假设法解思考题

合集下载

五年级奥数假设法解题

五年级奥数假设法解题

五年级奥数:假设法解题专题分析:假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案;例题:有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张思路:先假设有14张5元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的张数是30÷10-5=6张;也可以假设有14张10元的……练习一:1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只2、一堆2分和5分的硬币共39枚,共值元;问2分和5分的银币各有多少枚3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币;求换来的这两种人民币各多少张例题:用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱;现有18车货,价值3024元;若每箱便宜2元,则这批货物价值2520元;问大小汽车各多少辆思路:根据“若每箱便宜2元,则这批货物价值2520元;”可以知道一共便宜了504元,这样可以计算出货物有252箱;假设18辆都是大汽车,可以装324箱,比实际多装72箱;用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车;6辆大汽车;练习二:1、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次;平均每天运14次;这几天中有几天是雨天2、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值元;若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元;问大箩、小箩各有多少个3、运来一批西瓜,准备分两类卖,大的每千克元,小的每千克元,这样卖这批西瓜共值290元;如果每千克西瓜降价元,这批西瓜只能卖250元,问有多少千克大西瓜例题:甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分;两人各投10次,共得152分;其中甲比乙多得16分,问两人各中多少次思路:根据共得152分;其中甲比乙多得16分,可计算甲得84分,乙得68分;甲投10次,假设全中;应得100分,这样比实际多了16分,由于脱靶一次扣6分,所以甲脱靶一次应扣16分,这样可计算出甲脱靶了1次;同理可计算乙脱靶了2次;那么计算甲乙投中的次数就容易了;练习三:1、百货公司委托搬运站送500只玻璃瓶,双方商定每只运费元;如果打破一只,不但不给运费,而且还要赔偿元,结果,搬运站共得运费元;问搬运中打破了几只2、某次数学竞赛共有20道题,每答对一道得5分,答错一道不仅不给分,还倒扣2分;这次数学竞赛小明得了86分,问他答对了几道题3、甲组工人生产一种零件,每天生产250个,按规定每个合格记4分,生产一个不合格的零件要倒扣27分;该组工人4天共得了3752分;问生产合格零件多少个例题:有一元、二元、五元的人民币50张,总面值为116元;已知一元的比二元的多2张,问三种面值的人民币各有多少张思路:如果减少2张一元的,那么,总张数就是48张,总面值就是114元,这样一元和二元的张数就同样多了;假设48张都是5元的,则总面值为240元,比实际多了126元,这126元不仅包括把一元的假设为5元,而且包括把二元的假设为5元,这样在两张5元中就多了7元;所以二元的就有18张,一元的就有20张,五元的有12张;练习四:1、有3元、5元和7元的电影票400张,一共价值1920元;其中7元的和5元的张数相等,三种价值的电影票各有多少张2、有一元、五元、十元的人民币共14张,总计66元,其中一元的比十元的多2张,问三种人民币各有多少张3、有1角、2角、4角、5角的邮票共26张,总计元;其中,1角和2角的张数相等,4角和5角的张数相等;求这四张邮票各有多少张例题:有黑白棋子一堆,其中黑子个数是白子个数的2倍;如果从这堆棋子中每次取出黑子4个,白子3个,那么取了多少次后,白子余1个,而黑子余18个思路:假设每次取出3个白子,黑子应取出6个,那么白子剩下1个时,黑子应剩下2个;而实际剩下了18个,是因为每次少取了2个黑子;所以取了18÷6-4=8次;练习五:1、有黑白棋子一堆,其中黑子个数是白子个数的3倍;如果从这堆棋子中每次同时取出黑子6个,白子3个,那么取了多少次后,白子余5个,黑子余36个2、操场上有一群同学,男生人数是女生的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人操场上共有多少名同学课后练习:1. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题2. 鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只3. 某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题4. 有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费元,问这次搬运中玻璃损坏了几只5. 鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只6. 蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只7. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张8. 现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个9. 有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同.这两桶油各有多少千克10. 赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张.他兑换了两种面额的人民币各多少张11. 动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤.该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少12. 小张的存钱盒里有2角,5角和1元人民币20张,共12元,算一算三种面值的人民币各有多少张。

