双闭环三相异步电机调压调速系统实验报告

合集下载

双闭环三相异步电机调压调速系统实验报告

双闭环三相异步电机调压调速系统实验报告

“运动控制系统”专题实验r2 r2+Rs1 r2+Rs2 r2+Rs3sm sm1 sm2 s Tem图6-1整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。

异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。

2.双闭环异步电机调压调速系统的机械特性。

转子变电阻时的机械特性:3.三相异步电机的调速方法三种类型:转差功率消耗型:调压、变电阻等调速方式,转速越低,转差功率消耗越大。

转差功率馈送型:控制绕线转子异步电机的转子电压,利用转差功率可实现调节转速的目的。

如串级调速。

转差功率不变型:转差功率很小,而且不随转速变换,如改变磁极对数调速,变频调速。

1)定子调压调速当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电势减少,转(2)空载电压为200V时n/(r/min) 1281 1223 1184 1107 1045I G/A 0.10 0.11 0.12 0.13 0.13U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.28312.闭环系统静特性n/(r/min) 1420 1415 1418 1415 1416 1412I G/A 0.11 0.14 0.16 0.19 0.21 0.26U G/V 203 200 201 200 200 199 M/(N·m) 0.2394 0.2795 0.3080 0.3777 0.3496 0.4482 静特性曲线:与开环机械特性比较,闭环静特性比开环机械特性硬得多,且随着电压降低,开环特性越来越软。

电力拖动自动控制系统实验报告

电力拖动自动控制系统实验报告

电力拖动自动控制系统实验报告实验一双闭环可逆直流脉宽调速系统一,实验目的:1.掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。

2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。

3.掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数整定。

二,实验内容:1.PWM控制器SG3525的性能测试。

2.控制单元调试。

3.测定开环和闭环机械特性n=f(Id)。

4.闭环控制特性n=f(Ug)的测定。

三.实验系统的组成和工作原理图6—10 双闭环脉宽调速系统的原理图在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。

双闭环脉宽调速系统的原理框图如图6—10所示。

图中可逆PWM变换器主电路系采用MOSFET 所构成的H型结构形式,UPW为脉宽调制器,DLD为逻辑延时环节,GD为MOS管的栅极驱动电路,FA为瞬时动作的过流保护。

脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。

由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。

四.实验设备及仪器1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—10组件或MCL—10A组件。

4.MEL-11挂箱5.MEL—03三相可调电阻(或自配滑线变阻器)。

6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件。

7.直流电动机M03。

8.双踪示波器。

五.注意事项1.直流电动机工作前,必须先加上直流激磁。

2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验报告
实验目的:
1. 理解双闭环不可逆直流调速系统的原理和特点。

3. 熟悉实验设备的使用和实验过程。

实验原理:
双闭环不可逆直流调速系统由速度环和电流环两个闭环组成,其基本原理如下:
1. 速度环控制
在速度环内部,输入为期望转速,输出为电压控制器的输出信号。

速度环主要根据实
际转速和期望转速之间的差异,计算出电压控制器的控制量,并根据电压控制器的输出改
变电机的电压,以达到调速的目的。

实验步骤:
1. 准备实验设备:电机、电压变压器、电流反馈电阻、示波器、信号源、功率放大器、控制器等。

2. 按照实验原理中的模型,建立电机的电压-转速模型和电机的电流-转矩模型。

3. 根据模型,编写控制算法。

4. 将实验设备连接好,将模型和算法输入控制器。

5. 设置期望转速和电流控制量,并启动电机。

6. 分析实验结果,评估控制系统的性能。

实验结果:
本次实验中,我们成功建立了双闭环不可逆直流调速系统的模型,并利用控制器实现
了系统的控制。

我们通过改变期望转速和电流控制量,观察了系统的实际转速和转矩变化。

实验结果表明,双闭环控制系统的性能稳定,具有较好的调速性能和响应速度。

结论:。

调速实验1-4

调速实验1-4
六、实验报告
1、简述实验中观察到的现象,对实验中出现的问题加以分析、解释。
2、画出U/F曲线。
3、画出异步电动机的机械特性n=f(Te)曲线。
4、思考题:如何改变电动机的加速度、减速度?
5、写出实验小结。
实验四速度闭环三相异步电机调压调速系统实验
一.实验目的
3)直流电动机的电枢电流不要超过额定值使用,转速也不要超过1.2倍的额定值。以免影响电机的使用寿命,或发生意外。
4)DJK04与DJK02-1不共地,所以实验时须短接DJK04与DJK02-1的地。
实验二、双闭环晶闸管不可逆直流调速系统实验
一、实验目的
1、了解双闭环不可逆直流调速系统的原理及组成。
2、掌握双闭环不可逆直流调速系统的调试方法和步骤。
⑴、通过触摸面板上LO/RE切换键进行切换。
⑵、通过对输入端子参数(n36~n39)的设定来切换。
1、 触摸面板的操作方法
触摸面板操作有两种功能:一种是用面板上的RUN键和STOP/RESET键来控制电机的起动、停止。另一种是用于参数设定。
1) 指示灯显示说明
正常时:接通电源后,RUN灯闪亮、ALARM灯灭。指示灯FREF、FOUT、IOUT、MNTR、F/R、LO/RE、PRGM中有灯亮,指示窗口有数据显示。
U09:显示过去最后一次发生过的异常内容。
U10:制造商管理用。
F/R:灯亮时,可用 或 键,选择电动机的运转方向(正/
反转)。 FOR:正转 rev:反转
LO/RE:灯亮时,可用 或 键,选择本地/远程模式。
rE:远程 LO:本地
PRGM:。灯亮时,可用 或 键,选择要设定的参数,再用
键显示该参数的内容,用 或 键修改该

