训练10磁场对电流和运动电荷的作用
磁场对电流的作用
磁场对电流的作用
磁场对电流的作用如下:
1.通电导线在磁场中要受到磁力的作用。
是由电能转化为机械能。
应用:电动机。
2.通电导体在磁场中受力方向:跟电流方向和磁感线方向有关。
3.电动机原理:是利用通电线圈在磁场里受力转动的原理制成的。
结构:定子和转子(线圈、磁极、换向器)。
它将电能转化为机械能。
4.换向器作用:当线圈刚转过平衡位置时,换向器自动改变线圈中的电流方向,从而改变线圈的受力方向,使线圈连续转动(实现交流电和直流电之间的互换)。
磁场物理概念是指传递实物间磁力作用的场。
磁场是由运动着的微小粒子构成的,在现有条件下看不见、摸不着。
磁场具有粒子的辐射特性。
磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的,所以两磁体不用在物理层面接触就能发生作用。
由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是相对于观测点运动的电荷的运动的电场的强度与速度。
2014《步步高》物理大一轮复习讲义 第08章 单元小结练 磁场对电流或运动电荷作用的综合训练
单元小结练磁场对电流或运动电荷作用的综合训练(限时:45分钟)一、单项选择题1.关于电场力与洛伦兹力,以下说法正确的是() A.电荷只要处在电场中,就会受到电场力,而电荷静止在磁场中,也可能受到洛伦兹力B.电场力对在电场中的电荷一定会做功,而洛伦兹力对在磁场中的电荷却不会做功C.电场力与洛伦兹力一样,受力方向都在电场线和磁感线上D.只有运动的电荷在磁场中才可能会受到洛伦兹力的作用答案 D解析静止在磁场中的电荷不可能受到洛伦兹力,A错;尽管电场力对电荷可以做功,但如果电荷在电场中不动或沿等势面移动,电场力做功为零,B错;洛伦兹力的方向与磁感线垂直,与运动方向垂直,C错.只有D是正确的.2.在磁感应强度为B0、方向竖直向上的匀强磁场中,水平放置一根长通电直导线,电流的方向垂直于纸面向里.如图1所示,A、B、C、D是以直导线为圆心的同一圆周上的四点,在这四点中()图1A.B、D两点的磁感应强度大小相等B.A、B两点的磁感应强度大小相等C.C点的磁感应强度的值最大D.B点的磁感应强度的值最大答案 A解析由安培定则可判断通电直导线在C点的磁感应强度方向与B0的方向相反,B、D 两点的磁感应强度方向与B0垂直,故B、D两点磁感应强度大小相等,A点的磁感应强度方向与B 0相同,由磁场的叠加知A 点的合磁感应强度最大.故只有A 项正确. 3. 如图2所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动,以下说法正确的是( )图2A .只要对着圆心入射,出射后均可垂直打在MN 上B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C .对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足v =qBRm ,沿不同方向入射的粒子出射后均可垂直打在MN 上答案 D解析 当v ⊥B 时,粒子所受洛伦兹力充当向心力,做半径和周期分别为R =m v qB ,T =2πmqB 的匀速圆周运动;只要速度满足v =qBRm ,沿不同方向入射的粒子出射后均可垂直打在MN 上,选项D 正确.4. 如图3所示,在竖直绝缘的平台上,一个带正电的小球以水平速度v 0抛出,落在地面上的A 点,若加一垂直纸面向里的匀强磁场,则小球的落点( )图3A .仍在A 点B .在A 点左侧C .在A 点右侧D .无法确定 答案 C解析 加上磁场后,洛伦兹力虽不做功,但可以改变小球的运动状态(改变速度的方向),小球做曲线运动,在运动中任一位置受力如图所示,小球受到了斜向上的洛伦兹力的作用,小球在竖直方向的加速度a y =mg -q v B cos θm <g ,故小球平抛的时间将增加,由x =v 0t 知,落点应在A 点的右侧.5. 如图4所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直于纸面向里.P 为屏上的一个小孔.PC 与MN 垂直.一群质量为m 、带电荷量为-q 的粒子(不计重力),以相同的速率v 从P 处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内.则在屏MN 上被粒子打中的区域的长度为( )图4A.2m v qBB.2m v cos θqBC.2m v (1-sin θ)qBD.2m v (1-cos θ)qB答案 D解析 屏MN 上被粒子击中的区域离P 点最远的距离x 1=2r =2m vqB ,屏MN 上被粒子击中的区域离P 点最近的距离x 2=2r cos θ=2m v cos θqB ,故在屏MN 上被粒子打中的区域的长度为x 1-x 2=2m v (1-cos θ)qB,D 正确.6. 如图5所示,长为L 的通电直导体棒放在光滑水平绝缘轨道上,劲度系数为k 的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B 的匀强磁场中,弹簧伸长x ,棒处于静止状态.则( )图5A .导体棒中的电流方向从b 流向aB .导体棒中的电流大小为kxBLC .若只将磁场方向缓慢顺时针转过一小角度,x 变大D .若只将磁场方向缓慢逆时针转过一小角度,x 变大答案 B解析由左手定则可知,导体棒中的电流方向从a流向b,选项A错误;由BIL=kx可得导体棒中的电流大小为I=kxBL,选项B正确;若只将磁场方向缓慢顺时针转过一小角度或逆时针转过一小角度,x都变小,选项C、D错误.二、多项选择题7.如图6所示,一个半径为R的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B大小相等,方向均与环面轴线方向成θ角(环面轴线为竖直方向).若导电圆环上载有如图所示的恒定电流I,则下列说法正确的是()图6A.导电圆环有收缩的趋势B.导电圆环所受安培力方向竖直向上C.导电圆环所受安培力的大小为2BIRD.导电圆环所受安培力的大小为2πBIR sin θ答案ABD解析若导线圆环上载有如图所示的恒定电流I,由左手定则可得导线圆环上各小段所受安培力斜向内,导电圆环有收缩的趋势,导电圆环所受安培力方向竖直向上,导电圆环所受安培力的大小为2πBIR sin θ,选项A、B、D正确.8. 