高中数学《点、直线、平面之间的位置关系》同步练习2 新人教A版必修2

合集下载

高中数学 第二章《点、直线、平面之间的位置关系》练习(提高版) 新人教A版必修2

高中数学 第二章《点、直线、平面之间的位置关系》练习(提高版) 新人教A版必修2

高中数学 第二章《点、直线、平面之间的位置关系》练习(提高版) 新人教A 版必修2一、选择题(共12小题,每小题 5分,共60分)1.关于空间中点、线、面之间的关系描述正确的是( )A .若直线a 在平面α外,则α//aB .若点A 在直线a 上,则a A ∈C .若直线a 与b 不相交,则b a //D .若b a ⊥,则a 与b 必相交 2.已知直线a 、b ,且a ∥α,b ⊂α,则( )A .a ∥bB .a 与b 相交C .a 与b 异面D .a 与b 平行或异面 3.在正方体1111D C B A ABCD -中,与对角线1BD 异面的棱有( )条 A . 3 B . 4 C . 6 D . 8 4.直线⊥a 平面α,直线a b ⊥,则b 和α的位置关系是( )A .α⊥bB .b ∥αC .α⊂bD .b ∥α或α⊂b 5.已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是( ) A .βαβα⊂⊂n m ,,//n m //⇒ B .αα//,//n m n m //⇒ C .n m m =⊂βαβα ,,//n m //⇒ D .αα⊂n m ,//n m //⇒6.三棱锥A —BCD 的棱长全相等, E 是AD 中点, 则直线CE 与直线BD 所成角的余弦值为( )A .63B.23 C .633 D .217.如果正四棱锥的侧面积等于底面积的2倍,则侧面与底面所成的角等于( ) A .30° B .45° C .60° D .75°8.如下图,⊥PD 矩形ABCD 所在的平面,图中相互垂直的平面有( )对A .2B .3C .4D .59.下列推断错误的是( )A .一条直线与两个平行平面所成的角相等B .两个平行平面与第三个平面所成的角相等C .两条平行直线与同一个平面所成的角相等DABCPD .两条直线与一个平面所成的角相等,则这两条直线平行 10.如图为一正方体的平面展开图,在这个正方体中: ①BM ∥平面DE ②CN ∥AF③ED 与AF 成的角为60 ④平面BMD ∥平面AFN其中正确的序号是( )A .①④B .①②④C .①③④D .①②③④ 11.已知直线⊥l 平面α,直线⊂m 平面β,在下列命题中正确的是( )①m l ⊥⇒βα// ②m l //⇒⊥βα ③βα⊥⇒m l // ④βα//⇒⊥m l A .①② B .③④ C .②④ D .①③ 在空间四边形ABCD 中,CD AB =,且异面直线AB 与CD 所成的角为60,E 、F 分别为边BC 和AD 的中点,则异面直线EF 和AB 所成的角为 ( )A . 30B . 45C . 60D . 30或60填空题(共4小题,每小题5分,共20分) 13.如图长方体中,32==AD AB ,21=CC ,则二面角C BD C --1的大小为 . 14.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①n m ⊥ ②βα⊥ ③β⊥m ④α⊥n . 以其中三个作为条件,余下一个作为结论, 请写出正确的一个命题:______________________________.15.如图,在四棱锥P ABCD -中,底面为直角梯形,AD ∥BC , 90BAD ∠=︒,PA ⊥底面ABCD ,且AB AD PA ==, M 、N 分别为PC 、PB 的中点,则直线BD 与平面ADMN 所成的角为_______.16.以下是关于直线、平面的平行与垂直关系推断:①若b a ⊥,且c a //,则c b ⊥ ②若b a ⊥,且b c ⊥,则c a // ③若βα⊥,且βγ⊥,则γα// ④若α⊥a ,且β⊂a ,则βα⊥ 其中不对的有 .(只填序号)DA BCEFGA BCDA1B1C1 D1NM PDCBA 三、解答题(共6小题,其中第17小题10分,其他各题12分,共70分)17.( 10分) 在正方体1111D C B A ABCD -中,且O 为底面正方形1111D C B A 的中心. (1)求证:⊥C A 1平面BD C 1; (2 ) 求证:AO ∥平面BD C 1.18.(12分) 已知P 是平行四边形ABCD 所在平面外一点,E 是PC 的中点,在DE 上任取一点F ,过点F 和AP 作平面交平面BDE 于FG , 求证:GF AP //.19.(12分) 如图,PA ⊥矩形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点.(1)求证://MN 平面PAD ; (2)求证:MN CD ⊥;(3)若4PDA π∠=,求证:MN ⊥平面PCD C20.( 12分) 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且 DC AB EA ==,F 是BE 的中点. (1)求证://FD 平面ABC ; (2)求证:⊥AF 平面EDB .1D 1C 1B 1A D CBAo21.(12分)如图,O 是正方形ABCD 的中心,⊥PO 底面ABCD ,E 是PC 的中点, 且2=PO ,2=AB .(1)求证://PA 平面BDE ; (2)求证:平面⊥PAC 平面BDE ; (3)求二面角A BD E --的大小.22.(12分)如图,在矩形ABCD 中,33=AB ,3=BC ,沿对角线BD 将BCD ∆折起,使点C移到P 点,且P 在平面ABD 上的射影O 恰好落在AB 上. (1)求证:⊥PB 平面PAD ; (2)求证:平面PAD ⊥平面PBD ;(3)求点A 到平面PBD 的距离;(4)求直线AB 与平面PBD 所成角的正弦值.A B()P C DOAB CD。

人教新课标A版高中数学必修2第二章点、直线、平面之间的位置关系2.3直线、平面垂直的判定及其性质测试

人教新课标A版高中数学必修2第二章点、直线、平面之间的位置关系2.3直线、平面垂直的判定及其性质测试

人教新课标A版高中数学必修2 第二章点、直线、平面之间的位置关系 2.3直线、平面垂直的判定及其性质同步测试共 25 题一、单选题1、下列命题中错误的是()A.如果α⊥β,那么α内一定存在直线平行于平面βB.如果α⊥β,那么α内所有直线都垂直于平面βC.如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面βD.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ2、平面α,β及直线l满足:α⊥β,l∥α,则一定有( )A.l∥βB.l⊂βC.l与β相交D.以上三种情况都有可能3、在四边形ABCD中,AD∥BC,AD=AB,,,将沿BD折起,使平面平面,构成三棱锥,则在三棱锥中,下列命题正确的是()A.平面平面ABCB.平面平面BCDC.平面平面BCDD.平面平面ABC4、若a,b,c表示直线,α表示平面,下列条件中,能使a⊥α的是( )A.a⊥b,a⊥c,b⊂α,c⊂α,b∩c=AB.a⊥b,b∥αC.a∩b=A,b⊂α,a⊥bD.α∥b,b⊥a5、如图,已知四边形ABCD为正方形,PD⊥平面ABCD且PD=AD,则下列命题中错误的是( )A.过BD且与PC平行的平面交PA于M点,则M为PA的中点B.过AC且与PB垂直的平面交PB于N点,则N为PB的中点C.过AD且与PC垂直的平面交PC于H点,则H为PC的中点D.过P、B、C的平面与平面PAD的交线为直线l,则l∥AD6、在三棱锥A﹣BCD中,若AD⊥BC,BD⊥AD,△BCD是锐角三角形,那么必有( )A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BCDD.平面ABC⊥平面BCD7、ABCD为正方形,P为平面ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC,平面PAB与平面PAD的位置关系是()A.平面PAB与平面PAD,PBC垂直B.它们都分别相交且互相垂直C.平面PAB与平面PAD垂直,与平面PBC相交但不垂直D.平面PAB与平面PBC垂直,与平面PAD相交但不垂直8、如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是( )A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P﹣BC﹣A的大小为45°D.BD⊥平面PAC9、已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是( )A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β10、PA垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是( )①面PAB⊥面PBC②面PAB⊥面PAD③面PAB⊥面PCD④面PAB⊥面PAC.A.①②B.①③C.②③D.②④11、若平面α⊥平面β,平面β⊥平面γ,则( )A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能12、如图所示,AB⊥平面BCD,∠BCD=90°则图中互相垂直的平面有()A.3对B.2对C.1对D.4对13、已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有( )A.2对B.3对C.4对D.5对14、如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是()A.90°B.60°C.45°D.30°15、已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有( )(1)MN⊥AB;(2)若N为中点,则MN与AD所成角为60°;(3)平面CDM⊥平面ABN;(4)不存在点N,使得过MN的平面与AC垂直.A.1B.2C.3D.4二、填空题16、如图,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是________17、已知矩形ABCD的边AB=a,BC=3,PA⊥平面ABCD,若BC边上有且只有一点M,使PM⊥DM,则a的值为________18、ABCD是矩形,AB=4,AD=3,沿AC将△ADC折起到△AD′C,使平面AD′C⊥平面△ABC,F是AD′的中点,E是AC上的一点,给出下列结论:①存在点E,使得EF∥平面BCD′;②存在点E,使得EF⊥平面ABD′;③存在点E,使得D′E⊥平面ABC;④存在点E,使得AC⊥平面BD′E.其中正确结论的序号是________ .(写出所有正确结论的序号)19、把Rt△ABC沿斜边上的高CD折起使平面ADC⊥平面BDC,如图所示,互相垂直的平面有________ 对.20、如图所示,四棱锥P﹣ABCD的底面ABCD是边长为a的正方形,侧棱PA=a,PB=PD=a,则它的5个面中,互相垂直的面有________ 对.三、解答题21、三棱锥S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC=, SB=.(1)证明:SC⊥BC;(2)求三棱锥的体积V S﹣ABC.22、如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.(1)判定AE与PD是否垂直,并说明理由.(2)设AB=2,若H为PD上的动点,若△AHE面积的最小值为,求四棱锥P﹣ABCD的体积.23、如图,在三棱锥P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中点,M是CE的中点,N点在PB上,且4PN=PB.(Ⅰ)证明:平面PCE⊥平面PAB;(Ⅱ)证明:MN∥平面PAC.24、如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.(Ⅰ)求证:AC⊥DE;(Ⅱ)求四棱锥P﹣ABCD的体积.25、已知三棱锥S﹣ABC,SC∥截面EFGH,AB∥截面EFGH.求证:截面EFGH是平行四边形.参考答案一、单选题1、【答案】B【解析】【解答】如果α⊥β,则α内与两平面的交线平行的直线都平行于面β,故可推断出A命题正确.B选项中α内与两平面的交线平行的直线都平行于面β,故B命题错误.C根据平面与平面垂直的判定定理可知C命题正确.D根据两个平面垂直的性质推断出D命题正确.故选B【分析】如果α⊥β,则α内与两平面的交线平行的直线都平行于面β,进而可推断出A命题正确;α内与两平面的交线平行的直线都平行于面β,故可判断出B命题错误;根据平面与平面垂直的判定定理可知C命题正确;根据两个平面垂直的性质推断出D命题正确.2、【答案】D【解析】【解答】∵平面α,β及直线l满足:α⊥β,l∥α,∴l∥β,l⊂β,l与β相交都有可能,故选D.【分析】利用条件,直接可以得出结论.3、【答案】D【解析】【解答】∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD.故CD⊥平面ABD,则CD⊥AB,又AD⊥AB,故AB⊥平面ADC,所以平面ABC⊥平面ADC.故选D.【分析】中档题,对于折叠问题,要特别注意“变”与“不变”的几何元素,及几何元素之间的关系。