六年级奥数-假设法解题

六年级奥数-假设法解题

2、食堂里面粉的质量是大米质量的
1 2
,每天吃去
30吨面粉,45吨大米,若干天后,面粉正好吃完
,大米还有150吨,食堂里原来有面粉多少吨?
例题5
育红小学上学期共有学生750人,本学期男同学
增加 1 ,女同学减少 1 ,现在一共有710人。
6
5
本学期男、女同学各有多少人?
解:假设本学期女同学不是减少 1 ,而是增加 1 本学期应该
举一反三5
1、袋子里原有红球和黄球共119个。将红球的个数增
加 3 ,黄球的个数减少 2 后,红球与黄球的总数
8
5
变为121个。原来袋子里有红球和黄球各多少个?
2、金放在水里称重,数值减少 1 ,银放在水里称
19
重,数值减少 1
10
,一块重770克的金银合金,放
入水里称重,数值是720克,这块合金含金、银各
例题2:
学校阅览室有文艺书和科技书一共125本,如果文艺 书借出 1 ,比科技书还多5本。原来文艺书和科技
7
书各有多少本?
解析:如果科技书增加5本后,科技书的本数是文艺书本 数的1- 1 = 6
77 两种书的总本数为125+5=130(本) 文艺书的本数为 130÷(1+ 6 )=70(本)
7 科技书的本数为125-70=55(本)
解析:假设甲没有请假,则甲、乙工作时间相同,共 能完成这批零件的(1+ 1 )倍。
8
(1+ 1 )÷(1 + 1 )=5(天)
8
8 10
举一反三1
1、一件工作,甲独做15天完成,乙独做10天完成 ,两人一起做若干天后甲休息了几天,结果共用 去8天才完成了任务。甲休息了几天?

五年级数学思维训练——假设法解应用题

五年级数学思维训练——假设法解应用题

假设法解应用题知识导航“假设法”是解应用题常用的一种思维方法,在有些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设要求的两个未知量是同一种量,然后按照题里的已知条件进行推算,并对照已知条件把数量上出现的矛盾加以适当地调整,最后找到答案,这就是假设法。

精典例题例1:鸡兔同笼,共有46个头,128只脚。

笼中鸡兔各有多少只?思路点拨假设46只全是兔,那么一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

模仿练习乌龟、白鹤共有24只,有68条腿。

那么乌龟、白鹤各多少只?例2:大嶝片区第N届数学竞赛共有12道题,每道题做对得10分,做错或不做都扣8分。

小辰最后得了66分,请问他答对了几道题?思路点拨假设小辰12道题全部答对了,共得10×12=120(分),比实际得分多算了120-66=54(分)。

那么答错一道题多算了多少分呢?原来我们把答错的题看作是答对时,每道题的扣分不但没有扣,还给得分,就多算了8+10=18(分)。

所以小辰答错了:54÷18=3(道),对了12-3=9(道)。

模仿练习小欣和小熙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。

两人各投10次,共得152分。

其中小熙比小欣多得16分,问两人各中了多少次?例3:双沪小学五年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?思路点拨我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?模仿练习中心小学五年级有3个班共200人,二班比一班多6人,三班比二班少10人,三个班各有多少人?例4:有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?思路点拨此题属于假设法3个未知量较难型题,要分步假设。