如图7所示,在匀强磁场中有1和2两个质子在同一平面内沿逆时针方向做匀速圆周运动,轨道半径r1>r2并相切于P点,设T1、T2,v1、v2,a1、a2,t1、t2,分别表示1、2两个质子的周期,线速度,向心加速度以及各自从经过P点算起到第一次通过图中虚线MN所经历的时间,则()图7A.T1=T2B.v1=v2C.a1>a2D.t1<t2答案ACD解析对于质子,其qm相同,又T=2πmqB,在同一匀强磁场中,则T1=T2,选项A正确.又r=m vqB,且r1>r2则v1>v2.B错误.由a=v2r,T=2πrv,得a=2πTv,则a1>a2,C正确.又两质子的周期相同,由题图知质子1从经过P点算起到第一次通过图中虚线MN所转过的圆心角比质子2小,由t=θ360°T知,t1<t2,D正确.三、非选择题9. 在倾角θ=30°的斜面上,固定一金属框,宽l=0.25 m,接入电动势E=12 V、内阻不计的电池.垂直框面放置一根质量m=0.2 kg的金属棒ab,它与框架间的动摩擦因数μ=66,整个装置放在磁感应强度B=0.8 T、垂直框面向上的匀强磁场中,如图8所示.当调节滑动变阻器R的阻值在什么范围内时,可使金属棒静止在框架上?(框架与金属棒的电阻不计,g取10 m/s2)图8答案 1.4 Ω≤R≤8.0 Ω解析金属棒受到四个力作用:重力mg、垂直框面向上的支持力F N、沿框面向上的安培力F安及沿框面的静摩擦力F f.金属棒静止在框架上时,静摩擦力F f的方向可能沿框面向上,也可能沿框面向下,需分两种情况考虑:(1)当滑动变阻器R取值较大时,I较小,安培力F安较小,在金属棒重力分量mg sin θ作用下金属棒有沿框面下滑的趋势,金属棒所受静摩擦力F f沿框面向上,受力情况如图所示.此时金属棒刚好不下滑,满足平衡条件:B ER max l+μmg cos θ-mg sin θ=0解得R max=BElmg(sin θ-μcos θ)=8.0 Ω(2)当滑动变阻器R取值较小时,I较大,安培力F安较大,会使金属棒产生上滑的趋势,因此金属棒所受静摩擦力F f 沿框面向下,如图所示.此时金属棒刚好不上滑,满足平衡条件:B E R min l -μmg cos θ-mg sin θ=0 解得R min =BElmg (sin θ+μcos θ)=1.4 Ω所以要使金属棒静止在框架上,滑动变阻器R 的取值范围为1.4 Ω≤R ≤8.0 Ω10.如图9所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在区域a 中,磁感应强度为2B ,方向垂直纸面向里;在区域b 中,磁感应强度为B ,方向垂直纸面向外,P 点坐标为(4l,3l ).一质量为m 、电荷量为q 的带正电的粒子从P 点沿y 轴负方向射入区域b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力.(sin 37°=0.6,cos 37°=0.8).求:图9(1)粒子从P 点运动到O 点的时间最少是多少? (2)粒子运动的速度可能是多少? 答案 (1)53πm 60qB (2)25qBl 12nm(n =1,2,3,…)解析 (1)设粒子的入射速度为v ,用R a 、R b 、T a 、T b 分别表示粒子在磁场a 区和b 区运动的轨道半径和周期,则:R a =m v 2qB ,R b =m v qB ,T a =2πm 2qB =πm qB ,T b =2πmqB粒子先从b 区运动,后进入a 区运动,然后从O 点射出时,粒子从P 运动到O 点所用时间最短.如图所示. tan α=3l 4l =34,得α=37°粒子在b 区和a 区运动的时间分别为:t b =2(90°-α)360°T b , t a =2(90°-α)360°T a故从P 到O 时间为 t =t a +t b =53πm60qB. (2)由题意及图可知n (2R a cos α+2R b cos α)=(3l )2+(4l )2 解得:v =25qBl12nm (n =1,2,3,…).。
磁场对运动电荷的作用
洛仑兹力只能改变电荷运动的速度方向, 不能改变速度的大小。
显像管的工作原理
电子束受到洛伦兹力而偏转 如图所示
(1)要是电子打在A点,偏
转磁场应该沿什么方向?
(2)要是电子打在B点,偏
转磁场应该沿什么方向? (3)要是电子束打在荧光屏
上的位置由中心O逐渐向A点
移动,偏转磁场应该怎样变 化?
课堂练习
在演示仪中可以观察到,没有磁场时,电子束是直进 的,外加磁场后,电子束的径迹变成圆形。磁场的强 弱和电子的速度都能影响圆的半径。
左:直线
右:圆形
洛伦兹力与电场力的区别:
1.产生: 电场对运动电荷、静止电荷都有电场力的作用 磁场只对运动电荷才有磁场力的作用
2.方向: 电场力的方向与电场方向平行,正电荷的电场力方向就
1.答:由现象知这束射线含有不 同的粒子。其中向左的射线为带 正电的粒子组成;中间的射线为 不带电粒子组成;向右的射线为 带负电的粒子组成。
课堂练习
F F
F
F
课堂练习
3.答:带电粒子在磁场中径迹弯曲、成螺旋形是由于 受到洛伦兹力的作用而使运动方向发生改变造成的。 两个运动的具有相反电荷的粒子在同一磁场中所受的 洛伦兹力方向相反,因此它们的径迹是一对相反绕向 的螺旋线。
洛伦兹力的方向
下图中电子束的偏转方向画的方向正确吗?
洛伦兹力一定垂直于磁感应强度B 和粒子速度v 。
F⊥v, F⊥B ,
F⊥ v、B相交所确定的平面
洛伦兹力的大小
F
- V0
F Bv
当速度v的方向与磁感应 强度B的方向垂直时:
F qvB
洛仑兹力F的大小等于电
B
荷量q、速度v、磁感应
强度B三者的乘积
磁场与电流对电荷运动的影响
磁场与电流对电荷运动的影响电磁现象是自然界中一种基本规律,它确定了磁场和电流对电荷运动的影响。
本文将探讨这两者之间的相互作用,并展示它们在日常生活和科技应用中的重要性。
1. 磁场的产生与电流的关系要了解磁场对电荷运动的影响,首先需要了解磁场是如何产生的。
磁场由电流产生,当电流通过导体时,周围会形成一个环绕导体的磁场。
这种磁场可以通过一种称为右手定则的方法来确定方向,即当右手握住电流方向时,指向环绕导体的方向就是磁场的方向。
2. 磁场对电荷的力的作用根据磁场的产生机制,我们可以推导出电荷受磁场力的作用。
当一个电荷在磁场中运动时,它会受到垂直于运动方向的磁场力的作用。
这个力的大小与电荷的速度、磁场的强度以及两者之间的夹角有关。
3. 洛伦兹力与电荷在磁场中的运动洛伦兹力是描述电荷在磁场中运动的力的一种数学表达式。
它由电荷的电量、速度和磁场的强度共同决定。
