()6πρθ=-上的动点,试求AB 的最大值.9.已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是32,545x t y t ⎧=-+⎪⎨⎪=⎩(t 为参数).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.C 数形结合 301-=∠α βπ-+=∠302由圆的性质可知21∠=∠ βπα-+=-∴ 3030故=+βα43π 第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分 二、填空题2. (2,3)-3. 评卷人得分 三、解答题4. 直线的极坐标方程化为直角坐标方程为20x y a =++, …………………………3分圆的极坐标方程化为直角坐标方程为224x y y =+,即22(2)4x y -=+ ,…………6分 因为截得的弦长为2,所以圆心(0,2)到直线的距离为413-=, 即235a=+,因为0a >,所以152a =-. ………………………………………10分5. 选修4—4:坐标系与参数方程解:将曲线12,C C 化为直角坐标方程得:1:320C x y ++=,222:220C x y x y +--=即()()222:112C x y -+-=, 圆心到直线的距离()22132332213d +++==>+, ∴曲线12C C 与相离.6.7.(Ⅰ)2120x y --= ------4分(Ⅱ)设P (3cos ,2sin )θθ, ∴3cos 4sin 125d θθ--=55cos()125θϕ=+-(其中,34cos ,sin )55ϕϕ== 当cos()1θϕ+=时,m i n 755d =, ∴P 点到直线l 的距离的最小值为755。
坐标系与参数方程章节综合考点检测练习(二)带答案新人教版高中数学名师一点通家教辅导
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.设曲线C的参数方程为23cos13sinxyθθ=+⎧⎨=-+⎩(θ为参数),直线l的方程为320x y-+=,则曲线C上到直线l距离为71010的点的个数为A、1B、2C、3D、4第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.在平面直角坐标系xoy中,以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,则点(1,3)-化为极坐标为_______________.3.已知曲线C 的参数方程为24(x t t y t ⎧=⎨=⎩为参数),若点(,2)P m 在曲线C 上,则m = ▲ .评卷人得分三、解答题4.已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. (汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—4;坐标系与参数方程 5.(理)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数),M 是C 1上的动点,P 点满足OM OP 2=,P 点的轨迹为曲线C 2. (Ⅰ)求C 2的参数方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |值.(本题满分14分) (文)设.ln 2)(x x kkx x f --=(Ⅰ)若0)2(='f ,求过点(2,)2(f )的直线方程; (Ⅱ)若)(x f 在其定义域内为单调增函数,求k 的取值范围.6.已知直线的参数方程213x ty t=-⎧⎪⎨=+⎪⎩(为参数),圆C 的极坐标方程:2sin 0ρθ+=.(1)将直线的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)在圆C 上求一点P ,使得点P 到直线的距离最小.7.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位。
坐标系与参数方程一轮复习专题练习(四)附答案新人教版高中数学名师一点通
(Ⅱ)设点P的坐标为 ,则
z=x+2y= = = .…………6分
∵0≤θ≤π,∴ ,∴ ,
∴当 ,即θ=π时,z=x+2y取得最小值是- ;
当 ,即 时,z=x+2y取得最大值是 .………………………10分
评卷人
得分
三、解答题
4.(本小题14分)已知某圆的极坐标方程为 ,求:
(1)圆的普通方程和参数方程;
(2)圆上所有点 中 的最大值和最小值.
5.在平面直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立坐标系.已知点 的极坐标为 ,直线的极坐标方程为 ,且点 在直线上.
(1)求 的值及直线的直角坐标方程;
评卷人
得分
一、选择题
1. 化为普通方程 ,表示圆,
因为直线与圆有两个不同的交点,所以 解得
法2:利用数形结合进行分析得
同理分析,可知
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.
3.(为参数)
评卷人
得分
三、解答题
4.(1) 为参数);………………………7分
(2) .………………………14分
(2)圆c的参数方程为 ,( 为参数),试判断直线与圆的位置关系.(汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))坐标系与参数方程:
6.已知曲线 的参数方程为 ( 为参数),直线的极坐标方程为 ,直线与曲线 交于 , 两点,求 的长;
7.已知曲线C的参数方程为 ( 为参数, ).
高中数学专题复习
《坐标系与参数方程》单元过关检测
坐标系与参数方程章节综合考点检测练习(二)附答案新人教版高中数学名师一点通家教辅导
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.在平面直角坐标系 中,以直角坐标系原点 为极点, 轴的正半轴为极轴建立极坐标系,则点 化为极坐标为_______________.
