新苏教版数学四年级下册《素数和合数》ppt课件2(精品)
《素数和合数》教学课件1
提高:
将合适的数填在横线上
14、23、39、35、48、2、20、34、43、1 (1)奇数有___________________ (2)偶数有__________________ (3)素数有___________________ (4)合数有___________________ 你能发现奇数、偶数与素数、合数的区别 与联系吗?
动手实验: • 请同学们拿出你塑料袋里的 小正方形,小组分工合作, 分别用2个、3个、4个、6个、 7个、8个、11个、12个小 正方形拼成长方形,看看各 自能拼出几种。
像2、3、5、7这几个数,它们 的因数只有1和它本身两个,这 样的数叫做素数(或质数) 。
4、6、8、9的因数除了1和本身 之外,还有别的因数,这样的数 叫做合数。
小法官:
(1)素数没有因数,合数有无数个因数。( ) (2)一个非0自然数,不是素数就是合数。( ) (3)所有的偶数都是合数。( ) (4)素数一定是奇数。( ) (5)两个素数的乘积一定是合数 。 (6)两个素数相加的和一定是合数
我最棒:
王老师家的电话号码是七位数,从高位到低 位排列依次是:最小的素数,最小的合数, 既不是素数也不是合数,3的最小倍数,最 大的一位数,最小的奇数和8的最大的因数。 请你猜一猜,王老师家的电话号码是多少? 你能写出这个电话号码的几个因数吗?王老 师家的电话号码是( ),它的因 数有:( )。(你能写几个就写几 个)
小组交流:
怎样快速判断一个数是素数还是合
数?你能用一句话表述完整吗?
就看除了1和它本身以外,是否还有
第三个因数;只有1和它本身的就是 素数,还有第三个因数的就是合数。
(苏教版)四年级数学下册课件 素数和合数2013
找出11~20各数 的所有因数,再 把11~20分别填 入圈里。
1,17 1,2,3,6,9,18 1,19 1,2,4,5,10,20
这个数 11 12 13 14 15 16 17 18 19 20
因数个数 2
6 2 4 4 5 2 6 2 6
这个数的因数 1,11
1,2,3,4,6,12 1,13 1,2,7,14 1,3,5,15 1,2,4,8,16
方法:
1. 划去1;
2.划去除2外所有2 的倍数; 3.划掉除3,5,7外所 有3, 5,7的倍数,剩下 的就是质数。
99 100
智慧城堡
加油啊!
你会在括号里填上合适的素数吗?
8=( 3 )+( 5 )
12=( 5 )+( 7 )
10=( 3 )+( 7 )
14=( 3 )+( 11 )
30=( 11 )+( 19)=( 13 )+( 17)
古代就有人研究整数的性质, 二千二百多年前,希腊的数学家 就找出了1000以内的质数,并且 知道质数有无限多个。 现在人们利用计算机找出的质 数越来越大。迄今为止,人类发 现的最大的质数224036583-1,这是 第41个梅森质数。
找出11~20各数 的所有因数,再 把11~20分别填 入圈里。
素数
11 13 17 19
合数
1,17 1,2,3,6,9,18 1,19 1,2,4,5,10,20
12 14 15 16 18 20
试一试
21
25
23
29
27
31
35
素数
合数
试着找出100以内的所有质数。
1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 10 20 30 40 50 60 70 80 90
《质数和合数》课件 2022年苏教版小学数学精品PPT
小知识
古代就有人研究整数的性质, 二千二百多年前,希腊的数学家 就找出了1000以内的质数,并且 知道质数有无限多个。
现在人们利用计算机找出的质 数越来越大。迄今为止,人类发 现的最大的质数224036583-1,这是 第41个梅森质数。
课堂小结
2 4 5 8 47 96
易错提醒
下面用数字卡片摆出的数中,哪些是3的倍数 ?在每个数后面增加一张卡片,使这三个数成为3 的倍数。
2 4 5 8 47 96
错误解答:
583、58 3、58 3、476、479、476是3的倍数。
错解分析:3的倍数的特征是一个数,每个数位上的数字的
和是3的倍数,这个数就是3的倍数。末尾是3的 倍数的数不一定是3的倍数。
方法: 1. 划去1; 2.划去除2外所有 2的倍数; 3.划掉除3,5,7外 所有3, 5,7的倍数, 剩下的就是质数。
典题精讲
质数表
典题精讲
◆偶数除了2之外,都是合数。
◆奇数里既有质数,也有合数。 ◆ 1是奇数,但它既不是质数也不是合数。
◆合数不一定是偶数,但质数除2以外都是 奇数。
易错提醒
10=(3 )+( 7 )
12=(5 )+( 7 )
14=(3 )+(11 )
301=1 ( )+1(9 )=(13)+( 1)7
学以致用
5.猜猜我的邮箱号码:
第一位:比最小的合数多1 第二位和第四位相同: 10以内最大的质数
第三位:是偶数,又是质数 第五位:最小两个质数的积 第六位:既不是质数,也不是合数 第七位:比最小的质数多2 第八位:最小质数与最小合数的积
《素数和合数》课件PPT 公开课获奖课件
第三节空间点、直线、平面之间的位置关系[考纲传真] 1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系3.平行公理(公理4)和等角定理 平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角.(2)范围:⎝ ⎛⎦⎥⎤0,π2.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( )(2)两两相交的三条直线最多可以确定三个平面.( )(3)如果两个平面有三个公共点,则这两个平面重合.( )(4)若直线a 不平行于平面α,且a ⊄α,则α内的所有直线与a 异面.( )[答案] (1)× (2)√ (3)× (4)×2.(教材改编)如图7-3-1所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AD 的中点,则异面直线B 1C 与EF 所成的角的大小为( )图7-3-1A.30° B.45°C.60° D.90°C[连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角,又B1D1=B1C=D1C,∴∠D1B1C=60°.]3.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线A[A不是公理,是个常用的结论,需经过推理论证;B,C,D是平面的基本性质公理.]4.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.]5.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是________.b与α相交或b⊂α或b∥αAB和AA1的1111中点.求证:图7-3-2(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.