洛伦兹力的大小与电荷的速度成正比,方向则垂直于速度和磁场的平面。
在磁场中,电荷的运动轨迹将发生变化。
根据洛伦兹力的方向和大小,我们可以得出以下结论:- 若电荷的速度与磁场的方向相同,那么洛伦兹力将使电荷受到一个向心力,导致电荷做圆周运动。
- 若电荷的速度与磁场的方向相反,那么洛伦兹力将使电荷受到一个离心力,导致电荷做反向的圆周运动。
- 若电荷的速度与磁场垂直,那么洛伦兹力将使电荷受到一个沿速度方向的力,导致电荷做直线运动。
4. 应用领域中磁场与电流的影响磁场与电流对电荷运动的影响不仅仅是理论上的知识,它在现实生活和科技应用中也扮演着重要角色。
在物理学研究中,磁场与电流的相互作用为大量实验和理论研究提供了基础。
科学家们利用磁场与电流的相互作用来研究电动机、发电机、电磁感应等现象,拓宽了我们对电磁学的认识。
在日常生活中,我们也可以发现磁场与电流的影响。
例如,当我们使用扫把时,磁场与电流的相互作用使得金属部分能够吸附周围的金属杂物。
此外,电磁铁的原理也是基于磁场与电流的关系,它利用电流通过导线产生的磁场来实现吸引铁磁性物质的功能。
磁场对电流的作用
磁场对电流的作用首先,磁场可以改变电流的方向。
根据右手定则,当电流通过导线时,在电流方向垂直平面上的正负极性上有一个磁场会形成,这个磁场的方向与电流方向垂直。
通过这个磁场的作用,电流会受到一个力的作用,使其改变方向。
这也是电磁铁和电动机正常工作的原理之一、利用磁场可以改变电流方向的特性,可以实现磁控开关、电动机、发电机等设备的正常运作。
其次,磁场可以影响电流的速度。
当电流通过导线时,磁场会对电流施加一个力,这个力的大小与磁场的强度、电流的大小、导线的长度、磁场与导线之间夹角的正弦函数成正比。
根据洛伦兹力定律,当电流的速度与磁场方向垂直时,洛伦兹力会对电流产生一个垂直于两者的力,使其运动轨迹发生弯曲。
这就是电子在有磁场的情况下偏转的基本原理。
基于这个原理,我们可以通过磁场来控制电子的运动方向,实现磁控电子束的偏转和聚焦,从而应用于电子显微镜、电子加速器等领域。
此外,磁场还可以改变电流的分布。
在磁场中,电流会受到洛伦兹力的作用,电子会在磁场中沿着圆弧轨道移动,而正电荷则会相对于电子运动轨道发生偏移,使得电流的电荷分布不均匀。
这个现象称为霍尔效应。
借助磁场对电流分布的影响,我们可以利用霍尔元件来检测磁场的强度。
同时,磁场也可以改变电流的密度分布,通过调整磁场的方向和强度,可以实现对电流的控制。
此外,磁场对电流还有一些其他影响。
例如,磁场可以引起电流的感应。
当电流通过导线时,会产生磁场,当磁场变化时,会在导线中产生感应电动势。
这个原理被广泛应用在电磁感应、变压器、电动发电机等设备中。
电动机则是运用了磁场和电流相互作用的原理,在磁场的作用下,电流通过线圈内部的导线,产生力矩,驱动设备进行工作。
总结起来,磁场对电流的作用通过洛伦兹力,在电流流动的导线周围产生一个力的效应。
这种效应可以用来改变电流的方向、速度、分布,以及感应电流的产生。
利用磁场对电流的影响,我们可以实现磁控开关、电动机、发电机、电子显微镜、电子加速器、电磁感应等设备的正常运作。
高考物理新课标件磁场对运动电荷的作用
霍尔效应原理及应用
霍尔效应原理
当电流垂直于外磁场通过导体时,在 导体的垂直于磁场和电流方向的两个 端面之间会出现电势差,这一现象称 为霍尔效应。
霍尔元件
应用领域
霍尔效应在电子技术、自动化技术、 汽车技术等领域有广泛应用,如电子 点火器、无触点开关、位置传感器等 。
2. 调整磁场强度和电荷速度 时,要确保测量准确。
3. 多次重复实验,减小误差 。
数据处理与结果分析
数据处理
根据实验数据,计算电荷在磁场中的 偏转角度和半径,进而得到洛伦兹力 的大小和方向。
结果分析
通过比较实验数据和理论预测值,验 证洛伦兹力的存在并探究其与速度、 磁场强度的关系。同时,分析实验误 差来源,提出改进意见。
利用霍尔效应制成的元件称为霍尔元 件,可用于测量磁场、电流等物理量 。
XX
PART 03
典型问题分析与求解方法
REPORTING
判断带电粒子所受洛伦兹力方向
左手定则
伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感 线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线 在磁场中所受安培力的方向。
XX
高考物理新课标件磁 场对运动电荷的作用
汇报人:XX
20XX-01-16
REPORTING
目录
• 磁场与运动电荷基本概念 • 磁场对运动电荷作用机制 • 典型问题分析与求解方法 • 实验探究:验证洛伦兹力存在和性质 • 知识拓展:其他相关物理现象和规律 • 总结回顾与高考备考建议
XX
PART 01
等离子体振荡和波动现象
磁场对运动电荷的作用力 课件
(3)洛伦兹力恒不做功,但安培力却可以做功.
可见安培力与洛伦兹力既有紧密相关、不可分割的必然 联系,也有显著的区别.
3.洛伦兹力与电场力的比较
2.在研究电荷的运动方向与磁场方向垂直的情况时, 由左手定则可知,洛伦兹力的方向既与磁场方向垂直,又与 电荷的运动方向垂直,即洛伦兹力垂直于v和B两者所决定的 平面.
3.由于洛伦兹力的方向总是跟运动电荷的速度方向垂 直,所以洛伦兹力对运动电荷不做功,洛伦兹力只能改变电 荷速度的方向,不能改变速度的大小.
图3-5-2
有 Q=nqL=nq·vt,I=Qt ,F 安=BIL,故 F 安=BQt L=Bnqtvt·L=Bqv·nL,洛伦兹力 F=F 安/nL,故 F=qvB.
上式为电荷垂直磁场方向运动时,电荷受到的洛伦 兹力.
2.洛伦兹力和安培力的区别与联系
(1)洛伦兹力是单个运动电荷在磁场中受到的力,而安 培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏 观表现;
2.带电粒子在复合场中运动的分析方法和思路 (1)正确进行受力分析,除重力、弹力、摩擦力外要特 别注意电场力和洛伦兹力的分析.
(2)确定带电粒子的运动状态,注意运动情况和受力情 况的结合.
(3)灵活选择不同的运动规律 ①当带电粒子在复合场中做匀速直线运动时,粒子受 力必然平衡,由平衡条件列方程求解.
磁场对运动电荷的作用力
一、洛伦兹力
1.演示实验:电子射线管发出的电子束,如图甲中的径迹是
乙中一电条子直束线的径.迹把向电下子射发线生管了放偏在转蹄,形若磁调铁换的磁磁铁场南中北,极如的图位3置-,5-则1 电子束的径迹会向上偏转.