假设法解题一附答案

假设法解题一附答案

假设法解题 (一)假设是解决较复杂的应用题时常用的一种解题策略,一般针对题目中出现了2种或2种以上的未知量的应用题。

思考时可以先假设全部是一种未知量,然后按照题目的意思进行推算,并根据已知条件把数量上出现的矛盾加以适当的调整,最后找到答案。

数量上出现的矛盾加以适当的调整,最后找到答案。

例题1: 鸡兔同笼,共100个头,320只脚,鸡兔各有多少只?只脚,鸡兔各有多少只?例2 :甲每小时走12千米,乙每小时走8千米。

某日甲从A 地到B 地,乙同时从B 地到A 地,已知乙到A 地时,甲已先到B 地5小时。

求AB 两地距离?两地距离?例3:小王骑车从甲地到乙地往返一次。

去的时候速度是每小时20千米,回来的时候速度是每小时12千米,求他往返的平均速度。

千米,求他往返的平均速度。

例题1: 鸡兔同笼,共100个头,320只脚,鸡兔各有多少只?只脚,鸡兔各有多少只?思路导航:实际上,鸡兔脚的数量是不同的。

我们假设鸡兔脚的数量相同,一只鸡2只脚,只脚,一只兔也一只兔也2只脚。

只脚。

我们能够得出一个新数量,我们能够得出一个新数量,我们能够得出一个新数量,鸡兔共鸡兔共100只,只,有有100×2=200只脚。

问题出来了,实际上多出了320-200=120只脚,为什么?其实,这些多出来的脚是兔子的脚。

从假设看,一只兔子我们要补充给它2条腿,才符合实际。

实际上多出的脚,一共有多少个“2条腿”呢?有120÷2=60个。

这就是兔子的只数。

列算式这就是兔子的只数。

列算式兔子(320-100×2)÷2=(320-200)÷2=120÷2=60(只)(只)鸡100-60=40(只)(只)答:鸡有40只,兔有60只。

只。

例2 :甲每小时走12千米,乙每小时走8千米。

某日甲从A 地到B 地,乙同时从B 地到A 地,已知乙到A 地时,甲已先到B 地5小时。

求AB 两地距离?两地距离? 思路导航:假设甲到B 地后,继续往前走,那么当乙到达A 地时,甲又走了12×5=60(千米),这是在相同时间内,甲比乙多走的路,由于甲每小时比乙多走12-8=4(千米),因此,因此,看看60千米里面有几个4千米,千米,就得出乙行完全程的就得出乙行完全程的时间,再用乙的速度×时间,就可以得出AB 两地的距离。

逻辑推理(二):用假设法解逻辑推理问题——半对半错

逻辑推理(二):用假设法解逻辑推理问题——半对半错

逻辑推理(二):用假设法解逻辑推理问题——半对半错快乐老师例1、甲、乙、丙、丁四个人参加一次数学竞赛,赛后他们四人预测名次如下:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三;丁没有说话。

最后公布结果时,发现他们每人预测对了一半,请说出竞赛的名次。

分析与解答:(1)先假设甲说丙为第一是正确的,那么甲为第三是错误的。

根据(2)可知,乙为第二是错误的,那么丁为第四是正确的。

根据(3)可知,丁为第二是错误的,那么丙为第三是正确的。

这样,丙为第一和丙为第三相互矛盾。

所以,甲说丙为第一是错误。

(2)丙为第一是错误,甲为第三是正确的。

根据(3)可知,丙第三是错误的,那么丁为第二是正确的。

根据(2)可知,丁为第四是错误的,那么乙为第一是正确的。

所以乙是第一,丁为第二,甲为第三,丙为第四。

小结:每人说的两句话中,一句对一句错是分析解决这道题的关键,解决这个问题的方法是:先作出假设,然后根据已知条件进行正确的推理。

如果推出矛盾,则说明假不合理。

没有推出矛盾,则说明假设合理。

这种方法我们称作假设法。

练习:1.甲、乙、丙、丁四位同学的运动衫上印有不同的号码。

赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是4号,甲是1号.”又知道赵、钱、孙、李每人都只说对了一半,那么丙的号码是几?2.某校办数学竞赛,A、B、C、D.E五位同学得了前五名,发奖前,老师让他们猜一猜各人的名次排列情况。

A说:B第三名,C第五名。

B说:E第四名,D第五名。

C说:A第一名,E第四名。

D说:C第一名,B第二名。

E说:A第三名,B第四名。

老师说:每个名次都有人猜对.那么,这五名同学的名次是怎样排列的?3、现有红、黄、蓝、白、紫五种颜色的珠子各一颗,用纸包着,在桌子上排成一行,由甲、乙、丙、丁、戊五人,猜各包内珠子的颜色,每人只许猜两包。

甲猜:第二包是紫的,第三包是黄的;乙猜:第二包是蓝的,第四包是红的;丙猜:第一包是红的,第五包是白的;丁猜:第三包是蓝的,第四包是白的;戊猜:第二包是黄的,第五包是紫的;事后,打开纸包,发现每人都只猜对了一包,并且每包都只有一人猜对。

五年级奥数:假设法解题

五年级奥数:假设法解题

五年级奥数:假设法解题专题分析:假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

【例题】:有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张?【思路】:先假设有14张5元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的张数是30÷(10-5)=6(张)。

也可以假设有14张10元的……练习一:1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?2、一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的银币各有多少枚?3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。

求换来的这两种人民币各多少张?【例题】:用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货物价值2520元。

