高中数学必修一人教版教师用书配套课件第二章 2.1.1 第1课时精选ppt课件
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.2.1
合作探究 课堂互动
由方程确定椭圆的性质
•
已知椭圆的方程为4x2+9y2=36.
• (1)求椭圆的顶点坐标、焦点坐标、长轴长、短轴长以及离心率;
• (2)结合椭圆的对称性,运用描点法画出这个椭圆.
[思路点拨] (1) 化为标准方程 → 求出a,b,c → 焦点位置 → 得其几何性质
(2) 将方程变形 → 列表 → 描点 → 得出图形
__ay_22+__bx_22=__1_(a_>_b_>_0_) ____
图形
范围 ___-__a_≤__x_≤__a_,__-__b_≤__y_≤__b____ -__b_≤__x≤__b_,__-_a_≤__y≤__a_
顶点
___(_±__a_,0_)_,__(0_,__±__b_)___
____(_0_,__±__a_),__(_±__b_,_0_) __
焦点的位置,这样便于直观地写出a,b的数值,进而求出c,求出椭圆的长轴和短
轴的长、离心率、焦点和顶点的坐标等几何性质.
• (2)本题在画图时,利用了椭圆的对称性,利用图形的几何性质,可以简化画 图过程,保证图形的准确性.
1.已知椭圆 x2+(m+3)y2=m(m>0)的离心率 e= 23,求 m
的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.
(2)将方程变形为 y=±23 9-x2(-3≤x≤3). 由 y=23 9-x2,在 0≤x≤3 的范围内计算出一些点的坐标(x, y),列表如下:
x0123 y 2 1.9 1.5 0 先用描点法画出椭圆在第一象限内的部分图象,再利用椭圆 的对称性画出整个椭圆.
•
(1)求椭圆的性质时,应把椭圆化为标准方程,注意分清楚
高中数学(人教版A版必修一)配套课件:第二章 基本初等函数(Ⅰ) 第二章 2.1.1(二)
第二章 2.1 指数函数2.1.1 指数与指数幂的运算(二)学习目标1.学会根式与分数指数幂之间的相互转化;2.掌握用有理数指数幂的运算性质化简求值;3.了解无理数指数幂的意义.问题导学题型探究达标检测问题导学 新知探究 点点落实知识点一 分数指数幂思考 根据n次方根的定义和数的运算,得出以下式子,你能从中总结出怎样的规律?答案 当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式.一般地,分数指数幂定义:(1)规定正数的正分数指数幂的意义是:= (a>0,m,n∈N*,且n>1);(2)规定正数的负分数指数幂的意义是:= (a>0,m,n∈N*,且n>1);0没有意义(3)0的正分数指数幂等于 ,0的负分数指数幂 .知识点二 有理数指数幂的运算性质思考 规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质对于有理数指数幂是否还适用?答案 由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的.整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)a r a s=a r+s(a>0,r,s∈Q);(2)(a r)s=a rs(a>0,r,s∈Q);(3)(ab)r=a r b r(a>0,b>0,r∈Q).知识点三 无理数指数幂实数一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的 .有理数指数幂的运算性质同样适用于无理数指数幂.题型探究 重点难点 个个击破类型一 根式与分数指数幂之间的相互转化例1 用分数指数幂形式表示下列各式(式中a>0,x>0,y>0):跟踪训练1 把下列根式化成分数指数幂:解 解 解 类型二 用指数幂运算公式化简求值例2 计算下列各式(式中字母都是正数):解 解 =4ab0=4a;原式解 解 原式=解 类型三 运用指数幂运算公式解方程例3 已知a>0,b>0,且a b=b a,b=9a,求a的值.解 方法一 ∵a>0,b>0,又a b=b a,方法二 因为a b=b a,b=9a,所以a9a=(9a)a,达标检测 451231.化简 的值为( )BA.2B.4C.6D.8DCDB5.计算 的结果是( )A.32B.16C.64D.128规律与方法1.指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.2.根据一般先转化成分数指数幂,然后再利用有理数指数幂的运算性质进行运算.在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解.。
高中数学课件:第二章 2.1 数列的概念与简单表示法 第一课时 数列的概念与通项公式
返回
返回
[研一题] [例 1] 项公式: 4 1 4 2 (1)5,2,11,7,…; 1 9 25 (2)2,2,2,8, 2 ,…; (3)7,77,777,…; 根据数列的前几项,写出下列各数列的一个通
返回
(4)0,3,8,15,24,…; 1 3 7 15 31 (5)2,4,8,16,32,…; 2 10 17 26 37 (6)3,-1, 7 ,- 9 , 11,-13,….