2013 运动控制(一)实验指导书

2013 运动控制(一)实验指导书

运动控制系统实验指导书实验一不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。

2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。

3.学习反馈控制系统的调试技术。

二.实验系统组成及工作原理采用闭环调速系统,可以提高系统的动静态性能指标。

转速单闭环直流调速系统是常用的一种形式。

实验图1一1所示是转速单闭环直流调速系统的实验线路图。

实验图1一1转速单闭环直流调速系统图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V供电,通过与电动机同轴刚性连接的测速发电机TG检测电动机的转速,并经转速反馈环节FBS分压后取出合适的转速反馈信号U n,此电压与转速给定信号U*经速度调节器ASR综合调节,ASR的输出作为移相触发器GT的控制电n压U ct,由此组成转速单闭环直流调速系统。

图中DZS为零速封锁器,当转速给定电压U*和转速反馈电压U n均为零时,DZS的输出信号使转速调节n器ASR锁零,以防止调节器零漂而使电动机产生爬行。

三、实验设备及仪器1.教学实验台。

2.直流电动机。

3.双踪示波器。

四.实验内容1.求取调速系统在无转速负反馈时的开环工作机械特性。

调节给定电压U g,使直流电机空载转速n o=1500转/分,调节直流发电机负载电阻,在空载至额定负载的范围内测取5-6点,读取整流装置输出调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器,使电机稳定运行。

调节直流发电机负载电阻,在空载至额定负载范围内测取5-6点,读3.测取调速系统在带转速负反馈时的无静差闭环工作的静特性a.接积分电容器,可预置7uF,使ASR成为PI(比例一积分)调节器。

b.调节给定电压U g,使电机空载转速n o=1500转/分。

在额定至空载五.注意事项1.直流电动机工作前,必须先加上直流激磁。

3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

交流异步电机调速系统实验报告

交流异步电机调速系统实验报告

交流异步电机调速系统实验报告引言在电力系统中,电机调速是一个非常重要且复杂的问题。

随着技术的不断发展,异步电机调速系统成为了广泛应用的一种方案。

本实验旨在通过搭建和调试一个交流异步电机调速系统,来研究其调速性能和控制策略。

实验目的1.理解交流异步电机调速系统的工作原理;2.掌握电机调速系统的基本组成和实验搭建方法;3.研究不同控制策略对电机调速性能的影响;4.分析实验结果,评价不同控制策略的优劣。

实验原理1.异步电机工作原理:异步电机由主电路和励磁电路组成。

主电路中的三相对称电压产生一个旋转磁场,而励磁电路中的电压和电流则产生感应转子电动势和转矩,使得电机运转起来。

2.异步电机调速原理:异步电机调速主要通过控制转子电阻、定子电压以及改变电机的励磁电流来实现。

常见的调速方法有直接转矩控制(DTC)、矢量控制(VC)等。

实验设备和步骤1.实验设备:–交流异步电动机–实验控制器–电压调节器–电流测量仪–速度测量仪–控制软件2.实验步骤:1.搭建电机调速系统的硬件连接,确保各设备按照要求连接并接通电源。

2.在控制软件中选择合适的控制策略,并设置调速参数。

3.运行实验控制器,观察电机的调速性能,并记录实验数据。

4.根据实验数据分析电机的调速性能,并评价不同控制策略的优劣。

实验结果分析根据实验数据,我们可以得出以下结论:1.不同控制策略对电机调速性能的影响:–直接转矩控制(DTC)可以实现较好的转矩和速度响应,但对转子电阻参数变化较为敏感。

–矢量控制(VC)具有较好的转矩和速度响应特性,并且对转子电阻参数变化不敏感。

2.不同电机负载对调速系统的影响:–在轻载情况下,不同控制策略的性能相对较为接近。

–在重载情况下,矢量控制(VC)表现出较好的调速稳定性和承载能力。

结论本实验通过搭建和调试交流异步电机调速系统,研究了不同控制策略对电机调速性能的影响,并分析了不同负载下的调速系统性能。

通过实验结果,我们得出了以下结论:1.矢量控制(VC)相比直接转矩控制(DTC)具有更好的转矩和速度响应特性,且对转子电阻参数变化不敏感。

双闭环三相异步电动机调压调速的系统设计与仿真课程设计模板

双闭环三相异步电动机调压调速的系统设计与仿真课程设计模板

第1章绪论1.1 双闭环三相异步电动机调压调速系统旳原理和构成调压调速即通过调整通入异步电动机旳三相交流电压大小来调整转子转速旳措施。

理论根据来自异步电动机旳机械特性方程式:其中,p为电机旳极对数;w1为定子电源角速度;U1为定子电源相电压;R2’为折算到定子侧旳每相转子电阻;R1为每相定子电阻;L11为每相定子漏感;L12为折算到定子侧旳每相转子漏感;S为转差率。