【导学号:01772249】[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.2分又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.5分(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.8分同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.12分[规律方法] 1.证明线共面或点共面的常用方法:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.2.证明点共线问题的常用方法:(1)基本性质法:一般转化为证明这些点是某两个平面的公共点,再根据基本性质3证明这些点都在这两个平面的交线上.(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.[变式训练1]如图7-3-3所示,四边形ABEF和ABCD都是梯形,BC綊12AD,BE綊12F A,G,H分别为F A,FD的中点.图7-3-3(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?[解](1)证明:由已知FG=GA,FH=HD,得GH綊12AD.2分又BC綊12AD,∴GH綊BC,∴四边形BCHG是平行四边形.5分(2)C,D,F,E四点共面,理由如下:由BE綊12AF,G为F A的中点知BE綊GF,∴四边形BEFG为平行四边形,∴EF∥BG.8分由(1)知BG∥CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C,D,F,E四点共面.12分α内,l2在121平面β内,l是平面α与平面β的交线,则下列命题正确的是()【导学号:01772250】A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)(2017·郑州模拟)在图7-3-4中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).①②③④图7-3-4(1)D(2)②④[(1)由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.][规律方法] 1.异面直线的判定方法:(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.(2)定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.2.点、线、面位置关系的判定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.[变式训练2] (2017·烟台质检)a ,b ,c 表示不同的直线,M 表示平面,给出四个命题:①若a ∥M ,b ∥M ,则a ∥b 或a ,b 相交或a ,b 异面;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确的为( )A .①④B.②③ C .③④ D.①②A [对于①,当a ∥M ,b ∥M 时,则a 与b 平行、相交或异面,①为真命题.②中,b ⊂M ,a ∥b ,则a ∥M 或a ⊂M ,②为假命题.命题③中,a 与b 相交、平行或异面,③为假命题.由线面垂直的性质,命题④为真命题,所以①④为真命题.](1)如图7-3-5,在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )图7-3-5A.15B.25C.35D.45(2)(2016·全国卷Ⅰ)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32B.22C.33D.13(1)D(2)A[(1)连接BC1,易证BC1∥AD1,则∠A1BC1即为异面直线A1B与AD1所成的角.连接A1C1,由AB=1,AA1=2,则A1C1=2,A1B=BC1=5,在△A1BC1中,由余弦定理得cos∠A1BC1=5+5-22×5×5=4 5.(2)设平面CB1D1∩平面ABCD=m1.∵平面α∥平面CB1D1,∴m1∥m.又平面ABCD∥平面A1B1C1D1,且平面CB1D1∩平面A1B1C1D1=B1D1,∴B1D1∥m1,∴B1D1∥m.∵平面ABB1A1∥平面DCC1D1,且平面CB1D1∩平面DCC1D1=CD1,同理可证CD1∥n.因此直线m与n所成的角与直线B1D1与CD1所成的角相等,即∠CD1B1为m,n所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为3 2.][规律方法] 1.求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.2.求异面直线所成角的三个步骤:(1)作:通过作平行线,得到相交直线的夹角.(2)证:证明相交直线夹角为异面直线所成的角.(3)求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.[变式训练3]如图7-3-6,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.图7-3-62[取圆柱下底面弧AB的另一中点D,连接C1D,AD,则因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.][思想与方法]1.主要题型的解题方法(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上.2.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了转化与化归思想.[易错与防范]1.异面直线不同在任何一个平面内,不能错误地理解为不在某一个平面内的两条直线就是异面直线.2.直线与平面的位置关系在判断时最易忽视“线在面内”.3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.课时分层训练(七)二次函数与幂函数A组基础达标(建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )【导学号:01772040】A.12 B.1 C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3 B.13 C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m4,由函数f (x )的增减区间可知m4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2 B.m =1或m =2 C .m =2D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则ca <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B.1 C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧-a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0, 所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1,由a 2-2a +1≤4,解得-1≤a ≤3, 又a ≥2,所以2≤a ≤3.] 