高中数学必修2(人教A版)第二章几点、直线、平面的位置关系2.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第二章几点、直线、平面的位置关系2.1知识点总结含同步练习及答案

描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第二章 点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系一、学习任务理解空间点、线、面的位置关系,会用数学语言规范地表述空间点、线、面的位置关系;了解可以作为推理依据的公理和定理,能正确地判断空间线线、线面与面面的位置关系.二、知识清单平面的概念与基本性质 点、线、面的位置关系三、知识讲解1.平面的概念与基本性质平面的概念生活中的一些物体通常呈平面形,课桌面、黑板面、海面都给我们以平面的形象.几何里所说的平面就是从这样的一些物体中抽象出来的,但是几何中的平面是没有厚度、无限延展的.平面的画法我们常常把水平的平面画成一个平行四边形,用平行四边形表示平面,平行四边形的锐角通常画为 ,且横边长等于其邻边长的 倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡的部分用虚线画出来.平面的表示为了表示平面,常把希腊字母 等等写在代表平面的平行四边形的一个角上,如平面 、平面 ;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称,如图中的平面可以表示为平面 、平面 或者平面 .集合符号在立体几何中的应用以点作为元素,直线和平面都是由点构成的集合.几何中许多符号的规定都是源于将图形视为点集.例如:点 在平面 内,记作 ;点 不在平面 内,记作 .直线 在平面 内,记作 ;直线 不在平面 内,记作 ;直线 与 相交于点 ,记作 ;平面 与平面 相交于直线 ,记作 .平面的基本性质平面的基本性质是由三条公理描述的:公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.45∘2α,β,γαβABCD AC BD A αA ∈αA αA ∉αl αl ⊂αl αl ⊄αl m A l ∩m =A αβa α∩β=a A ∈l A ∈α例题:符号语言:,,且 ,.公理2 过不在一条直线上的三点,有且只有一个平面.推论1 经过一条直线和直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言:,且 ,且 .空间位置关系与几何量的基础平行公理 平行于同一条直线的两条直线互相平行.等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.A∈l B∈l A∈αB∈α⇒l⊂αP∈αP∈β⇒α∩β=l P∈l用符号语言表示下列语句.(1)点 在平面 外,点 在平面 内,直线 经过点 ,;(2) 与 交于 , 与 交于 .解:(1),,,.(2),.AαBαl A B平面ABD平面BCD BD平面ABC平面ADC ACa∉αB∈αA∈l B∈l平面ABD∩平面BCD=BD平面ABC∩平面ADC=AC如图所示,在四面体 中,、、、 分别是 、、、 上的点,且 ,求证 ,, 三点共线.ABCD E F G H AB AD BC CDEF∩GH=PB D P2.点、线、面的位置关系证明:因为 ,,所以 ,同理,,又,所以 ,,而 ,所以 ,即 ,, 三点共线.E ∈ABF ∈AD EF ⊂平面 ABD GH ⊂平面 BCD EF ∩GH =P P ∈平面 ABD P ∈平面 BCD 平面 ABD ∩平面 BCD =BD P ∈直线BD B D P 已知:如图,,,.求证:直线 ,, 在同一平面内.证法一:(同一法)因为 ,所以 和 确定一个平面 . 因为 ,所以 .又因为 ,所以 .同理可证 .又 ,,所以 .因此,直线 ,, 在同一个平面内.证法二:(重合法)因为 ,所以 , 确定一个平面 .因为 ,所以 , 确定一个平面 .又因为 ,,所以 .又 ,,所以 .同理可证得 ,,,.所以不共线的三个点 ,, 在平面 内,又在平面 内.所以平面 和平面 重合,即直线 ,, 在同一平面内.∩=A l 1l 2∩=B l 2l 3∩=C l 1l 3l 1l 2l 3∩=A l 1l 2l 1l 2α∩=B l 2l 3B ∈l 2⊂αl 2B ∈αC ∈αB ∈l 3C ∈l 3⊂αl 3l 1l 2l 3∩=A l 1l 2l 1l 2α∩=B l 2l 3l 2l 3βA ∈l 2⊂αl 2A ∈αA ∈l 2⊂βl 2A ∈βB ∈αB ∈βC ∈αC ∈βA B C αβαβl 1l 2l 3结合空间想象回答下列问题:(1) 个平面可以分空间为______部分;(2) 个平面可以分空间为______部分;(3)正方体的各个面延伸后将空间分成______部分.解:(1),;(2),,,;(3).对于(1):当 个平面平行时,分成 部分;当两个面相交时,分成 部分;对于(2):当 个平面两两平行时,分成 部分;当其中两个平面平行,和另外一个平面相交或者三个平面相交于一条直线时,分成 部分;当 个平面两两相交且交线两两平行时,分成 部分;当 个平面两两相交且交线相交于一点时,分成 部分;对于(3):首先,将正方体的四个侧面延伸,可知将空间分成 部分,然后,将正方体的上下底面延伸可知将之前部分分成了 层,每层 部分,共 部分 .233446782723434637389393×9=27若直线 、、 相交于一点,则这 条直线可能确定的平面有( )A. 个 B. 个 C.无数个 D. 个或 个解:D当 、、 三线共面时,平面只有 个;当三线不共面时,任意两条可确定一个平面,共 个.a b c 30113a b c 13描述:例题:点与平面的位置关系平面内有无数个点,平面可以看成点的集合.点 在平面 内,记作 ;点 不在平面 内,记作 .直线与直线的位置关系空间直线与直线的位置关系共有以下两种:共面直线 在同一平面内的两条直线.更进一步,若这两条直线有且只有一个公共点,则称它们是相交直线 ,若这两条直线没有公共点,则称它们是平行直线;异面直线 不同在任何一个平面内的两条直线.直线垂直如果两条直线所成的角是直角,那么我们就说这两条直线互相垂直,记作 .在空间,两条直线垂直包括两种情形:共面垂直和异面垂直.直线与平面的位置关系空间直线与平面的位置关系共有以下三种:直线在平面内 直线上的所有点都在平面内;直线与平面相交 直线与平面有且仅有一个公共点;直线与平面平行 直线与平面没有公共点.平面与平面的位置关系空间平面与平面的位置关系共有以下两种:平行 两个平面没有公共点,则称这两个平面平行;相交 两个平面有一条公共直线,则称这两个平面相交,此时这条公共直线称为这两个平面的交线.A αA ∈αA αA ∉αa ⊥b 如果在两个平面内分别各有一条直线,这两条直线互相平行,那么这两个平面的位置关系是()A.平行 B.相交 C.平行或相交 D.垂直相交解:C可根据题意作图判断,如图所示,分别为两个平面平行、相交的情况 .分别和两条异面直线都相交的两条直线的位置关系是( )A.相交 B.异面 C.异面或相交 D.平行解:C如图所示,可能相交,也可能异面,若两直线平行,则此两条直线确定一个平面,且原两条异面直线均在此平面内,故矛盾 .四、课后作业 (查看更多本章节同步练习题,请到快乐学)若直线 不平行于平面 ,且 ,则( )A. 内的所有直线与 异面 B. 内不存在与 平行的直线 C. 内存在唯一的直线与 平行 D. 内的直线与 都相交解:B依题意,设直线 ,如图. 内的直线若经过点 ,则与直线 相交;若不经过点 ,则与直线 是异面直线,但不可能与 平行.l αl ⊄ααl αl αl αl l ∩α=A αA l A l l 答案:解析:1. 如图,在正方体 中, 是底面正方形 的中心, 是 的中点, 是 上的动点,则直线 、 的位置关系是 .A .平行B .相交C .异面垂直D .异面不垂直C和点 确定平面 ,且 平面 , 判定 与平面 的位置关系,只需判定直线 的位置关系即可.ABCD −A 1B 1C 1D 1O ABCD M D D 1N A 1B 1NO AM ()A 1B 1O O A 1B 1NO ⊂O A 1B 1∴MA O A 1B 1NO 、AM 答案:2. 平行六面体 中,既与 共面也与 共面的棱的条数为 A .B .C .D .C ABCD −A 1B 1C 1D 1AB C C 1()3456答案:3. 正方体 中, 、 、 分别是 、 、 的中点.那么,正方体的过 、 、 的截面图形是 A .三角形B .四边形C .五边形D .六边形D ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P Q R ()4. 下列正方体或正四面体中,,,, 分别是所在棱的中点,这四个点不共面的一个图是 P Q R S ()高考不提分,赔付1万元,关注快乐学了解详情。

【人教A版】高中数学必修2教学同步讲练第二章《平面与平面之间的位置关系》练习题(含答案)

【人教A版】高中数学必修2教学同步讲练第二章《平面与平面之间的位置关系》练习题(含答案)