磁场对电荷运动的影响
磁场对电荷运动的影响磁场是由电流产生的。
当电荷运动时,它会产生一个磁场,而同时该电荷也会受到外部磁场的作用。
在本文中,我们将探讨磁场对电荷运动的影响。
1. 磁力的作用磁场可以对电荷施加力,这种力称为磁力。
磁力的大小和方向由洛伦兹力定律确定。
洛伦兹力定律表明,磁力的大小与电荷的大小、电荷的运动速度以及磁场的强度和方向有关。
磁力的方向垂直于电荷的运动轨迹和磁场的方向,符合右手定则。
2. 磁场对带电粒子的弯曲轨迹当带电粒子穿过磁场时,由于受到磁力的作用,其运动轨迹会发生弯曲。
这种弯曲轨迹被称为洛伦兹力的曲线。
3. 磁场对电子轨道的影响在原子中,电子绕绕原子核运动,形成电子轨道。
在有磁场的情况下,电子的轨道将受到磁力的作用,导致其轨道的形状和方向发生改变。
这种现象称为塞曼效应。
4. 磁场对电磁感应的影响磁场还可以影响电磁感应现象。
当一个导体运动于磁场中,产生感应电动势时,会产生电流。
这种现象被称为磁感应。
5. 磁场对电子运动速度的限制在磁场中,电子受到磁力的作用,会发生向心力。
这种向心力会限制电子的运动速度和轨道半径。
当向心力与电子的离心力平衡时,电子将保持稳定的轨道。
6. 磁场对电子束的聚焦在粒子加速器中,利用磁场可以对电子束进行聚焦。
磁场可以使电子束在加速器中保持稳定的轨道,同时减小束斑的扩散,提高加速效率。
总结:磁场对电荷运动有着显著的影响。
磁力可以使电荷的运动轨迹发生弯曲,磁场也可以改变电子的轨道形状和方向。
此外,磁场还对电磁感应产生影响,限制电子运动速度,并对电子束的聚焦起到重要作用。
对磁场与电荷运动的关系的深入了解,对于电磁学的研究和应用具有重要意义。
磁场对电流和运动电荷的作用
磁场对电流和运动电荷的作用首先,对于电流而言,磁场可以通过洛伦兹力对电流产生力矩,使线圈或导体绕轴转动。
这是电动机、发电机等电器设备的基本原理。
当通过线圈的电流改变时,根据法拉第电磁感应定律,产生的感应电动势会导致线圈产生自感电流,自感电流与通过线圈的电流方向相反,从而使线圈的运动放慢或停止。
这种现象被称为感应制动。
此外,对于运动电荷,磁场可以使其受到洛伦兹力的作用,改变其运动轨迹和速度。
洛伦兹力与电荷的速度、电荷的量以及磁场的强度和方向都有关系。
当电荷与磁场存在相对运动时,洛伦兹力会使电荷偏离原来的轨迹,并使其沿着一个弯曲的轨迹运动。
这个现象被称为洛伦兹力偏转,是质谱仪和阴极射线管等仪器的基本原理。
在医学领域中,磁场对电流和运动电荷的作用也有广泛的应用。
例如,核磁共振成像(MRI)利用对氢原子核的运动电荷施加磁场,通过检测其产生的信号来生成人体内部的影像。
MRI技术在医学影像诊断中具有非常重要的地位。
除了应用外,对磁场对电流和运动电荷的作用进行实验研究也具有重要意义。
通过实验可以观察和测量磁场对电流和运动电荷的影响,验证和探究电磁学的基本原理。
例如,通过在磁场中放置导线,可以观察到导线受到的力和位移等现象,从而验证洛伦兹力的存在和作用机制。
最后,需要指出的是,磁场对电流和运动电荷的作用和电场的作用是有区别的。
电场可以对静止电荷施加力,而磁场只对运动电荷有力的作用。
这是由于电场的力与电荷的静电力有关,而磁场的力是洛伦兹力,与电荷的速度有关。
总之,磁场对电流和运动电荷的作用在科学和工程领域有着广泛的应用。
通过研究和理解磁场对电流和运动电荷的作用机制,可以推动电磁学理论的发展,以及应用于各种电器设备和医学影像等领域的技术进步。
磁场对运动电荷的作用
磁场对运动电荷的作用一、 考点聚焦1.磁场对运动电荷的作用,洛伦兹力。
带电粒子在匀强磁场中的运动 Ⅱ2.质谱仪.回旋加速器 Ⅰ二、 知识扫描1.磁场对运动电荷的作用力叫做洛伦兹力。
当v ⊥B qvB f =;当v ∥B 时,f =0。
2.洛伦兹力的方向:用左手定则判定。
注意:四指代表电流方向,不是代表电荷的运动方向。
3.由于洛伦兹力f 始终与速度v 垂直,因此f 只改变速度方向而不改变速度大小。
当运动电荷垂直磁场方向进入磁场时仅受洛伦兹力作用,因此一定做匀速圆周运动。
4.带电粒子在匀强磁场中做匀速圆周运动有一个动力学方程:R v m qvB 2=,两个基本公式(1)轨道半径公式:qB mv R =,(2)周期公式:qB m T π2=。
三、好题精析例1 在如图11.3-1所示的三维空间中,存在方向未知的匀强磁场。
一电子从坐标原点出发,沿x 轴正方向运动时方向不变;沿y轴正方向运动时,受到z 轴负方向的洛伦兹力作用。
试确定当电子从O 点沿z 轴正方向出发时的轨道平面及绕行方向。
解析 运动的电荷在匀强磁场中方向不变有两种可能:一是电荷沿磁场方向运动不受洛伦兹力;二是电荷受洛伦兹力与其它力的合力为零。
本题电子沿x 轴正方向运动时方向不变,表明沿磁场方向运动,即磁场方向与yOz 平面垂直,而电子沿y 轴正方向运动时,受到z 轴负方向的洛伦兹力作用,由左手定则可知,磁场指向纸内。
当电子从O 点沿z 轴正方向出发时,轨道平面一定在yOz 平面内,沿顺时针方向做匀速圆周运动,且圆心在y 轴正方向某一点。
如图11.3-2所示。
点评 本题考查对洛伦兹力方向的判定和分析带电粒子在磁场中运动轨迹。
物理习题中所给条件有的是直接给出的,也有隐含在题中,需要根据所学知识进行挖掘。
本题中匀强磁场的方向就是通过两步分析来确定的。
图11.3-1图11.3-2例2 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如图11.3-3所示。
电磁学中的磁场对电荷的作用
电磁学中的磁场对电荷的作用磁场对电荷的作用是电磁学中一个重要的研究内容。
磁场是由带电粒子运动形成的,它对电荷具有一定的作用力,这种作用力被称为洛伦兹力。
在电磁学理论中,洛伦兹力是磁场对电荷作用的基石之一,为我们理解电磁现象提供了重要的指导。
首先,为了全面理解磁场对电荷的作用,我们需要了解磁场和电荷之间的相互作用机制。
在经典电磁学理论中,电荷的运动会产生磁场,而磁场会对电荷施加力。
当一个运动的电荷进入磁场时,它会受到洛伦兹力的作用,这个力的方向与电荷的速度方向、磁场的方向以及电荷的电荷性质(正负)有关。
如果电荷的运动方向与磁场方向垂直,那么洛伦兹力的方向将垂直于电荷运动方向和磁场方向,这也被称为右手定则。
如果电荷的运动方向与磁场方向平行,那么洛伦兹力将为零。
其次,磁场对电荷的作用力可以通过洛伦兹力的数学表达式进行计算。
洛伦兹力的大小由电荷的电荷量、电荷的速度以及磁场的强度共同决定。
在经典电磁学中,洛伦兹力的表达式为F=qvBsinθ,其中F表示力的大小,q表示电荷量,v表示电荷的速度,B表示磁场的强度,θ为磁场方向与电荷速度方向之间的夹角。
由于洛伦兹力的方向垂直于速度方向和磁场方向,因此电荷在磁场中受到的作用力将使其运动轨迹发生曲线偏折。
此外,磁场对电荷的作用还可能导致电流的产生。