三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即2=2(m 2+m )-1, ∴m 2+m =2,解得m =1或m =-2.4分 又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞), 并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分10.已知函数f (x )=x 2+(2a -1)x -3,(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],2分 ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15, ∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分(2)对称轴为x =-2a -12.①当-2a-12≤1,即a≥-12时,f(x)max=f(3)=6a+3,∴6a+3=1,即a=-13满足题意;8分②当-2a-12>1,即a<-12时,f(x)max=f(-1)=-2a-1,∴-2a-1=1,即a=-1满足题意.综上可知a=-13或-1. 12分B组能力提升(建议用时:15分钟)1.(2017·江西九江一中期中)函数f(x)=(m2-m-1)x4m9-m5-1是幂函数,对任意的x1,x2∈(0,+∞),且x1≠x2,满足f(x1)-f(x2)x1-x2>0,若a,b∈R,且a+b>0,ab<0,则f(a)+f(b)的值()【导学号:01772043】A.恒大于0 B.恒小于0C.等于0 D.无法判断A[∵f(x)=(m2-m-1)x4m9-m5-1是幂函数,∴m2-m-1=1,解得m=2或m=-1.当m=2时,指数4×29-25-1=2 015>0,满足题意.当m=-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意,∴f(x)=x2 015.∴幂函数f(x)=x2 015是定义域R上的奇函数,且是增函数.又∵a,b∈R,且a+b>0,∴a>-b,又ab<0,不妨设b<0,则a>-b>0,∴f(a)>f(-b)>0,又f(-b)=-f(b),∴f(a)>-f(b),∴f(a)+f(b)>0.故选A.]2.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]3.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. [解] (1)由题意知 ⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.2分所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].6分(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,8分令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).12分第三节 基本不等式[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号且不为零); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)⎝⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( )(3)x >0,y >0是x y +yx ≥2的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值为2a .( ) [答案] (1)× (2)× (3)× (4)×2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2D [∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +ab ≥2b a ·a b =2.]3.(2016·安徽合肥二模)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b 的最小值为( )A .7 B.8 C .9D.10C [∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号,故选C.]4.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) 【导学号:01772209】A .1+ 2 B.1+ 3C .3 D.4C [当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,选C.]5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m 2.25 [设矩形的一边为x m ,矩形场地的面积为y , 则另一边为12×(20-2x )=(10-x )m , 则y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25, 当且仅当x =10-x ,即x =5时,y max =25.](1)(2015·湖南高考)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2B.2 C .2 2D.4(2)(2017·郑州二次质量预测)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是__________.(1)C (2)3 [(1)由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.(2)由x 2+2xy -3=0得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x =3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.] [规律方法] 1.利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.2.在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.[变式训练1] (1)(2016·湖北七市4月联考)已知a >0,b >0,且2a +b =1,若不等式2a +1b ≥m 恒成立,则m 的最大值等于( )A .10 B.9 C .8D.7(2)(2016·湖南雅礼中学一模)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为__________.