3.已知曲线 的参数方程为 ,若点 在曲线 上,则 ▲.
评卷人
得分
三、解答题
4.已知动点 都在曲线 为参数 上,对应参数分别为 与 , 为 的中点.
(Ⅰ)求 的轨迹的参数方程;
(Ⅱ)将 到坐标原点的距离 表示为 的函数,并判断 的轨迹是否过坐标原点.(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))选修4—4;坐标系与参数方程
5.
(理)在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),M是C1上的动点,P点满足 ,P点的轨迹为曲线C2.
(Ⅰ)求C2的参数方程;
(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ= 与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|值.(本题满分14分)
(文)设
(Ⅰ)若 ,求过点(2, )的直线方程;
(Ⅱ)若 在其定义域内为单调增函数,求 的取值范围.
6.已知直线的参数方程 (为参数),圆 的极坐标方程: .
9.(Ⅰ)由 得 即
(Ⅱ)将 的参数方程代入圆C的直角坐标方程,得 ,
即 由于 ,故可设 是上述方程的两实根,
所以 故由上式及t的几何意义得:
|PA|+|PB|= = 。
【参考答案】***、选择题
1.B
解析:化曲线 的参数方程为普通方程: ,圆心 到直线 的距离 ,直线和圆相交,过圆心和 平行的直线和圆的2个交点符合要求,又 ,在直线 的另外一侧没有圆上的点符合要求,所以选B.
坐标系与参数方程单元过关检测卷(二)含答案新人教版高中数学名师一点通辅导班专用
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.点P(1,0)到曲线 (其中参数t∈R)上的点的最短距离为()
圆C的参数方程为 (为参数),设P是圆C与x轴正半轴的交点.以原点O为极点,x轴的正半轴为极轴建立极坐标系.设过点P的圆C的切线为l,求直线l的极坐标方程.
5.选修4—4:坐标系与参数方程
在平面直角坐标系 中,直线 经过点P(0,1),曲线 的方程为 ,若直线
与曲线 相交于 , 两点,求 的值.
6.已知圆 的参数方程为 ( 为参数),若 是圆 与 轴正半轴的交点,以圆心 为极点, 轴的正半轴为极轴建立极坐标系,求过点 的圆 的切线的极坐标方程.
A.0B.1C. D.2(汇编全国理,6)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.极点到直线 的距离为__________.
3.直线 ( 为参数, 为常数且 )被以原点为极点, 轴的正半轴为极轴,方程为 的曲线所截,求截得的弦长.
评卷人
得分
三、解答题
4.[选修4-4:坐标系与参数方程](本小题满分10分)
所以 .……………………………10分
6.
7.
8.(1) (5分)
(2) (5分)
9.由 得 ,………………………………………………………………2分
又
,………………………………………………………………4分
坐标系与参数方程单元过关检测卷(一)带答案人教版高中数学高考真题汇编艺考生专用
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.曲线⎩⎨⎧==θθsin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( ) A .21 B .22 C .1 D .2(汇编天津理,1)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.点P 的直角坐标为(1,3),点P 的一个极坐标为 _▲___.3.在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为2sin 42m πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.(汇编年高考湖北卷(理)) 评卷人得分 三、解答题4.选修4 - 4:坐标系与参数方程(本小题满分10分)在极坐标系中,求点M π(2,)6关于直线π4θ=的对称点N 的极坐标,并求MN 的长.5. 已知直线l 的参数方程:12x t y t=⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程:)4sin(22πθρ+=.(Ⅰ)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程;(Ⅱ)判断直线l 和圆C 的位置关系.6.已知圆C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程为11,525x t y a t ⎧⎪⎪⎨⎪⎪⎩=+=+(t 为参数).若直线l 与圆C 相交于P ,Q 两点,且455PQ =. (Ⅰ)求圆C 的直角坐标方程,并求出圆心坐标和半径;(Ⅱ)求实数a 的值.7.已知圆C 的参数方程为⎩⎨⎧+==2sin cos θθy x (θ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为1cos sin =+θρθρ,求直线截圆C 所得的弦长。
坐标系与参数方程一轮复习专题练习(二)带答案新人教版高中数学名师一点通