当电荷在磁场中发生偏折时,如果电荷在偏折过程中与其他电荷发生碰撞,就会导致电荷之间发生相互作用。
这种相互作用通常会导致电荷的集体运动,形成电流。
磁场对电荷的作用力将成为推动电荷运动的动力源,也决定了电流的大小和方向。
这一现象在电磁感应和电磁振荡等实验中得到了广泛的应用。
最后,磁场对电荷的作用还可以通过实验进行验证。
例如,可以将带电粒子放置在磁场中,通过观察粒子的运动轨迹、磁场的方向和强度来研究磁场对电荷的作用。
此外,也可以通过改变电荷的速度、电荷的电荷量以及磁场的强度等条件,进一步研究洛伦兹力的特性和变化规律。
这些实验可以验证磁场对电荷的作用力的存在和性质,加深我们对电磁学的认识。
磁场对运动电荷的作用力
磁场对运动电荷的作用力磁场对运动电荷的作用力:磁场力,是磁场对其中运动电荷和电流的作用力。
磁场力包括洛仑兹力和安培力。
磁场对运动电荷作用力称为洛仑兹力,磁场对电流的作用力称为安培力。
洛仑兹力既垂直于磁场方向又垂直于电荷运动方向,安培力既垂直于磁场方向又垂直于电流方向。
可以用左手定则判断磁场力的方向。
磁场力包括磁场对运动电荷作用的洛仑兹力和磁场对电流作用的安培力,安培力是洛仑兹力的宏观表现。
磁场力现象中涉及3个物理量的方向:磁场方向、电荷运动方向、洛仑兹力方向;或磁场方向、电流方向、安培力方向。
用左手定则说明3个物理量的方向时有一个前提,认为磁场方向垂直于电荷运动方向或磁场方向垂直于电流方向。
不少同学认为,根据左手定则知道其中任意2个量的方向可求出第3个量的方向。
一般说,这种看法是不正确的;事实是,磁场方向不一定垂直于电荷运动方向或电流方向,它们之间的夹角可以是任意的。
能肯定的是:洛仑兹力一定既垂直于磁场方向又垂直于电荷运动方向,洛仑兹力垂直于磁场B和电荷运动速度v所决定的平面。
安培力一定既垂直于磁场方向又垂直于电流方向,安培力垂直于B和I所决定的平面,不应该忽视一个重要事实:B与v或I平行时,洛仑兹力或安培力都不存在。
因此,当B⊥v或B⊥I时,可以用左手定则表述3个物理量方向间的关系。
这时,知道任意2个物理量的方向可求出第3个物理量的方向。
当B与v或B与I不垂直时,根据B与v的方向或B与I的方向,可确定洛仑兹力f或安培力F的方向,但是,根据v、f的方向或I、F的方向不确定B的方向;根据B、f的方向或B、F的方向不能确定v或I的方向。
这2种问题若有确定的解必须补充条件。
磁场力包括两种,一种是磁场对通电导线的作用力,另一种是磁场对运动电荷的作用力。
磁场与电荷运动的关系
磁场与电荷运动的关系磁场与电荷运动之间存在着密切的关联,它们相互作用、相互影响,从而产生了一系列的现象和规律。
本文将从电荷的运动形式、磁场的特性以及二者之间的相互关系等方面进行探讨。
一、电荷的运动形式电荷在空间中可以表现出不同的运动形式,其中最常见的有两种:直线运动和曲线运动。
1. 直线运动当电荷受到外力作用时,如果没有其他力的干扰,电荷将以匀速直线运动的方式前进。
这种直线运动是电荷运动的一种基本形式。
2. 曲线运动当电荷穿过磁场时,由于磁场的存在,将对电荷施加一个垂直于电荷速度方向的洛伦兹力。
这个洛伦兹力会使电荷的运动轨迹发生偏折,从而产生曲线运动。
这种曲线运动被称为洛伦兹力的偏折效应。
二、磁场的特性磁场是一种特殊的物理场,其具有以下几个基本特性:1. 磁场的起源磁场的起源是电流。
通电导线产生的磁场是围绕导线形成闭合环路的,而且磁场的强度与电流的大小成正比。
2. 磁场的方向磁场具有方向性,通常用磁感线表示。
磁感线从磁北极指向磁南极,形成一个闭合的环路。
当通过一根笔直电流导线时,其产生的磁感线呈环绕导线的形式。
3. 磁场的强度磁场的强度用磁感应强度表示,单位是特斯拉(T)。
磁感应强度的大小与电流的大小、导线形状以及磁场距离等因素有关。
三、电荷在磁场中的运动规律磁场与电荷的相互作用是通过洛伦兹力来实现的,其运动规律可概括为洛伦兹力和电荷速度及磁场三者之间的关系。
1. 洛伦兹力的方向洛伦兹力的方向符合右手定则:假设右手大拇指指向电荷的速度方向,四指指向磁场方向,则手指弯曲的方向即为洛伦兹力的方向。
2. 洛伦兹力的大小洛伦兹力的大小与电荷的速度、磁感应强度以及两者之间的夹角有关。
当电荷的速度与磁感应强度垂直时,洛伦兹力达到最大值;当电荷的速度与磁感应强度平行时,洛伦兹力为零。
3. 电荷运动轨迹的特点当电荷以一定的速度穿过磁场时,洛伦兹力使其轨迹发生偏折,形成一条曲线轨迹。
这种轨迹在磁场垂直于速度方向时是圆形的,在磁场平行于速度方向时是直线的。
磁场对电荷的影响
磁场对电荷的影响磁场是由电流和磁体产生的力场,它对电荷产生一定的影响。
在本文中,我们将探讨磁场对电荷的影响,并分析其中的原理和应用。
一、磁场对电荷的力作用磁场对电荷的力作用可以通过洛伦兹力来描述。
当电荷在磁场中运动时,磁场会给电荷施加一个垂直于电荷速度和磁场方向的力。
根据洛伦兹力的公式,这个力可以用以下方程表示:F = q * v * B * sin(θ)其中,F为洛伦兹力,q为电荷量,v为电荷的速度,B为磁场的磁感应强度,θ为磁场和速度之间的夹角。
根据上述公式,我们可以得出以下几个结论:1. 当电荷速度和磁场方向垂直时,洛伦兹力最大,为Fmax = q * v * B;2. 当电荷速度和磁场方向平行时,洛伦兹力为零,电荷不受力的作用;3. 当电荷速度和磁场方向夹角为其他角度时,洛伦兹力大小为F = q * v * B * sin(θ),大小介于0和Fmax之间。
二、磁场对电荷运动轨迹的影响由于磁场对电荷的力作用垂直于电荷速度方向,它只改变电荷的运动方向,而不改变其速度大小。
因此,磁场可以改变电荷的运动轨迹。
当电荷以某一速度进入磁场时,磁场会做一垂直于速度方向的力,使电荷偏离原来的直线轨迹,形成一个圆周运动。
这种现象被称为磁场中的电荷轨道运动。
在研究电荷在磁场中的轨道运动时,我们引入了一个重要的参数,即磁场对电荷的作用力与电荷的质量之比,记作q/m。
这个比值在物理学中被称为电荷的“比荷质比”。
根据洛伦兹力的方向和运动学知识,我们可以推导出以下结论:1. 当磁场和速度方向垂直时,电荷将做一个完整的圆周运动;2. 当磁场和速度方向平行时,电荷将沿直线运动,不受磁场的影响;3. 当磁场和速度方向夹角为其他角度时,电荷将做一螺旋状或螺旋线状运动。
三、磁场对电荷的应用磁场对电荷的影响在许多实际应用中起到重要作用。
以下是几个常见的应用示例:1. 电动机:电动机利用磁场对带电导体的力作用,将电能转换为机械能。
浅谈磁场对运动电荷的作用问题情境的创设的有效性
浅谈磁场对运动电荷的作用问题情境创设的有效性沙县一中曹镞如何提高物理的学习效率是物理教育者和学习者一直在讨论的问题,要提高学生的学习效率,我认为首先要提高上课的有效性,而能否提高学生的效率在于能否激发学生的学习兴趣,所以在教授磁场对运动电荷的作用这节课需要通过问题情境来吸引学生,激发他们的学习兴趣。