(1)B (2)-4 [(1)∵2a +1b =2(2a +b )a +2a +b b =4+2b a +2a b +1=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+2×2b a ×a b =9,当且仅当a =b =13时取等号.又2a +1b ≥m ,∴m ≤9,即m的最大值等于9,故选B.(2)∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n=-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn =-4,当且仅当m =n =-12时,1m +1n 取得最大值-4.]已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8; (2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. [证明] (1)1a +1b +1ab =2⎝ ⎛⎭⎪⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +ba ≥2+2=4,3分 ∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).5分 (2)法一:∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a ,同理1+1b =2+a b , ∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,10分∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9(当且仅当a =b =12时等号成立).12分 法二:⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab ,由(1)知,1a +1b +1ab ≥8,10分故⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab ≥9.12分 [规律方法] 1.“1”的代换是解决问题的关键,代换变形后能使用基本不等式是代换的前提,不能盲目变形.2.利用基本不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用基本不等式时等号能否取到.[变式训练2] 设a ,b 均为正实数,求证:1a 2+1b 2+ab ≥2 2.【导学号:01772210】[证明] 由于a ,b 均为正实数,所以1a 2+1b 2≥21a 2·1b 2=2ab ,3分 当且仅当1a 2=1b 2,即a =b 时等号成立,又因为2ab +ab ≥22ab ·ab =22, 当且仅当2ab =ab 时等号成立, 所以1a 2+1b 2+ab ≥2ab+ab ≥22,8分 当且仅当⎩⎪⎨⎪⎧ 1a 2=1b 2,2ab =ab ,即a =b =42时取等号.12分制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.[解] (1)设所用时间为t =130x (h), y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].2分 所以这次行车总费用y 关于x 的表达式是y =130×18x+2×130360x ,x ∈[]50,100. (或y =2 340x +1318x ,x ∈[]50,100).5分(2)y =130×18x +2×130360x ≥26 10, 当且仅当130×18x =2×130360x ,即x=1810,等号成立.8分故当x=1810千米/时,这次行车的总费用最低,最低费用的值为2610元.12分[规律方法] 1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[变式训练3]某化工企业2016年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).(1)用x表示y;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解](1)由题意得,y=100+0.5x+(2+4+6+ (2x)x,即y=x+100x+1.5(x∈N*).5分(2)由基本不等式得:y=x+100x+1.5≥2x·100x+1.5=21.5,8分当且仅当x=100x,即x=10时取等号.故该企业10年后需要重新更换新的污水处理设备.12分[思想与方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.2.基本不等式的两个变形:(1)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号). (2)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号).[易错与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.“当且仅当a =b 时等号成立”的含义是“a =b ”是等号成立的充要条件,这一点至关重要,忽视它往往会导致解题错误.3.连续使用基本不等式求最值要求每次等号成立的条件一致.课时分层训练(七) 二次函数与幂函数A 组 基础达标(建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( ) 【导学号:01772040】A.12B.1C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3B.13C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m 4,由函数f (x )的增减区间可知m 4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B.m =1或m =2 C .m =2 D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则c a <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( )A .-1B.1C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,∴函数的最大值在区间的端点取得.∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧-a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0,所以f (x )在[2,3]上单调递增,所以⎩⎨⎧ f (2)=1,f (3)=4, 即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________. 【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25, 得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1,由a 2-2a +1≤4,解得-1≤a ≤3,又a ≥2,所以2≤a ≤3.]