图1-1 异步电动机在不一样电压旳机械特性由电机原理可知,当转差率s基本保持不变时,电动机旳电磁转矩与定子电压旳平方成正比。

因此,变化定子电压就可以得到不一样旳人为机械特性,从而到达调整电动机转速旳目旳1.2 双闭环三相异步电动机调压调速系统旳工作原理系统主电路采用3个双向晶闸管,具有体积小。

控制极接线简朴等长处。

A.B.C为交流输入端,A 3.B3.C3为输出端,接向异步电动机定子绕组。

为了保护晶闸管,在晶闸管两端接有阻容器吸取装置和压敏电阻。

控制电路速度给定指令电位器BP1所给出旳电压,经运算放大器N构成旳速度调整器送入移相触发电路。

同步,N还可以得到来自测速发电机旳速度负反馈信号或来自电动机端电压旳电压反馈信号,以构成闭环系统,提高调速系统旳性能。

移相触发电路双向晶闸管有4种触发方式。

本系统采用负脉冲触发,即不管电源电压在正半周期还是负半周期,触发电路都输出负得触发脉冲。

负脉冲触发所需要旳门极电压和电流较小,故轻易保证足够大旳触发功率,且触发电路简朴。

TS是同步变压器,为保证触发电路在电源正负半波时都能可靠触发,又有足够旳移相范围,TS采用DY11型接法。

移相触发电路采用锯齿波同步方式,可产生双脉冲并有强触发脉冲电源(+40V)经X31送到脉冲变压器旳一次侧第2章双闭环三相异步电动机调压调速系统旳设计方案2.1 主电路设计调压电路变化加在定子上旳电压是通过交流调压器实现旳。

目前广泛采用旳交流调压器由晶闸管等器件构成。

它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角旳大小来调整加到定子绕组两端旳端电压。

《电力拖动自动控制系统》实验指导书(自编)-(2)

《电力拖动自动控制系统》实验指导书(自编)-(2)

《电力拖动自动控制系统》实验指导书(自编)-(2)-CAL-FENGHAI.-(YICAI)-Company One1《电力拖动自动控制系统》实验指导书昆明理工大学信自学院自动化系2005年9月目录实验须知----------------------------------------------------------------------2实验一系统调试-----------------------------------------------------------3实验二参数测试-----------------------------------------------------------9实验三双闭环系统的静特性研究-------------------------12实验四双闭环调速系统动特性研究----------------------------------15实验五逻辑无环流可逆调速系统的研究----------------------------17实验六错位选触无环流可逆系统-------------------------------------22实验七双闭环三相异步电动机调压调速系统----------------------26实验八双闭环三相绕线型异步电动机串级调速系统-------------29附录1双闭环不可逆直流调速系统主电路和控制电路连线图--32附录2逻辑无环流直流可逆调速系统主电路和控制电路连线图--33实验须知实验课是教学中的重要环节之一,通过实验,是理论联系实际,加深理解和巩固所学的有关理论知识,培养、锻炼和提高对实际系统的调试和分析、解决问题的能力,同时通过实验也培养严谨的科学态度和良好的作风,以达到工程技术人员应有的本领,因此要求每个学生不必须认真对待实验课,要求作到:一:实验前预习,要求:1、了解所有实验系统的工作原理2、明确实验目的,各项实验内容、步骤和做法3、拟定实验操作步骤,画出实验记录表格。

电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告

电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告

电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告实验目的:1.了解晶闸管非可逆直流调速系统的原理;2.掌握晶闸管开启和关断控制方法;3.了解直流电机的调速特性。

实验仪器:1.直流电机调速实验台2.万用电表3.示波器4.信号源实验原理:晶闸管非可逆直流调速系统是通过控制晶闸管的触发角来改变直流电机的电压和电流,从而实现电机的调速。