+
返回
[悟一法] 1.根据数列的前几项写通项公式,体现了由特殊到一 般的认识事物的规律.解决这类问题一定要注意观察项与序 号的关系和相邻项间的关系.具体地可参考以下几个思路
(1)统一项的结构,如都化成分数、根式等.
返回
(2)分析这一结构中变化的部分与不变的部分,探索变 化部分的变化规律与对应序号间的函数关系式,如例1.(1) 中可把分子、分母分别处理. (3)对于符号交替出现的情况,可观察其绝对值,再以 (-1)n(n∈N*)处理符号,如例1.(6).
返回
[巧思] 求出数列{an}的通项公式是解决本题的关键.由
a1·2·3·…·an=n2可得a1·2·3·…·an-1=(n-1)2,故可求an. a a a a
返回
[妙解]
∵a1·2·3· an=n2(n∈N*),① a a …·
∴当 n≥2 时,a1·2·3· an-1=(n-1)2.② a a …· ① n2 由 ,得 an= 2(n≥2) ② n-1 n2 9 25 61 (1)∵an= (n≥2),∴a3+a5=4+16=16. n-12
返回
(4)数列 2,4,6,8,…的通项公式是 an=2n; (5)数列 1,2,4,8,…的通项公式是 an=2n 1; (6)数列 1,4,9,16,…的通项公式是 an=n2; 1 1 1 1 1 (7)数列1,2,3,4,…的通项公式是 an=n.
高中数学新人教A版必修第一册 2.1.1 不等关系与比较大小 课件(39张)
所以 a+ 1+ c+ 1a+ c+ 1+ 1, 即当变量a的值增加1会使S的值增加最大.
b de b d e
答案:a
4.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全 票,其余人可享受折优惠.〞乙车队说:“你们属团体票,按原价的8折优惠.〞这 两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪 家更优惠.
b
综上可知,aabb≥abba(当且仅当a=b时取等号).
【补偿训练】
1.实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,那么a,b,c的大小关系
是 ()
A.c≥b>a
>c≥b
>b>a
>c>b
2.假设实数a≠1,比较a+2与 3
的大小.
1- a
课堂素养达标
1.假设m=x2-1,n=2(x+1)2-4(x+1)+1,那么m与n的大小关系是 ( )
【类题通法】用不等式(组)表示不等关系的三个步骤 (1)分析题中有哪些未知量. (2)选择其中起关键作用的未知量设为x或y,再用x或y来表示其他未知量. (3)根据题目中的不等关系列出不等式(组).
【知识延拓】利用不等式(组)表示不等关系的一个关键点及一个注意点 关键点:准确将题目中的文字语言转化为数学符号语言. 注意点:要注意“不超过〞“至少〞“低于〞表示的不等关系,同时还应考虑 变量的实际意义.
本课结束
Hale Waihona Puke 【定向训练】 1.假设m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,那么m,n,p,q的大小关系是_____. 【解析】把p,q看成变量, 那么m<p<n,m<q<n,即得m<p<q<n. 答案:m<p<q<n
高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1
与指数函数有关的定义域、值域问题
求下列函数的定义域与值域:
(1)y=
;(2)y=23-|x|.
思路点拨:
指数函数y=axa>0, 且a≠1的定义域是R
―→
函数y=afxa>0,且a≠1 与fx的定义域相同
―→
值域
解:(1)由xx+ -11≥0,得 x≤-1 或 x>1.
已知指数函数f(x)的图象过点(3,8),则f(6)=________. 解析:设f(x)=ax(a>0,且a≠1). ∵函数f(x)的图象过点(3,8). ∴8=a3,∴a=2. ∴f(x)=2x. ∴f(6)=26=64. 答案:64
2.指数函数的图象和性质 a>1
图象图象
如图是指数函数:①y=ax,②y=bx,③y=cx,④ y=dx的图象,则a,b,c,d与1的大小关系是( )
A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
思路点拨:
解析:方法一:在①②中底数大于零且小于 1,在 y 轴右 边,底数越小,图象向下越靠近 x 轴,故有 b<a,在③④中底 数大于 1,在 y 轴右边,底数越大,图象向上越靠近 y 轴,故 有 d<c.故选 B.