三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2),∴2=2(m 2+m )-1,即2=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2.4分又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎨⎧ 2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分 10.已知函数f (x )=x 2+(2a -1)x -3, (1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.[解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],对称轴x =-32∈[-2,3],2分 ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分 (2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;8分②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意.综上可知a =-13或-1. 12分B 组 能力提升(建议用时:15分钟)1.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a +b >0,ab <0,则f (a )+f (b )的值( ) 【导学号:01772043】A .恒大于0B.恒小于0 C .等于0 D.无法判断A [∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意,∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数.又∵a ,b ∈R ,且a +b >0,∴a >-b ,又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0,又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2, 故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]3.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间;(2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围.[解] (1)由题意知⎩⎪⎨⎪⎧ -b 2a=-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.2分 所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].6分(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,8分令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).12分。
苏教版四年级数学下册_素数和合数
苏教版四年级数学下册_素数和合数本节课我们主要来学习素数和合数,同学们要了解素数和合数的定义,能够判断哪些是素数,哪些是合数,知道100以内的素数。
写出下面各数的所有因数。
2的因数:1, 2 5的因数:1, 5 ; 3的因数:1, 3;; 1, 2,3, 6 ; 6的因数:1, 2 4, 8 ; 8的因数:9的因数:1 3 9 , , , 2、3、5的因数只有1和它本身2个。
;2、3、5这几个数只有1和它本身两个因数,这样的数叫作素数(也叫作质数)。
写出下面各数的所有因数。
2的因数:1 5的因数:1 2 5 ; 3的因数:1 3;; 6的因数:1 2 3 6 ;1 2 4 8 8的因数:; 9的因数:1 3 9;6、8、9除了1和它本身还有别的因数。
6、8、9这几个数除了1 和它本身还有别的因数,这样的数叫作合数。
这个数因数个数1 1 2 2 3 2 3 4 2 5 6 4 2 7 8 4 3 9 10 4这个数的因数1 1,2 1,3 1,2,4 1,5 1,2,3,6 1,7 1,2,4,8 1,3,9找出1~10各数的所有因数,再把1~10分别填入圈里。
1,2,5,10这个数因数个数1 1 2 2 3 2 3 4 2 5 6 4 2 7 8 4 3 9 10 4这个数的因数1 1,2 1,3 1,2,4 1,5 1,2,3,6 1,7 1,2,4,8 1,3,92 3 5 7找出1~10各数的所有因数,再把1~10分别填入圈里。
素数合数4 6 8 9 10想一想:1是素数吗?是合数吗?1,2,5,101只有因数1。
1既不是质数,也不是合数。
这个数11 12 13 14 15 16 17 18 19 20因数个数26 2 4 4 5 2 6 2 6这个数的因数1,111,2,3,4,6,12 1,13 1,2,7,14 1,3,5,151,2,4,8,16找出11~20各数的所有因数,再把11~20分别填入圈里。
小学四年级下学期数学《素数和合数》PPT课件 公开课获奖课件
在自然数1-20中:
奇数有:1 3 5 7 9 11 13 15 17 19 偶数有: 2 4 6 8 10 12 14 16 18 20
素数有:2 3 5 7 11 13 17 19 合数有:4 6 8 9 10 12 14 15 16 18 20
下面的说法对吗?
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围 。 谈起自己的高考心得,杨蕙心说出了“听话 ”两个字。她认为在高三冲刺阶段一定要跟随老 师的脚步。“老师介绍的都是多年积累的学习方 法,肯定是最有益的。”高三紧张的学习中,她 常做的事情就是告诫自己要坚持,不能因为一次 考试成绩就否定自己。高三的几次模拟考试中, 她的成绩一直稳定在年级前5名左右。
上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分 物理145分 综合27分 总分585分
“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10 :30休息,感觉很轻松地度过了三 年高中学习。”当得知自己的高考 成绩后,格致中学的武亦文遗憾地 说道,“平时模拟考试时,自己总 有一门满分,这次高考却没有出现 ,有些遗憾。”
4 6 8 9 10 12
有一个因数的 1的因数:1
有两个因数的 2的因数:1 2 3的因数:1 3 5的因数:1 5
有两个以上因数的 4的因数:1 2 4 6的因数:1 2 3 6 8的因数:1 2 4 8
苏教版四年级数学下册《质数和合数》课件
苏教版小学数学四年级下册
认识质数和合数
息烽县石硐小学:徐来贵
口算
200×9=
25×4= 45×12= 57+19= 70×60= 90-25=
√
挑战自我
ቤተ መጻሕፍቲ ባይዱ
看谁能用最快的速度记住20以内的质数
赶快试试吧!