实验内容:1.搭建晶闸管非可逆直流调速系统,包括直流电源、晶闸管、直流电机和速度检测电路。

2.调整触发脉冲信号的幅值和信号源的频率,观察直流电机的转速变化,并记录相关数据。

3.调整触发脉冲信号的宽度,观察直流电机的转速变化,并记录相关数据。

4.改变直流电压的大小,观察直流电机的转速变化,并记录相关数据。

实验步骤:1.将直流电机连接到调速实验台,调整电机的负载为合适的值。

2.将触发脉冲信号连接到晶闸管的控制端,调整信号源的幅值和频率。

3.接通直流电源,调整触发脉冲信号的宽度,记录电机的转速。

4.改变直流电源的电压,再次记录电机的转速。

实验结果:1.观察电机转速随触发脉冲信号幅值和频率的变化,绘制转速和触发脉冲幅值以及频率的曲线图。

2.观察电机转速随触发脉冲宽度的变化,绘制转速和触发脉冲宽度的曲线图。

3.观察电机转速随直流电源电压变化,绘制转速和电压的曲线图。

实验讨论:1.分析调速系统的稳定性和动态特性;2.分析电机转速与触发脉冲幅值、频率、宽度以及电源电压的关系。

实验结论:通过本次实验,我们了解了晶闸管非可逆直流调速系统的原理和调速特性。

实验结果表明,在一定范围内,调节触发脉冲的幅值、频率和宽度,以及改变直流电源的电压,都可以实现对电机转速的控制。

了解了晶闸管非可逆直流调速系统的特点和应用范围,为今后工作中的调速系统设计提供了参考依据。

双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。

速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。

电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。

二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。

根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。

同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。

三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。

电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。

四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。

首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。

然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。

五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。

当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。

同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。

此外,通过调整控制参数,可以改善系统的响应速度和稳定性。

六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。

本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。

仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。

三相异步电机交流变频调速系统设计实验

三相异步电机交流变频调速系统设计实验

三相异步电机交流变频调速系统设计实验指导书仇国庆编写重庆邮电大学自动化学院测控技术实验中心2010/11/2三相异步电机交流变频调速系统设计实验指导书一、实验目的:1. 了解三相异步电机调速的方法;2. 熟悉交流变频器的使用;3. 掌握三相异步电机交流变频调速系统设计。

4. 交流异步电动机机械特性及变频调速特性测试二、控制系统设计要求系统设计要求能够实现三相异步电动机的如下状态的控制:正转;反转;停止;点动;加速;减速。

图1 控制系统硬件结构图三、基本知识:1.异步电动机调速系统种类很多,常见的有:(1)降电压调速;(2)电磁转差离合器调速(3)绕线转子异步电机转子串电阻调速(4)绕线转子异步电机串级调速(5)变极对数调速(6)变频调速等等。

2.三相交流异步电动机2.1 异步电动机旋转原理异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。

n转速顺时针旋转,转子绕组切割磁力线,产生转子电流⑴磁场以⑵通电的转子绕组相对磁场运动,产生电磁力⑶ 电磁力使转子绕组以转速n 旋转,方向与磁场旋转方向相同2.2 旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。

这三个交变磁场应满足:⑴ 空间位置上互差rad 3/2π电度角。

由定子三相绕组的布置来保证⑵ 在时间上互差rad 3/2π相位角(或1/3周期)。

由通入的三相交变电流来保证。

2.3 电动机转速产生转子电流的必要条件:是转子绕组切割定子磁场的磁力线。

因此,转子的转速n 必须低于定子磁场的转速0n 。

两者之差称为转差:n n n -=∆0转差与定子磁场转速(常称为同步转速)之比,称为转差率:0/n n s ∆=同步转速0n 由下式决定:p f n /600=上式中,f 为输入电流的频率,p 为旋转磁场的极对数。

由此可得转子的转速:p s f n /)1(60-=3.异步电动机调速由转速p s f n /)1(60-=可知异步电动机调速有以下几方法:(1) 改变磁极对数p (变极调速)定子磁场的极对数取决于定子绕组的结构。

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》三相异步电动机变频调速系统是一种应用广泛的电机控制系统,通过对电机的供电频率和电压进行调整,实现电机的调速功能。

本文将对三相异步电动机变频调速系统进行详细的设计。

1.系统结构三相异步电动机变频调速系统主要由电机、变频器和控制系统三部分组成。

电机作为执行元件,接受变频器输出的电压和频率进行运行;变频器则负责将输入的电网电压和频率转换为适合电机运行的电压和频率;控制系统则完成对变频器的控制和监测,实现对电机的精确调速。