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为( ) A .=0()cos=2R θρρ∈和 B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.(理)在极坐标系中,点 ()π23, 与曲线2cos ρθ= 上的点的距离的最小值为 .(文)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为_______________.3.在极坐标系中,O 是极点,点2(3,),(4,)63A B ππ,则以线段OA 、OB 为邻边的平行四边形的面积是 。
评卷人得分 三、解答题4. 已知直线l 的参数方程:12x t y t =⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程: )4sin(22πθρ+=. (Ⅰ)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程;(Ⅱ)判断直线l 和圆C 的位置关系.5.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为 ()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值. (汇编年高考辽宁卷(文))选修4-4:坐标系与参数方程6.在极坐标系下,已知圆θθρsin cos :+=O 和直线:l 22)4s in(=-πθρ。
坐标系与参数方程单元过关检测卷(一)带答案新高考高中数学辅导班专用
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.下列以t 为参数的参数方程所表示的曲线中,与xy =1所表示的曲线完全一致的是( )(汇编上海理,14)A .⎪⎩⎪⎨⎧==-2121t y t x B .⎪⎩⎪⎨⎧==||1||t y t x C .⎩⎨⎧==t y t x sec cos D .⎩⎨⎧==ty t x cot tan第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.直线y =2x -21与曲线⎩⎨⎧==ϕϕ2cos sin y x (ϕ为参数)的交点坐标是_____.(汇编上海理,10)3.若直线3x+4y+m=0与圆 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 . (,0)(10,)-∞⋃+∞(福建卷14)评卷人得分 三、解答题4.选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,圆的参数方程为22cos ,()2sin x y a a a =+⎧⎨=⎩为参数,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求:(1)圆的直角坐标方程; (2)圆的极坐标方程.5.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为 ()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值. (汇编年高考辽宁卷(文))选修4-4:坐标系与参数方程6.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为(2,)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系. (汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))坐标系与参数方程:7.在极坐标系中,已知圆C :θρcos 22=和直线)(4:R l ∈=ρπθ相交于A 、B 两点,求线段AB 的长。
坐标系与参数方程一轮复习专题练习(二)含答案新人教版高中数学名师一点通
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为
( ) A .=0()cos=2R θρρ∈和 B .=()cos=22R π
θρρ∈和
C .=()cos=12R π
θρρ∈和 D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.(理)在极坐标系中,点 ()π
23
, 与曲线2cos ρθ= 上的点的距离的最小值为 .。
坐标系与参数方程一轮复习专题练习(一)含答案新人教版高中数学名师一点通
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正Hale Waihona Puke 填写在答题卡上第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.点P(1,0)到曲线 (其中参数t∈R)上的点的最短距离为()
5.在极坐标系中,已知直线 被圆 截得的弦长为 ,求 的值.
6.已知曲线 ,直线 .
⑴将直线 的极坐标方程化为直角坐标方程;
⑵设点 在曲线 上,求 点到直线 距离的最小值.
7.直线 和曲线 相交于A、B两点.求线段AB的长.
8.已知 是曲线 上的动点, 是曲线 上的动点,试求线段 长的最大值.
9.已知极坐标系的极点在直角坐标系的原点 处,极轴与 轴的正半轴重合.直线 的参数方程为 ( 为参数, 为直线 的倾斜角),圆 的极坐标方程为 .
∴由两点间距离公式,得
d2=(x-1)2+y2=(t2-1)2+4t2=(t2+1)2
∵t∈R∴dmin2=1∴dmin=1
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.3
3.理:6;
评卷人
得分
三、解答题
4.
5.直线的极坐标方程化为直角坐标方程为 ,…………………………3分
设A、B对应的参数分别为 ,∴ .
AB = .
8.