第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系A级基础巩固一、选择题1.与同一平面平行的两条直线()A.平行B.相交C.异面D.平行、相交或异面2.过平面外一条直线作平面的平行平面()A.必定可以并且只可以作一个B.至少可以作一个C.至多可以作一个D.一定不能作3.若直线a不平行于平面α,则下列结论成立的是()A.α内的所有直线均与a异面B.α内不存在与a平行的直线C.α内的直线均与a相交D.直线a与平面α有公共点4.与两个相交平面的交线平行的直线和这两个平面的位置关系是()A.都平行B.都相交C.在两平面内D.至少和其中一个平行5.平面α与平面β平行且a⊂α,下列三种说法:①a与β内的所有直线都平行;②a与β平行;③a与β内的无数条直线平行,其中正确的个数是()A.0 B.1C.2 D.3二、填空题6.在长方体ABCD-A1B1C1D1的六个表面与六个对角面(面AA1C1C、面ABC1D、面ADC1B1、面BB1D1D、面A1BCD1及面A1B1CD)所在的平面中,与棱AA1平行的平面共有________个.7.若a与b异面,则过a与b平行的平面有________个.8.若平面α与平面β平行,a⊂α,b⊂β,则a与b的位置关系是________.三、解答题9.如图所示,在正方体ABCD-A1B1C1D1中,指出B1C,D1B所在直线与正方体各面所在平面的位置关系.10.如图所示,ABCD­A1B1C1D1是正方体,画出图中阴影部分的平面与平面ABCD的交线,并给出证明.B级能力提升1.已知a,b,c为三条不重合的直线,α,β为两个不重合的平面.①a∥c,b∥c⇒a∥b;②a∥β,b∥β⇒a∥b;③a∥c,c∥α⇒a∥α;④a∥β,a∥α⇒α∥β;⑤a⊄α,b⊂α,a∥b⇒a∥α.其中正确的命题是()A.①⑤B.①②C.②④D.③⑤2.给出下列命题:①如果平面α与平面β相交,那么它们只有有限个公共点;②两个平面的交线可能是一条线段;③经过空间任意三点的平面有且只有一个;④如果两个平面有三个不共线的公共点,那么这两个平面就重合为一个平面.其中正确命题的序号为________.3.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别为B1C1,A1D1的中点.求证:平面ABB1A1与平面CDFE相交.参考答案第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系A级基础巩固一、选择题1.与同一平面平行的两条直线()A.平行B.相交C.异面D.平行、相交或异面解析:与同一平面平行的两条直线的位置关系有三种情况:平行、相交或异面.答案:D2.过平面外一条直线作平面的平行平面()A.必定可以并且只可以作一个B.至少可以作一个C.至多可以作一个D.一定不能作解析:因为直线在平面外包含两种情况:直线与平面相交和直线与平面平行.当直线与平面相交时,不能作出符合题意的平面;当直线与平面平行时,可作出唯一的一个符合题意的平面.答案:C3.若直线a不平行于平面α,则下列结论成立的是()A.α内的所有直线均与a异面B.α内不存在与a平行的直线C.α内的直线均与a相交D.直线a与平面α有公共点解析:若直线a不平行平面α,则a∩α=A或a⊂α,故D项正确.答案:D4.与两个相交平面的交线平行的直线和这两个平面的位置关系是()A.都平行B.都相交C.在两平面内D.至少和其中一个平行解析:若该直线不属于任何一个平面,则其与两平面平行;若该直线属于其中一个平面,则其必和另一个平面平行.答案:D5.平面α与平面β平行且a⊂α,下列三种说法:①a与β内的所有直线都平行;②a与β平行;③a与β内的无数条直线平行,其中正确的个数是()A.0 B.1C.2 D.3解析:因为α∥β,a⊂α,所以a与β无公共点,所以a∥β,故②正确,所以a与β内的所有直线都没有公共点,所以a与β内的直线平行或异面,故①不正确,③正确.答案:C二、填空题6.在长方体ABCD-A1B1C1D1的六个表面与六个对角面(面AA1C1C、面ABC1D、面ADC1B1、面BB1D1D、面A1BCD1及面A1B1CD)所在的平面中,与棱AA1平行的平面共有________个.解析:如图所示,结合图形可知AA1∥平面BB1C1C,AA1∥平面DD1C1C,AA1∥平面BB1D1D.答案:37.若a与b异面,则过a与b平行的平面有________个.解析:当a与b异面时,如图,过a上任意一点M作b′∥b,则a与b′确定了唯一的平面α,且b∥α,故过a与b平行的平面有1个.答案:18.若平面α与平面β平行,a⊂α,b⊂β,则a与b的位置关系是________.解析:由两平面平行的定义可知,a与b没有公共点,所以a与b平行或异面.答案:平行或异面三、解答题9.如图所示,在正方体ABCD-A1B1C1D1中,指出B1C,D1B所在直线与正方体各面所在平面的位置关系.解:B1C所在直线与正方体各面所在平面的位置关系是:B1C是平面BB1C1C内,B1C∥平面AA1D1D,B1C与平面ABB1A1,平面CDD1C1,平面ABCD,平面A1B1C1D1都相交.D1B所在直线与正方体各面所在平面都相交.10.如图所示,ABCD­A1B1C1D1是正方体,画出图中阴影部分的平面与平面ABCD的交线,并给出证明.证明:如图,过点E作EN⊥CD于点N,连接NB并延长,交EF的延长线于点M,连接AM,因为直线EN∥BF,所以B,N,E,F四点共面,因此EF与BN相交,交点为M.因为M∈EF,且M∈NB,而EF⊂平面AEF,NB⊂平面ABCD,所以M是平面ABCD与平面AEF的公共点.又因为点A是平面AEF和平面ABCD的公共点,所以AM为这两平面的交线.B级能力提升1.已知a,b,c为三条不重合的直线,α,β为两个不重合的平面.①a∥c,b∥c⇒a∥b;②a∥β,b∥β⇒a∥b;③a∥c,c∥α⇒a∥α;④a∥β,a∥α⇒α∥β;⑤a⊄α,b⊂α,a∥b⇒a∥α.其中正确的命题是()A.①⑤B.①②C.②④D.③⑤解析:由公理4知①正确,由直线与平面平行的位置关系知⑤正确,从而选 A.其中②是错误的,因为平行于同一平面的两条直线可能平行、可能相交,也可能异面,③是错误的.因为当a∥c,c∥α时,可能a∥α,也可能a⊂α,对于④,α,β可能平行,也可能相交.答案:A2.给出下列命题:①如果平面α与平面β相交,那么它们只有有限个公共点;②两个平面的交线可能是一条线段;③经过空间任意三点的平面有且只有一个;④如果两个平面有三个不共线的公共点,那么这两个平面就重合为一个平面.其中正确命题的序号为________.解析:两个平面相交,则两个平面就是一条公共的交线,故①②错误;若空间中的任意三点在一条直线上,则经过这三点就有无数个平面,故③错误;④是正确的.答案:④3.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别为B1C1,A1D1的中点.求证:平面ABB1A1与平面CDFE相交.证明:在正方体ABCD-A1B1C1D1中,E为B1C1的中点,所以EC与B1B不平行,则延长CE与BB1必须相交于一点H,所以H∈EC,H∈B1B.又知B1B⊂平面ABB1A1,CE⊂平面CDFE,所以H∈平面ABB1A1,H∈平面CDFE,故平面ABB1A1与平面CDFE相交.。

高一数学人教A版必修二《点、直线、平面之间的位置关系》课堂基础练习题组(含答案)

高一数学人教A版必修二《点、直线、平面之间的位置关系》课堂基础练习题组(含答案)