2.硬件设计在硬件设计方面,需要选择适合电机的变频器和控制器,并完成相应的接线和连接。

变频器通常需要选择带有电压和频率调节功能的型号,以满足不同工作条件下的电机要求。

控制器则需要选择具备快速响应和稳定性能的型号,以确保系统的准确调速。

3.变频器参数设置变频器的参数设置对于电机的工作性能影响较大。

在设置参数时,首先需要根据电机的额定功率和工作特性确定变频器的额定输出功率。

同时,还需要根据电机的额定电压和额定转速设置变频器的额定输出电压和额定输出频率。

此外,还需要根据电机的负载特性设置变频器的过载保护和反馈调节参数。

4.控制系统设计控制系统的设计主要包括速度信号检测、计算和反馈控制三个步骤。

速度信号检测可以通过安装编码器或霍尔传感器等装置实现。

根据检测到的速度信号,控制系统可以计算出电机的当前转速,并与设定的目标转速进行比较,得到误差信号。

通过对误差信号进行PID控制,控制系统可以调整变频器的输出频率和电压,以实现对电机转速的控制。

5.保护措施设计三相异步电动机变频调速系统在运行过程中需要考虑到一些保护措施,以防止电机过载、短路等故障。

常见的保护措施包括过载保护、过流保护、过热保护和失速保护等。

通过在控制系统中添加相应的保护逻辑和监测装置,可以及时发现并处理电机故障,保证系统的安全运行。

总之,三相异步电动机变频调速系统设计涉及到硬件设计、变频器参数设置、控制系统设计和保护措施设计等方面。

实验二、双闭环三相异步电机调压调速系统实验

实验二、双闭环三相异步电机调压调速系统实验

实验二双闭环三相异步电机调压调速系统实验一、实验目的(1)了解并熟悉双闭环三相异步电机调压调速系统的原理及组成。

(2)了解转子串电阻的绕线式异步电机在调节定子电压调速时的机械特性。

(3)通过测定系统的静态特性和动态特性,进一步理解交流调压系统中电流环和转速环的作用。

二、实验所需挂件及附件三、实验线路及原理异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电机或线绕式异步电动机在转子中串入适当电阻后使机械特性变软其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动较大,因此常采用双闭环调速系统。

双闭环三相异步电机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。

控制部分由“速度调节器”、“电流调节器”、“转速变换”、“触发电路”、“正桥功放”等组成。

其系统原理框图如下图所示。

整个调速系统采用了速度、电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同,而电流环的作用则有所不同。

系统在稳定运行时,电流环对抗电网扰动仍有较大的作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。

异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正、反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率 P s=SP M全部消耗在转子电阻中,使转子过热。

交流调压器应采用宽脉冲或双窄脉冲进行触发。

实验装置中使用双窄脉冲。

实验线路如下所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。

在本实验中DJK04上的“调节器I”做为“速度调节器”使用,“调节器II”做为“电流调节器”使用。

整个系统环节较多,一般要经过检查、调试、整定才能良好地运行;可参照下面的“实验方法”:名称内容主要作用参考值实验值备注[打√]转速调节器[ I ] 运放调零平衡,可免0V正限幅值作用不大近零负限幅值最大电流-6V放大倍数:外接电阻快调节积分时间:外接电容消偏差0.47UF电流调节器[ II ] 运放调零平衡,可免0V 正限幅值最大电压+6V 负限幅值作用不大近零四、实验内容(1)测定三相绕线式异步电动机转子串电阻时的机械特性。

异步电动机采用调压调速时

异步电动机采用调压调速时

异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电动机或绕线式异步电动机在转子中串入适当的电阻后是机械特性变软后,其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动严重,为此长采用双闭环调速系统。

双闭环三相异步电动机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。

控制部分由“电流调节器”,“速度变换”,“触发电路”,“正桥功放”等组成。

其系统原理框图如图所示。

整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统想同,而电流环的作用则有所不同。

在稳定运行的情况下,电流环对电网扰动仍有较大的抗绕作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。

异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转和能耗制动。

但在恒转矩负载下不能长时间低速运行,因为低速运行时转差率功率Ps=SPm全部消耗在转子电阻中,会使转子过热。

222222交流调速调压系统的电气原理图如图所示。

交流调压调速系统的仿真模型如图所示。

下面介绍各部分的建模与参数设置过程。

1.系统的建模和模型参数设置(1)主电路的建模和参数设置由图可见,主电路由三相对称交流电压源,晶闸管三相交流调压器,交流异步电动机,电动机信号分配器等部分组成。

此处着重讨论晶闸管三相交流调压器,交流异步电动机,电动机测试信号分配器的建模和参数设置问题。

@1晶闸管三相交流调压器的建模和参数设置。

晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管采用“相位控制”方式,利用电网自然换流。

图()所示为晶闸管三相交流调压器的仿真模型及模块符号。

图()所示为三相交流调压器中的晶闸管元件的参数设置情况。

在图()中我们是用单个晶闸管元件按三相交流调压的接线要求建成仿真模型的,单个晶闸管元件的参数设置仍然遵循晶闸管整流桥的参数设置原则。

111111111双闭环三相异步电动机调压调速系统设计

111111111双闭环三相异步电动机调压调速系统设计

双闭环三相异步电动机调压调速系统设计引言:异步电动机的转速恒小于旋转磁场的转速n1,只有这样,转子绕组才能产生电磁转矩,使电动机旋转。

如果n=n1,转子绕组和定子磁场之间无相对运动,则转子绕组中无感应电动势和感应电流产生,可见n<n1是异步电动机工作的必要条件。

由于电动机转速n 和旋转磁场转速n1不同步,故称为异步电动机。

一、三相异步工作原理三相绕组接通三相电源产生的磁场在空间旋转,称为旋转磁场。

转速的大小由电动机极数和电源频率而定。

旋转磁场的转速n1称为同步转速。

它和电网的频率f1及电机的磁极对数p 的关系为:n1=60f1∕p对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。