问大小汽车各多少辆?【思路】:根据“若每箱便宜2元,则这批货物价值2520元。

”可以知道一共便宜了504元,这样可以计算出货物有252箱。

假设18辆都是大汽车,可以装324箱,比实际多装72箱。

用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车。

6辆大汽车。

练习二:1、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。

平均每天运14次。

这几天中有几天是雨天?2、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值302.4元。

若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。

问大箩、小箩各有多少个?3、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。

用假设法解题(鸡兔同笼)--2022-2023学年三年级数学思维拓展

用假设法解题(鸡兔同笼)--2022-2023学年三年级数学思维拓展

2022-2023学年小学三年级思维拓展专题 用假设法解题(鸡兔同笼)专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。

所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。

我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。

解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。

1鸡、兔共30只,共有脚84只。

鸡、兔各有多少只?【思路引导】假设全是鸡,共有脚:30×2=60只;比实际少:84-60=24只;这是因为把4只脚的兔子都按2只脚的鸡计算了。

每把一只兔子算作一只鸡,少算:4-2=2只脚,现在共少算了24只脚,说明把:24÷2=12只兔子按鸡算了。

所以,共有兔子12只,有鸡30-12=18只。

2鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?【思路引导】因为鸡比兔多30只,则可以把30只鸡的脚从总数中去掉,剩下的鸡兔就同样多了。

每一对鸡和兔共4+2=6只脚,用6去除剩下的鸡兔总脚数,就可求出兔的只数。

兔的只数:(168-2×30)÷(4+2)=18只;鸡的只数:18+30=48只。

3某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。

共有12道题,王刚得了84分。

王刚做错了几题?【思路引导】这类题实与鸡兔同笼同类,还用假设法进行思考。

若全做对,应得9×12=108分,现在少了108-84=24分。

为什么会少24分,因为做错一题,不但得不到9分,反而需要倒扣3分,里外少了12分,所以错了24÷12=2题。

数学假设法解题

数学假设法解题

假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

这样就可以求出师傅加工了【11÷(4/7-3/8)】=56个。

即:师傅:(105×4/7-49)÷(4/7-3/8)=56(个)徒弟:105-56=49(个)答:师傅加工了56个,徒弟加工了49个。

逻辑思维训练题-假设法解题初级篇

逻辑思维训练题-假设法解题初级篇

逻辑思维训练题-假设法解题初级篇逻辑思维训练题1—11:假设法解题初级篇(1)1(如何问问题,有甲、乙两人,其中,甲只说假话,而不说真话;乙则是只说真话,不说假话。

但是,他们两个人在回答别人的问题时,只通过点头与摇头来表示,不讲话。

有一天,一个人面对两条路:A与B,其中一条路是通向京城的,而另一条路是通向一个小村庄的。

这时,他面前站着甲与乙两人,但他不知道此人是甲还是乙,也不知道"点头"是表示"是"还是表示"否"。

现在,他必须问一个问题,才可能断定出哪条路通向京城。

那么,这个问题应该怎样问,2(他们的职业是分别什么,小王、小张、小赵三个人是好朋友,他们中间其中一个人下海经商,一个人考上了重点大学,一个人参军了。

此外他们还知道以下条件:小赵的年龄比士兵的大;大学生的年龄比小张小;小王的年龄和大学生的年龄不一样。

请推出这三个人中谁是商人,谁是大学生,谁是士兵,3(谁做对了,甲、乙、丙三个人在一起做作业,有一道数学题比较难,当他们三个人都把自己的解法说出来以后,甲说:"我做错了。

"乙说:"甲做对了。

"丙说:"我做错了。

"在一旁的丁看到他们的答案并听了她们的意见后说:"你们三个人中有一个人做对了,有一个人说对了。

"请问,他们三人中到底谁做对了,4(鞋子的颜色小丽买了一双漂亮的鞋子,她的同学都没有见过这双鞋了,于是大家就猜,小红说:"你买的鞋不会是红色的。

"小彩说:"你买的鞋子不是黄的就是黑的。

"小玲说:"你买的鞋子一定是黑色的。

"这三个人的看法至少有一种是正确的,至少有一种是错误的。

请问,小丽的鞋子到底是什么颜色的,5(谁偷吃了水果和小食品,赵女士买了一些水果和小食品准备去看望一个朋友,谁知,这些水果和小食品被他的儿子们偷吃了,但她不知道是哪个儿子。