高一数学人教A版必修二第二章题组目录:点、直线、平面之间的位置关系 2.1.2点、直线、平面之间的位置关系 2.1.4点、直线、平面之间的位置关系 2.2.2点、直线、平面之间的位置关系 2.2.4点、直线、平面之间的位置关系 2.3.1点、直线、平面之间的位置关系 2.3.4《点、直线、平面之间的位置关系》单元测试题高一数学人教A版必修二第二章课堂基础练习题点、直线、平面之间的位置关系 2.1.2一、选择题(每小题5分,共20分)1.如图所示,在三棱锥S-MNP中,E、F、G、H分别是棱SN、SP、MN、MP的中点,则EF与HG的位置关系是()A.平行B.相交C.异面D.平行或异面2.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为()A.相交B.平行C.异面而且垂直D.异面但不垂直3.下列命题中①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.正确的结论有()A.1个B.2个C.3个D.4个4.若P 是两条异面直线l ,m 外的任意一点,则( )A .过点P 有且仅有一条直线与l ,m 都平行B .过点P 有且仅有一条直线与l ,m 都垂直C .过点P 有且仅有一条直线与l ,m 都相交D .过点P 有且仅有一条直线与l ,m 都异面二、填空题(每小题5分,共15分)5.空间中有一个角∠A 的两边和另一个角∠B 的两边分别平行,∠A =70°,则∠B =________.6.如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AD ,AA 1的中点.(1)直线AB 1和CC 1所成的角为________;(2)直线AB 1和EF 所成的角为________.7. 如右图是正方体的平面展开图,在这个正方体中,①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60°的角;④DM 与BN 垂直.以上四种说法,正确说法的序号是________.三、解答题(每小题10分,共20分)8.如图所示,E 、F 分别是长方体A 1B 1C 1D 1-ABCD 的棱A 1A ,C 1C 的中点.求证:四边形B 1EDF 是平行四边形.9.在空间四边形ABCD 中,已知AD =1,BC =3,且AD ⊥BC ,BD =132,AC =32,求AC 和BD 所成的角.高一数学人教A版必修二第二章课堂基础练习题点、直线、平面之间的位置关系 2.1.4一、选择题(每小题5分,共20分)1.如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系一定是()A.平行B.相交C.平行或相交D.不能确定2.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系为()A.平行B.相交C.直线在平面内D.平行或直线在平面内3.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交4.已知直线m,n和平面α,m∥n,m∥α,过m的平面β与α相交于直线a,则n与a的位置关系是()A.平行B.相交C.异面D.以上均有可能二、填空题(每小题5分,共15分)5.下列命题:①两个平面有无数个公共点,则这两个平面重合;②若l,m是异面直线,l∥α,m∥β,则α∥β.其中错误命题的序号为________.6.与空间四边形ABCD四个顶点距离相等的平面共有________个.7.下列命题正确的有________.①若直线与平面有两个公共点,则直线在平面内;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;⑤若直线l与平面α平行,则l与平面α内的直线平行或异面;⑥若平面α∥平面β,直线a⊂α,直线b⊂β,则直线a∥b.三、解答题(每小题10分,共20分)8.如图所示,在正方体ABCD-A1B1C1D1中M,N分别是A1B1和BB1的中点,则下列直线与平面的位置关系是什么?(1)AM所在的直线与平面ABCD的位置关系;(2)CN所在的直线与平面ABCD的位置关系;(3)AM所在的直线与平面CDD1C1的位置关系;(4)CN所在的直线与平面CDD1C1的位置关系.9.如图,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.高一数学人教A版必修二第二章课堂基础练习题点、直线、平面之间的位置关系 2.2.2一、选择题(每小题5分,共20分)1.若直线a与平面α平行,则必有()A.在α内不存在与a垂直的直线B.在α内存在与a垂直的唯一直线C.在α内有且只有一条直线与a平行D.在α内有无数条直线与a平行2若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是()A.MN∥βB.MN与β相交或MN⊂βC.MN∥β或MN⊂βD.MN∥β或MN与β相交或MN⊂β3.已知m、n、a、b是四条直线,α,β是两个平面.有以下命题:①m⊂α,n⊂α且直线m与n相交,a⊂β,b⊂β且直线a与b相交,m∥a,n∥b,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是()A.0B.1C.2 D.34.已知两个不重合的平面α、β,给定以下条件:①α内不共线的三点到β的距离相等;②l,m是α内的两条直线,且l∥β,m∥β;③l,m是两条异面直线,且l∥α,l∥β,m∥α,m∥β.其中可以判定α∥β的是()A.①B.②C.①③D.③二、填空题(每小题5分,共15分)5.如图,P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出下列四个说法:①OM ∥面PCD ;②OM ∥面PBC ;③OM ∥面PDA ;④OM ∥面PBA .其中正确说法的个数是____________.6.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合平面,现给出四个命题.① ⎭⎬⎫a ∥c b ∥c ⇒a ∥b ;② ⎭⎬⎫a ∥γb ∥γ⇒a ∥b ;③⎭⎬⎫a ∥γα∥γ⇒a ∥α; ④ ⎭⎬⎫α∥c a ∥c a ⊄α⇒a ∥α.其中正确的命题是________.(填序号)7.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系为________.三、解答题(每小题10分,共20分)8.如图,已知P 是▱ABCD 所在平面外一点,M 为PB 的中点.求证:PD ∥平面MAC.9.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点.求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.10.如图P为平行四边形ABCD所在平面外一点,Q为PA的中点,O为AC 与BD的交点,下面说法错误的是()A.OQ∥平面PCD B.PC∥平面BDQC.AQ∥平面PCD D.CD∥平面PAB11.如图所示的是正方体的平面展开图.有下列四个命题:①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.其中,正确命题的序号是________.12.如图所示,三棱锥S -ABC 中,D ,E ,F 分别是棱AC ,BC ,SC 的中点.求证:平面DEF ∥平面SAB .13.在三棱柱ABC -A 1B 1C 1中,点D 为AC 的中点,点D 1是A 1C 1上的一点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)当BC 1∥平面AB 1D 1时,求证:平面BC 1D ∥平面AB 1D 1.高一数学人教A版必修二第二章课堂基础练习题点、直线、平面之间的位置关系 2.2.4一、选择题(每小题5分,共20分)1.若正方体ABCD-A1B1C1D1中,已知P,Q分别是棱AA1,CC1的中点,则过点B,P,Q的截面是()A.邻边不等的平行四边形B.菱形但不是正方形C.邻边不等的矩形D.正方形2.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a 平行的直线有()A.0条B.1条C.0或1条D.无数条3.已知平面α∥平面β,平面γ∩平面α=直线a,平面γ∩平面β=直线b,直线c⊂β,且c∥b,则下列说法不正确的是()A.c∥a B.a∥bC.b∥βD.c∥α4.已知a,b表示两条不同的直线,α,β表示两个不重合的平面,给出下列四个命题:①若α∥β,a⊂α,b⊂β,则a∥b;②若a∥b,a∥α,b∥β,则α∥β;③若α∥β,a⊂α,则a∥β;④若a∥α,a∥β,则α∥β.其中正确的个数为()A.1 B.2C.3 D.4二、填空题(每小题5分,共15分)5.在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是棱A1B1,B1C1的中点,P是棱AD上一点,AP=13,过点P,E,F的平面与棱CD交于Q,则PQ=________.6.如图所示,直线a∥平面α,点A在α另一侧,点B,C,D∈a.线段AB,AC,AD分别交α于点E,F,G.若BD=4,CF=4,AF=5,则EG=________.7.已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a∥b,则α∥β;②若a,b相交且都在α,β外,a∥α,b∥α,a∥β,b∥β,则α∥β;③若a∥α,a∥β,则α∥β;④若a⊂α,a∥β,α∩β=b,则a∥b.其中正确命题的序号是________.三、解答题(每小题10分,共20分)8.如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,∠BCD=120°,M为线段AE的中点.求证:DM∥平面BEC.9.如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M 是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:GH∥PA.10.如图,四棱锥S-ABCD的所有的棱长都等于2,E是SA的中点,过C,D,E三点的平面与SB交于点F,则四边形DEFC的周长为()A.2+3B.3+ 3C.3+2 3 D.2+2 311.如图,四边形ABCD是空间四边形,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,则当四边形EFGH是菱形时,AE∶EB=______________.12.如图所示,在三棱柱ABC-A1B1C1中,平面ABC∥平面A1B1C1.若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1?并证明你的结论.13.如图所示,四边形EFGH为空间四面体ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.高一数学人教A版必修二第二章课堂基础练习题点、直线、平面之间的位置关系 2.3.1一、选择题(每小题5分,共20分)1.如果一条直线垂直于一个平面内的下列各种情况,能保证该直线与平面垂直的是()①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.A.①③B.②C.②④D.①②④2.已知直线a∥直线b,b⊥平面α,则()A.a∥αB.a⊂αC.a⊥αD.a是α的斜线3.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()A.平行 B.垂直相交 C.垂直但不相交 D.相交但不垂直4.如图所示,ABCD-A1B1C1D1是正方体,则直线BA1与平面DD1B1B所成的角是()A.90° B.60° C.45°D.30°二、填空题(每小题5分,共15分)5.已知PA垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形一定是________.6.矩形ABCD中,AB=1,BC=2,PA⊥平面ABCD,PA=1,则PC与平面ABCD所成的角是________.7.在Rt △ABC 中,D 是斜边AB 的中点,AC =6,BC =8,EC ⊥平面ABC ,且EC =12,则ED =________.三、解答题(每小题10分,共20分)8.如图所示,在三棱锥P -ABC 中,PA =PB =PC .若点O 为△ABC 的外心,求证:PO ⊥平面ABC .9.如图所示,直角三角形ABC 的斜边AB 在平面α内,AC ,BC 与α所成的角分别为30°,45°,CD 是直角三角形斜边AB 上的高,求CD 与平面α所成的角.10.如图,四面体ABCD 的各棱长均相等,AD ⊥平面α于点A ,点B 、C 、D 均在平面α外,且在平面α的同一侧,线段BC 的中点为E ,则直线AE 与平面α所成角的正弦值为( )A.33 B.32 C.22 D.1211.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,给出下列结论:①AC ⊥SB ;②AB ∥平面SCD ;③SA 与平面ABD 所成的角等于SC 与平面ABD 所成的角;④AC ⊥SO .正确结论的序号是________.12.如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点,求证:(1)FD ∥平面ABC ; (2)AF ⊥平面EDB .13.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB =BC =2,AD =CD =7,PA =3,∠ABC =120°,G 为线段PC 上的点.(1)证明:BD ⊥平面APC ;(2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BGD ,求PGGC 的值.高一数学人教A版必修二第二章课堂基础练习题点、直线、平面之间的位置关系 2.3.4一、选择题(每小题5分,共20分)1.若l,m,n表示不重合的直线,α表示平面,则下列说法中正确的个数为()①l∥m,m∥n,l⊥α⇒n⊥α;②l∥m,m⊥α,n⊥α⇒l∥n;③m⊥α,n⊂α⇒m⊥n.A.1B.2C.3 D.02.如果直线a与平面α不垂直,那么平面α内与直线a垂直的直线有() A.0条B.1条C.无数条D.任意条3.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β4.线段AB的两端在直二面角α-l-β的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是()A.30°B.45°C.60°D.75°二、填空题(每小题5分,共15分)5.已知平面α,β,γ,直线l,m满足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么可推出的结论有________.(请将你认为正确的结论的序号都填上)①m⊥β;②l⊥α;③β⊥γ;④α⊥β.6.如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB,则直线a与直线l的位置关系是________.7.如图,四面体P-ABC中,PA=PB=13,平面PAB⊥平面ABC,∠ABC=90°,AC=8,BC=6,则PC=________.三、解答题(每小题10分,共20分)8.如图:三棱锥P-ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,∠ACP=30°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC.9.如图所示,在三棱锥P-ABC中,PA=BC=3,PC=AB=5,AC=4,PB=34.(1)求证:PA⊥平面ABC;(2)过C作CF⊥PB交PB于F,在线段AB上找一点E,使得PB⊥平面CEF.10.如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD,将其沿对角线BD折成四面体A-BCD,使平面ABD⊥平面BCD,则下列说法中不正确的是()A.平面ACD⊥平面ABD B.AB⊥CDC.平面ABC⊥平面ACD D.AB∥平面ABC11.