所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。

交流异步电动机机械特性的参数表达式如下:变压调速是异步电动机调速方法中的一种,由三相异步电动机机械特性参数表达式可知,当异步电动机等效电路的参数不变时,在相同点的转速下,电磁转矩e T 和定子电压S U 的平方成正比,因此,改变定子外加电压就可以机械特性的函数关系,从而改变电动机在一定负载转矩下的转速。

本实验即采用定子调压调速系统,就是在恒定交流电源和交流电动机之间接入晶闸管作为交流电压控制器,即改变定子电压调速。

如下图画出了定子电压为1U 、'1U 、"1U ('"111U U U >>)时的机械特性。

()()⎥⎦⎤⎢⎣⎡+++=2'21'1'23lr ls r S r sL L S R R S R UT ωω二、设计流程1电动机的选型:假设电动机工作于普通机床主轴传动系统中,设定最大转速为1440r/min,可选出电动机型参数如下:型号:Y132S-4 额定功率:5.5KW 满载时定子电流:12A满载时转速:1440r/min 满载时效率:85.5% 满载时功率因数:0.84 堵转电流/额定电流:7A 堵转转矩/额定转矩:2.2N.m铁芯长度:115mm 气隙长度0.4mm 定子外径:210mm定子内径:136mm 定子线规根数-d:1-0.9mm每槽线数:47 绕组形式:单层交叉节距:1~9mm定转子槽数Z1/Z2: 36/32系统结构确定如图所示2主电路设计:2.1晶闸管的选择晶闸管选择主要根据变流器的运行条件,计算晶闸管电压、电流值,选出晶闸管的型号规格。

三相异步电机双闭环调速控制系统设计

三相异步电机双闭环调速控制系统设计

三相异步电机双闭环调速控制系统设计O 引言三相交流异步电机以其结构简单,体积小,重量轻,价格低,维修方便等优点,广泛应用于武器装备、给料系统、数控机床、柔性制造技术、各种自动化设备等领域,其转速控制系统性能的优劣直接决定了设备性能的发挥。

随着高性能微处理器及新型电力电子器件的出现,使得应用全控型电力电子器件和空间矢量(SVPWM)控制技术进行变频调速的方式已成为交流电机调速控制的主流。

相对于其他微处理器,DSP 具有运算速度快,可以自己产生有死区时间的PWM 输出,可以实现诸如模糊控制等复杂的算法,外围硬件少等优点,因而广泛用于电机的数字控制。

本文以TMS320LF2407A DSP 芯片和AT89S52 单片机为核心,设计了针对三相交流异步电机的全数字调速控制系统。

实验结果表明,该系统具有实时显示,数据存储,动态响应快,控制精度高,抗干扰性强等优点。

1 TMS320LF2407A 简介TMS320LF2407A 主要包括算术逻辑运算单元(CALU)、寄存器集、辅助算术逻辑单元(ARAU)、乘法器、乘法移位器、累加器、加法移位器、时钟锁相环电路、两个完全等同的事件管理器A,B(包括通用定时器、比较单元、捕获/正交编码器脉冲电路)、内部A/D 转换器、双串口、看门狗、CAN 总线电路单元等。