用假设法解题(一)答案

用假设法解题(一)答案

假设法解题(一)“假设法”是解应用题常用的一种思维方法,在有些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设要求的两个未知量是同一种量,然后按照题里的已知条件进行推算,并对照已知条件把数量上出现的矛盾加以适当调整,然后找到答案,这就是假设法。

我们古代算术中的“鸡兔同笼”问题,通常就是用假设法解答。

例1.买来5角、2角、1角5分三种邮票,共20张,总值5元5角。

其中5角和1角5分的邮票张数相等,问三种邮票各购几张?解题思路:因为5角和1角5分的邮票张数相等,所以一般假设20张邮票都是2角的,那么20×20=400(角),比实际少了550-400=150(角);为什么会少?因为拿一张5角和一张1角5分换两张2角,会少50+15-20×2=25分,所以150÷25=6(组)——5角和1角5分的各6张,2角的邮票有20-6×2=8(张)例2.蜘蛛有8只脚,蜻蜓有6只脚和两对翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫18只,共有脚118只,翅膀20对,问每种小虫各有几只?解题思路:先从脚的数量考虑,因为蜻蜓和蝉的脚数相等,所以假设18只都是6条腿,那么有18×6=108条腿,比实际少118-108=10条,每把一只8条腿的蜘蛛换成6条腿的昆虫就少8-6=2条腿,10÷2=5只-----是蜘蛛的数量。

剩下的13只是蜻蜓和蝉,再从翅膀数量考虑,假设13只都是一对翅膀的蝉,那么翅膀就比实际少了20-13=7对,每把一只蜻蜓换成蝉,就少一对翅膀,所以蜻蜓有7只,蝉有6只。

1.笼中共有30只鸡和兔,数一数足数正好是100只。

问鸡兔各多少只?解题思路:假设30只都是鸡,那么足数就少了100-2×30=40条,每把一只兔换成鸡,就少2条腿,所以40÷(4-2)=20只兔,鸡30-20=10只同理也可把30只都假设成兔。

小升初数学中级假设法思维训练及参考答案

小升初数学中级假设法思维训练及参考答案

小升初数学中级假设法思维训练及参考答案做小升初数学题用到的逻辑思维能力并不是一下就能培养和开展起来的,它需要长期的训练过程。

逻辑思维能力的培养要可以通过做题来进展锻炼。

下面的数学应用题是训练大家的用假设法来做题的,我们后面给出的答案也是用假设进展解答,本文是几个中级题目。

1.有一天,学校的学生在做游戏,A队只准说真话、B队只准说假话;A队在讲台西边,B队在讲台东边。

这时,叫讲台下的一个学生上来判断一下,从A、B两队中选出的一个人--小张,看他是哪个队的。

这个学生从A或B队中任意抽出了一个队员去问小张是在讲台的西边而是东边叫其中一个队员的人去问小张是在讲台西边还是东边。

这个队员回来说,小张说他在讲台西边。

这个学生马上判断出来小张是A队的,为?12.小阳的妹妹是小蒂和小红;他的女友叫小丽。

小丽的哥哥是小刚和小温。

他们的职业分别是:小阳:医生小刚:医生小蒂:医生小温:律师小红:律师小丽:律师这6人中的一个杀了其余5人中的一个。

(1)假设这个凶手和受害者有一定的亲缘关系,那么说明凶手是男性;(2)假设这个凶手和受害者没有一定的亲缘关系,那么说明凶手是个医生;(3)假设这个凶手和受害者的职业一样,那么说明受害者是男性;(4)假设这个凶手和受害者的职业不一样,那么说明受害者是女性;(5)假设这个凶手和受害者的性别一样,那么说明凶手是个律师;(6)假设这个凶手和受害者的性别不一样,那么说明受害者是个医生。

根据上面的条件,请问凶手是谁?提示:根据以个陈述中的假设与结论,判定哪3个陈述组合在一起不会产生矛盾。

3.某企业老板在对其员工的思维能力进展测试时出了这样一道题:某大型企业的员工人数在1700~1800之间,这些员工的人数如果被5除余3,如果被7除余4,如果被11除余6。