1.指数函数的图象一定在x轴的上方.( ) 2.当a>1时,对于任意x∈R总有ax>1.( ) 3.函数f(x)=2-x在R上是增函数.( ) 答案:1.√ 2.× 3.×
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa>2-03且a+a≠3=1,1, 解得aa= >10或 且2a,≠1. ∴a=2.
人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .
②
[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.
2016-2017学年人教A版高一数学必修一书本讲解课件:第二章 2.1 2.1.2 第1课时 指数
3.解下列不等式: (1)2x>22-x; (2)32x-1>(13)x-2. 解析:(1)原不等式等价于 x>2-x,即 2x>2,∴x>1, ∴原不等式的解集为(1,+∞). (2)原不等式可化为:32x-1>32-x. ∵y=3x 单调递增,∴2x-1>2-x⇔x>1. ∴原不等式解集为(1,+∞).
探究二 利用指数函数单调性比较大小 [典例 2] 比较下列各组数的大小: (1)1.52.5 和 1.53.2; (2)0.6-1.2 和 0.6-1.5; (3)1.50.3 和 0.81.2.
第十三页,编辑于星期五:十五点 三十六分。
[解析] (1)函数 y=1.5x 在 R 上是增函数, ∵2.5<3.2,∴1.52.5<1.53.2. (2)函数 y=0.6x 在 R 上是减函数, ∵-1.2>-1.5,∴0.6-1.2<0.6-1.5. (3)由指数函数的性质知 1.50.3>1.50=1, 而 0.81.2<0.80=1, ∴1.50.3>0.81.2.
是 R 上的 增函数
是 R 上的 减函数
第五页,编辑于星期五:十五点 三十六分。
a>1
0<a<1
对称关系
函数
y=ax
与函数
y=
1
a
x 的图象关于 y 轴 对称
底数 a 当 a>1 时,a 的值越大,图象越靠近 y 轴,递增速 性质 对函数 度越快.
图象的 当 0<a<1 时,a 的值越小,图象越靠近 y 轴,递减
值域为(0,1)∪(1,+∞).
(2)令 t=-|x|,可知 x∈R,∴|x|≥0,t≤0.
∴y=23t∈[1,+∞), 故原函数的定义域为 R,值域为[1,+∞).
高中数学必修一课件全册
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?2?源自3?5?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
因此,函数就是表达了两个变量之间变化关系的一个表达式。其准确定义如
下:
设A.B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任 意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集 合A到集合B的一个函数(function),记作y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数的值域。而对应的 关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以4.9”
第一章: 集合与函数
第二节: 函数
函数及其表示
一、函数的概念
小明从出生开始,每年过生日的时候都会测量一下自己的身高,其测量数据 如下:
年龄(岁) 身高(cm)
1 2 3 4 5 6 7 8 9 10 30 40 50 60 70 80 90 100 110 120
从以上两个例子,我们可以把年龄当做一个集合A,身高当做一个集合B;把 时间当做一个集合C,把下降高度当做一个集D。那么对于集合A、C中的每一个 元素,集合B.D中都有唯一的一个元素与其相对应。比如,对于A的每一个元素 “乘以10再加20”,就得到了集合B中的元素。对于集合C中的元素“平方后乘以 4.9”就得到集合D中的元素。
高中必修第一册《2.1 等式性质与不等式性质》名师优质课ppt课件
栏目导航
不等关系的实际应用 【例3】 某单位组织职工去某地参观学习需包车前往.甲车队说: “如领队买全票一张,其余人可享受 7.5 折优惠”.乙车队说:“你们 属团体票,按原价的8折优惠”.这两车队的原价、车型都是一样的,试 根据单位去的人数,比较两车队的收费哪家更优惠.
栏目导航
[解] 设该单位职工有n人(n∈N*),全票价为x元,坐甲车需花y1元, 坐乙车需花y2元,
栏目导航
1.用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,要求菜园的面积不小于216 m2,靠墙的一边长为x m.试用不等式表 示其中的不等关系.