磁场对运动电荷的作用这节内容的教学对象是高二的学生,学生已完成了力学、电流、磁场和安培力的学习,在思维方法方面,已有一定的观察、分析、抽象、逻辑思维和数学推算等能力。
日常生活中由于我们无法用肉眼观察到运动电荷,学生缺乏对电荷在磁场中的运动的感性经验,但他们对未知事物的新奇现象具有较强的探究兴趣和欲望,具备学习动力基础。
我们常说物理知识是源于生活的,这是我们物理教育者常挂在嘴边的话,但是如果我们在实际教学中不能把物理知识和生活联系起来,那就变成了空洞无力的话,学生对物理自然就失去了兴趣。
所以首先我们可以运用生活经验创设问题情境,通过视频展示现实生活中极地的极光现象,让学生观察极光现象,视频中出现的美丽的画面常常能吸引学生的注意力,这时提出问题:极光在地球的哪些地方可以看到?为什么其他地方看不到?极光的产生与哪些因素有关?问题的设置要循序渐进,对于第一个问题,很多学生会知道,他们会回答道在南北两极,但是接下来的两个问题他们却解决不了,这样他们心中就形成疑问了,从而明确了他们学习的方向,知道了我们这节课要解决的问题。
同时学生缺乏对运动电荷的感性经验,以视频展示生活中的美丽极光,帮助学生认识微观运动是通过宏观现象表现出来的,在学生感受、欣赏生活中物理美的同时水到渠成地引入新课探究。
激发学生的学习兴趣,引发学生探究欲望,活化学生思维,导入新课。
所以我们在教学时要“使物理贴近学生生活、联系社会实际”,恰到好处地利用学生的生活经验和事件来创设发现问题的情境。
创设的问题应接近学生的“最近发展区”,引导学生自己去思考更多问题。
磁场对运动电荷的作用洛伦兹力分解课件
洛伦兹力在磁场束缚中的应用
等离子体束缚
在核聚变等离子体实验中,洛伦兹力可以用于束缚等离子体,使其 保持稳定并防止热失控。
磁场重联
在磁场重联过程中,洛伦兹力起着关键作用,它决定了磁场的演变 过程和能量释放机制。
电流驱动
洛伦兹力在产生电流驱动方面具有重要应用,例如在空间科学实验中 ,可以利用洛伦兹力驱动电流,以研究地球磁场的动态变化。
洛伦兹力的方向
根据左手定则,可以判 断洛伦兹力的方向。
洛伦兹力实验的装置和操作步骤
装置:磁场装置、粒子源、粒子速度控 制装置、粒子轨迹显示装置等。
3. 分析实验数据,得出结论。
2. 视察粒子轨迹的变化,记录不同速度 下粒子的轨迹。
操作步骤
1. 将粒子源置于磁场中,调整粒子速度 控制装置,使粒子以不同的速度在磁场 中运动。
洛伦兹力的大小和方向
大小
洛伦兹力的大小与带电粒子的电荷量 、速度和磁感应强度成正比,与夹角 的正弦值成正比。
方向
洛伦兹力的方向由左手定则确定,即 伸开左手,让磁感应线穿过掌心,四 指指向带电粒子的运动方向,大拇指 所指方向即为洛伦兹力的方向。
洛伦兹力的重要意义
洛伦兹力是研究带电粒子在磁场中运动的重要工具,对于理解电磁场的基本性质和 带电粒子的运动规律具有重要意义。
公式表示
角速度 = 洛伦兹力 / (转动惯量),其中洛伦兹力是磁场对运动电荷的作 用力,转动惯量是电荷旋转运动的惯性。
03 洛伦兹力的分解
洛伦兹力在直角坐标系中的分解
洛伦兹力在直角坐标系中的分解是理解其作用机制的基础,通过分解可以更好地 理解洛伦兹力对运动电荷的作用。
在直角坐标系中,洛伦兹力可以分解为三个分量,分别是$F_{x}$、$F_{y}$和 $F_{z}$,分别表示在x、y和z方向上的作用力。每个分量的表达式和物理意义都 不同,但它们共同作用在运动电荷上,产生洛伦兹力的效果。
训练10磁场对电流和运动电荷的作用
专题六 磁 场训练10 磁场对电流和运动电荷的作用一、单项选择题1.(2012·河南焦作市一模)欧姆在探索导体的导电规律的时候,没有电流表,他利用小磁针的偏转检测电流,具体的做法是:在地磁场的作用下,处于水平静止的小磁针上方,平行于小磁针水平放置一直导线,当该导线中通有电流的时候,小磁针就会发生偏转;当通过该导线的电流为I 时,发现小磁针偏转了30°,由于直导线在某点产生的磁场与通过直导线的电流成正比,当他发现小磁针偏转了60°时,通过该导线的电流为( )A .3IB .2I C.3I D .I 2.(2010·上海单科·13)如图1所示,长为2l 的直导线折成边长相等,夹角为60°的V 形, 并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B ,当在该导线中通以电流强度为I 的电流时,该V 形通电导线受到的安培力大小为 ( )图1A .0B .0.5BilC .BID .2BIl3.(2012·安徽理综·19)如图2所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带 电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC与OB 成60°角.现将带电粒子的速度变为v 3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( )图2A.12Δt B .2Δt C.13Δt D .3Δt4.(2012·福建厦门市高中毕业班适应性考试18题)显像管原理的示意图如图3所示,当没有磁场时,电子束将打在荧光屏正中的O 点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使高速电子流打在荧光屏上的位置由a 点逐渐移动到b 点,下列磁场的变化能够使电子发生上述偏转的是( )图35.(2012·山东德州市一模)如图4所示,带负电的物块A 放在足够长的不带电的绝缘小车B 上,两者均保持静止,置于垂直于纸面向里的匀强磁场中,在t =0时刻用水平恒力F 向左推小车B .已知地面光滑,AB 接触面粗糙,A 所带电荷量保持不变,下列四图中关于A 、B 的v -t 图象大致正确的是 ( )图4二、双项选择题6.(2012·河北衡水市中学调研)如图5所示,平行于纸面水平向右的匀强磁场,磁感应强度B 1=1 T .位于纸面内的细直导线,长L =1 m ,通有I =1 A 的恒定电流.当导线与B 1成60°夹角时,发现其受到的安培力为零,则该区域同时存在的另一匀强磁场的磁感应强度B 2的可能值是 ( )图5A.12T B.22 T C .1 T D. 3 T7.(2012·广东汕头市质量测评19题)如图6为磁流体发电机的原理图,等离子体束(含有正、负离子)以某一速度垂直喷射入由一对磁极CD 产生的匀强磁场中,A 、B 是一对平行于磁场放置的金属板.稳定后电流表中的电流从“+”极流向“-”极,由此可知( )图6A .D 磁极为N 极B .正离子向B 板偏转C .负离子向D 磁极偏转D .离子在磁场中的偏转过程洛伦兹力对其不做功8.(2012·辽宁丹东市四校协作体一模20题)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D 形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图7所示.