设m,n为空间的两条直线,α,β为空间的两个平面,给出下列命题:①若m∥α,m∥β,则α∥β;②若m⊥α,m⊥β,则α∥β;③若m∥α,n∥α,则m∥n;④若m⊥α,n⊥α,则m∥n.上述命题中,其中假命题的序号是________.12.如图,△ABC是边长为2的正三角形.若AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.(1)求证:AE∥平面BCD;(2)求证:平面BDE⊥平面CDE.13.如图,在△ABC中,AC=BC=22AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥平面ABC;(2)求证:平面EBC⊥平面ACD;(3)求几何体A-DEBC的体积V.高一数学人教A版必修二《点、直线、平面之间的位置关系》单元测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设直线m与平面α相交但不垂直,则下列说法中正确的是()A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直2.在空间四边形各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH交于一点P,则()A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上3.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β4.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为() A.30°B.60°C.90°D.120°5.如图所示,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是()A.平行B.相交C .异面D .相交成60°6.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1D 18.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23D.139.在矩形ABCD 中,若AB =3,BC =4,PA ⊥平面AC ,且PA =1,则点P 到对角线BD 的距离为( )A.292B.135C.175D.119510.如图,点P 是△ABC 所在平面外一点,PA ,PB ,PC 两两垂直,且PO ⊥平面ABC 于点O ,则点O 是△ABC 的( )A .外心B .内心C .垂心D.重心二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.设α,β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④若l与α内的两条直线垂直,则直线l与α垂直.上面命题中,正确的序号是________.(写出所有正确命题的序号)12.在四面体A-BCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.13.如图所示,在直四棱柱ABCD-A1B1C1D1中,当底面四边形A1B1C1D1满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).14.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.16.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1∥平面A1CD;(2)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积.17.(本小题满分12分)如图所示,在三棱柱ABC-A1B1C1中,平面ABC∥平面A1B1C1,若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1?证明你的结论.18.(本小题满分14分)如图所示,已知三棱锥P-ABC,∠ACB=90°,CB=4,AB=20,D为AB的中点,且△PDB是正三角形,PA⊥PC.(1)求证:平面PAC⊥平面ABC;(2)求二面角D-AP-C的正弦值.参考答案(含题)高一数学人教A版必修二第二章课堂基础练习题点、直线、平面之间的位置关系 2.1.2一、选择题(每小题5分,共20分)1.如图所示,在三棱锥S-MNP中,E、F、G、H分别是棱SN、SP、MN、MP的中点,则EF与HG的位置关系是()A.平行B.相交C.异面D.平行或异面解析:∵E,F分别是SN和SP的中点,∴EF∥PN.同理可证HG∥PN,∴EF∥HG.答案: A2.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为()A.相交B.平行C.异面而且垂直D.异面但不垂直解析:将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.答案: D3.下列命题中①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.正确的结论有()A.1个B.2个C.3个D.4个解析:对于①,这两个角也可能互补,故①错;对于②,正确;对于③,不正确,举反例:如右图所示,BC⊥PB,AC⊥PA,∠ACB的两条边分别垂直于∠APB的两条边,但这两个角既不一定相等,也不一定互补;对于④,由公理4可知正确.故②④正确,所以正确的结论有2个.答案: B4.若P是两条异面直线l,m外的任意一点,则()A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面解析:逐个分析,过点P与l,m都平行的直线不存在;过点P与l,m 都垂直的直线只有一条;过点P与l,m都相交的直线1条或0条;过点P与l,m都异面的直线有无数条.答案: B二、填空题(每小题5分,共15分)5.空间中有一个角∠A的两边和另一个角∠B的两边分别平行,∠A=70°,则∠B=________.解析:∵∠A的两边和∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°.又∠A=70°,∴∠B=70°或110°.答案:70°或110°6.如图所示,已知正方体ABCD-A1B1C1D1中,E,F分别是AD,AA1的中点.(1)直线AB1和CC1所成的角为________;(2)直线AB1和EF所成的角为________.解析:(1)因为BB1∥CC1,所以∠AB1B即为异面直线AB1与CC1所成的角,∠AB1B=45°.(2)连接B1C,易得EF∥B1C,所以∠AB1C即为直线AB1和EF所成的角.连接AC,则△AB1C为正三角形,所以∠AB1C=60°.答案:(1)45°(2)60°7. 如右图是正方体的平面展开图,在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°的角;④DM与BN垂直.以上四种说法,正确说法的序号是________.解析:把平面展开图折叠成正方体如图所示,由图可知:①BM与ED异面;②CN与BE平行;③∵AN∥BM,∴∠ANC为异面直线CN与BM所成的角,∠ANC=60°;④BN⊥DM.答案:③④三、解答题(每小题10分,共20分)8.如图所示,E、F分别是长方体A1B1C1D1-ABCD的棱A1A,C1C的中点.求证:四边形B1EDF是平行四边形.证明:设Q是DD1的中点,连接EQ,QC1.∵E是AA1的中点,∴EQ綊A1D1.又在矩形A1B1C1D1中,A1D1綊B1C1,∴EQ綊B1C1(平行公理).∴四边形EQC1B1为平行四边形.∴B1E綊C1Q.又∵Q,F是DD1,C1C两边的中点,∴QD綊C1F.∴四边形QDFC1为平行四边形.∴C1Q綊DF.又∵B1E綊C1Q,∴B1E綊DF.∴四边形B1EDF为平行四边形.9.在空间四边形ABCD中,已知AD=1,BC=3,且AD⊥BC,BD=132,AC=32,求AC和BD所成的角.解析:如图,取AB,CD,AD,AC的中点E,G,F,H,连接EF,FG,GE,EH,HG,则∠EFG(或其补角)为BD与AC所成的角,且EF=12BD=134,FG=12AC=34,EH∥BC,HG∥AD.∵AD⊥BC,∴EH⊥HG.∴EG2=EH2+HG2=1.在△EFG中,EG2=EF2+FG2=1,∴∠EFG=90°,∴AC与BD所成的角是90°.高一数学人教A版必修二第二章课堂基础练习题点、直线、平面之间的位置关系 2.1.4一、选择题(每小题5分,共20分)1.如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系一定是()A.平行B.相交C.平行或相交D.不能确定解析:如下图所示:由图可知,两个平面平行或相交.答案: C2.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系为()A.平行B.相交C.直线在平面内D.平行或直线在平面内解析:由面面平行的定义可知,若一条直线在两个平行平面中的一个平面内,则这条直线与另一个平面无公共点,所以与另一个平面平行.由此可知,本题中这条直线可能在平面内.否则此直线与另一个平面平行(因为若一条直线与两个平行平面中的一个平面相交,则必然与另一个平面相交).答案: D3.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交解析:若在平面α内存在与直线l平行的直线,因l⊄α,故l∥α,这与题意矛盾.答案: B4.已知直线m,n和平面α,m∥n,m∥α,过m的平面β与α相交于直线a,则n与a的位置关系是()A.平行B.相交C.异面D.以上均有可能解析:由线面平行的性质知m∥a,而m∥n,所以n∥a.答案: A二、填空题(每小题5分,共15分)5.下列命题:①两个平面有无数个公共点,则这两个平面重合;②若l,m是异面直线,l∥α,m∥β,则α∥β.其中错误命题的序号为________.解析:对于①,两个平面相交,则有一条交线,也有无数多个公共点,故①错误;对于②,借助于正方体ABCD-A1B1C1D1,AB∥平面DCC1D1,B1C1∥平面AA1D1D,又AB与B1C1异面,而平面DCC1D1与平面AA1D1D相交,故②错误.答案:①②6.与空间四边形ABCD四个顶点距离相等的平面共有________个.解析:A,B,C,D四个顶点在平面α的异侧,如果一边3个,另一边1个,适合题意的平面有4个;如果每边2个,适合题意的平面有3个,共7个.答案:77.下列命题正确的有________.①若直线与平面有两个公共点,则直线在平面内;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;⑤若直线l与平面α平行,则l与平面α内的直线平行或异面;⑥若平面α∥平面β,直线a⊂α,直线b⊂β,则直线a∥b.解析:对②,直线l也可能与平面相交;对③,直线l与平面内不过交点的直线是异面直线,而与过交点的直线相交;对④,另一条直线可能在平面内,也可能与平面平行;对⑥,两平行平面内的直线可能平行,也可能异面.故①⑤正确.答案:①⑤三、解答题(每小题10分,共20分)8.如图所示,在正方体ABCD-A1B1C1D1中M,N分别是A1B1和BB1的中点,则下列直线与平面的位置关系是什么?(1)AM所在的直线与平面ABCD的位置关系;(2)CN所在的直线与平面ABCD的位置关系;(3)AM所在的直线与平面CDD1C1的位置关系;(4)CN所在的直线与平面CDD1C1的位置关系.解析:(1)AM所在的直线与平面ABCD相交;(2)CN所在的直线与平面ABCD相交;(3)AM所在的直线与平面CDD1C1平行;(4)CN所在的直线与平面CDD1C1相交.9.如图,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.解析:平面ABC与β的交线与l相交.证明:∵AB与l不平行,且AB⊂α,l⊂α,∴AB与l一定相交,设AB∩l=P,则P∈AB,P∈l.又∵AB⊂平面ABC,l⊂β,∴P∈平面ABC,P∈β.∴点P是平面ABC与β的一个公共点,而点C也是平面ABC与β的一个公共点,且P,C是不同的两点,∴直线PC就是平面ABC与β的交线.即平面ABC∩β=PC,而PC∩l=P,∴平面ABC与β的交线与l相交.高一数学人教A版必修二第二章课堂基础练习题点、直线、平面之间的位置关系 2.2.2一、选择题(每小题5分,共20分)1.若直线a与平面α平行,则必有()A.在α内不存在与a垂直的直线B.在α内存在与a垂直的唯一直线C.在α内有且只有一条直线与a平行D.在α内有无数条直线与a平行解析:对选项A、B,显然没有考虑异面垂直的情形,实际上,在α内会存在无数条与a垂直的直线,且它们相互平行.据平行公理知在α内有无数条直线与a平行,故选项C错D正确,故选D.答案: D2.(2015·北京市房山区高二(上)期中)若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是()A.MN∥βB.MN与β相交或MN⊂βC.MN∥β或MN⊂βD.MN∥β或MN与β相交或MN⊂β解析:MN是△ABC的中位线,所以MN∥BC,因为平面β过直线BC,若平面β过直线MN,则MN⊂β.若平面β不过直线MN,由线线平行的判定定理MN∥β,故选C.答案: C3.已知m、n、a、b是四条直线,α,β是两个平面.有以下命题:①m⊂α,n⊂α且直线m与n相交,a⊂β,b⊂β且直线a与b相交,m∥a,n∥b,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是()A.0B.1C.2 D.3解析:把符号语言转换为文字语言或图形语言,可知①正确;②③中平面α、β还有可能相交,所以选B.答案: B4.已知两个不重合的平面α、β,给定以下条件:①α内不共线的三点到β的距离相等;②l,m是α内的两条直线,且l∥β,m∥β;③l,m是两条异面直线,且l∥α,l∥β,m∥α,m∥β.其中可以判定α∥β的是()A.①B.②C.①③D.③解析:①中,若三点在平面β的两侧,则α与β相交,故不正确.②中,α与β也可能相交.③中,若把两异面直线l、m平移到一个平面内,即为两相交直线,由判定定理知正确.答案: D二、填空题(每小题5分,共15分)5.如图,P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB 的中点,给出下列四个说法:①OM∥面PCD;②OM∥面PBC;③OM∥面PDA;④OM∥面PBA.其中正确说法的个数是____________.解析:∵OM∥PD,OM⊄面PCD,OM⊄面PAD,∴OM∥面PCD,OM∥面PAD.答案: 26.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合平面,现给出四个命题.① ⎭⎬⎫a ∥c b ∥c ⇒a ∥b ;② ⎭⎬⎫a ∥γb ∥γ⇒a ∥b ;③⎭⎬⎫a ∥γα∥γ⇒a ∥α; ④ ⎭⎬⎫α∥c a ∥c a ⊄α⇒a ∥α.其中正确的命题是________.(填序号)解析: ①显然正确;②中a ,b 还可能异面或相交;③忽略了a ⊂α的情形;④显然正确.答案: ①④7.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系为________.解析: 如图.AB ∥CD ∥EF 且AB =CD =EF ,则α∥β或α∩β=l .答案: 平行或相交三、解答题(每小题10分,共20分)8.如图,已知P 是▱ABCD 所在平面外一点,M 为PB 的中点.求证:PD ∥平面MAC.证明: 连接BD 与AC 相交于点O ,连接MO ,∵O为BD的中点,又M为PB的中点,∴MO∥PD.又∵MO⊂平面MAC,PD⊄平面MAC,∴PD∥平面MAC.9.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点.求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明:(1)如图,连接SB,∵E,G分别是BC,SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F,G分别是DC,SC的中点,∴FG∥SD.。