那么,这个企业到底有多少员工?员工小王略想了一下便说出了答案,请问他是怎么算出来的?4.老师让幼儿园的小朋友排成一行,然后开始发水果。

老师分发水果的方法是这样的:从左面第一个人开始,每隔2人发一个梨;从右边第一个人开始,每隔4人发一个苹果。

六年级奥数第五讲 假设法解题 全集

六年级奥数第五讲 假设法解题 全集

第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少? 练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。

抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出91,则比黑白电视机多5台。

问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。

问:原来彩色电视机和黑白电视机各有多少台?2、甲、乙两个消防队共有336人,抽调甲队人数的75、乙队人数的73,共抽调188人参加灭火。

问:甲、乙两个消防队原来各有多少人?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少? 练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。

用假设法解题(一)答案

用假设法解题(一)答案

用假设法解题(一)答案假设法解题(一)“假设方法”是解决应用问题的常用思维方法。

在某些应用问题中,需要两个或多个未知数。

在思考时,你可以先假设所需的两个或两个以上的未知数相等,或者先假设所需的两个未知数是相同的量,然后根据问题中的已知条件进行计算,并根据已知条件适当调整数量上的矛盾,然后找到答案。

这是假设方法。

我国古代算术中的“鸡兔同笼”问题,通常是用错误的方法来解决的。

例1.买来5角、2角、1角5分三种邮票,共20张,总值5元5角。

其中5角邮票的数量等于15美分。

这三种邮票各买几张?解决问题的想法:因为5角和1角5分的邮票张数相等,所以一般假设20张邮票都是2角的,那么20×20=400(角),比实际少了550-400=150(角);为什么会少?因为拿一张5角和一张1角5分换两张2角,会少50+15-20×2=25分,所以150÷25=6(组)――5角和1角5分的各6张,2角的邮票有20-6×2=8(张)例2。

蜘蛛有八只脚,蜻蜓有六只脚和两对翅膀,蝉有六只脚和一对翅膀有这三种小虫18只,共有脚118只,翅膀20对,问每种小虫各有几只?解题思路:首先,考虑脚的数量。

因为蜻蜓和蝉的足数相等,假设18只蜻蜓有6条腿,则有18×6=108条腿,比实际数少118-108=10。

每次一只8条腿的蜘蛛被6条腿的昆虫取代,8-6=2条腿,10÷2=5------是蜘蛛的数量。

剩下的13只是蜻蜓和蝉。

考虑到翅膀的数量,假设13只蝉有一对翅膀,那么翅膀比实际的少20-13=7对。

每次用蝉代替蜻蜓,就会少一对翅膀,因此有7只蜻蜓和6只蝉。

1.笼中共有30只鸡和兔,数一数足数正好是100只。

问鸡兔各多少只?解题思路:假设30只都是鸡,那么足数就少了100-2×30=40条,每把一只兔换如果你变成一只鸡,你将失去两条腿,因此40÷(4-2)=20只兔子和30-20=10只鸡同理也可把30只都假设成兔。

小学六年级奥数--假设法解题

小学六年级奥数--假设法解题

假设法解题假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾来求解。

例1:学校阅览室有文艺书和科技书一共125本,如果文艺书借出1/7,比科技书还多5本。

原来文艺书和科技书各有多少本?例2:二年级两个班共有学生90人,其中少先队员71人。

一班少先队员占本班人数的75%,二班少先队员人数占本班人数的5/6,一班少先队员比二班少先队员多几人?例3:甲乙两数的和是300,甲数的2/5比乙数的1/4多55,甲乙两数各是多少?例4:水果店里西瓜与白瓜个数比是7:5,如果每天卖白瓜40个、西瓜50个,若干天后白瓜正好卖完,西瓜还剩36个。

水果店里原有西瓜多少个?例5:王明平时积蓄下来的零花钱比陈刚的3倍还多6.4元,若两人各买了一本4.4元的故事书后,王明的钱是陈刚的8倍。

陈刚原有零花钱多少元?作业:1.甲乙两种商品成本价共200元,若甲乙商品分别按20%和30%的利润定价,并按9折出售,共可获得利润27.7元,则乙商品的成本价是多少元?2.一项工程,小王单独干6天后,小刘接着单独干9天,可以完成任务总量的2/5,如果小王单独干9天后,小刘接着干6天,可以完成任务总量的7/20。