设D 形盒半径为R .若用回旋加速器加速质子时,匀强磁场的磁感应强度为B ,高频交流电频率为f .则下列说法正确的是 ( )图7A .质子被加速后的最大速度不可能超过2πfRB .质子被加速后的最大速度与加速电场的电压大小无关C .只要R 足够大,质子的速度可以被加速到任意值D .不改变B 和f ,该回旋加速器也能用于加速α粒子9.(2012·江苏单科·9)如图8所示,MN 是磁感应强度为B 的匀强磁场的边界.一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v 0,最远能落在边界上的A 点.下列说法正确的有 ( )图8A .若粒子落在A 点的左侧,其速度一定小于v 0B .若粒子落在A 点的右侧,其速度一定大于v 0C .若粒子落在A 点左右两侧d 的范围内,其速度不可能小于v 0-qBd 2mD .若粒子落在A 点左右两侧d 的范围内,其速度不可能大于v 0+qBd 2m三、简答题10.如图9所示,在x <0与x >0的区域中,存在磁感应强度大小分别为B 1与B 2的匀强磁场,磁场方向均垂直于纸面向里,且B 1>B 2.一个带负电的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,B 1与B 2的比值应满足什么条件?图911.(2012·河南洛阳市五校联考25题)如图10所示,xOy 平面内的圆O ′与y 轴相切于坐标原点O ,在圆形区域内有与y 轴平行的匀强电场和垂直于纸面的匀强磁场(图中未画出),一个带电粒子(重力不计)从原点O 沿x 轴正方向以一定的速度进入场区,恰好沿x 轴做匀速直线运动而穿过场区.若撤去磁场,只保留电场,其它条件不变,粒子由M 点穿出场区,MO ′与x 轴的夹角α=60°.若撤去电场只保留磁场,其它条件不变,粒子从N 点穿过场区,O ′N 与x 轴的夹角为β,求β.图1012.(2012·湖南名校联考25题)如图11所示,在xOy 平面的第Ⅰ象限内,有垂直纸面向外的匀强磁场,在第Ⅳ象限内,有垂直纸面向里的匀强磁场,磁感应强度大小均为B .P 点是x 轴上的一点,横坐标为x 0.现在原点O 处放置一粒子放射源,能沿xOy 平面,以与x 轴成45°角的恒定速度v 0向第一象限发射某种带正电的粒子.已知粒子第1次偏转后与x 轴相交于A 点,第n 次偏转后恰好通过P 点,不计粒子重力.求:图11(1)粒子的比荷q m; (2)粒子从O 点运动到P 点所经历的路程和时间;(3)若全部撤去两个象限的磁场,代之以在xOy 平面内加上与速度v 0垂直的匀强电场(图中没有画出),也能使粒子通过P 点,求满足条件的电场的场强大小和方向.答案1.A 2. C 3.B 4.A 5.C 6.CD 7.AD 8.AB 9.BC10. B 2B 1=n n +1(n =1,2,3,…) 11.2tan -149312.(1)2n v 0x 0B (2)2πx 04 2πx 04v 0 (3)2B v 0n垂直v 0指向第Ⅳ象限。
磁场对运动电荷的作用力
磁场对运动电荷的作用力首先,磁场是由运动电荷产生的。
当电荷在运动时,它会产生一个环绕着它的磁场。
这就是著名的安培环路定理,它说明了电流在产生磁场方面的重要性。
电流是由运动电荷产生的,并且在产生磁场时,电流不仅仅是电荷的数量,还包括电荷的速度。
因此,只有运动电荷才能产生磁场。
当一个运动电荷进入一个磁场时,它会受到一个磁场力的作用。
这个作用力被称为洛伦兹力,是由电荷的运动状态和磁场的性质共同决定的。
具体来说,洛伦兹力的大小和方向由以下三个因素决定:电荷的速度、磁场的方向和大小以及电荷的电荷量。
洛伦兹力可以用以下公式表示:F=q*(v×B)其中,F表示洛伦兹力,q是电荷的电荷量,v是电荷的速度,B是磁场的磁感应强度。
"×"表示向量叉乘,由右手定则可知,正交于电荷的速度和磁场的方向。
根据这个公式,我们可以看到洛伦兹力与电荷的速度和磁场的方向和大小都有关系。
如果电荷的速度与磁场平行,洛伦兹力为零,电荷不会受到磁场力的作用。
如果电荷的速度与磁场垂直,洛伦兹力的大小最大。
如果电荷的速度与磁场的方向成一定的角度,洛伦兹力的大小将介于0和最大值之间。
在实际应用中,磁场对运动电荷的作用力表现出一些重要的特性。
首先,该力是一个受力,它使运动电荷发生加速度。
其次,磁场力只对速度有垂直分量的电荷产生作用,不会改变电荷的速度大小。
最后,磁场力与电荷的电荷量成正比,因此电荷越大,力也越大。
磁场对运动电荷的作用力在许多实际情况中都有重要应用。
例如,它可以用于磁力传感器和磁力计等仪器中。
在这些设备中,磁场力被用来测量电荷的速度,并将其转化为一个可读的数值。
此外,洛伦兹力是运行大型粒子加速器的基本原理之一、在这些加速器中,电荷通过磁场受到的力会加速它们,并使其达到很高的速度。
总之,磁场对运动电荷的作用力是一种重要的物理现象。
洛伦兹力的大小和方向取决于电荷的电荷量、速度和磁场的方向和大小。
磁场力对于许多实际应用非常重要,并在许多领域中发挥着重要作用。
《磁场对运动电荷的作用》 讲义
《磁场对运动电荷的作用》讲义一、引入在我们生活的这个世界中,磁场无处不在。
从地球的磁场,到我们身边的各种电器设备产生的磁场,磁场对我们的生活有着重要的影响。
而当电荷在磁场中运动时,会发生一系列有趣而又重要的现象。
这就是我们今天要探讨的主题——磁场对运动电荷的作用。
二、磁场的基本概念首先,让我们来了解一下磁场是什么。
磁场是一种看不见、摸不着的特殊物质,但它却能对处在其中的磁体或运动电荷产生力的作用。
我们可以用磁感线来形象地描述磁场的强弱和方向。
磁感线越密集的地方,磁场越强;磁感线的切线方向就是磁场的方向。
三、运动电荷在磁场中受到的力——洛伦兹力当运动电荷进入磁场时,会受到一种力的作用,这种力被称为洛伦兹力。
洛伦兹力的大小与电荷量、运动速度、磁感应强度以及速度方向与磁感应强度方向的夹角有关。
其表达式为:F =qvBsinθ,其中 q表示电荷的电荷量,v 表示电荷的运动速度,B 表示磁感应强度,θ 是速度方向与磁感应强度方向的夹角。
需要注意的是,当θ = 0°或 180°时,运动电荷不受洛伦兹力;当θ = 90°时,洛伦兹力最大,F = qvB。
洛伦兹力的方向可以用左手定则来判断:伸出左手,让磁感线穿过掌心,四指指向正电荷运动的方向(或负电荷运动的反方向),大拇指所指的方向就是洛伦兹力的方向。
四、洛伦兹力的特点1、洛伦兹力始终与电荷的运动方向垂直,所以洛伦兹力不做功,它只改变电荷的运动方向,而不改变电荷的运动速度大小。
2、洛伦兹力的大小与电荷的运动速度有关,速度越大,洛伦兹力越大。
五、洛伦兹力的应用1、质谱仪质谱仪是一种测量带电粒子质量和比荷的仪器。