栏目导航
[解] 由于矩形菜园靠墙的一边长为x m,而墙长为18 m,所以
0<x≤18,
这时菜园的另一条边长为302-x=15-2x(m).
栏目导航
C [限重就是不超过,可以直接 1.大桥头竖立的“限重 40 吨” 建立不等式 T≤40.] 的警示牌,是指示司机要安全通过该 桥,应使车货总重量 T 不超过 40 吨, 用不等式表示为( ) A.T<40 B.T>40 C.T≤40 D.T≥40
栏目导航
2.某高速公路要求行驶的车辆
A [v 的最大值为 120 km/h,
的速度 v 的最大值为 120 km/h,同一 即 v≤120 km/h,车间距 d 不得小于
车道上的车间距 d 不得小于 10 m,用 10 m,即 d≥10 m,故选 A.]
不等式表示为( )
A.v≤120 km/h 且 d≥10 m
B.v≤120 km/h 或 d≥10 m
C.v≤120 km/h
栏目导航
当堂达标 固双基
栏目导航
1.思考辨析 (1)不等式x≥2的含义是指x不小于2.( ) (2)若a<b或a=b之中有一个正确,则a≤b正确.( ) (3)若a>b,则ac>bc一定成立.( )
人教A版数学必修一2.1.1第1课时.pptx
【解析】1.∵(±4)2=16,∴16的平方根为±4.-27的5次方根为
5 27.
答案:±4
5 27
2.∵x7=6,∴x= 7 6.
答案:7 6
3.要使 4 x 有 2意义,则需x-2≥0,即x≥2.因此实数x的取值
范围是[2,+∞).
答案:[2,+∞)
【拓展提升】求n次方根要关注的问题 (1)任意实数的奇次方根只有一个,正数的偶次方根有两个且 互为相反数. (2)( n )an是实数a的n次方根的n次幂,其中实数a的取值由n的 奇偶性决定.
探究提示:
1. n a=n a(n为奇数),
n
an
a
a, a a,
0,
a0
n为偶数
.
2.(1)化简 的a 关键点是将a配凑成完全平方数,去掉根号.
(2)对于分母中含有根号的式子可将此式的分子、分母分别乘
以分母的有理化因式,分母有理化,从而化简.
【解析】1.(1)( )52=5.(2) 答案:(1)5 (2)-6
5 2 5 2 2 5.
【拓展提升】根式化简或求值的两个注意点 (1)解决根式的化简问题,首先要分清根式为奇次根式还是偶 次根式,然后运用根式的性质进行化简. (2)注意正确区分 n a与n ( )nn.a
类型 三 带有限制条件的根式运算
【典型例题】
1.若x<0,则x+|x|+ x2 =______.
答案:5 25
5.若x<5,则 x2 10x 25的值是______. 【解析】∵x<5,∴ x2 10=x|x2-55 |=5-x. 答案:5-x
6.求下列各式的值:
(1)( 3 a )3.(2) n 2 n (n>1,且n∈N*). (3) 2n x y2n (n>1,且n∈N*).
高中数学第二章 2.1.1指数与指数幂的运算(一)课件
研一研·问题探究、课堂更高效
2.1.1(一)
问题 2 类比 a 的平方根及立方根的定义,如何定义 a
的 n 次方根? 答 n 次方根:如果 xn=a,那么 x 叫做 a 的 n 次方根,
本 课
其中 n>1,且 n∈N*.
栏 目
小结 当 n 为偶数时,正数 a 的 n 次方根中,正数用n a
开
关
表示,如果是负数,用-n a表示.
2.1.1(一) 本 课 栏 目 开 关
2.1.1(一)
2.1.1 指数与指数幂的运算(一)
【读一读学习要求,目标更明确】
本 课
1.理解 n 次方根与根式的概念;2.正确运用根式运算性
栏 目
质化简、求值;3.了解分类讨论思想在解题中的应用.
开
关 【看一看学法指导,学习更灵活】
通过类比、归纳,感知根式概念的形成过程,进一步认清
本 课 栏
12,14,18,….那么,1265 070300,12150703000,121500730000的意义是
目
开
什么呢?这正是我们将要学习的知识.下面,我们一起
关
将指数的取值范围从整数推广到实数.为此,需要先学
习根式的知识.