高中数学人教A版2019必修第二册 空间点 直线 平面之间的位置关系 同步练习(解析版)

高中数学人教A版2019必修第二册  空间点 直线 平面之间的位置关系 同步练习(解析版)

8.4.2空间点、直线、平面之间的位置关系基础巩固1.一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行2.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行3.下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0B.1C.2D.34.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条5.已知直线l和平面α,无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l()A.相交B.平行C.垂直D.异面6.若a,b是两条异面直线,且a∥平面α,则b与α的位置关系是.7.如图的直观图,用符号语言表述为(1),(2).8.如图,正方体ABCD A1B1C1D1中,M,N分别是A1B1,B1C1的中点,问(1)AM和CN是否是异面直线?(2)D1B和CC1是否是异面直线?说明理由.能力提升9.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条直线与a平行C.存在无数条直线与a平行D.存在唯一一条与a平行的直线10.已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是.(将你认为正确的序号都填上)11.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.素养达成12.如图所示,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,C∉l,直线AB与l不平行,那么平面ABC 与平面β的交线与l有什么关系?证明你的结论.8.4.2空间点、直线、平面之间的位置关系基础巩固答案1.一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行【答案】C【解析】一条直线与两条平行线中的一条异面,则它与另一条可能相交,也可能异面.故选C.2.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【答案】C【解析】如图,a′与b异面,但a′∥c,故A错;a与b异面,且都与c相交,故B错;若a∥c,b∥c,则a∥b,与a,b异面矛盾,故D错.3.下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0B.1C.2D.3【答案】B【解析】对于①,当直线l与α相交时,直线l上有无数个点不在平面α内,故①不正确;对于②,直线l与平面α平行时,l与平面α内的直线平行或异面,故②不正确:对于③,当两条平行直线中的一条与一个平面平行时,另一条与这个平面可能平行,也有可能在这个平面内,故③不正确;对于④,由线面平行的定义可知④正确.4.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条【答案】D【解析】由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的直线有无数条,且它们都不在平面D1EF内,则它们都与平面D1EF平行,故选D.5.已知直线l和平面α,无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l()A.相交B.平行C.垂直D.异面【答案】C【解析】当直线l与平面α平行时,在平面α内至少有一条直线与直线l垂直;当直线l⊂平面α时,在平面α内至少有一条直线与直线l垂直;当直线l与平面α相交时,在平面α内至少有一条直线与直线l垂直,所以无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l垂直.故选C.6.若a,b是两条异面直线,且a∥平面α,则b与α的位置关系是.【答案】b与α平行或相交或b在α内【解析】如图,在正方体ABCD-A1B1C1D1中,设平面ABCD为α,A1B1为a,则a∥α,当分别取EF,BC1,BC为b 时,均满足a与b异面,于是b∥α,b∩α=B,b⊂α(其中E,F为棱的中点).7.如图的直观图,用符号语言表述为(1),(2).【答案】(1)a∩b=P,a∥平面M,b∩平面M=A;(2)平面M∩平面N=l,a∩平面N=A,a∥平面M【解析】(1)a∩b=P,a∥平面M,b∩平面M=A(2)平面M∩平面N=l,a∩平面N=A,a∥平面M8.如图,正方体ABCD A1B1C1D1中,M,N分别是A1B1,B1C1的中点,问(1)AM和CN是否是异面直线?(2)D1B和CC1是否是异面直线?说明理由.【答案】(1) 不是异面直线;(2)是异面直线,证明见解析.【解析】由于M,N分别是A1B1和B1C1的中点,可证明MN∥AC,因此AM与CN不是异面直线.由空间图形可感知D1B和CC1为异面直线的可能性较大,判断的方法可用反证法.(1)不是异面直线.理由:因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A C1C,所以A1ACC1为平行四边形.所以A1C1∥AC,得到MN∥AC,所以A,M,N,C在同一个平面内, 故AM和CN不是异面直线.(2)是异面直线,证明如下:假设D1B与CC1在同一个平面CC1D1D内,则B∈平面CC1D1D,C∈平面CC1D1D.所以BC⊂平面CC1D1D,这与ABCD A1B1C1D1是正方体相矛盾.所以假设不成立,故D1B与CC1是异面直线.能力提升9.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条直线与a平行C.存在无数条直线与a平行D.存在唯一一条与a平行的直线【答案】D【解析】因为α∥β,B∈β,所以B∉α.因为a⊂α,所以B,a可确定平面γ且γ∩α=a,设γ与β交过点B的直线为b,则a∥b.因为a,B在同一平面γ内.所以b唯一,即存在唯一一条与a平行的直线.10.已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是.(将你认为正确的序号都填上)【答案】③④【解析】①错.a与b也可能异面.②错.a与b也可能平行.③对.因为α∥β,所以α与β无公共点.又因为a⊂α,b⊂β,所以a与b无公共点.④对.由③知a与b无公共点,那么a∥b或a与b异面.⑤错.a与β也可能平行.11.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.【答案】a,b无公共点, a∥β,证明见解析.【解析】a∥b,a∥β,理由:由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,因为α∥β,a⊂α,b⊂β,所以a,b无公共点.又因为a⊂γ,且b⊂γ,所以a∥b.因为α∥β,所以α与β无公共点,又a⊂α,所以a与β无公共点,所以a∥β.素养达成12.如图所示,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,C∉l,直线AB与l不平行,那么平面ABC 与平面β的交线与l有什么关系?证明你的结论.【答案】平面ABC与β的交线与l相交,证明见解析.【解析】平面ABC与β的交线与l相交.证明:因为AB与l不平行,且AB⊂α,l⊂α,所以AB与l一定相交,设AB∩l=P,则P∈AB,P∈l.又因为AB⊂平面ABC,l⊂β,所以P∈平面ABC,P∈β.所以点P是平面ABC与β的一个公共点,而点C也是平面ABC与β的一个公共点,且P,C是不同的两点,所以直线PC就是平面ABC与β的交线.即平面ABC∩β=PC,而PC∩l=P,所以平面ABC与β的交线与l相交.。

高中数学必修2(人教A版)第二章几点、直线、平面的位置关系2.3知识点总结含同步练习及答案

高中数学必修2(人教A版)第二章几点、直线、平面的位置关系2.3知识点总结含同步练习及答案

描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第二章 点、直线、平面之间的位置关系 2.3 直线、平面垂直的判定及其性质一、学习任务认识和理解空间中线面垂直的有关判定定理和性质定理,能用图形语言和符号语言表述这些定理,并能证明有关性质定理;能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识清单空间的垂直关系 点面距离三、知识讲解1.空间的垂直关系直线与平面垂直的判定如果直线 与平面 内的任意一条直线都垂直,我们就说直线 与平面 互相垂直.记作.直线 叫做平面 的垂线,平面 叫做直线 的垂面.直线与平面垂直时,它们唯一的公共点 叫做垂足.直线与平面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.用符号表示:,,,,.平面与平面垂直的判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.用符号表示:,.l αl αl ⊥αl ααl P a b ⊂αa ∩b =P l ⊥a l ⊥b ⇒l ⊥αl ⊥αl ⊂β⇒α⊥β例题:直线与平面垂直的性质定理 垂直于同一个平面的两条直线平行.用符号表示:,.平面与平面垂直的性质定理 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.用符号来表示:,,,.a ⊥αb ⊥α⇒a ||b α⊥βα∩β=CD AB ⊂αAB ⊥CD ⇒AB ⊥β下列命题中,正确的序号是______.①若直线 与平面 内的无数条直线垂直,则 ;②若直线 与平面 内的一条直线垂直,则 ;③若直线 不垂直于平面 ,则 内没有与 垂直的直线;④若直线 不垂直于平面 ,则 内也可以有无数条直线与 垂直;⑤过一点与已知平面垂直的直线有且只有一条.解:④⑤当直线 与平面 内的无数条平行直线垂直时, 与 不一定垂直,所以①不正确;当 与 内的一条直线垂直时,不能保证 与平面 垂直,所以②不正确;当 与 不垂直时,可能与 内的无数条平行直线垂直,所以③不正确,④正确;过一点有且只有一条直线垂直于已知平面,所以⑤正确.故填④⑤.l αl ⊥αl αl ⊥αl ααl l ααl l αl αl αl αl αl α如图,三棱锥 中,,底面 的斜边为 , 为 上一点.求证: .证明:因为 ,,所以 .又 ,,所以 .又 ,所以 .P −ABC P A ⊥平面 ABC Rt△ABC AB F P C BC ⊥AF P A ⊥平面 ABC BC ⊂平面 ABC P A ⊥BC AC ⊥BC AC ∩P A =A BC ⊥平面 P AC AF ⊂平面 P AC BC ⊥AF 如图,已知四棱锥 ,底面 是菱形,,,,点 为 的中点.求证:.P −ABCD ABCD ∠DAB =60∘P D ⊥平面 ABCD P D =AD E AB 平面P ED ⊥平面 P ABAB⊂平面P AB又 ,所以3P C⊥AC C,求点 到平面P A⊥ABCD高考不提分,赔付1万元,关注快乐学了解详情。

人教新课标A版高中数学必修2第二章点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质测试

人教新课标A版高中数学必修2第二章点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质测试

人教新课标A版高中数学必修2第二章点、直线、平面之间的位置关系 2.2直线、平面平行的判定及其性质同步测试共 25 题一、单选题1、如图是长方体被一平面所截得到的几何体,四边形EFGH为截面,长方形ABCD为底面,则四边形EFGH的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定2、若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交3、若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A. B.1C. D.4、已知直线l及两个平面α、β,下列命题正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l∥β,则α⊥βC.若l⊥α,l⊥β,则α∥βD.若l⊥α,l⊥β,则α⊥β5、已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为( )A. B.C.或24D.或126、下列条件中,能判断两个平面平行的是( )A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内的任何一条直线都平行于另一个平面7、已知平面α∥平面β,直线m⊂α,直线n⊂β,点A∈m,点B∈n,记点A、B之间的距离为a,点A到直线n的距离为b,直线m和n的距离为c,则()A.b≤a≤cB.a≤c≤bC.c≤a≤bD.c≤b≤a8、已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n9、A是平面BCD外一点,E,F,G分别是BD,DC,CA的中点,设过这三点的平面为α,则在直线AB,AC,AD,BC,BD,DC中,与平面α平行的直线有( )A.0条B.1条C.2条D.3条10、若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是( )A.MN∥βB.MN与β相交或MN⊊βC.MN∥β或MN⊊βD.MN∥β或MN与β相交或MN⊊β11、点 E,F,G,H分别为空间四边形ABCD的边AB,BC,CD,AD的中点,则四边形EFGH是( )A.菱形B.梯形C.正方形D.平行四边形12、给出下列命题:(1)平行于同一直线的两个平面平行(2)平行于同一平面的两个平面平行(3)垂直于同一直线的两直线平行(4)垂直于同一平面的两直线平行其中正确命题的序号为( )A.(1)(2)B.(3)(4)C.(2)(4)D.(1)(3)13、如图,下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形序号是( )A.①②B.③④C.②③D.①④14、已知a,b是空间中两不同直线,α,β是空间中两不同平面,下列命题中正确的是( )A.若直线a∥b,b⊂α,则a∥αB.若平面α⊥β,a⊥α,则a∥βC.若平面α∥β,a⊂α,b⊂β,则a∥bD.若a⊥α,b⊥β,a∥b,则α∥β④平面PAE⊥平面ABC.、已知m、n是两条不重合的直线,1AP= ,过、如图四棱锥S﹣ABCD中,底面ABCD 、如图所示,在三棱锥A﹣BCD中,________ 时,四边形EFGH为菱形.三、解答题21、如图所示,在棱长为2cm的正方体ABCD﹣A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.22、如图,在棱长为a的正方体ABCD﹣A1B1C1D1, E,F,P,Q分别是BC,C1D1, AD1, BD的中点,求证:(1)PQ∥平面DCC1D1(2)EF∥平面BB1D1D.23、求证:夹在两个平行平面间的平行线段相等.24、如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分别在线段B1C1和AC上,B1E=3EC1,AC=BC=CC1=4(1)求证:BC⊥AC1;(2)试探究满足EF∥平面A1ABB1的点F的位置,并给出证明.25、直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.(Ⅰ)求证:AC⊥B1C;(Ⅱ)求证:AC1∥平面B1CD参考答案一、单选题1、【答案】B【解析】【解答】因为,长方体中相对的平面互相平行,所以,被平面截后,EF,GH平行且相等,GF,EH平行且相等,故四边形的形状为平行四边形,选B。