TMS320LF2407A 采用先进的哈佛结构,流水线作业,在30 MHz 内部时钟频率下,指令周期仅为33 ns。

其内部存储器包含2 类RAM 块。

一类为DRAM,另一类为SRAM。

对DRAM 而言又划分为3 个RAM 块,即B0,B1,B2,容量依次为256 字,256 字,32 字。

这些RAM 全部允许在一个指令周期内访问两次,因此在数据处理能力上有显著的增加。

同时,B0 块还可以通过程序动态地配置为数据存储器区或程序存储器区。

若配置为程序区可在上电时把浮点算法子程序或者数据表从外部慢速EPROM。

调速系统实验内容

调速系统实验内容
• PWM的生成原理
在图1中,PWM调制器用于产生一路PWM脉冲波,它是由专用 芯片TL494产生,其内部原理图如图2所示:
图2 TL494的内部原理图
实验一 双闭环控制的直流脉宽调速系统(H桥)
在本实验中,把PWM调制器接成图3所示:
图3 PWM波形发生器外围接线图
实验一 双闭环控制的直流脉宽调速系统(H桥)
实验二 SPWM、马鞍波、SVPWM变频调速实验
• 3、空间电压矢量PWM变频调速方式
对三相逆变器,根据三路开关的状态可以生成六个互差60°的 非零电压矢量V1—V6,以及零矢量V0,V7,矢量分布如图3所示 。当开关状态为(000)或(111)时,即生成零矢量,这时逆变 器上半桥或下半桥功率器件全部导通,因此输出线电压为零。 由于电机磁链矢量是空间电压矢量的时间积分,因此控制电压 矢量就可以控制磁链的轨迹和速率。在电压矢量的作用下,磁链 轨迹越是接近圆,电机脉动转矩越小,运行性能越好。 为了比较方便地演示空间电压矢量PWM控制方式的本质,我 们采用了最简单的六边形磁链轨迹。尽管如此,其效果仍优于 SPWM方法。
实验二SPWM、马鞍波、SVPWM变频调速实验
3、 分析在50HZ~60Hz范围内正弦波信号的幅值与频率的关系。 4、画出与马鞍波调制PWM有关的主要信号波形,说明马鞍波 PWM调制的基本原理。 5、为什么采用马鞍波调制后的PWM输出电压比采用正弦波脉宽 调制的PWM输出电压有较高的基波电压分量? 6、简述空间电压矢量控制变频调速的原理。 7、画出在试验中观测到的所有波形。 8、简述注入“零矢量”的作用。
(1)接通挂件电源,关闭电机开关,并将调制方式设定在空间电压 矢量方式下,然后打开电源开关。 (2)将频率设置为0.5Hz~60Hz的范围内改变,在测试点中观测占 空比与频率的关系(在V/F函数不变的情况下)。

三相异步电动机调速方式研究

三相异步电动机调速方式研究

三相异步电动机调速方式研究发布时间:2021-09-06T15:22:39.440Z 来源:《科学与技术》2021年第12期4月作者:李康刘超解秦[导读] 三相异步电动机是一种重要的能量转换机构,其工作原理是内部转子的转速低于旋李康刘超解秦中车永济电机有限公司山西省永济市 044502摘要:三相异步电动机是一种重要的能量转换机构,其工作原理是内部转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在相对运动而产生感生电动势和电流,并与磁场相互作用产生电磁转矩,从而实现为外界输送动力的目的。

近年来,随着电力电子技术、微电子技术、计算机技术以及自动控制技术的迅猛发展,交流电机调速日趋完善,其调速性能可以与直流电机媲美,价格也不高。

因此交流电机电力拖动系统正逐步取代直流电机拖动系统。

加强三相异步电动机调速的研究,根据不同的拖动环境,科学制定三相异步电动机调速策略,可以更好地发挥三相异步电动机的优势,更好地为工农业生产服务。

关键词:三相异步电动机;调速方式;分析研究1.三相异步电动机调速基本原理三相异步电动机是通过其内部转子与磁场间发生相对运动而产生电流,并产生磁场,与原有磁场发生相互作用,产生向外输送动力的作用力。

电动机的转速由电动机所采用的电源频率、电动机的极对数、转差率等因素所决定,因此,进行电动机调速要着重从以上几个方面入手,从而实现对三相异步电动机的调速操作。

三相异步电动机调速方法主要有变极调速、变阻调速和变频调速等几种。

变极调速是针对极对数进行调节,就是通过改变定子绕组的磁极对数,以实现调速;变阻调速是通过调节转差率来改变转子电阻,从而实现调速目的;变频调速是通过调节供电频率实现调速的目的。

2.三相异步电动机调速方式2.1变极调速变极调速即改变三相异步电动机定子绕组的极对数,是通过改变定子绕组的连接方式完成的。

以单相绕组为例,若一相绕组由两个半相绕组1和2组成。

当两个半相绕组首尾依次连接,即两个半相绕组正向串联,再通入电流,如图1(a)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动控制系统专题实验




2016年5月
6.1双闭环三相异步电机调压调速系统
一.实验目的
(1)熟悉晶闸管相位控制交流调压调速系统的组成与工作原理。

(2)熟悉双闭环三相异步电机调压调速系统的基本原理。

(3)掌握绕线式异步电机转子串电阻时在调节定子电压调速时的机械特性。

(4)掌握交流调压调速系统的静特性和动态特性。

熟悉交流调压系统中电流环和转速环的作用。

二.实验内容
(1)测定绕线式异步电动机转子串电阻时的人为机械特性。

(2)测定双闭环交流调压调速系统的静特性。

(3)测定双闭环交流调压调速系统的动态特性。

三.实验设备
(1)电源控制屏(NMCL-32);
(2)低压控制电路及仪表(NMCL-31);
(3)触发电路和晶闸管主回路(NMCL-33);
(4)可调电阻(NMCL-03);
(5)直流调速控制单元(NMCL-18);
(6)电机导轨及测速发电机(或光电编码器);
(7)直流发电机M03;
(8)三相绕线式异步电机;
(9)双踪示波器;
(10)万用表。

四.实验原理
1.系统原理
双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器(TVC)及三相绕线式异步电动机M(转子回路串电阻)。

控制系统由零速封锁器(DZS)、电流调节器(ACR)、速度调节器(ASR)、电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器(AP1)等组成。

其系统原理图如图6-1所示。

整个调速系统采用了速度、电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网波动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。