则小王和小刘一起完成这项工程需要多少天?3.田径世锦赛男子4*100米接力,每队可报6名选手参赛,唯一一个起跑最快的跑第一棒,第四棒有2个人选,则可排出的组合有多少种?4.某商场搞促销,消费100元送20元代金券,某顾客先花100元买了一件衬衫,再用代金券及现金买了同样的衬衫,则顾客得到的折扣相当于几折?5.王老师在课堂上出了一道加法算术题,张明把个位上的4看成9,把十位上的8看成3,结果算错为118,那么正确答案是?6.一本300页的书,将所有页码排成一列,其中数字3一共有多少个?7.某学校共有10个获奖名额分配到某年级各个班,每个班至少有一个名额,若有36种不同的分配方案,该年级最多有多少个班?8.某知识竞赛,共有50道选择题,评分标准是:答对一题得3分,答错一题扣1分,不答的题得0分。

越玩越聪明的思维游戏(下):假设法解题(高级篇)

越玩越聪明的思维游戏(下):假设法解题(高级篇)

越玩越聪明的思维游戏(下):假设法解题(高级篇)越玩越聪明的思维游戏(17):假设法解题(高级篇)1、两对双胞胎。

在老北京的一个胡同的大杂院里,住着4户人家,巧合的是每家都有一对双胞胎女孩。

这四对双胞胎中,姐姐分别是ABCD,妹妹分别是abcd。

一天,一对外国游人夫妇来到这个大杂院里,看到她们8个,忍不住问:"你们谁和谁是一家的啊?"B说:"C的妹妹是d。

"C说:"D的妹妹不是c。

"A说:"B的妹妹不是a。

"D说:"他们三个人中只有d的姐姐说的是事实。

"如果D的话是真话,你能猜出谁和谁是双胞胎吗?2、奇怪的两姐妹。

有一个人在一个森林里迷路了,他想看一下时间,可是又发现自己没带表。

恰好他看到前面有两个小女孩在玩耍,于是他决定过去打听一下。

更不幸的是这两个小女孩有一个毛病,姐姐上午说真话,下午就说假话,而妹妹与姐姐恰好相反。

但他还是走近去他问她们:"你们谁是姐姐?"胖的说:"我是。

"瘦的也说:"我是。

"他又问:现在是什么时候?胖的说:"上午。

""不对",瘦的说:"应该是下午。

"这下他迷糊了,到底他们说的话是真是假?3、走哪条路?有一个外地人路过一个小镇,此时天色已晚,于是他便去投宿。

当他来到一个十字路口时,他知道肯定有一条路是通向宾馆的,可是路口却没有任何标记,只有三个小木牌。

第一个木牌上写着:这条路上有宾馆。

第二个木牌上写着:这条路上没有宾馆。

第三个木牌上写着:那两个木牌有一个写的是事实,另一个是假的。

相信我,我的话不会有错。

假设你是这个投宿的人,按照第三个木牌的话为依据,你觉得你会找到宾馆吗?如果可以,那条路上有宾馆哪条路上有宾馆?4、今天星期几?有一富翁,为了确保自己的人身安全,雇了双胞胎兄弟两个作保镖。

四年级奥数思维训练专题-用假设法解题

四年级奥数思维训练专题-用假设法解题

四年级奥数思维训练专题-用假设法解题专题简析:运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。

例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。

问鸡、兔各有多少只?分析:鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数与实际数量不符。

假设全是鸡,脚就比实际少;假设全是兔,脚就比实际多。

假设全是鸡,脚的总数是2×35=70只。

与实际相比,减少94-70=24只。

减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。

所以兔有24÷2=12只,鸡有35-12=23只。

试一试1:鸡与兔共有20只,共有脚50只。

鸡与兔各有多少只?例2:面值2元、5元的人民币共27张,全计99元。

面值2元、5元的人民币各有多少张?分析:这道题类似于“鸡兔同笼”问题。

假设全是2元的人民币,钱总数是2×27=54元,与实际相比减少了99-54=45元,减少的原因是把每2元的人民币当作5元的人民币,每张要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。

试一试2:小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分(不猜按错算)。

小明共得60分,他猜对了几道?例3:某场乒乓球比赛售出30元、40元、50元的门票共200张,收入7800元。

其中40元和50元的张数相等,每种票各售出多少张?分析:因为“40元和50元的张数相等”,所以可以把40元和50元的门票都看作45元的门票,假设这200张门票都是45元的,应收入45×200=9000元,比实际多收入9000-7800=1200元,这是因为把30元的门票都当作45元来计算了。