研一研·问题探究、课堂更高效
2.1.1(一)
问题探究一 根式
问题 1 什么是平方根?什么是立方根?一个数的平方根
解 原式= x-12- x+32=|x-1|-|x+3|
本
课 栏
∵-3<x<3,∴当-3<x<1 时,
目 开
原式=-(x-1)-(x+3)=-2x-2;
关 当 1≤x<3 时,
原式=(x-1)-(x+3)=-4,
新人教版高中数学必修第一册第二章一元二次函数方程和不等式全套导学案PPT课件及配套WORD讲义
由 a>b>0,有 ab>0⇒aab>abb⇒1b>1a,故 B 为假命题;
a<b<0⇒-a>-b>0⇒-1b>-1a>0,
a<b<0⇒-a>-b>0
⇒ab>ba,故 C 为假命题;
a>b⇒b-a<0,
a1>1b⇒a1-b1>0⇒ba-ba>0⇒ab<0.
∵a>b,∴a>0,b<0,故 D 为真命题. 解析
答案
2
PART TWO
核心素养形成
题型一 作差法比较大小
例 1 比较下列各组中两个代数式的大小:
(1)x2+3 与 3x;
(2)设 x,y,z∈R,比较 5x2+y2+z2 与 2xy+4x+2z-2 的大小.
[解] (1)∵(x2+3)-3x=x2-3x+3=x-322+34≥34>0,∴x2+3>3x. (2)∵5x2+y2+z2-(2xy+4x+2z-2)=4x2-4x+1+x2-2xy+y2+z2-
第二章 一元二次函数、方程 和不等式
2.1 等式性质与不等式性质
(教师独具内容) 课程标准:1.梳理等式的性质,理解不等式的概念,掌握不等式的性质, 能运用不等式的性质比较大小.2.能运用不等式的性质证明不等式和解决实 际问题. 教学重点:1.不等式的性质.2.不等式性质的应用. 教学难点:用不等式的性质证明不等式. 核心素养:1.借助不等式性质的判断与证明,培养逻辑推理素养.2.通过 大小比较及利用不等式求范围,提升数学运算素养.
∴0<a-b<6,
故 2a+3b 的取值范围为-18<2a+3b<-5,a-b 的取值范围为 0<a-
新版高一数学必修第一册第二章全部课件
(1)作差:对要比较大小的两个数(或式子)作差;
(2)变形:对差进行变形(因式分解、通分、配方等);
(3)判断差的符号:结合变形的结果及题设条件判断差的符号;
(4)作出结论.这种比较大小的方法通常称为作差比较法.其思
维过程:作差→变形→判断符号→结论,其中变形是判断符号的
别相乘,这就是说,两个或更多个两边都是正数的同向不等式两边分别相
乘,所得不等式与原不等式同向.
2.a>b>0,c<d<0⇒ac<bd;
a<b<0,c<d<0⇒ac>bd.
D.x+y≤120
[解析]
由题意可得x+y≥120,故选C.
问题与探究
实数的大小
(1)数轴上的任意两点中,右边点对应的实数比左边点
大
对应的实数______.
(2)对于任意两个实数a和b,
如果a-b是正数,那么a______b;
>
如果a-b是负数,那么a______b;
<
如果a-b等于零,那么a______b.
-35-
归纳总结
1 .此性质可以推广到任意有限个同向不等式的两边分别相加,即
两个或两个以上的同向不等式两边分别相加,所得不等式与原不等
式同向.
2.两个同向不等式只能两边同时分别相加,而不能两边同时分别
相减.
3.该性质不能逆推,如a+c>b+d
a>b,c>d.
-36-
新知探究
(6)乘法单调性
文字语言
变形
作用
不等式的两边都加上同一个实数,所得的不等式与原
不等式同向.
高中数学第二章基本初等函数I2.1.1.1根式课件新人教版必修1
n 的奇偶性
a 的 n 次方根的 表示符号
a 的取值范围
n 为奇数
பைடு நூலகம்
n a
a∈R
n 为偶数
n
±a
[0,+∞)
(3)根式 n
式子__a__叫做根式,这里 n 叫做_根__指__数__,a 叫做被开方数.