其基本原理是利用电场对带电粒子进行加速,然后让粒子进入磁场,通过测量粒子在磁场中的偏转半径,从而计算出粒子的质量和比荷。
假设粒子经过加速电场后的速度为 v,进入磁场时的磁感应强度为B,偏转半径为 r,则根据洛伦兹力提供向心力的公式:qvB = m v²/r,可得粒子的质量 m = qBr / v。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题六 磁 场
训练10 磁场对电流和运动电荷的作用
一、单项选择题
1.(2012·河南焦作市一模)欧姆在探索导体的导电规律的时候,没有电流表,他利用小
磁针的偏转检测电流,具体的做法是:在地磁场的作用下,处于水平静止的小磁针上方,平行于小磁针水平放置一直导线,当该导线中通有电流的时候,小磁针就会发生偏转;当通过该导线的电流为I 时,发现小磁针偏转了30°,由于直导线在某点产生的磁场与通过直导线的电流成正比,当他发现小磁针偏转了60°时,通过该导线的电流为
( )
A .3I
B .2I C.3I D .I 2.(2010·上海单科·13)如图1所示,长为2l 的直导线折成边长相等,夹角为60°的V 形,
并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B ,当在该导线中通以电流强度为I 的电流时,该V 形通电导线受到的安培力大小为 ( )
图1
A .0
B .0.5Bil
C .BI
D .2BIl
3.(2012·安徽理综·19)如图2所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带
电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC
与OB 成60°角.现将带电粒子的速度变为v 3
,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( )
图2
A.1
2
Δt B.2Δt
C.1
3
Δt D.3Δt
4.(2012·福建厦门市高中毕业班适应性考试18题)显像管原理的示意图如图3所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使高速电子流打在荧光屏上的位置由a点逐渐移动到b点,下列磁场的变化能够使电子发生上述偏转的是
()
图3
5.(2012·山东德州市一模)如图4所示,带负电的物块A放在足够长的不带电的绝缘小车B上,两者均保持静止,置于垂直于纸面向里的匀强磁场中,在t=0时刻用水平恒力F 向左推小车B.已知地面光滑,AB接触面粗糙,A所带电荷量保持不变,下列四图中关于A、B的v-t图象大致正确的是()
图4
二、双项选择题
6.(2012·河北衡水市中学调研)如图5所示,平行于纸面水平向右的匀强磁场,磁感应强度B1=1 T.位于纸面内的细直导线,长L=1 m,通有I=1 A的恒定电流.当导线与B1成60°夹角时,发现其受到的安培力为零,则该区域同时存在的另一匀强磁场的磁感应强度B2的可能值是()
图5
A.1
2
T B.
2
2
T
C.1 T D. 3 T
7.(2012·广东汕头市质量测评19题)如图6为磁流体发电机的原理图,等离子体束(含有正、负离子)以某一速度垂直喷射入由一对磁极CD产生的匀强磁场中,A、B是一对平行于磁场放置的金属板.稳定后电流表中的电流从“+”极流向“-”极,由此可知
()
图6
A.D磁极为N极
B.正离子向B板偏转
C.负离子向D磁极偏转
D.离子在磁场中的偏转过程洛伦兹力对其不做功
8.(2012·辽宁丹东市四校协作体一模20题)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图7所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f.则下列说法正确的是()
图7
A .质子被加速后的最大速度不可能超过2πfR
B .质子被加速后的最大速度与加速电场的电压大小无关
C .只要R 足够大,质子的速度可以被加速到任意值
D .不改变B 和f ,该回旋加速器也能用于加速α粒子
9.(2012·江苏单科·9)如图8所示,MN 是磁感应强度为B 的匀强磁场的边界.一质量为
m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v 0,最远能落在边界上的A 点.下列说法正确的有 ( )
图8
A .若粒子落在A 点的左侧,其速度一定小于v 0
B .若粒子落在A 点的右侧,其速度一定大于v 0
C .若粒子落在A 点左右两侧d 的范围内,其速度不可能小于v 0-qBd 2m
D .若粒子落在A 点左右两侧d 的范围内,其速度不可能大于v 0+qBd 2m
三、简答题
10.如图9所示,在x <0与x >0的区域中,存在磁感应强度大小分别为B 1与B 2的匀强磁场,
磁场方向均垂直于纸面向里,且B 1>B 2.一个带负电的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,B 1与B 2的比值应满足什么条件?
图9
11.(2012·河南洛阳市五校联考25题)如图10所示,xOy 平面内的圆O ′与y 轴相切于坐标
原点O ,在圆形区域内有与y 轴平行的匀强电场和垂直于纸面的匀强磁场(图中未画出),一个带电粒子(重力不计)从原点O 沿x 轴正方向以一定的速度进入场区,恰好沿x 轴做匀速直线运动而穿过场区.若撤去磁场,只保留电场,其它条件不变,粒子由M 点穿出场区,MO ′与x 轴的夹角α=60°.若撤去电场只保留磁场,其它条件不变,粒子从N 点穿过场区,O ′N 与x 轴的夹角为β,求β.
图10
12.(2012·湖南名校联考25题)如图11所示,在xOy 平面的第Ⅰ象限内,有垂直纸面向外
的匀强磁场,在第Ⅳ象限内,有垂直纸面向里的匀强磁场,磁感应强度大小均为B .P 点是x 轴上的一点,横坐标为x 0.现在原点O 处放置一粒子放射源,能沿xOy 平面,以与x 轴成45°角的恒定速度v 0向第一象限发射某种带正电的粒子.已知粒子第1次偏转后与x 轴相交于A 点,第n 次偏转后恰好通过P 点,不计粒子重力.求:
图11
(1)粒子的比荷q m
; (2)粒子从O 点运动到P 点所经历的路程和时间;
(3)若全部撤去两个象限的磁场,代之以在xOy 平面内加上与速度v 0垂直的匀强电场(图中没有画出),也能使粒子通过P 点,求满足条件的电场的场强大小和方向.
答案
1.A 2. C 3.B 4.A 5.C 6.CD 7.AD 8.AB 9.BC
10. B 2B 1=n n +1
(n =1,2,3,…) 11.2tan -1
49 3
12.(1)2n v 0x 0B (2)2πx 04 2πx 04v 0 (3)2B v 0n
垂直v 0指向第Ⅳ象限。