因此30元的门票有1200÷(45-30)=80张,40元和50元的门票各有(200-80)÷2=60张。

假设法解题

假设法解题

假设法解题假设法是一种思考问题的方法,也是解答应用题的好方法。

有些应用题看似无法解答,但如果采用假设的方法,可以比较轻松地得到正确答案.用假设法解答应用题,有一定的解答步骤:(1)先假设某一个条件成立,根据题中告诉的条件,经过推理计算,可能出现与题中已知条件相矛盾的结果.(2)找出错误产生的原因,想办法消除错误,得到应用题的解.这一讲通过例题帮助同学们理解哪些应用题可以用假设法解答,掌握用假设法解答应用题的一般步骤和思考方法难题点拨①有5元的和10元的人民币共14张,共100元。

问:5元币和10币各多少张?1.一堆2分和5分的硬币共39枚,共值1。

5元.问:2分和5分的各有多少枚?2.营业员把一张5元人民币和一张5角的人民币换成了28张面值为1元和1角的人民币,求换来这两种人民币各多少张。

3.在储藏室的一角有三脚凳和四脚凳共13只。

已知这些凳子脚的总数是41只,你能说出三脚凳和四脚凳各有多少只吗?难题点拨②松鼠妈妈采松子,晴天每天可以采20个,雨天每天只能采12个它一连采了112个松子,平均每天采14个。

间:这几天当中有几天有雨?1.小松鼠妈妈采松子,晴天每天可以采18个,雨天每天只能来9个。

它一连采了72个松子,平均每天采12个。

问:这几天当中有几天是雨天?2。

有大、小两种塑料桶共54个,正好装下114千克橘汁,如果每个大桶可装4千克橘汁,每个小桶可装1千克橘汁。

求大、小塑料桶各有多少个.3学校体育组买来白皮球和花皮球共15个。

共花去78元。

已知白皮球每个4元,花皮球每个6元。

白皮球和花皮球各买了多少个?难题点拨③三年级的46名同学去划船,准备了可乘6人的大船和可乘4人的小船共10只,如果所有的学生恰好分配在这10只船上而没有剩余那么大船和小船各有几只?1.公园里的大船能坐6人,小船能坐4人,新华小学124名师生去划船,租了大、小船共24只,正好坐满.他们租了大、小船各多少只?2。

学校组织春游,一共用了10辆客车。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正确的。
同学们 ,数 学 中常 常用到假设法 ,你会 了吗?
指 导 老 师 :缪 彩琴
理 起 的 为箍 ,走 稻 稿 的锅 匙 。
— — 尹 夫 ・ 尔 斯 泰 j 托
少2 ,3t 2 目前 还 只 相 差 1 ,所 以 , 1人 不 行 。 再假 设 游 戏人 组  ̄ ,和 组 t 组 8
" 尧

数为3 人 ,每 组6 ,组为3 ÷6 6 ,每 组9 ,组 为3 -9 4 ,相 掌 6 人 6 =组 人 65 = 组 -
差 :6 4 2 ,正好符 合题 意 ,所 以参加 游戏 的小朋友 一共有3 A- 数 ຫໍສະໝຸດ -=组 6 是 学生 习作
浙江省e ̄. g g柯桥 小学五( 班叶青 2 )
例题 :一班的 小朋友在操 场上做 游戏 ,每 组6 ,玩 了一会 儿 , 人
他们觉得每组人数 太少,便 重新分组 ,正好每组9 ,这样 比原来减 少 人
了2 ,求参加游戏 的朋友一共有 多少人? 组
分析 与 解 :我们 可 以用假 设 法来做 这道 题 ,先抓 住 一 个条件 , 每组的人数 ,原先每组 是6 ,后 来是 9 ,我 们设6 的最小公倍数 人 人 和9 是1 ,假设操 场上做 游戏人数 最 少为1 A ,每 组6 ,组数 为1 ÷6 3 8 8. 人 8 = 组 ,每组9 ,组数为 l ÷9 2 ,题 g原先每组6 和后 来每 组9 减 人 8 =组 l 人 人
相关文档
最新文档