2、3、5、7、11、13、17、19
举例说出什么是质数什么是合数。
做一做
下面哪些数是质数,哪些数是合数? 19 21 43 67
判断正误 1.只能被1和它本身整除的数叫做质数。( ) 2.因为12的因数除了1和12以外还有 2,3,4,6,所以 12是合数。( ) √
√
3.最小的质数是1。( ) 4.最小的合数是4。( ) 5.1既不是质数也不是合数。(
× ) √
最小的素数(质数)2 最小的合数是4
判断下面各数,哪些是质数,哪些是合数. 17 22 29 35 37 87
17的因数:1、17 (质数) 22的因数:1、2、11 、22 (合数) 29的因数:1 、29 (质数)
35的因数:1、5、7、35 (合数) 37的因数:1、37 (质数)
87的因数:1 、3 、29 、87 (合数)
找出各数所有因数,再填入圈。 11的因数: 1 11 12的因数: 14的因数: 16的因数: 1 2 3 4 6 12 1 2 7 14 16
13的因数:
15的因数:
1、 13
1 3 5 15
12 4 4 8
苏教版四年下《素数和合数》ppt课件之三
◆偶数除了2之外,都是合数。
◆奇数里既有素数,也有合数。
◆ 1是奇数,但它既不是素数也不 是合数。
◆合数不一定是偶数,但素数除2 以外都是奇数。
判断:对的打“√”,错的打“×”。
1 2 39 53 100 奇数 √ × √ √ × 偶数 × √ × × √ 素数 × √ × √ × 合数 × × √ × √
21 23 25 27 29 31 33 35 37 39 47 49
素数表
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
在这1 些它数本中身,因数只有两个的有(素2,数3(,或5 质)数;)
因数超过两个的有(6,8,9)。 只有两个因数的数,它们的因数有什么特点?
例1 写出下面各数的所有因数。
2的因数: 1,2
3的因数: 1,3
5的因数: 1,5
6的因数: 1,2,3,6
8的因数: 1,2,4,8 9的因数: 1,3,9
15的因数有 1,3,5,15 16的因数有 1,2,4,8,16
17的因数有 1,17
18的因数有 1,2,3,6,9,18
19的因数有 1,19
20的因数有 1,2,4,5,10,20
素数 11,13,17,19
合数 12,14,15, 16,18,20
想想做做
从2至50的数中,先划掉2的倍数,再依 次划掉3、5、7的倍数(但2、3、5、7本身不 划掉)。
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
《素数和合数》PPT课件 省一等奖课件 (2)
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是692 。”吴老师说,何旋考出好成绩的秘诀 是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围 。
谈起自己的高考心得,杨蕙心说出了“听话 ”两个字。她认为在高三冲刺阶段一定要跟随老 师的脚步。“老师介绍的都是多年积累的学习方 法,肯定是最有益的。”高三紧张的学习中,她 常做的事情就是告诫自己要坚持,不能因为一次 考试成绩就否定自己。高三的几次模拟考试中, 她的成绩一直稳定在年级前5名左右。
曹杨二中高三(14)班学生
班级职务:学习委员
高考志愿:北京 大学中文系
高考成绩:语文121分数学146分
英语146分历史134分
综合28分总分
575分
(另有附加分10
分)
上海高考文科状元--常方舟
“我对竞赛题一样发怵”
总结自己的成功经验,常方舟认为学习的高 效率是最重要因素,“高中三年,我每天晚 上都是10:30休息,这个生活习惯雷打不动 。早晨总是6:15起床,以保证八小时左右的 睡眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会 花太多时间做功课,常常是做完老师布置的 作业就算完。
《素数和合数》PPT课件 公开课获奖课件
曹杨二中高三(14)班学生 班级职务:学习委员 高考志愿:北京 大学中文系 高考成绩:语文121分数学146分 英语146分历史134分 综合28分总分 575分 (另有附加分10 分)
上海高考文科状元--常方舟