高中数学 章末检测卷(二)点、直线、平面之间的位置关系 新人教A版必修2-新人教A版高一必修2数学试

高中数学 章末检测卷(二)点、直线、平面之间的位置关系 新人教A版必修2-新人教A版高一必修2数学试

章末检测卷(二)(时间:120分钟满分:150分)一、选择题1.在正方体ABCD-A1B1C1D1中,直线AC与直线BC1所成的角为( )A.30°B.60°C.90°D.45°解析连接A1C1,A1B,则AC∥A1C1,因为△A1BC1是正三角形,所以∠A1C1B=60°,即直线AC 与直线BC1所成的角为60°.答案 B2.设a、b为两条直线,α、β为两个平面,下列四个命题中,正确的命题是( )A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则a∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析A中a、b可以平行、相交或异面;B中a、b可以平行、相交或异面;C中的α、β可以平行或相交.答案 D3.设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可能在β内,也可能与β相交,故错误.故选C.答案 C4.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E解析由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,C正确.答案 C5.设l为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析选项A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;选项B,若l⊥α,l⊥β,则α∥β,故正确;选项C,若l⊥α,l∥β,则α⊥β,故错误;选项D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,l⊂β,故错误.故选B.答案 B6.(2015·某某高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析对于A,α,β垂直于同一平面,α,β关系不确定,A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C错;对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项,故D正确.答案 D7.(2014·某某高考)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析选项A,若m⊥n,n∥α,则m⊂α或m∥α或m与α相交,错误;选项B,若m∥β,β⊥α,则m⊂α或m∥α或m与α相交,错误;选项C,若m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;选项D,若m⊥n,n⊥β,β⊥α,则m与α相交或m⊂α或m ∥α,错误.答案 C8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8B.9C.10D.11解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.答案 A9.正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是( )A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°解析因为AH⊥平面A1BD,BD⊂平面A1BD,所以BD⊥AH.又BD⊥AA1,且AH∩AA1=A.所以BD⊥平面AA1H.又A1H⊂平面AA1H.所以A1H⊥BD,同理可证BH⊥A1D,所以点H是△A1BD的垂心,A正确;因为平面A 1BD ∥平面CB 1D 1, 所以AH ⊥平面CB 1D 1,B 正确;易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确;因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误. 答案 D10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ) A.5π12B.π3C.π4D.π6解析 如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠PAO 即为PA 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334, V ABC -A 1B 1C 1=S ×PO =94,∴PO = 3.又AO =33×3=1,∴tan ∠PAO =PO AO =3,∴∠PAO =π3. 答案 B二、填空题11.矩形ABEF 和正方形ABCD 有公共边AB ,且它们所在的平面互相垂直,AB =BC =2a ,BE =a ,则DE =________,DE 与平面ABEF 所成的线面角的正弦值为________. 解析 如图,在Rt △DBE 中,BD =22a ,BE =a ,∴DE =(22a )2+a 2=3a ,∵DA ⊥平面ABEF ,∴∠DEA 即为DE 与平面ABEF 所成的角, 在Rt △DAE 中,sin ∠DEA =DA DE =23. 答案 3a 2312.如图所示为一个正方体的一种表面展开图,图中的四条线段AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对,成60°角的有________对.解析 正方体如图AB 与CD ,AB 与GH ,GH 与EF 互为异面直线,AB 与CD ,AB 与EF ,AB 与GH ,CD 与GH ,EF 与GH 成60°角.答案 3 513.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.解析 ∵B 1C 1⊥平面A 1ABB 1,MN ⊂平面A 1ABB 1, ∴B 1C 1⊥MN ,又∠B 1MN 为直角. ∴B 1M ⊥MN 而B 1M ∩B 1C 1=B 1.∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1,∴∠C 1MN =90°. 答案 90°14.已知平面α∥平面β,点A ,C ∈α,点B ,D ∈β,直线AB ,CD 交于点S ,且SA =8,SB =9,CD =34.(1)若点S 在平面α,β之间,则SC =________. (2)若点S 不在平面α,β之间,则SC =________. 解析 根据题意得AS SB =SCSD.当点S 在α,β之间时,有89=CS 34-CS ,即CS =16;当点S 在α,β之外时,有89-8=SC34,即SC =272. 答案 16 27215.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面AC ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值X 围是________.解析 由题意知:PA ⊥DE , 又PE ⊥DE ,PA ∩PE =P , 所以DE ⊥面PAE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则AB CE =BE CD, 即3a -x =x 3.∴x 2-ax +9=0,由Δ>0,解得a >6. 答案 a >616.在正方体ABCD -A ′B ′C ′D ′中,E 为A ′D ′中点,则异面直线EC 与BC ′所成角的余弦值为________,二面角A ′-BC ′-D 的平面角的正切值为________.解析 如图,取BC ,CC ′中点F ,H ,连A ′F ,FH ,A ′H .∵A ′F ∥EC ,FH ∥BC ′,∴∠A ′FH 即为异面直线EC 与BC ′所成的角. 设正方体的棱长为2,FH =2,A ′F =3,A ′H =3, cos ∠A ′FH =223=26,取BC ′的中点O ,连A ′O ,DO ,则A ′O ⊥BC ′,DO ⊥BC ′,∠A ′OD 即为二面角A ′-BC ′-D 的平面角, A ′O =DO =6,A ′D =22,cos ∠A ′OD =6+6-826×6=13,tan ∠A ′OD =2 2.答案262 2 17.已知四棱锥P -ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号) 解析 由条件可得AB ⊥平面PAD , ∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而PA ∥PB ,这是不可能的,故②错;S △PCD =12CD ·PD ,S △PAB =12AB ·PA ,由AB =CD ,PD >PA 知③正确; 由E 、F 分别是棱PC 、PD 的中点, 可得EF ∥CD ,又AB ∥CD ,∴EF∥AB,故AE与BF共面,④错.答案①③三、解答题18.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D 是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.证明(1)∵C1C⊥平面ABC,AC⊂平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于O点,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M 为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.(1)证明 如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin 60°= 3.∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,PE ⊂平面PCD , ∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM .∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形. 由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,而PM ⊂平面PEM ,∴AM ⊥PM . (2)解 由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PE EM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.20.(2016·全国Ⅲ)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ; (2)求四面体N -BCM 的体积.(1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 因为PA ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12PA .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积 V N -BCM =13×S △BCM ×PA 2=453.21.(2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92. 五边形ABCFE 的面积S =12×6×8-12×92×3=694. 所以五棱锥D ′-ABCFE 的体积 V =13×694×22=2322. 22.(2016·某某高考)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD . (1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD .(1)解取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM . 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面PAB .CM ⊄平面PAB .所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交, 所以PA ⊥平面ABCD .从而PA ⊥BD .因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .。