异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。

2.三相异步电机的调速方法
交流调速系统按转差功率的处理方式可分为三种类型。

转差功率消耗型:异步电机采用调压、变电阻等调速方式,转速越低时,转差功率的消耗越大,效率越低。

转差功率馈送型:控制绕线转子异步电机的转子电压,利用其转差功率可实现调节转速的目的,这种调节方式具有良好的调速性能和效率,如串级调速。

转差功率不变型:这种方法转差功率很小,而且不随转速变化,效率较高,列如磁极对数调速、变频调速等。

如何处理转差功率在很大程度上影响着电机调速系统的效率。

五.实验方法
双闭环交流调压调速系统主回路和控制回路如图连接,NMCL-32的“三相交流电源”开关拨向“交流调速”。

给定电位器RP1和RP2左旋到最大位置,可调电阻NMCL-03左旋到最大位置。

注意:图中主回路中接入的是交流电流表和交流电压表。

图2-1b 双闭环交流调压调速系统控制回路
1.移相触发电路的检测
(1)推上空气开关,主电源暂不上电。

用示波器观察NMCL—33的双脉冲观察孔,应有双窄脉冲,且间隔均匀,幅值相同,相位差60;
(2)将面板上的Ublf端接地,调节偏移电压Ub,使触发角在30°~180°范围内可调,调试完成后,将U b左旋到最大位置。

(3)将正组触发脉冲的六个键开关接通,测试正桥晶闸管的脉冲是否正常,正常情况下,晶闸管阴极和控制极之间应有幅值为1-2V的双脉冲。

2.控制单元调试
(1)速度反馈系数的调试
首先,断开ACR的7端,给定电压Ug直接与Uct连接,形成开环调速系统。

断开M03的励磁电源和限流电阻RG,闭合电源使电机M09空载运行,调节Ug使转速达到额定转速约为1420r/min。

然后取出FBS3端与NMCL-18中ASR的1端的连接线,调节速度反馈FBS的电位器使得它的输出3和4端之间的电压为3V 测试完成后按图的控制回路重新连接。

(2)电流反馈系数的测试
断开ASR的3端与ACR的3端,给定电压Ug直接连接到ACR的3端,形成电流单闭环系统,电位器左旋到底使Uct=0,Ub左旋到底使得ɑ=0。

断开发电机M03的励磁电源和限流电阻R G,闭合主回路电源负给定电压为3V,M09空载运行,然后断开NMCL-33中电流反馈If与ACR的1端的连接线,调节电位器使得三相异步电机M09的转速n=0,最后再回调电流反馈If的电位器RP使得电机刚要转动还没转动时立即停止,则电流环便调试完成。

3.开环机械特性的测试
(1)断开NMCL—18的ASR的“3”至NMCL-33的Uct的连接线,NMCL-31的G(给定)的Ug端直接加至Uct,且Ug调至零。

直流电机励磁电源开关闭合。

电机转子回路接入每相为10(左右的三相电阻。

(2)NMCL-32的“三相交流电源”开关拨向“交流调速”。

合上主电源,即按下主控制屏绿色“闭合”开关按钮,这时候主控制屏U 、V 、W 端有电压输出。

(3)调节给定电压Ug ,使电机空载转速n0=1300转/分,调节直流发电机负载电阻,在空载至一定负载的范围内测取7~8点,读取直流发电机输出电压Ud ,输出电流id 以及被测电动机转速n 。

并计算三相异步电动机的输出转矩。

(4)调节Ug ,降低电机端电压,在1/3Ue 及2/3Ue 时重复上述实验,以取得一组人为机械特性。

注:采用直流发电机,转矩可按下式计算
n P R I U I M O S G G G /)(55.92
++=
式中 :
M ——三相异步电动机电磁转矩; I G ——直流发电机电流;
U G ——直流发电机电压; R S ——直流发电机电枢电阻;
P 0——机组空载损耗。

不同转速下取不同数值:n=1500r/min ,Po=13.5W ;n=1000r/min ,Po=10W ;n=500r/min ,Po=6W 。

4.系统闭环特性的测定
调节Ug ,使转速至n =1420r/min ,从轻载按一定间隔做到额定负载,测出闭环静特性n =f(M)。

系统动态特性的测试,用慢扫描示波器测试并记录如下波形,即:
(1)突加突减给定电压Ug 启动电机M09时转速n ,ASR 输出“3”端的动态波形。

(2)电机M09稳定运行,突加突减负载时的n,ASR 输出“3”的动态波形。

六.实验结果
3. M=9.55(IGUG+IG2 RS+P0)/n RS 由实验5.1测得为26.5Ω

4.(2)突加给定:
7uF 2uF
(4
)系统动态特性的测定
突减给定电压:突加给定电压:
突减负载:突加负载:
七、思考题:
1.三相绕线式异步电机转子回路的目的是什么?不串电阻能否正常运行?
转子回路串接是为了使启动电流减小,若不串电阻可能会导致启动电流过大而导致不能正常运行。

2.为什么交流调压调速系统不宜用于长期处于低速运行的生产机械和大功率设备上?
因为交流调压调速在低速时转差功率损耗大、效率低。

相关文档
最新文档