“我对竞赛题一样发怵” 总结自己的成功经验,常方舟认为学习的高 效率是最重要因素,“高中三年,我每天晚 上都是10:30休息,这个生活习惯雷打不动 。早晨总是6:15起床,以保证八小时左右的 睡眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会 花太多时间做功课,常常是做完老师布置的 作业就算完。
15 、
28 、77
、
111是合数。
做一做 下面哪些数是素数,哪些数 是合数。
4
7 37 49 71 87 91
100以内的素数表:
2 3 5 7 11 13 17 19 23
29 31 37 41 43 47 53 59 61
67 71 73 79 83 89 97
在自然数1-20中:
奇数有:1 3 5 7 9 11 13 15 17 19 偶数有: 2 4 6 8 10 12 14 16 18 20
苏教版四年级数学下册
素数和合数
本节课我们主要来学习素数和合数,同学 们要理解并掌握素数和合数的概念,能够 判断哪些数是素数,哪些数是合数,要熟 练的掌握100以内的素数,能够解决相关 的实际问题。
1
2
3
4
5
6
7
8
9
10
11
12
1 的因数:1 2的因数:1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( √)
请你列出充足的理由,说明下列 说法正确与否。
(4)两个质数的积一定是合数. ( )
(5)两个质数的和一定是合数. ( )
×
课外延伸:歌德巴赫猜想 1742年6月7日,一位出生在德国,后 来在俄国工作和定居的数学家哥德 巴赫(1690-1764)由莫斯科写信给 当时在柏林科学院工作的著名瑞士 数学家欧拉
1:
只有一个因数
全 体 只有两个因数 质数 : 自 然 数 合数: 至少有三个因数
一个数,如果只有1和它本身两 个因数,这样的数叫做质数 (或素数)。像2、3、5、7、 11等都是质数。
一个数,如果除了1和它本身还 有别的因数,这样的数叫做合 数。如4、6、8、9、10、12都 是合数。
质数和合数
3.既是奇数又是合数圈
9,15,17,19,21,25, 27,33,35,39,45 ……
4.既是偶数又是质数圈
2
5.不是质数也不是合数圈
1
请你列出充足的理由,说明下列 说法是否正确。 (1)所有的偶数都是合数。( )
×
(2)自然数中除了质数就是合数。 ( )
×
(3)一个合数的约数至少有3个。
1 只有一个因数的是:
全 体 自 然 数
2的因数:1、2 3的因数:1、3 只有两个因数的是: 5的因数:1、5 7的因数:1、7 11的因数:1、11 1、2、4 4的因数: 6的因数: 1、2、3、6 8的因数: 1、2、4、8 至少有三个因数: 9的因数: 1、3、9 1、2、5、1 10的因数: 12的因数: 1、2、3、4、
(2)四(1)班有45人,四年级共362 人,设有1个实验班。
看谁反应快 1.质数圈
2, 3,5, 7,11,
13,17,19, 31, 23, 29, 37, 41,43, 47...
2.合数圈
4,6,8,9,10,12,14, 15,16,18,20,21,22, 24,25,26,27,28,30, 32,33,34,35,36,38, 39,40,42,44,45……
苏教版四年级数学下册
复习:想想说说
在《倍数和因数》这个内容里, 我们研究的是什么数?偶数和奇 数分别是怎样的数?是按什么来 分的?
我们已经数: 1、2 3的因数: 1、3 4的因数: 1、2、4 5的因数: 1、5 6的因数: 1、2、3、6 7的因数: 1、7 8的因数: 1、2、4、8 9的因数: 1、3、9 1、2、5、10 10的因数: 1、11 11的因数: 12的因数: 1、2、3、4、6、12
随便取某一个奇数,比如77,他可以 写成三个素数之和: 77=53+17+7 再任取一个奇数461,那么 461=449+7+5 也是三个素数之和.461还可以写成 257+199+5 仍然是三个素数之和. 这样,我就发现: 任何大于5的奇数都是三个素数之和.
今天一般把这个猜想归纳成: (1)大于6的偶数都可以表达成 两个奇素数之和 (2)大于9的奇数都可以表达成 三个奇素数之和。
• 一个自然数,只有1和它本身两个因 数,这样的数叫素数(或质数)。 • 一个自然数,只有1和它本身还有别 的因数,这样的数叫合数。
自然数按照因数的个数来分,可以分为
1
质数 合数 自然数 自然数
判断下面的数字是质数还是合数
(1)全年12个月,大月有31天, 小月是30天,平年二月是28天, 闰年二月是29天。