高中数学(人教A版)必修第二册课后习题:空间点、直线、平面之间的位置关系【含答案及解析】

高中数学(人教A版)必修第二册课后习题:空间点、直线、平面之间的位置关系【含答案及解析】

第八章立体几何初步8.4空间点、直线、平面之间的位置关系8.4.2空间点、直线、平面之间的位置关系课后篇巩固提升必备知识基础练1.如图所示,用符号语言可表示为()A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α2.在长方体ABCD-A1B1C1D1的六个表面与六个对角面(平面AA1C1C、平面ABC1D1、平面ADC1B1、平面BB1D1D、平面A1BCD1及平面A1B1CD)所在的平面中,与棱AA1平行的平面共有()A.2个B.3个C.4个D.5个,结合图形可知AA1∥平面BB1C1C,AA1∥平面DD1C1C,AA1∥平面BB1D1D.3.(多选题)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,则以下四个结论正确的是()A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线AM与CC1不同在任何一个平面内,直线AM与BN不同在任何一个平面内,故A,B错误;直线BN与MB1不同在任何一个平面内,直线AM与DD1不同在任何一个平面内,故C,D正确.4.如果空间的三个平面两两相交,那么()A.不可能只有两条交线B.必相交于一点C.必相交于一条直线D.必相交于三条平行线,可能相交于一点,也可能相交于一条直线,还可能相交于三条平行线,故选A.5.若两个平面内分别有一条直线,且这两条直线是异面直线,则这两个平面的公共点()A.有有限个B.有无数个C.不存在D.不存在或有无数个,直线AB与直线CC1异面,平面ABCD与平面CDD1C1相交,有无数个公共点;平面ABB1A1与平面CDD1C1平行,没有公共点.6.以下说法正确的是()A.若直线a不平行于平面α,则直线a与平面α相交B.直线a和b是异面直线,若直线c∥a,则c与b一定相交C.若直线a和b都和平面α平行,则a和b也平行D.若点M∈l,点N∈l,N∉α,M∈α,则直线l与平面α相交a不平行于平面α,则直线a与平面α相交,或a⊂α,故A错误;若直线a和b是异面直线,若直线c∥a,则c与b相交或异面,故B错误;若直线a和b都和平面α平行,则a和b可能平行,可能相交,也可能异面,故C错误;若点M,N∈l,N∉α,M∈α,则直线l和平面α相交,故D正确.故选D.7.如图,在正方体ABCD-A1B1C1D1中,所在直线与BD1异面的棱有条.,知在正方体ABCD-A1B1C1D1中,所在直线与BD1异面的棱有CD,A1B1,AD,B1C1,AA1,CC1共6条.8.已知直线a,平面α,β,且a∥α,a∥β,则平面α与β的位置关系是.a∥α,a∥β,所以平面α与β相交(如图①)或平行(如图②).9.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有条.,与平面ABB1A1平行的直线有6条:D1E1,E1E,ED,DD1,D1E,DE1.10.如图,在长方体ABCD-A1B1C1D1中,面对角线B1D1与长方体的六个面之间的位置关系如何?B1∈平面A1B1C1D1,D1∈平面A1B1C1D1,∴B1D1⊂平面A1B1C1D1.∵B1∈平面BB1C1C,D1∉平面BB1C1C,∴直线B1D1∩平面BB1C1C=B1.同理直线B1D1与平面AA1B1B、平面AA1D1D、平面CC1D1D都相交.在平行四边形B1BDD1中,B1D1∥BD,B1D1与BD无公共点,∴B1D1与平面ABCD无公共点,∴B1D1∥平面ABCD.关键能力提升练11.若a,b是异面直线,且a∥平面α,那么b与平面α的位置关系是()A.b∥αB.b与α相交C.b⊂αD.以上三种情况都有可能a,b是异面直线,且a∥平面α,则根据空间中线面的位置关系可得,b∥a,或b⊂α,或b与α相交.12.(多选题)以下结论中,正确的是()A.过平面α外一点P,有且仅有一条直线与α平行B.过平面α外一点P,有且仅有一个平面与α平行C.过直线l外一点P,有且仅有一条直线与l平行D.过直线l外一点P,有且仅有一个平面与l平行①所示,过点P有无数条直线都与α平行,这无数条直线都在平面β内,过点P有且只有一个平面与α平行,故A错,B正确;如图②所示,过点P只有一条直线与l平行,但有无数个平面与l平行,故C正确,D错.13.(多选题)下列说法中正确的是()A.若直线a不在平面α内,则a∥αB.若直线l上有无数个点不在平面α内,则l∥αC.若l∥α,则直线l与平面α内任何一条直线都没有公共点D.平行于同一平面的两直线可以相交中,直线a也可能与平面α相交,故A错误;B中,直线l与平面α相交时,l上也有无数个点不在平面α内,故B错误;C中,当l∥α时,l与α没有公共点,所以l与α内任何一条直线都没有公共点,故C正确;D中,平行于同一个平面的直线,可以平行也可以相交,也可以是异面直线,故D正确.14.一个正方体的平面展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD异面,则在原来的正方体中,由异面直线的定义可知AB与CD异面.故选D.15.下列命题正确的有.(填序号)①若直线与平面有两个公共点,则直线在平面内;②若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;③若直线l与平面α平行,则l与平面α内的直线平行或异面;④若直线a⊂平面α,平面α∩平面β=b,a∥b,则a∥β.显然是正确的;②中,直线l和平面α内过l与α交点的直线都相交而不是异面,所以②是错误的;③中,直线l与平面α没有公共点,所以直线l与平面α内的直线没有公共点,即它们平行或异面,所以③是正确的;因为a∥b,所以a与b无公共点.又因为a⊂α,且α与β的公共点都在直线b上,所以a 与β无公共点,故a与β平行,故④是正确的.16.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系,并证明你的结论.∥b,a∥β.证明如下.由α∩γ=a知a⊂α,且a⊂γ,由β∩γ=b知b⊂β,且b⊂γ.∵α∥β,a⊂α,b⊂β,∴a,b无公共点.又∵a⊂γ,且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点.又a⊂α,∴a与β无公共点,∴a∥β.学科素养创新练17.若直线a不平行于平面α,且a⊄α,则下列结论成立的是()A.平面α内的所有直线与a异面B.平面α内不存在与a平行的直线C.平面α内存在唯一的直线与a平行D.平面α内的直线与a都相交a与平面α相交,则平面α内的直线与a可能相交,也可能异面,不可能平行.故选B.18.(多选题)已知a,b是两条不重合的直线,α,β是两个不重合的平面,则下列说法中正确的是()A.若a∥b,b⊂α,则直线a平行于平面α内的无数条直线B.若α∥β,a⊂α,b⊂β,则a与b是异面直线C.若α∥β,a⊂α,则a∥βD.若α∩β=b,a⊂α,则a,b一定相交中,a∥b,b⊂α,则a∥α或a⊂α,所以不管a在平面内还是平面外,结论都成立,故A正确;B中,直线a与b没有交点,所以a与b可能异面,也可能平行,故B错误;C中,直线a与平面β没有公共点,所以α∥β,故C正确;D中,直线a与平面β有可能平行,所以a,b可能相交,也可能平行,故D错误.。

高中数学必修2(人教A版)第二章几点、直线、平面的位置关系2.2知识点总结含同步练习及答案

高中数学必修2(人教A版)第二章几点、直线、平面的位置关系2.2知识点总结含同步练习及答案

ABCD −
AB = 2
AD
4. 如图,正方体 ABCD − A1 B1 C1 D1 中,AB = 2,点 E 为 AD 的中点,点 F 在 CD 上,若
EF ∥ 平面 AB1 C,则线段 EF 的长度等于

答案: √2 高考不提分,赔付1万元,关注快乐学了解详情。
例题: 下列命题(其中 a,b 表示直线, α 表示平面)中,正确的个数是(

①若 a ∥ b,b ⊂ α,则 a ∥ α;
②若 a ∥ α,b ∥ α,则 a ∥ b;
③若 a ∥ b,b ∥ α,则 a ∥ α;
④若 a ∥ α,b ⊂ α,则 a ∥ b.
A.0 个
B.1 个
C.2 个
D.3 个
证明: 因为四边形 EF GH 为平行四边形,所以 EF ∥ GH. 又 GH ⊂ 平面BCD,EF ⊄ 平面BCD,所以 EF ∥ 平面BCD. 而 EF ⊂ 平面ACD,平面ACD ∩ 平面BCD = CD,所以 EF ∥ CD. 如图所示,在三棱锥 S − ABC 中,D ,E,F 分别是棱 AC,BC,SC 的中点,求证: 平面DEF ∥ 平面SAB.
A.①②③
B.①④
C.①②④
D.②④
答案: C 解析: 当 m, n 都在 α 内时,符合条件点的集合是一条直线;
当 m, n 分别在 α 的两侧都平行于 α ,且到 α 的距离相等时,符合条件点的集合是一个平面; 当 m, n 都平行于 α ,但到 α 的距离不相等时,是空集; 任何时候都不可能只有一个点满足条件.
二、知识清单
空间的平行关系
三、知识讲解
1.空间的平行关系 描述: 空间四边形 顺次连接不共面的四个点 A、B、C、D 所构成的图形,叫做空间四边形.这四个点中的各个点 叫做空间四边形的顶点;所连接的相邻顶点间的线段叫做空间四边形的边;连接不相邻的顶点的 线段叫做空间四边形的对角线.空间四边形用表示顶点的四个字母表示.例如,图中的四边形可 以表示为空间四边形 ABCD ,线段 AC,BD 是它的对角线.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2第二章《点、直线、平面之间的位置关系》单元测试题
(时间:60分钟,满分:100分)
班别 座号 姓名 成绩 一、选择题(本大题共10小题,每小题5分,共50分)
1.若直线a 不平行于平面α,则下列结论成立的是( )
A. α内所有的直线都与a 异面;
B. α内不存在与a 平行的直线;
C. α内所有的直线都与a 相交;
D.直线a 与平面α有公共点. 2.已知两个平面垂直,下列命题
①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面;
④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. 其中正确的个数是( ) A.3 B.2 C.1 D.0
3.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AC 与BD 所成角为
A 、030
B 、045
C 、060
D 、090 4. 给出下列命题:
(1)直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (2)直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; (3)异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直; (4)若直线a 和b 共面,直线b 和c 共面,则a 和c 共面
其中错误命题的个数为( ) (A )0 (B ) 1 (C )2 (D )3
5.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条 A 3 B 4 C 6 D 8 6. 点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O ,若PA=PB=PC ,则点O 是ΔABC 的( ) (A )内心 (B )外心 (C )重心 (D )垂心
7.如图长方体中,AB=AD=23,CC 1=2,则二面角
C 1—B
D —C 的大小为( )
(A )300 (B )450 (C )600 (D )900 8.直线a,b,c 及平面α,β,γ,下列命题正确的是( )
A 、若a ⊂α,b ⊂α,c ⊥a, c ⊥b 则c ⊥α
B 、若b ⊂α, a//b 则 a//α
C 、若a//α,α∩β=b 则a//b
D 、若a ⊥α, b ⊥α 则a//b 9.平面α与平面β平行的条件可以是( )
A.α内有无穷多条直线与β平行;
B.直线a//α,a//β
C.直线a α⊂,直线b β⊂,且a//β,b//α
D.α内的任何直线都与β平行 10、 a, b 是异面直线,下面四个命题:
①过a 至少有一个平面平行于b ; ②过a 至少有一个平面垂直于b ; ③至多有一条直线与a ,b 都垂直;④至少有一个平面与a ,b 都平行。

其中正确命题的个数是( )A 0 B 1 C 2 D 3
选择题答题表
A B
C D A 1
B 1
C 1
D 1
二、填空题(本大题共4小题,每小题5分,共20分)
11.已知直线a//平面α,平面α//平面β,则a 与β的位置关系为 . 12.已知直线a ⊥直线b, a//平面β,则b 与β的位置关系为 . 13如图,ABC 是直角三角形,∠ACB=︒90,PA ⊥平面ABC ,此图形中有 个直角三角形
14.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线, 给出四个论断:
① m ⊥ n ②α⊥β ③ m ⊥β ④ n ⊥α
以其中三个论断作为条件,余下一个论断作为结论,写出你认为 正确的一个命题:______________________________________.
三、解答题(本大题共3小题,每小题10分,共30分) 15.如图,PA ⊥平面ABC ,平面PAB ⊥ 16.在三棱锥S-ABC 中,已知AB=AC ,平面PBC 求
证:AB ⊥BC O 是BC 的中点,平面SAO ⊥平面ABC 求证:∠SAB=∠SAC
17.如图,PA ⊥平面ABC ,AE ⊥PB ,AB ⊥BC ,AF ⊥PC,PA=AB=BC=2(1)求证:平面AEF ⊥平
面PBC ;
(2)求二面角P —BC —A 的大小;(3)求三棱锥P —AEF 的体积.
A B
O C
S
P A B
C A B C
P
A
B
C P E F
参考答案
1.D;
2.C;
3.D;
4.D;
5.C;
6.B;
7.A;
8.D;
9.D;10.C
11.平行或在平面内; 12. 平行或在平面内; 13.4; 14.若②③④则①17.(2)45°。

相关文档
最新文档