9.解:因为直线l的直角坐标方程为y=xtan ,圆C的直角坐标方程为(x– 4)2+y2=4(4分)
(1)当直线l与圆C相切时, 或 …………7分
坐标系与参数方程考前冲刺专题练习(一)附答案新人教版高中数学名师一点通
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为
( ) A .=0()cos=2R θρρ∈和 B .=()cos=22R π
θρρ∈和
C .=()cos=12R πθρρ∈和
D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题。
坐标系与参数方程一轮复习专题练习(五)带答案新人教版高中数学名师一点通
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为( ) A .=0()cos=2R θρρ∈和 B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.参数方程⎩⎨⎧=-=θθθ2sin sin cos y x (θ为参数)的普通方程是_______.)11(12≤≤--=y y x ;3.在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin 0a ρθρθ++= 相切,求实数a 的值。
评卷人得分 三、解答题4.已知曲线:C θθsin 3cos 3{==y x ,直线:l 31)s in 3c os 2=-θθρ(. (1)将直线l 的极坐标方程化为直角坐标方程;(2)设点P 在曲线C 上,求P 点到直线l 的距离的最小值.(本小题满分13分)5.选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,圆的参数方程为22cos ,()2sin x y a a a =+⎧⎨=⎩为参数,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求:(1)圆的直角坐标方程;(2)圆的极坐标方程.6.已知圆C 的参数方程为()为参数θθθ⎩⎨⎧+=+=sin 23,cos 21y x ,若P 是圆C 与x 轴正半轴的交点,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.7.在平面直角坐标系xoy中,求圆C 的参数方程为1cos (sin x r y r θθθ=-+⎧⎨=⎩为参数r>0),以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()2 2.4πρθ+=若直线l 与圆C 相切,求r 的值。
坐标系与参数方程一轮复习专题练习(三)附答案新人教版高中数学名师一点通
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为
( ) A .=0()cos=2R θρρ∈和 B .=()cos=22R π
θρρ∈和
C .=()cos=12R πθρρ∈和
D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题。
坐标系与参数方程早练专题练习(三)附答案新人教版高中数学名师一点通
求椭圆 上的点到直线l距离的最大值和最小值.
7.在平面直角坐标系 中,椭圆C的参数方程为 ,其中 为参数.以O为极点, 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为 .求椭圆C上的点到直线l距离的最大值和最小值.
解:将极坐标方程 化为直角坐标方程为 ;……………………2分
将极坐标方程 两边同乘以 ,化为直角坐标方程为 ,……………………5分
两式相减得 ,此即为直线 的直角坐标方程.
所以,直线 的极坐标方程为 ,即 .……………………10分
9.解:将极坐标方程转化成直角坐标方程:
即: ,即 ;……4分
即: ,……6分 ,……8分
评卷人
得分
三、解答题
4.【题文】[选修4-4:坐标系与参数方程](本小题满分10分)
在直角坐标系 中,直线 的参数方程为 ( 为参数),若以直角坐标系 的 点为极点, 为极轴,且长度单位相同,建立极坐标系,得曲线 的极坐标方程为 .直线 与曲线 交于 两点,求 .
【结束】
5.已知在极坐标系下,圆C:p= 2cos( )与直线l: sin( )= ,点M为圆C上的动点.求点M到直线l距离的最大值.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.已知点(m,n)在椭圆8x2+3y2=24上,则2m+4的取值范围是____________.
3.(理)在极坐标系中,点 与曲线 上的点的距离的最小值为.
(文)若曲线 的一条切线 与直线 垂直,则 的方程为_______________.
坐标系与参数方程课后限时作业(一)带答案人教版高中数学新高考指导
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为 ( )A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知点(m ,n)在椭圆8x 2+3y 2=24上,则2m +4的取值范围是____________.3.圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是____________ . (汇编年高考陕西卷(文))(坐标系与参数方程选做题) 评卷人得分三、解答题4.已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. (汇编年高考课标Ⅱ卷(文))选修4—4;坐标系与参数方程5.在极坐标系中,已知直线2cos sin 0(0)a a ρθρθ=>++被圆4sin ρθ=截得的弦长为2,求a 的值.6.已知在极坐标系下,圆C :p= 2cos (2πθ+)与直线l :ρsin (4πθ+)=2,点M 为圆C 上的动点.