2.根式的性质
n
(1) 0=_0_ (n∈N*,且 n>1);
n
(2)( a)n=_a_ (n∈N*,且 n>1);
3.掌握两个公式:(1)(n a)n=a,n 为奇数;(2)n an=a,n 为偶
数,n an=|a|=a-a
(a≥0), (a<0).
1.若 m 是实数,则下列式子中可能没有意义的是( )
A.4 m2
B.3 m
C.6 m
5
D.
-m
解析 C 中,6 m隐含 m≥0;当 m<0 时,没有意义.
编后语
常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
一、释疑难
对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已 经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。
(2)设 m<0,则( -m)2=________.
解析 (1)依题意,x 是 3 的 4 次方根,∴x=±4 3.
(2)∵m<0,∴-m>0,∴( -m)2=-m.
高中数学选择性必修一(人教版)《2.1.1倾斜角与斜率》课件
3.斜率与倾斜角的对应关系
二、应用性——强调学以致用 2.利用斜率公式证明不等式:ba++mm>ab(0<a<b 且 m>0).
[析题建模] 分析所给式子结构特点 ―联―想→ 斜率坐标公式 ―构―造―法―分―析→ 不等式表达的几何意义 ―→ 得证
证明:∵0<a<b,∴点 P(b,a)在第一象限且位于直线 y=x 的 下方.又 m>0,∴-m<0,∴点 M(-m,-m)在第三象限且 必在直线 y=x 上.∴直线 MP 的倾斜角大于 OP(O 为坐标原 点)的倾斜角,即 kMP>kOP,又 kMP=ba+ +mm,kOP=ab,∴ab+ +mm>ab.
为锐角,则 m 的取值范围是
()
A.(-∞,1)
B.(-1,+∞)
C.(-1,1)
D.(-∞,-1)∪(1,+∞)
解析:∵直线 l 的倾斜角为锐角, ∴斜率 k=m12--21>0,∴-1<m<1. 答案:C
2.[求参数值]已知三点 A(a,2),B(3,7),C(-2,-9a)在同一条 直线上,则实数 a 的值为________.
[方法技巧] 求直线斜率的两种类型
一种是已知倾斜角求直线的斜率,注意倾斜角为 90°的情 况;另一种是已知两点的坐标求直线的斜率,注意斜率不存在 的情况.
[对点练清] 1.设 A(m,-m+3),B(2,m-1),C(-1,4),直线 AC 的斜率
高中数学 2.1.2.1指数函数的定义与简单性质课件 新人教A版必修1
1
32
[走出误区] 易错点⊳忽略分类讨论致求指数型函数值域出错 [典例] [2013·赤壁高一检测]若函数f(x)=ax-1(a>0且a≠1)的定义域和值域都是[0,2],求实数a的值.
a0-1=0, [错解档案] 由题意可知a2-1=2, 解得a= 3.
[误区警示] 虽然结果正确,但解题过程缺少步骤,没有分类讨论的意识.实际上在不知底数a的取 值的情况下,要对a的取值分a>1和0<a<1两种情况讨论.
由指数函数的性质知,y=(13) x-2≤(13)0=1, 且y>0,故此函数的值域为(0,1].
1
31
[规律小结] 1.指数函数的定义 理解指数函数的定义,需注意的几个问题:
(1)因为a>0,x是任意一个实数时,ax是一个确定的实数,所以函数的定义域为实数集R;且ax>0,所 以函数的值域是(0,+∞).
1.底数a与1的大小关系决定了指数函数图象的“升降”;当a>1时,指数函数的图象“上升”;当 0<a<1时,指数函数的图象“下降”.
2.底数的大小决定了图象相对位置的高低:不论是a>1,还是0<a<1,在第一象限内底数越大,函数 图象越靠近y轴.
当a>b>1时, (1)若x>0,则ax>bx>1; (2)若x<0,则1>bx>ax>0. 当1>a>b>0时, (1)若x>0,则1>ax>bx>0; (2)若x<0,则bx>ax>1.
1
16
【跟踪训练1】 函数f(x)=(a2-3a+3)ax是指数函数,则有( )
A.a=1或a=2