求点M 到直线l 距离的最大值.7.求直线12,12x t y t =+⎧⎨=-⎩(t 为参数)被圆3cos,3sin x y αα=⎧⎨=⎩(α为参数)截得的弦长.8.在极坐标系中,圆C 的方程为22sin()4ρθπ=+,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为,12x t y t =⎧⎨=+⎩(t 为参数),判断直线l 和圆C 的位置关系.9.已知直线l 的参数方程:12x t y t=⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程:)4sin(22πθρ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题2. 3.(1,0)解析:(1, 0) 评卷人得分三、解答题4. 5.直线的极坐标方程化为直角坐标方程为20x y a =++, …………………………3分圆的极坐标方程化为直角坐标方程为224x y y =+,即22(2)4x y -=+ ,…………6分因为截得的弦长为2,所以圆心(0,2)到直线的距离为413-=,即235a =+,因为0a >,所以152a =-. ………………………………………10分 6. 7.8.消去参数t ,得直线l 的直角坐标方程为21y x =+;…………… 2分22(sin )4πρθ=+即2(sin cos )ρθθ=+,两边同乘以ρ得22(sin cos )ρρθρθ=+,得⊙C 的直角坐标方程为:22(1)(1)2x x -+-=, …………………… 6分 圆心C 到直线l 的距离22|211|252521d -+==<+, 所以直线l 和⊙C 相交. …………………………………………………… 10分9.(选做题)(本小题满分8分)解:(1)消去参数t ,得直线l 的普通方程为12+=x y ;……………… 2分)4(sin 22πθρ+=即)cos (sin 2θθρ+=,两边同乘以ρ得)cos sin (22θρθρρ+=, 消去参数θ,得⊙C 的直角坐标方程为:2)1()1(22=-+-x x ……………… 4分(2)圆心C 到直线l 的距离255212|112|22<=++-=d , 所以直线l 和⊙C 相交.……………… 8分。
坐标系与参数方程一轮复习专题练习(三)含答案新人教版高中数学名师一点通
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为
( ) A .=0()cos=2R θρρ∈和 B .=()cos=22R π
θρρ∈和
C .=()cos=12R π
θρρ∈和 D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.圆=2(cos sin )ρθθ+的圆心的极坐标是 (1,)4π
.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB = .
8.
9.解:因为直线l的直角坐标方程为y=xtan ,圆C的直角坐标方程为(x– 4)2+y2=4(4分)
(1)当直线l与圆C相切时, 或 …………7分
(2)当直线l与圆C有公共点时, …………10
5.在极坐标系中,已知直线 被圆 截得的弦长为 ,求 的值.
6.已知曲线 ,直线 .
⑴将直线 的极坐标方程化为直角坐标方程;
⑵设点 在曲线 上,求 点到直线 距离的最小值.
7.直线 和曲线 相交于A、B两点.求线段AB的长.
8.已知 是曲线 上的动点, 是曲线 上的动点,试求线段 长的最大值.
9.已知极坐标系的极点在直角坐标系的原点 处,极轴与 轴的正半轴重合.直线 的参数方程为 ( 为参数, 为直线 的倾斜角),圆 的极坐标方程为 .
(Ⅰ)若直线 与圆 相切,求 的值;(7分)
(Ⅱ)若直线 与圆 有公共点,求 的范围.(3分)
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.D
解析:B
解法一:将曲线方程化为一般式:y2=4x
∴点P(1,0)为该抛物线的焦点
由定义,得:曲线上到P点,距离最小的点为抛物线的顶点.
解法二:设点P到曲线上的点的距离为d
圆的极坐标方程化为直角坐标方程为 ,即 ,…………6分
因为截得的弦长为 ,所以圆心 到直线的距离为 ,
即 ,因为 ,所以 .………………………………………10分
6.解:⑴ ------4分
⑵设 ,
∴ (其中,
当 时, ,∴ 点到直线 的距离的最小值为 。------10分
7.解:曲线 可以化为 .
将直线的参数方程代入上式,得 .
∴由两点间距离公式,得
d2=(x-1)2+y2=(t2-1)2+4t2=(t2+1)2
∵t∈R∴dmin2=1∴dmin=1
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.3
3.理:6;
评卷人
得分
三、解答题
4.
5.直线的极坐标方程化为直角坐标方程为 ,…………………………3分
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事Байду номын сангаас:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.点P(1,0)到曲线 (其中参数t∈R)上的点的最短距离为()
A.0B.1C. D.2(汇编全国理,6)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.在平面直角坐标系 中,若
右顶点,则常数 ________.(汇编年高考湖南卷(理))
3.已知椭圆的参数方程为 ( ),则该椭圆的焦距为.
评卷人
得分
三、解答题
4.已知直线 的极坐标方程是 .以极点为平面直角坐标系的原点,极轴为 轴的正半轴,建立平面直角坐标系,在曲线 上求一点,使它到直线 的距离最小,并求出该点坐标和最小距离.